xref: /openbmc/linux/fs/inode.c (revision c4c11dd1)
1 /*
2  * (C) 1997 Linus Torvalds
3  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4  */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include "internal.h"
21 
22 /*
23  * Inode locking rules:
24  *
25  * inode->i_lock protects:
26  *   inode->i_state, inode->i_hash, __iget()
27  * inode->i_sb->s_inode_lru_lock protects:
28  *   inode->i_sb->s_inode_lru, inode->i_lru
29  * inode_sb_list_lock protects:
30  *   sb->s_inodes, inode->i_sb_list
31  * bdi->wb.list_lock protects:
32  *   bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
33  * inode_hash_lock protects:
34  *   inode_hashtable, inode->i_hash
35  *
36  * Lock ordering:
37  *
38  * inode_sb_list_lock
39  *   inode->i_lock
40  *     inode->i_sb->s_inode_lru_lock
41  *
42  * bdi->wb.list_lock
43  *   inode->i_lock
44  *
45  * inode_hash_lock
46  *   inode_sb_list_lock
47  *   inode->i_lock
48  *
49  * iunique_lock
50  *   inode_hash_lock
51  */
52 
53 static unsigned int i_hash_mask __read_mostly;
54 static unsigned int i_hash_shift __read_mostly;
55 static struct hlist_head *inode_hashtable __read_mostly;
56 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
57 
58 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
59 
60 /*
61  * Empty aops. Can be used for the cases where the user does not
62  * define any of the address_space operations.
63  */
64 const struct address_space_operations empty_aops = {
65 };
66 EXPORT_SYMBOL(empty_aops);
67 
68 /*
69  * Statistics gathering..
70  */
71 struct inodes_stat_t inodes_stat;
72 
73 static DEFINE_PER_CPU(unsigned int, nr_inodes);
74 static DEFINE_PER_CPU(unsigned int, nr_unused);
75 
76 static struct kmem_cache *inode_cachep __read_mostly;
77 
78 static int get_nr_inodes(void)
79 {
80 	int i;
81 	int sum = 0;
82 	for_each_possible_cpu(i)
83 		sum += per_cpu(nr_inodes, i);
84 	return sum < 0 ? 0 : sum;
85 }
86 
87 static inline int get_nr_inodes_unused(void)
88 {
89 	int i;
90 	int sum = 0;
91 	for_each_possible_cpu(i)
92 		sum += per_cpu(nr_unused, i);
93 	return sum < 0 ? 0 : sum;
94 }
95 
96 int get_nr_dirty_inodes(void)
97 {
98 	/* not actually dirty inodes, but a wild approximation */
99 	int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
100 	return nr_dirty > 0 ? nr_dirty : 0;
101 }
102 
103 /*
104  * Handle nr_inode sysctl
105  */
106 #ifdef CONFIG_SYSCTL
107 int proc_nr_inodes(ctl_table *table, int write,
108 		   void __user *buffer, size_t *lenp, loff_t *ppos)
109 {
110 	inodes_stat.nr_inodes = get_nr_inodes();
111 	inodes_stat.nr_unused = get_nr_inodes_unused();
112 	return proc_dointvec(table, write, buffer, lenp, ppos);
113 }
114 #endif
115 
116 /**
117  * inode_init_always - perform inode structure intialisation
118  * @sb: superblock inode belongs to
119  * @inode: inode to initialise
120  *
121  * These are initializations that need to be done on every inode
122  * allocation as the fields are not initialised by slab allocation.
123  */
124 int inode_init_always(struct super_block *sb, struct inode *inode)
125 {
126 	static const struct inode_operations empty_iops;
127 	static const struct file_operations empty_fops;
128 	struct address_space *const mapping = &inode->i_data;
129 
130 	inode->i_sb = sb;
131 	inode->i_blkbits = sb->s_blocksize_bits;
132 	inode->i_flags = 0;
133 	atomic_set(&inode->i_count, 1);
134 	inode->i_op = &empty_iops;
135 	inode->i_fop = &empty_fops;
136 	inode->__i_nlink = 1;
137 	inode->i_opflags = 0;
138 	i_uid_write(inode, 0);
139 	i_gid_write(inode, 0);
140 	atomic_set(&inode->i_writecount, 0);
141 	inode->i_size = 0;
142 	inode->i_blocks = 0;
143 	inode->i_bytes = 0;
144 	inode->i_generation = 0;
145 #ifdef CONFIG_QUOTA
146 	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
147 #endif
148 	inode->i_pipe = NULL;
149 	inode->i_bdev = NULL;
150 	inode->i_cdev = NULL;
151 	inode->i_rdev = 0;
152 	inode->dirtied_when = 0;
153 
154 	if (security_inode_alloc(inode))
155 		goto out;
156 	spin_lock_init(&inode->i_lock);
157 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
158 
159 	mutex_init(&inode->i_mutex);
160 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
161 
162 	atomic_set(&inode->i_dio_count, 0);
163 
164 	mapping->a_ops = &empty_aops;
165 	mapping->host = inode;
166 	mapping->flags = 0;
167 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
168 	mapping->private_data = NULL;
169 	mapping->backing_dev_info = &default_backing_dev_info;
170 	mapping->writeback_index = 0;
171 
172 	/*
173 	 * If the block_device provides a backing_dev_info for client
174 	 * inodes then use that.  Otherwise the inode share the bdev's
175 	 * backing_dev_info.
176 	 */
177 	if (sb->s_bdev) {
178 		struct backing_dev_info *bdi;
179 
180 		bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
181 		mapping->backing_dev_info = bdi;
182 	}
183 	inode->i_private = NULL;
184 	inode->i_mapping = mapping;
185 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
186 #ifdef CONFIG_FS_POSIX_ACL
187 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
188 #endif
189 
190 #ifdef CONFIG_FSNOTIFY
191 	inode->i_fsnotify_mask = 0;
192 #endif
193 
194 	this_cpu_inc(nr_inodes);
195 
196 	return 0;
197 out:
198 	return -ENOMEM;
199 }
200 EXPORT_SYMBOL(inode_init_always);
201 
202 static struct inode *alloc_inode(struct super_block *sb)
203 {
204 	struct inode *inode;
205 
206 	if (sb->s_op->alloc_inode)
207 		inode = sb->s_op->alloc_inode(sb);
208 	else
209 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
210 
211 	if (!inode)
212 		return NULL;
213 
214 	if (unlikely(inode_init_always(sb, inode))) {
215 		if (inode->i_sb->s_op->destroy_inode)
216 			inode->i_sb->s_op->destroy_inode(inode);
217 		else
218 			kmem_cache_free(inode_cachep, inode);
219 		return NULL;
220 	}
221 
222 	return inode;
223 }
224 
225 void free_inode_nonrcu(struct inode *inode)
226 {
227 	kmem_cache_free(inode_cachep, inode);
228 }
229 EXPORT_SYMBOL(free_inode_nonrcu);
230 
231 void __destroy_inode(struct inode *inode)
232 {
233 	BUG_ON(inode_has_buffers(inode));
234 	security_inode_free(inode);
235 	fsnotify_inode_delete(inode);
236 	if (!inode->i_nlink) {
237 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
238 		atomic_long_dec(&inode->i_sb->s_remove_count);
239 	}
240 
241 #ifdef CONFIG_FS_POSIX_ACL
242 	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
243 		posix_acl_release(inode->i_acl);
244 	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
245 		posix_acl_release(inode->i_default_acl);
246 #endif
247 	this_cpu_dec(nr_inodes);
248 }
249 EXPORT_SYMBOL(__destroy_inode);
250 
251 static void i_callback(struct rcu_head *head)
252 {
253 	struct inode *inode = container_of(head, struct inode, i_rcu);
254 	kmem_cache_free(inode_cachep, inode);
255 }
256 
257 static void destroy_inode(struct inode *inode)
258 {
259 	BUG_ON(!list_empty(&inode->i_lru));
260 	__destroy_inode(inode);
261 	if (inode->i_sb->s_op->destroy_inode)
262 		inode->i_sb->s_op->destroy_inode(inode);
263 	else
264 		call_rcu(&inode->i_rcu, i_callback);
265 }
266 
267 /**
268  * drop_nlink - directly drop an inode's link count
269  * @inode: inode
270  *
271  * This is a low-level filesystem helper to replace any
272  * direct filesystem manipulation of i_nlink.  In cases
273  * where we are attempting to track writes to the
274  * filesystem, a decrement to zero means an imminent
275  * write when the file is truncated and actually unlinked
276  * on the filesystem.
277  */
278 void drop_nlink(struct inode *inode)
279 {
280 	WARN_ON(inode->i_nlink == 0);
281 	inode->__i_nlink--;
282 	if (!inode->i_nlink)
283 		atomic_long_inc(&inode->i_sb->s_remove_count);
284 }
285 EXPORT_SYMBOL(drop_nlink);
286 
287 /**
288  * clear_nlink - directly zero an inode's link count
289  * @inode: inode
290  *
291  * This is a low-level filesystem helper to replace any
292  * direct filesystem manipulation of i_nlink.  See
293  * drop_nlink() for why we care about i_nlink hitting zero.
294  */
295 void clear_nlink(struct inode *inode)
296 {
297 	if (inode->i_nlink) {
298 		inode->__i_nlink = 0;
299 		atomic_long_inc(&inode->i_sb->s_remove_count);
300 	}
301 }
302 EXPORT_SYMBOL(clear_nlink);
303 
304 /**
305  * set_nlink - directly set an inode's link count
306  * @inode: inode
307  * @nlink: new nlink (should be non-zero)
308  *
309  * This is a low-level filesystem helper to replace any
310  * direct filesystem manipulation of i_nlink.
311  */
312 void set_nlink(struct inode *inode, unsigned int nlink)
313 {
314 	if (!nlink) {
315 		clear_nlink(inode);
316 	} else {
317 		/* Yes, some filesystems do change nlink from zero to one */
318 		if (inode->i_nlink == 0)
319 			atomic_long_dec(&inode->i_sb->s_remove_count);
320 
321 		inode->__i_nlink = nlink;
322 	}
323 }
324 EXPORT_SYMBOL(set_nlink);
325 
326 /**
327  * inc_nlink - directly increment an inode's link count
328  * @inode: inode
329  *
330  * This is a low-level filesystem helper to replace any
331  * direct filesystem manipulation of i_nlink.  Currently,
332  * it is only here for parity with dec_nlink().
333  */
334 void inc_nlink(struct inode *inode)
335 {
336 	if (unlikely(inode->i_nlink == 0)) {
337 		WARN_ON(!(inode->i_state & I_LINKABLE));
338 		atomic_long_dec(&inode->i_sb->s_remove_count);
339 	}
340 
341 	inode->__i_nlink++;
342 }
343 EXPORT_SYMBOL(inc_nlink);
344 
345 void address_space_init_once(struct address_space *mapping)
346 {
347 	memset(mapping, 0, sizeof(*mapping));
348 	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
349 	spin_lock_init(&mapping->tree_lock);
350 	mutex_init(&mapping->i_mmap_mutex);
351 	INIT_LIST_HEAD(&mapping->private_list);
352 	spin_lock_init(&mapping->private_lock);
353 	mapping->i_mmap = RB_ROOT;
354 	INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
355 }
356 EXPORT_SYMBOL(address_space_init_once);
357 
358 /*
359  * These are initializations that only need to be done
360  * once, because the fields are idempotent across use
361  * of the inode, so let the slab aware of that.
362  */
363 void inode_init_once(struct inode *inode)
364 {
365 	memset(inode, 0, sizeof(*inode));
366 	INIT_HLIST_NODE(&inode->i_hash);
367 	INIT_LIST_HEAD(&inode->i_devices);
368 	INIT_LIST_HEAD(&inode->i_wb_list);
369 	INIT_LIST_HEAD(&inode->i_lru);
370 	address_space_init_once(&inode->i_data);
371 	i_size_ordered_init(inode);
372 #ifdef CONFIG_FSNOTIFY
373 	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
374 #endif
375 }
376 EXPORT_SYMBOL(inode_init_once);
377 
378 static void init_once(void *foo)
379 {
380 	struct inode *inode = (struct inode *) foo;
381 
382 	inode_init_once(inode);
383 }
384 
385 /*
386  * inode->i_lock must be held
387  */
388 void __iget(struct inode *inode)
389 {
390 	atomic_inc(&inode->i_count);
391 }
392 
393 /*
394  * get additional reference to inode; caller must already hold one.
395  */
396 void ihold(struct inode *inode)
397 {
398 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
399 }
400 EXPORT_SYMBOL(ihold);
401 
402 static void inode_lru_list_add(struct inode *inode)
403 {
404 	spin_lock(&inode->i_sb->s_inode_lru_lock);
405 	if (list_empty(&inode->i_lru)) {
406 		list_add(&inode->i_lru, &inode->i_sb->s_inode_lru);
407 		inode->i_sb->s_nr_inodes_unused++;
408 		this_cpu_inc(nr_unused);
409 	}
410 	spin_unlock(&inode->i_sb->s_inode_lru_lock);
411 }
412 
413 /*
414  * Add inode to LRU if needed (inode is unused and clean).
415  *
416  * Needs inode->i_lock held.
417  */
418 void inode_add_lru(struct inode *inode)
419 {
420 	if (!(inode->i_state & (I_DIRTY | I_SYNC | I_FREEING | I_WILL_FREE)) &&
421 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
422 		inode_lru_list_add(inode);
423 }
424 
425 
426 static void inode_lru_list_del(struct inode *inode)
427 {
428 	spin_lock(&inode->i_sb->s_inode_lru_lock);
429 	if (!list_empty(&inode->i_lru)) {
430 		list_del_init(&inode->i_lru);
431 		inode->i_sb->s_nr_inodes_unused--;
432 		this_cpu_dec(nr_unused);
433 	}
434 	spin_unlock(&inode->i_sb->s_inode_lru_lock);
435 }
436 
437 /**
438  * inode_sb_list_add - add inode to the superblock list of inodes
439  * @inode: inode to add
440  */
441 void inode_sb_list_add(struct inode *inode)
442 {
443 	spin_lock(&inode_sb_list_lock);
444 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
445 	spin_unlock(&inode_sb_list_lock);
446 }
447 EXPORT_SYMBOL_GPL(inode_sb_list_add);
448 
449 static inline void inode_sb_list_del(struct inode *inode)
450 {
451 	if (!list_empty(&inode->i_sb_list)) {
452 		spin_lock(&inode_sb_list_lock);
453 		list_del_init(&inode->i_sb_list);
454 		spin_unlock(&inode_sb_list_lock);
455 	}
456 }
457 
458 static unsigned long hash(struct super_block *sb, unsigned long hashval)
459 {
460 	unsigned long tmp;
461 
462 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
463 			L1_CACHE_BYTES;
464 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
465 	return tmp & i_hash_mask;
466 }
467 
468 /**
469  *	__insert_inode_hash - hash an inode
470  *	@inode: unhashed inode
471  *	@hashval: unsigned long value used to locate this object in the
472  *		inode_hashtable.
473  *
474  *	Add an inode to the inode hash for this superblock.
475  */
476 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
477 {
478 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
479 
480 	spin_lock(&inode_hash_lock);
481 	spin_lock(&inode->i_lock);
482 	hlist_add_head(&inode->i_hash, b);
483 	spin_unlock(&inode->i_lock);
484 	spin_unlock(&inode_hash_lock);
485 }
486 EXPORT_SYMBOL(__insert_inode_hash);
487 
488 /**
489  *	__remove_inode_hash - remove an inode from the hash
490  *	@inode: inode to unhash
491  *
492  *	Remove an inode from the superblock.
493  */
494 void __remove_inode_hash(struct inode *inode)
495 {
496 	spin_lock(&inode_hash_lock);
497 	spin_lock(&inode->i_lock);
498 	hlist_del_init(&inode->i_hash);
499 	spin_unlock(&inode->i_lock);
500 	spin_unlock(&inode_hash_lock);
501 }
502 EXPORT_SYMBOL(__remove_inode_hash);
503 
504 void clear_inode(struct inode *inode)
505 {
506 	might_sleep();
507 	/*
508 	 * We have to cycle tree_lock here because reclaim can be still in the
509 	 * process of removing the last page (in __delete_from_page_cache())
510 	 * and we must not free mapping under it.
511 	 */
512 	spin_lock_irq(&inode->i_data.tree_lock);
513 	BUG_ON(inode->i_data.nrpages);
514 	spin_unlock_irq(&inode->i_data.tree_lock);
515 	BUG_ON(!list_empty(&inode->i_data.private_list));
516 	BUG_ON(!(inode->i_state & I_FREEING));
517 	BUG_ON(inode->i_state & I_CLEAR);
518 	/* don't need i_lock here, no concurrent mods to i_state */
519 	inode->i_state = I_FREEING | I_CLEAR;
520 }
521 EXPORT_SYMBOL(clear_inode);
522 
523 /*
524  * Free the inode passed in, removing it from the lists it is still connected
525  * to. We remove any pages still attached to the inode and wait for any IO that
526  * is still in progress before finally destroying the inode.
527  *
528  * An inode must already be marked I_FREEING so that we avoid the inode being
529  * moved back onto lists if we race with other code that manipulates the lists
530  * (e.g. writeback_single_inode). The caller is responsible for setting this.
531  *
532  * An inode must already be removed from the LRU list before being evicted from
533  * the cache. This should occur atomically with setting the I_FREEING state
534  * flag, so no inodes here should ever be on the LRU when being evicted.
535  */
536 static void evict(struct inode *inode)
537 {
538 	const struct super_operations *op = inode->i_sb->s_op;
539 
540 	BUG_ON(!(inode->i_state & I_FREEING));
541 	BUG_ON(!list_empty(&inode->i_lru));
542 
543 	if (!list_empty(&inode->i_wb_list))
544 		inode_wb_list_del(inode);
545 
546 	inode_sb_list_del(inode);
547 
548 	/*
549 	 * Wait for flusher thread to be done with the inode so that filesystem
550 	 * does not start destroying it while writeback is still running. Since
551 	 * the inode has I_FREEING set, flusher thread won't start new work on
552 	 * the inode.  We just have to wait for running writeback to finish.
553 	 */
554 	inode_wait_for_writeback(inode);
555 
556 	if (op->evict_inode) {
557 		op->evict_inode(inode);
558 	} else {
559 		if (inode->i_data.nrpages)
560 			truncate_inode_pages(&inode->i_data, 0);
561 		clear_inode(inode);
562 	}
563 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
564 		bd_forget(inode);
565 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
566 		cd_forget(inode);
567 
568 	remove_inode_hash(inode);
569 
570 	spin_lock(&inode->i_lock);
571 	wake_up_bit(&inode->i_state, __I_NEW);
572 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
573 	spin_unlock(&inode->i_lock);
574 
575 	destroy_inode(inode);
576 }
577 
578 /*
579  * dispose_list - dispose of the contents of a local list
580  * @head: the head of the list to free
581  *
582  * Dispose-list gets a local list with local inodes in it, so it doesn't
583  * need to worry about list corruption and SMP locks.
584  */
585 static void dispose_list(struct list_head *head)
586 {
587 	while (!list_empty(head)) {
588 		struct inode *inode;
589 
590 		inode = list_first_entry(head, struct inode, i_lru);
591 		list_del_init(&inode->i_lru);
592 
593 		evict(inode);
594 	}
595 }
596 
597 /**
598  * evict_inodes	- evict all evictable inodes for a superblock
599  * @sb:		superblock to operate on
600  *
601  * Make sure that no inodes with zero refcount are retained.  This is
602  * called by superblock shutdown after having MS_ACTIVE flag removed,
603  * so any inode reaching zero refcount during or after that call will
604  * be immediately evicted.
605  */
606 void evict_inodes(struct super_block *sb)
607 {
608 	struct inode *inode, *next;
609 	LIST_HEAD(dispose);
610 
611 	spin_lock(&inode_sb_list_lock);
612 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
613 		if (atomic_read(&inode->i_count))
614 			continue;
615 
616 		spin_lock(&inode->i_lock);
617 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
618 			spin_unlock(&inode->i_lock);
619 			continue;
620 		}
621 
622 		inode->i_state |= I_FREEING;
623 		inode_lru_list_del(inode);
624 		spin_unlock(&inode->i_lock);
625 		list_add(&inode->i_lru, &dispose);
626 	}
627 	spin_unlock(&inode_sb_list_lock);
628 
629 	dispose_list(&dispose);
630 }
631 
632 /**
633  * invalidate_inodes	- attempt to free all inodes on a superblock
634  * @sb:		superblock to operate on
635  * @kill_dirty: flag to guide handling of dirty inodes
636  *
637  * Attempts to free all inodes for a given superblock.  If there were any
638  * busy inodes return a non-zero value, else zero.
639  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
640  * them as busy.
641  */
642 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
643 {
644 	int busy = 0;
645 	struct inode *inode, *next;
646 	LIST_HEAD(dispose);
647 
648 	spin_lock(&inode_sb_list_lock);
649 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
650 		spin_lock(&inode->i_lock);
651 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
652 			spin_unlock(&inode->i_lock);
653 			continue;
654 		}
655 		if (inode->i_state & I_DIRTY && !kill_dirty) {
656 			spin_unlock(&inode->i_lock);
657 			busy = 1;
658 			continue;
659 		}
660 		if (atomic_read(&inode->i_count)) {
661 			spin_unlock(&inode->i_lock);
662 			busy = 1;
663 			continue;
664 		}
665 
666 		inode->i_state |= I_FREEING;
667 		inode_lru_list_del(inode);
668 		spin_unlock(&inode->i_lock);
669 		list_add(&inode->i_lru, &dispose);
670 	}
671 	spin_unlock(&inode_sb_list_lock);
672 
673 	dispose_list(&dispose);
674 
675 	return busy;
676 }
677 
678 static int can_unuse(struct inode *inode)
679 {
680 	if (inode->i_state & ~I_REFERENCED)
681 		return 0;
682 	if (inode_has_buffers(inode))
683 		return 0;
684 	if (atomic_read(&inode->i_count))
685 		return 0;
686 	if (inode->i_data.nrpages)
687 		return 0;
688 	return 1;
689 }
690 
691 /*
692  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
693  * This is called from the superblock shrinker function with a number of inodes
694  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
695  * then are freed outside inode_lock by dispose_list().
696  *
697  * Any inodes which are pinned purely because of attached pagecache have their
698  * pagecache removed.  If the inode has metadata buffers attached to
699  * mapping->private_list then try to remove them.
700  *
701  * If the inode has the I_REFERENCED flag set, then it means that it has been
702  * used recently - the flag is set in iput_final(). When we encounter such an
703  * inode, clear the flag and move it to the back of the LRU so it gets another
704  * pass through the LRU before it gets reclaimed. This is necessary because of
705  * the fact we are doing lazy LRU updates to minimise lock contention so the
706  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
707  * with this flag set because they are the inodes that are out of order.
708  */
709 void prune_icache_sb(struct super_block *sb, int nr_to_scan)
710 {
711 	LIST_HEAD(freeable);
712 	int nr_scanned;
713 	unsigned long reap = 0;
714 
715 	spin_lock(&sb->s_inode_lru_lock);
716 	for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) {
717 		struct inode *inode;
718 
719 		if (list_empty(&sb->s_inode_lru))
720 			break;
721 
722 		inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru);
723 
724 		/*
725 		 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here,
726 		 * so use a trylock. If we fail to get the lock, just move the
727 		 * inode to the back of the list so we don't spin on it.
728 		 */
729 		if (!spin_trylock(&inode->i_lock)) {
730 			list_move(&inode->i_lru, &sb->s_inode_lru);
731 			continue;
732 		}
733 
734 		/*
735 		 * Referenced or dirty inodes are still in use. Give them
736 		 * another pass through the LRU as we canot reclaim them now.
737 		 */
738 		if (atomic_read(&inode->i_count) ||
739 		    (inode->i_state & ~I_REFERENCED)) {
740 			list_del_init(&inode->i_lru);
741 			spin_unlock(&inode->i_lock);
742 			sb->s_nr_inodes_unused--;
743 			this_cpu_dec(nr_unused);
744 			continue;
745 		}
746 
747 		/* recently referenced inodes get one more pass */
748 		if (inode->i_state & I_REFERENCED) {
749 			inode->i_state &= ~I_REFERENCED;
750 			list_move(&inode->i_lru, &sb->s_inode_lru);
751 			spin_unlock(&inode->i_lock);
752 			continue;
753 		}
754 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
755 			__iget(inode);
756 			spin_unlock(&inode->i_lock);
757 			spin_unlock(&sb->s_inode_lru_lock);
758 			if (remove_inode_buffers(inode))
759 				reap += invalidate_mapping_pages(&inode->i_data,
760 								0, -1);
761 			iput(inode);
762 			spin_lock(&sb->s_inode_lru_lock);
763 
764 			if (inode != list_entry(sb->s_inode_lru.next,
765 						struct inode, i_lru))
766 				continue;	/* wrong inode or list_empty */
767 			/* avoid lock inversions with trylock */
768 			if (!spin_trylock(&inode->i_lock))
769 				continue;
770 			if (!can_unuse(inode)) {
771 				spin_unlock(&inode->i_lock);
772 				continue;
773 			}
774 		}
775 		WARN_ON(inode->i_state & I_NEW);
776 		inode->i_state |= I_FREEING;
777 		spin_unlock(&inode->i_lock);
778 
779 		list_move(&inode->i_lru, &freeable);
780 		sb->s_nr_inodes_unused--;
781 		this_cpu_dec(nr_unused);
782 	}
783 	if (current_is_kswapd())
784 		__count_vm_events(KSWAPD_INODESTEAL, reap);
785 	else
786 		__count_vm_events(PGINODESTEAL, reap);
787 	spin_unlock(&sb->s_inode_lru_lock);
788 	if (current->reclaim_state)
789 		current->reclaim_state->reclaimed_slab += reap;
790 
791 	dispose_list(&freeable);
792 }
793 
794 static void __wait_on_freeing_inode(struct inode *inode);
795 /*
796  * Called with the inode lock held.
797  */
798 static struct inode *find_inode(struct super_block *sb,
799 				struct hlist_head *head,
800 				int (*test)(struct inode *, void *),
801 				void *data)
802 {
803 	struct inode *inode = NULL;
804 
805 repeat:
806 	hlist_for_each_entry(inode, head, i_hash) {
807 		spin_lock(&inode->i_lock);
808 		if (inode->i_sb != sb) {
809 			spin_unlock(&inode->i_lock);
810 			continue;
811 		}
812 		if (!test(inode, data)) {
813 			spin_unlock(&inode->i_lock);
814 			continue;
815 		}
816 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
817 			__wait_on_freeing_inode(inode);
818 			goto repeat;
819 		}
820 		__iget(inode);
821 		spin_unlock(&inode->i_lock);
822 		return inode;
823 	}
824 	return NULL;
825 }
826 
827 /*
828  * find_inode_fast is the fast path version of find_inode, see the comment at
829  * iget_locked for details.
830  */
831 static struct inode *find_inode_fast(struct super_block *sb,
832 				struct hlist_head *head, unsigned long ino)
833 {
834 	struct inode *inode = NULL;
835 
836 repeat:
837 	hlist_for_each_entry(inode, head, i_hash) {
838 		spin_lock(&inode->i_lock);
839 		if (inode->i_ino != ino) {
840 			spin_unlock(&inode->i_lock);
841 			continue;
842 		}
843 		if (inode->i_sb != sb) {
844 			spin_unlock(&inode->i_lock);
845 			continue;
846 		}
847 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
848 			__wait_on_freeing_inode(inode);
849 			goto repeat;
850 		}
851 		__iget(inode);
852 		spin_unlock(&inode->i_lock);
853 		return inode;
854 	}
855 	return NULL;
856 }
857 
858 /*
859  * Each cpu owns a range of LAST_INO_BATCH numbers.
860  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
861  * to renew the exhausted range.
862  *
863  * This does not significantly increase overflow rate because every CPU can
864  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
865  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
866  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
867  * overflow rate by 2x, which does not seem too significant.
868  *
869  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
870  * error if st_ino won't fit in target struct field. Use 32bit counter
871  * here to attempt to avoid that.
872  */
873 #define LAST_INO_BATCH 1024
874 static DEFINE_PER_CPU(unsigned int, last_ino);
875 
876 unsigned int get_next_ino(void)
877 {
878 	unsigned int *p = &get_cpu_var(last_ino);
879 	unsigned int res = *p;
880 
881 #ifdef CONFIG_SMP
882 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
883 		static atomic_t shared_last_ino;
884 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
885 
886 		res = next - LAST_INO_BATCH;
887 	}
888 #endif
889 
890 	*p = ++res;
891 	put_cpu_var(last_ino);
892 	return res;
893 }
894 EXPORT_SYMBOL(get_next_ino);
895 
896 /**
897  *	new_inode_pseudo 	- obtain an inode
898  *	@sb: superblock
899  *
900  *	Allocates a new inode for given superblock.
901  *	Inode wont be chained in superblock s_inodes list
902  *	This means :
903  *	- fs can't be unmount
904  *	- quotas, fsnotify, writeback can't work
905  */
906 struct inode *new_inode_pseudo(struct super_block *sb)
907 {
908 	struct inode *inode = alloc_inode(sb);
909 
910 	if (inode) {
911 		spin_lock(&inode->i_lock);
912 		inode->i_state = 0;
913 		spin_unlock(&inode->i_lock);
914 		INIT_LIST_HEAD(&inode->i_sb_list);
915 	}
916 	return inode;
917 }
918 
919 /**
920  *	new_inode 	- obtain an inode
921  *	@sb: superblock
922  *
923  *	Allocates a new inode for given superblock. The default gfp_mask
924  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
925  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
926  *	for the page cache are not reclaimable or migratable,
927  *	mapping_set_gfp_mask() must be called with suitable flags on the
928  *	newly created inode's mapping
929  *
930  */
931 struct inode *new_inode(struct super_block *sb)
932 {
933 	struct inode *inode;
934 
935 	spin_lock_prefetch(&inode_sb_list_lock);
936 
937 	inode = new_inode_pseudo(sb);
938 	if (inode)
939 		inode_sb_list_add(inode);
940 	return inode;
941 }
942 EXPORT_SYMBOL(new_inode);
943 
944 #ifdef CONFIG_DEBUG_LOCK_ALLOC
945 void lockdep_annotate_inode_mutex_key(struct inode *inode)
946 {
947 	if (S_ISDIR(inode->i_mode)) {
948 		struct file_system_type *type = inode->i_sb->s_type;
949 
950 		/* Set new key only if filesystem hasn't already changed it */
951 		if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
952 			/*
953 			 * ensure nobody is actually holding i_mutex
954 			 */
955 			mutex_destroy(&inode->i_mutex);
956 			mutex_init(&inode->i_mutex);
957 			lockdep_set_class(&inode->i_mutex,
958 					  &type->i_mutex_dir_key);
959 		}
960 	}
961 }
962 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
963 #endif
964 
965 /**
966  * unlock_new_inode - clear the I_NEW state and wake up any waiters
967  * @inode:	new inode to unlock
968  *
969  * Called when the inode is fully initialised to clear the new state of the
970  * inode and wake up anyone waiting for the inode to finish initialisation.
971  */
972 void unlock_new_inode(struct inode *inode)
973 {
974 	lockdep_annotate_inode_mutex_key(inode);
975 	spin_lock(&inode->i_lock);
976 	WARN_ON(!(inode->i_state & I_NEW));
977 	inode->i_state &= ~I_NEW;
978 	smp_mb();
979 	wake_up_bit(&inode->i_state, __I_NEW);
980 	spin_unlock(&inode->i_lock);
981 }
982 EXPORT_SYMBOL(unlock_new_inode);
983 
984 /**
985  * iget5_locked - obtain an inode from a mounted file system
986  * @sb:		super block of file system
987  * @hashval:	hash value (usually inode number) to get
988  * @test:	callback used for comparisons between inodes
989  * @set:	callback used to initialize a new struct inode
990  * @data:	opaque data pointer to pass to @test and @set
991  *
992  * Search for the inode specified by @hashval and @data in the inode cache,
993  * and if present it is return it with an increased reference count. This is
994  * a generalized version of iget_locked() for file systems where the inode
995  * number is not sufficient for unique identification of an inode.
996  *
997  * If the inode is not in cache, allocate a new inode and return it locked,
998  * hashed, and with the I_NEW flag set. The file system gets to fill it in
999  * before unlocking it via unlock_new_inode().
1000  *
1001  * Note both @test and @set are called with the inode_hash_lock held, so can't
1002  * sleep.
1003  */
1004 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1005 		int (*test)(struct inode *, void *),
1006 		int (*set)(struct inode *, void *), void *data)
1007 {
1008 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1009 	struct inode *inode;
1010 
1011 	spin_lock(&inode_hash_lock);
1012 	inode = find_inode(sb, head, test, data);
1013 	spin_unlock(&inode_hash_lock);
1014 
1015 	if (inode) {
1016 		wait_on_inode(inode);
1017 		return inode;
1018 	}
1019 
1020 	inode = alloc_inode(sb);
1021 	if (inode) {
1022 		struct inode *old;
1023 
1024 		spin_lock(&inode_hash_lock);
1025 		/* We released the lock, so.. */
1026 		old = find_inode(sb, head, test, data);
1027 		if (!old) {
1028 			if (set(inode, data))
1029 				goto set_failed;
1030 
1031 			spin_lock(&inode->i_lock);
1032 			inode->i_state = I_NEW;
1033 			hlist_add_head(&inode->i_hash, head);
1034 			spin_unlock(&inode->i_lock);
1035 			inode_sb_list_add(inode);
1036 			spin_unlock(&inode_hash_lock);
1037 
1038 			/* Return the locked inode with I_NEW set, the
1039 			 * caller is responsible for filling in the contents
1040 			 */
1041 			return inode;
1042 		}
1043 
1044 		/*
1045 		 * Uhhuh, somebody else created the same inode under
1046 		 * us. Use the old inode instead of the one we just
1047 		 * allocated.
1048 		 */
1049 		spin_unlock(&inode_hash_lock);
1050 		destroy_inode(inode);
1051 		inode = old;
1052 		wait_on_inode(inode);
1053 	}
1054 	return inode;
1055 
1056 set_failed:
1057 	spin_unlock(&inode_hash_lock);
1058 	destroy_inode(inode);
1059 	return NULL;
1060 }
1061 EXPORT_SYMBOL(iget5_locked);
1062 
1063 /**
1064  * iget_locked - obtain an inode from a mounted file system
1065  * @sb:		super block of file system
1066  * @ino:	inode number to get
1067  *
1068  * Search for the inode specified by @ino in the inode cache and if present
1069  * return it with an increased reference count. This is for file systems
1070  * where the inode number is sufficient for unique identification of an inode.
1071  *
1072  * If the inode is not in cache, allocate a new inode and return it locked,
1073  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1074  * before unlocking it via unlock_new_inode().
1075  */
1076 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1077 {
1078 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1079 	struct inode *inode;
1080 
1081 	spin_lock(&inode_hash_lock);
1082 	inode = find_inode_fast(sb, head, ino);
1083 	spin_unlock(&inode_hash_lock);
1084 	if (inode) {
1085 		wait_on_inode(inode);
1086 		return inode;
1087 	}
1088 
1089 	inode = alloc_inode(sb);
1090 	if (inode) {
1091 		struct inode *old;
1092 
1093 		spin_lock(&inode_hash_lock);
1094 		/* We released the lock, so.. */
1095 		old = find_inode_fast(sb, head, ino);
1096 		if (!old) {
1097 			inode->i_ino = ino;
1098 			spin_lock(&inode->i_lock);
1099 			inode->i_state = I_NEW;
1100 			hlist_add_head(&inode->i_hash, head);
1101 			spin_unlock(&inode->i_lock);
1102 			inode_sb_list_add(inode);
1103 			spin_unlock(&inode_hash_lock);
1104 
1105 			/* Return the locked inode with I_NEW set, the
1106 			 * caller is responsible for filling in the contents
1107 			 */
1108 			return inode;
1109 		}
1110 
1111 		/*
1112 		 * Uhhuh, somebody else created the same inode under
1113 		 * us. Use the old inode instead of the one we just
1114 		 * allocated.
1115 		 */
1116 		spin_unlock(&inode_hash_lock);
1117 		destroy_inode(inode);
1118 		inode = old;
1119 		wait_on_inode(inode);
1120 	}
1121 	return inode;
1122 }
1123 EXPORT_SYMBOL(iget_locked);
1124 
1125 /*
1126  * search the inode cache for a matching inode number.
1127  * If we find one, then the inode number we are trying to
1128  * allocate is not unique and so we should not use it.
1129  *
1130  * Returns 1 if the inode number is unique, 0 if it is not.
1131  */
1132 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1133 {
1134 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1135 	struct inode *inode;
1136 
1137 	spin_lock(&inode_hash_lock);
1138 	hlist_for_each_entry(inode, b, i_hash) {
1139 		if (inode->i_ino == ino && inode->i_sb == sb) {
1140 			spin_unlock(&inode_hash_lock);
1141 			return 0;
1142 		}
1143 	}
1144 	spin_unlock(&inode_hash_lock);
1145 
1146 	return 1;
1147 }
1148 
1149 /**
1150  *	iunique - get a unique inode number
1151  *	@sb: superblock
1152  *	@max_reserved: highest reserved inode number
1153  *
1154  *	Obtain an inode number that is unique on the system for a given
1155  *	superblock. This is used by file systems that have no natural
1156  *	permanent inode numbering system. An inode number is returned that
1157  *	is higher than the reserved limit but unique.
1158  *
1159  *	BUGS:
1160  *	With a large number of inodes live on the file system this function
1161  *	currently becomes quite slow.
1162  */
1163 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1164 {
1165 	/*
1166 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1167 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1168 	 * here to attempt to avoid that.
1169 	 */
1170 	static DEFINE_SPINLOCK(iunique_lock);
1171 	static unsigned int counter;
1172 	ino_t res;
1173 
1174 	spin_lock(&iunique_lock);
1175 	do {
1176 		if (counter <= max_reserved)
1177 			counter = max_reserved + 1;
1178 		res = counter++;
1179 	} while (!test_inode_iunique(sb, res));
1180 	spin_unlock(&iunique_lock);
1181 
1182 	return res;
1183 }
1184 EXPORT_SYMBOL(iunique);
1185 
1186 struct inode *igrab(struct inode *inode)
1187 {
1188 	spin_lock(&inode->i_lock);
1189 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1190 		__iget(inode);
1191 		spin_unlock(&inode->i_lock);
1192 	} else {
1193 		spin_unlock(&inode->i_lock);
1194 		/*
1195 		 * Handle the case where s_op->clear_inode is not been
1196 		 * called yet, and somebody is calling igrab
1197 		 * while the inode is getting freed.
1198 		 */
1199 		inode = NULL;
1200 	}
1201 	return inode;
1202 }
1203 EXPORT_SYMBOL(igrab);
1204 
1205 /**
1206  * ilookup5_nowait - search for an inode in the inode cache
1207  * @sb:		super block of file system to search
1208  * @hashval:	hash value (usually inode number) to search for
1209  * @test:	callback used for comparisons between inodes
1210  * @data:	opaque data pointer to pass to @test
1211  *
1212  * Search for the inode specified by @hashval and @data in the inode cache.
1213  * If the inode is in the cache, the inode is returned with an incremented
1214  * reference count.
1215  *
1216  * Note: I_NEW is not waited upon so you have to be very careful what you do
1217  * with the returned inode.  You probably should be using ilookup5() instead.
1218  *
1219  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1220  */
1221 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1222 		int (*test)(struct inode *, void *), void *data)
1223 {
1224 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1225 	struct inode *inode;
1226 
1227 	spin_lock(&inode_hash_lock);
1228 	inode = find_inode(sb, head, test, data);
1229 	spin_unlock(&inode_hash_lock);
1230 
1231 	return inode;
1232 }
1233 EXPORT_SYMBOL(ilookup5_nowait);
1234 
1235 /**
1236  * ilookup5 - search for an inode in the inode cache
1237  * @sb:		super block of file system to search
1238  * @hashval:	hash value (usually inode number) to search for
1239  * @test:	callback used for comparisons between inodes
1240  * @data:	opaque data pointer to pass to @test
1241  *
1242  * Search for the inode specified by @hashval and @data in the inode cache,
1243  * and if the inode is in the cache, return the inode with an incremented
1244  * reference count.  Waits on I_NEW before returning the inode.
1245  * returned with an incremented reference count.
1246  *
1247  * This is a generalized version of ilookup() for file systems where the
1248  * inode number is not sufficient for unique identification of an inode.
1249  *
1250  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1251  */
1252 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1253 		int (*test)(struct inode *, void *), void *data)
1254 {
1255 	struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1256 
1257 	if (inode)
1258 		wait_on_inode(inode);
1259 	return inode;
1260 }
1261 EXPORT_SYMBOL(ilookup5);
1262 
1263 /**
1264  * ilookup - search for an inode in the inode cache
1265  * @sb:		super block of file system to search
1266  * @ino:	inode number to search for
1267  *
1268  * Search for the inode @ino in the inode cache, and if the inode is in the
1269  * cache, the inode is returned with an incremented reference count.
1270  */
1271 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1272 {
1273 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1274 	struct inode *inode;
1275 
1276 	spin_lock(&inode_hash_lock);
1277 	inode = find_inode_fast(sb, head, ino);
1278 	spin_unlock(&inode_hash_lock);
1279 
1280 	if (inode)
1281 		wait_on_inode(inode);
1282 	return inode;
1283 }
1284 EXPORT_SYMBOL(ilookup);
1285 
1286 int insert_inode_locked(struct inode *inode)
1287 {
1288 	struct super_block *sb = inode->i_sb;
1289 	ino_t ino = inode->i_ino;
1290 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1291 
1292 	while (1) {
1293 		struct inode *old = NULL;
1294 		spin_lock(&inode_hash_lock);
1295 		hlist_for_each_entry(old, head, i_hash) {
1296 			if (old->i_ino != ino)
1297 				continue;
1298 			if (old->i_sb != sb)
1299 				continue;
1300 			spin_lock(&old->i_lock);
1301 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1302 				spin_unlock(&old->i_lock);
1303 				continue;
1304 			}
1305 			break;
1306 		}
1307 		if (likely(!old)) {
1308 			spin_lock(&inode->i_lock);
1309 			inode->i_state |= I_NEW;
1310 			hlist_add_head(&inode->i_hash, head);
1311 			spin_unlock(&inode->i_lock);
1312 			spin_unlock(&inode_hash_lock);
1313 			return 0;
1314 		}
1315 		__iget(old);
1316 		spin_unlock(&old->i_lock);
1317 		spin_unlock(&inode_hash_lock);
1318 		wait_on_inode(old);
1319 		if (unlikely(!inode_unhashed(old))) {
1320 			iput(old);
1321 			return -EBUSY;
1322 		}
1323 		iput(old);
1324 	}
1325 }
1326 EXPORT_SYMBOL(insert_inode_locked);
1327 
1328 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1329 		int (*test)(struct inode *, void *), void *data)
1330 {
1331 	struct super_block *sb = inode->i_sb;
1332 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1333 
1334 	while (1) {
1335 		struct inode *old = NULL;
1336 
1337 		spin_lock(&inode_hash_lock);
1338 		hlist_for_each_entry(old, head, i_hash) {
1339 			if (old->i_sb != sb)
1340 				continue;
1341 			if (!test(old, data))
1342 				continue;
1343 			spin_lock(&old->i_lock);
1344 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1345 				spin_unlock(&old->i_lock);
1346 				continue;
1347 			}
1348 			break;
1349 		}
1350 		if (likely(!old)) {
1351 			spin_lock(&inode->i_lock);
1352 			inode->i_state |= I_NEW;
1353 			hlist_add_head(&inode->i_hash, head);
1354 			spin_unlock(&inode->i_lock);
1355 			spin_unlock(&inode_hash_lock);
1356 			return 0;
1357 		}
1358 		__iget(old);
1359 		spin_unlock(&old->i_lock);
1360 		spin_unlock(&inode_hash_lock);
1361 		wait_on_inode(old);
1362 		if (unlikely(!inode_unhashed(old))) {
1363 			iput(old);
1364 			return -EBUSY;
1365 		}
1366 		iput(old);
1367 	}
1368 }
1369 EXPORT_SYMBOL(insert_inode_locked4);
1370 
1371 
1372 int generic_delete_inode(struct inode *inode)
1373 {
1374 	return 1;
1375 }
1376 EXPORT_SYMBOL(generic_delete_inode);
1377 
1378 /*
1379  * Called when we're dropping the last reference
1380  * to an inode.
1381  *
1382  * Call the FS "drop_inode()" function, defaulting to
1383  * the legacy UNIX filesystem behaviour.  If it tells
1384  * us to evict inode, do so.  Otherwise, retain inode
1385  * in cache if fs is alive, sync and evict if fs is
1386  * shutting down.
1387  */
1388 static void iput_final(struct inode *inode)
1389 {
1390 	struct super_block *sb = inode->i_sb;
1391 	const struct super_operations *op = inode->i_sb->s_op;
1392 	int drop;
1393 
1394 	WARN_ON(inode->i_state & I_NEW);
1395 
1396 	if (op->drop_inode)
1397 		drop = op->drop_inode(inode);
1398 	else
1399 		drop = generic_drop_inode(inode);
1400 
1401 	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1402 		inode->i_state |= I_REFERENCED;
1403 		inode_add_lru(inode);
1404 		spin_unlock(&inode->i_lock);
1405 		return;
1406 	}
1407 
1408 	if (!drop) {
1409 		inode->i_state |= I_WILL_FREE;
1410 		spin_unlock(&inode->i_lock);
1411 		write_inode_now(inode, 1);
1412 		spin_lock(&inode->i_lock);
1413 		WARN_ON(inode->i_state & I_NEW);
1414 		inode->i_state &= ~I_WILL_FREE;
1415 	}
1416 
1417 	inode->i_state |= I_FREEING;
1418 	if (!list_empty(&inode->i_lru))
1419 		inode_lru_list_del(inode);
1420 	spin_unlock(&inode->i_lock);
1421 
1422 	evict(inode);
1423 }
1424 
1425 /**
1426  *	iput	- put an inode
1427  *	@inode: inode to put
1428  *
1429  *	Puts an inode, dropping its usage count. If the inode use count hits
1430  *	zero, the inode is then freed and may also be destroyed.
1431  *
1432  *	Consequently, iput() can sleep.
1433  */
1434 void iput(struct inode *inode)
1435 {
1436 	if (inode) {
1437 		BUG_ON(inode->i_state & I_CLEAR);
1438 
1439 		if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1440 			iput_final(inode);
1441 	}
1442 }
1443 EXPORT_SYMBOL(iput);
1444 
1445 /**
1446  *	bmap	- find a block number in a file
1447  *	@inode: inode of file
1448  *	@block: block to find
1449  *
1450  *	Returns the block number on the device holding the inode that
1451  *	is the disk block number for the block of the file requested.
1452  *	That is, asked for block 4 of inode 1 the function will return the
1453  *	disk block relative to the disk start that holds that block of the
1454  *	file.
1455  */
1456 sector_t bmap(struct inode *inode, sector_t block)
1457 {
1458 	sector_t res = 0;
1459 	if (inode->i_mapping->a_ops->bmap)
1460 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1461 	return res;
1462 }
1463 EXPORT_SYMBOL(bmap);
1464 
1465 /*
1466  * With relative atime, only update atime if the previous atime is
1467  * earlier than either the ctime or mtime or if at least a day has
1468  * passed since the last atime update.
1469  */
1470 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1471 			     struct timespec now)
1472 {
1473 
1474 	if (!(mnt->mnt_flags & MNT_RELATIME))
1475 		return 1;
1476 	/*
1477 	 * Is mtime younger than atime? If yes, update atime:
1478 	 */
1479 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1480 		return 1;
1481 	/*
1482 	 * Is ctime younger than atime? If yes, update atime:
1483 	 */
1484 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1485 		return 1;
1486 
1487 	/*
1488 	 * Is the previous atime value older than a day? If yes,
1489 	 * update atime:
1490 	 */
1491 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1492 		return 1;
1493 	/*
1494 	 * Good, we can skip the atime update:
1495 	 */
1496 	return 0;
1497 }
1498 
1499 /*
1500  * This does the actual work of updating an inodes time or version.  Must have
1501  * had called mnt_want_write() before calling this.
1502  */
1503 static int update_time(struct inode *inode, struct timespec *time, int flags)
1504 {
1505 	if (inode->i_op->update_time)
1506 		return inode->i_op->update_time(inode, time, flags);
1507 
1508 	if (flags & S_ATIME)
1509 		inode->i_atime = *time;
1510 	if (flags & S_VERSION)
1511 		inode_inc_iversion(inode);
1512 	if (flags & S_CTIME)
1513 		inode->i_ctime = *time;
1514 	if (flags & S_MTIME)
1515 		inode->i_mtime = *time;
1516 	mark_inode_dirty_sync(inode);
1517 	return 0;
1518 }
1519 
1520 /**
1521  *	touch_atime	-	update the access time
1522  *	@path: the &struct path to update
1523  *
1524  *	Update the accessed time on an inode and mark it for writeback.
1525  *	This function automatically handles read only file systems and media,
1526  *	as well as the "noatime" flag and inode specific "noatime" markers.
1527  */
1528 void touch_atime(struct path *path)
1529 {
1530 	struct vfsmount *mnt = path->mnt;
1531 	struct inode *inode = path->dentry->d_inode;
1532 	struct timespec now;
1533 
1534 	if (inode->i_flags & S_NOATIME)
1535 		return;
1536 	if (IS_NOATIME(inode))
1537 		return;
1538 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1539 		return;
1540 
1541 	if (mnt->mnt_flags & MNT_NOATIME)
1542 		return;
1543 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1544 		return;
1545 
1546 	now = current_fs_time(inode->i_sb);
1547 
1548 	if (!relatime_need_update(mnt, inode, now))
1549 		return;
1550 
1551 	if (timespec_equal(&inode->i_atime, &now))
1552 		return;
1553 
1554 	if (!sb_start_write_trylock(inode->i_sb))
1555 		return;
1556 
1557 	if (__mnt_want_write(mnt))
1558 		goto skip_update;
1559 	/*
1560 	 * File systems can error out when updating inodes if they need to
1561 	 * allocate new space to modify an inode (such is the case for
1562 	 * Btrfs), but since we touch atime while walking down the path we
1563 	 * really don't care if we failed to update the atime of the file,
1564 	 * so just ignore the return value.
1565 	 * We may also fail on filesystems that have the ability to make parts
1566 	 * of the fs read only, e.g. subvolumes in Btrfs.
1567 	 */
1568 	update_time(inode, &now, S_ATIME);
1569 	__mnt_drop_write(mnt);
1570 skip_update:
1571 	sb_end_write(inode->i_sb);
1572 }
1573 EXPORT_SYMBOL(touch_atime);
1574 
1575 /*
1576  * The logic we want is
1577  *
1578  *	if suid or (sgid and xgrp)
1579  *		remove privs
1580  */
1581 int should_remove_suid(struct dentry *dentry)
1582 {
1583 	umode_t mode = dentry->d_inode->i_mode;
1584 	int kill = 0;
1585 
1586 	/* suid always must be killed */
1587 	if (unlikely(mode & S_ISUID))
1588 		kill = ATTR_KILL_SUID;
1589 
1590 	/*
1591 	 * sgid without any exec bits is just a mandatory locking mark; leave
1592 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1593 	 */
1594 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1595 		kill |= ATTR_KILL_SGID;
1596 
1597 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1598 		return kill;
1599 
1600 	return 0;
1601 }
1602 EXPORT_SYMBOL(should_remove_suid);
1603 
1604 static int __remove_suid(struct dentry *dentry, int kill)
1605 {
1606 	struct iattr newattrs;
1607 
1608 	newattrs.ia_valid = ATTR_FORCE | kill;
1609 	return notify_change(dentry, &newattrs);
1610 }
1611 
1612 int file_remove_suid(struct file *file)
1613 {
1614 	struct dentry *dentry = file->f_path.dentry;
1615 	struct inode *inode = dentry->d_inode;
1616 	int killsuid;
1617 	int killpriv;
1618 	int error = 0;
1619 
1620 	/* Fast path for nothing security related */
1621 	if (IS_NOSEC(inode))
1622 		return 0;
1623 
1624 	killsuid = should_remove_suid(dentry);
1625 	killpriv = security_inode_need_killpriv(dentry);
1626 
1627 	if (killpriv < 0)
1628 		return killpriv;
1629 	if (killpriv)
1630 		error = security_inode_killpriv(dentry);
1631 	if (!error && killsuid)
1632 		error = __remove_suid(dentry, killsuid);
1633 	if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1634 		inode->i_flags |= S_NOSEC;
1635 
1636 	return error;
1637 }
1638 EXPORT_SYMBOL(file_remove_suid);
1639 
1640 /**
1641  *	file_update_time	-	update mtime and ctime time
1642  *	@file: file accessed
1643  *
1644  *	Update the mtime and ctime members of an inode and mark the inode
1645  *	for writeback.  Note that this function is meant exclusively for
1646  *	usage in the file write path of filesystems, and filesystems may
1647  *	choose to explicitly ignore update via this function with the
1648  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1649  *	timestamps are handled by the server.  This can return an error for
1650  *	file systems who need to allocate space in order to update an inode.
1651  */
1652 
1653 int file_update_time(struct file *file)
1654 {
1655 	struct inode *inode = file_inode(file);
1656 	struct timespec now;
1657 	int sync_it = 0;
1658 	int ret;
1659 
1660 	/* First try to exhaust all avenues to not sync */
1661 	if (IS_NOCMTIME(inode))
1662 		return 0;
1663 
1664 	now = current_fs_time(inode->i_sb);
1665 	if (!timespec_equal(&inode->i_mtime, &now))
1666 		sync_it = S_MTIME;
1667 
1668 	if (!timespec_equal(&inode->i_ctime, &now))
1669 		sync_it |= S_CTIME;
1670 
1671 	if (IS_I_VERSION(inode))
1672 		sync_it |= S_VERSION;
1673 
1674 	if (!sync_it)
1675 		return 0;
1676 
1677 	/* Finally allowed to write? Takes lock. */
1678 	if (__mnt_want_write_file(file))
1679 		return 0;
1680 
1681 	ret = update_time(inode, &now, sync_it);
1682 	__mnt_drop_write_file(file);
1683 
1684 	return ret;
1685 }
1686 EXPORT_SYMBOL(file_update_time);
1687 
1688 int inode_needs_sync(struct inode *inode)
1689 {
1690 	if (IS_SYNC(inode))
1691 		return 1;
1692 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1693 		return 1;
1694 	return 0;
1695 }
1696 EXPORT_SYMBOL(inode_needs_sync);
1697 
1698 int inode_wait(void *word)
1699 {
1700 	schedule();
1701 	return 0;
1702 }
1703 EXPORT_SYMBOL(inode_wait);
1704 
1705 /*
1706  * If we try to find an inode in the inode hash while it is being
1707  * deleted, we have to wait until the filesystem completes its
1708  * deletion before reporting that it isn't found.  This function waits
1709  * until the deletion _might_ have completed.  Callers are responsible
1710  * to recheck inode state.
1711  *
1712  * It doesn't matter if I_NEW is not set initially, a call to
1713  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1714  * will DTRT.
1715  */
1716 static void __wait_on_freeing_inode(struct inode *inode)
1717 {
1718 	wait_queue_head_t *wq;
1719 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1720 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1721 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1722 	spin_unlock(&inode->i_lock);
1723 	spin_unlock(&inode_hash_lock);
1724 	schedule();
1725 	finish_wait(wq, &wait.wait);
1726 	spin_lock(&inode_hash_lock);
1727 }
1728 
1729 static __initdata unsigned long ihash_entries;
1730 static int __init set_ihash_entries(char *str)
1731 {
1732 	if (!str)
1733 		return 0;
1734 	ihash_entries = simple_strtoul(str, &str, 0);
1735 	return 1;
1736 }
1737 __setup("ihash_entries=", set_ihash_entries);
1738 
1739 /*
1740  * Initialize the waitqueues and inode hash table.
1741  */
1742 void __init inode_init_early(void)
1743 {
1744 	unsigned int loop;
1745 
1746 	/* If hashes are distributed across NUMA nodes, defer
1747 	 * hash allocation until vmalloc space is available.
1748 	 */
1749 	if (hashdist)
1750 		return;
1751 
1752 	inode_hashtable =
1753 		alloc_large_system_hash("Inode-cache",
1754 					sizeof(struct hlist_head),
1755 					ihash_entries,
1756 					14,
1757 					HASH_EARLY,
1758 					&i_hash_shift,
1759 					&i_hash_mask,
1760 					0,
1761 					0);
1762 
1763 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1764 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1765 }
1766 
1767 void __init inode_init(void)
1768 {
1769 	unsigned int loop;
1770 
1771 	/* inode slab cache */
1772 	inode_cachep = kmem_cache_create("inode_cache",
1773 					 sizeof(struct inode),
1774 					 0,
1775 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1776 					 SLAB_MEM_SPREAD),
1777 					 init_once);
1778 
1779 	/* Hash may have been set up in inode_init_early */
1780 	if (!hashdist)
1781 		return;
1782 
1783 	inode_hashtable =
1784 		alloc_large_system_hash("Inode-cache",
1785 					sizeof(struct hlist_head),
1786 					ihash_entries,
1787 					14,
1788 					0,
1789 					&i_hash_shift,
1790 					&i_hash_mask,
1791 					0,
1792 					0);
1793 
1794 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1795 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1796 }
1797 
1798 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1799 {
1800 	inode->i_mode = mode;
1801 	if (S_ISCHR(mode)) {
1802 		inode->i_fop = &def_chr_fops;
1803 		inode->i_rdev = rdev;
1804 	} else if (S_ISBLK(mode)) {
1805 		inode->i_fop = &def_blk_fops;
1806 		inode->i_rdev = rdev;
1807 	} else if (S_ISFIFO(mode))
1808 		inode->i_fop = &pipefifo_fops;
1809 	else if (S_ISSOCK(mode))
1810 		inode->i_fop = &bad_sock_fops;
1811 	else
1812 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1813 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1814 				  inode->i_ino);
1815 }
1816 EXPORT_SYMBOL(init_special_inode);
1817 
1818 /**
1819  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1820  * @inode: New inode
1821  * @dir: Directory inode
1822  * @mode: mode of the new inode
1823  */
1824 void inode_init_owner(struct inode *inode, const struct inode *dir,
1825 			umode_t mode)
1826 {
1827 	inode->i_uid = current_fsuid();
1828 	if (dir && dir->i_mode & S_ISGID) {
1829 		inode->i_gid = dir->i_gid;
1830 		if (S_ISDIR(mode))
1831 			mode |= S_ISGID;
1832 	} else
1833 		inode->i_gid = current_fsgid();
1834 	inode->i_mode = mode;
1835 }
1836 EXPORT_SYMBOL(inode_init_owner);
1837 
1838 /**
1839  * inode_owner_or_capable - check current task permissions to inode
1840  * @inode: inode being checked
1841  *
1842  * Return true if current either has CAP_FOWNER to the inode, or
1843  * owns the file.
1844  */
1845 bool inode_owner_or_capable(const struct inode *inode)
1846 {
1847 	if (uid_eq(current_fsuid(), inode->i_uid))
1848 		return true;
1849 	if (inode_capable(inode, CAP_FOWNER))
1850 		return true;
1851 	return false;
1852 }
1853 EXPORT_SYMBOL(inode_owner_or_capable);
1854 
1855 /*
1856  * Direct i/o helper functions
1857  */
1858 static void __inode_dio_wait(struct inode *inode)
1859 {
1860 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1861 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1862 
1863 	do {
1864 		prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1865 		if (atomic_read(&inode->i_dio_count))
1866 			schedule();
1867 	} while (atomic_read(&inode->i_dio_count));
1868 	finish_wait(wq, &q.wait);
1869 }
1870 
1871 /**
1872  * inode_dio_wait - wait for outstanding DIO requests to finish
1873  * @inode: inode to wait for
1874  *
1875  * Waits for all pending direct I/O requests to finish so that we can
1876  * proceed with a truncate or equivalent operation.
1877  *
1878  * Must be called under a lock that serializes taking new references
1879  * to i_dio_count, usually by inode->i_mutex.
1880  */
1881 void inode_dio_wait(struct inode *inode)
1882 {
1883 	if (atomic_read(&inode->i_dio_count))
1884 		__inode_dio_wait(inode);
1885 }
1886 EXPORT_SYMBOL(inode_dio_wait);
1887 
1888 /*
1889  * inode_dio_done - signal finish of a direct I/O requests
1890  * @inode: inode the direct I/O happens on
1891  *
1892  * This is called once we've finished processing a direct I/O request,
1893  * and is used to wake up callers waiting for direct I/O to be quiesced.
1894  */
1895 void inode_dio_done(struct inode *inode)
1896 {
1897 	if (atomic_dec_and_test(&inode->i_dio_count))
1898 		wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
1899 }
1900 EXPORT_SYMBOL(inode_dio_done);
1901