xref: /openbmc/linux/fs/inode.c (revision b285d2ae)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fscrypt.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/prefetch.h>
20 #include <linux/buffer_head.h> /* for inode_has_buffers */
21 #include <linux/ratelimit.h>
22 #include <linux/list_lru.h>
23 #include <linux/iversion.h>
24 #include <trace/events/writeback.h>
25 #include "internal.h"
26 
27 /*
28  * Inode locking rules:
29  *
30  * inode->i_lock protects:
31  *   inode->i_state, inode->i_hash, __iget()
32  * Inode LRU list locks protect:
33  *   inode->i_sb->s_inode_lru, inode->i_lru
34  * inode->i_sb->s_inode_list_lock protects:
35  *   inode->i_sb->s_inodes, inode->i_sb_list
36  * bdi->wb.list_lock protects:
37  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
38  * inode_hash_lock protects:
39  *   inode_hashtable, inode->i_hash
40  *
41  * Lock ordering:
42  *
43  * inode->i_sb->s_inode_list_lock
44  *   inode->i_lock
45  *     Inode LRU list locks
46  *
47  * bdi->wb.list_lock
48  *   inode->i_lock
49  *
50  * inode_hash_lock
51  *   inode->i_sb->s_inode_list_lock
52  *   inode->i_lock
53  *
54  * iunique_lock
55  *   inode_hash_lock
56  */
57 
58 static unsigned int i_hash_mask __read_mostly;
59 static unsigned int i_hash_shift __read_mostly;
60 static struct hlist_head *inode_hashtable __read_mostly;
61 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
62 
63 /*
64  * Empty aops. Can be used for the cases where the user does not
65  * define any of the address_space operations.
66  */
67 const struct address_space_operations empty_aops = {
68 };
69 EXPORT_SYMBOL(empty_aops);
70 
71 /*
72  * Statistics gathering..
73  */
74 struct inodes_stat_t inodes_stat;
75 
76 static DEFINE_PER_CPU(unsigned long, nr_inodes);
77 static DEFINE_PER_CPU(unsigned long, nr_unused);
78 
79 static struct kmem_cache *inode_cachep __read_mostly;
80 
81 static long get_nr_inodes(void)
82 {
83 	int i;
84 	long sum = 0;
85 	for_each_possible_cpu(i)
86 		sum += per_cpu(nr_inodes, i);
87 	return sum < 0 ? 0 : sum;
88 }
89 
90 static inline long get_nr_inodes_unused(void)
91 {
92 	int i;
93 	long sum = 0;
94 	for_each_possible_cpu(i)
95 		sum += per_cpu(nr_unused, i);
96 	return sum < 0 ? 0 : sum;
97 }
98 
99 long get_nr_dirty_inodes(void)
100 {
101 	/* not actually dirty inodes, but a wild approximation */
102 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
103 	return nr_dirty > 0 ? nr_dirty : 0;
104 }
105 
106 /*
107  * Handle nr_inode sysctl
108  */
109 #ifdef CONFIG_SYSCTL
110 int proc_nr_inodes(struct ctl_table *table, int write,
111 		   void *buffer, size_t *lenp, loff_t *ppos)
112 {
113 	inodes_stat.nr_inodes = get_nr_inodes();
114 	inodes_stat.nr_unused = get_nr_inodes_unused();
115 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
116 }
117 #endif
118 
119 static int no_open(struct inode *inode, struct file *file)
120 {
121 	return -ENXIO;
122 }
123 
124 /**
125  * inode_init_always - perform inode structure initialisation
126  * @sb: superblock inode belongs to
127  * @inode: inode to initialise
128  *
129  * These are initializations that need to be done on every inode
130  * allocation as the fields are not initialised by slab allocation.
131  */
132 int inode_init_always(struct super_block *sb, struct inode *inode)
133 {
134 	static const struct inode_operations empty_iops;
135 	static const struct file_operations no_open_fops = {.open = no_open};
136 	struct address_space *const mapping = &inode->i_data;
137 
138 	inode->i_sb = sb;
139 	inode->i_blkbits = sb->s_blocksize_bits;
140 	inode->i_flags = 0;
141 	atomic64_set(&inode->i_sequence, 0);
142 	atomic_set(&inode->i_count, 1);
143 	inode->i_op = &empty_iops;
144 	inode->i_fop = &no_open_fops;
145 	inode->__i_nlink = 1;
146 	inode->i_opflags = 0;
147 	if (sb->s_xattr)
148 		inode->i_opflags |= IOP_XATTR;
149 	i_uid_write(inode, 0);
150 	i_gid_write(inode, 0);
151 	atomic_set(&inode->i_writecount, 0);
152 	inode->i_size = 0;
153 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
154 	inode->i_blocks = 0;
155 	inode->i_bytes = 0;
156 	inode->i_generation = 0;
157 	inode->i_pipe = NULL;
158 	inode->i_bdev = NULL;
159 	inode->i_cdev = NULL;
160 	inode->i_link = NULL;
161 	inode->i_dir_seq = 0;
162 	inode->i_rdev = 0;
163 	inode->dirtied_when = 0;
164 
165 #ifdef CONFIG_CGROUP_WRITEBACK
166 	inode->i_wb_frn_winner = 0;
167 	inode->i_wb_frn_avg_time = 0;
168 	inode->i_wb_frn_history = 0;
169 #endif
170 
171 	if (security_inode_alloc(inode))
172 		goto out;
173 	spin_lock_init(&inode->i_lock);
174 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
175 
176 	init_rwsem(&inode->i_rwsem);
177 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
178 
179 	atomic_set(&inode->i_dio_count, 0);
180 
181 	mapping->a_ops = &empty_aops;
182 	mapping->host = inode;
183 	mapping->flags = 0;
184 	mapping->wb_err = 0;
185 	atomic_set(&mapping->i_mmap_writable, 0);
186 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
187 	atomic_set(&mapping->nr_thps, 0);
188 #endif
189 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
190 	mapping->private_data = NULL;
191 	mapping->writeback_index = 0;
192 	inode->i_private = NULL;
193 	inode->i_mapping = mapping;
194 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
195 #ifdef CONFIG_FS_POSIX_ACL
196 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
197 #endif
198 
199 #ifdef CONFIG_FSNOTIFY
200 	inode->i_fsnotify_mask = 0;
201 #endif
202 	inode->i_flctx = NULL;
203 	this_cpu_inc(nr_inodes);
204 
205 	return 0;
206 out:
207 	return -ENOMEM;
208 }
209 EXPORT_SYMBOL(inode_init_always);
210 
211 void free_inode_nonrcu(struct inode *inode)
212 {
213 	kmem_cache_free(inode_cachep, inode);
214 }
215 EXPORT_SYMBOL(free_inode_nonrcu);
216 
217 static void i_callback(struct rcu_head *head)
218 {
219 	struct inode *inode = container_of(head, struct inode, i_rcu);
220 	if (inode->free_inode)
221 		inode->free_inode(inode);
222 	else
223 		free_inode_nonrcu(inode);
224 }
225 
226 static struct inode *alloc_inode(struct super_block *sb)
227 {
228 	const struct super_operations *ops = sb->s_op;
229 	struct inode *inode;
230 
231 	if (ops->alloc_inode)
232 		inode = ops->alloc_inode(sb);
233 	else
234 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
235 
236 	if (!inode)
237 		return NULL;
238 
239 	if (unlikely(inode_init_always(sb, inode))) {
240 		if (ops->destroy_inode) {
241 			ops->destroy_inode(inode);
242 			if (!ops->free_inode)
243 				return NULL;
244 		}
245 		inode->free_inode = ops->free_inode;
246 		i_callback(&inode->i_rcu);
247 		return NULL;
248 	}
249 
250 	return inode;
251 }
252 
253 void __destroy_inode(struct inode *inode)
254 {
255 	BUG_ON(inode_has_buffers(inode));
256 	inode_detach_wb(inode);
257 	security_inode_free(inode);
258 	fsnotify_inode_delete(inode);
259 	locks_free_lock_context(inode);
260 	if (!inode->i_nlink) {
261 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
262 		atomic_long_dec(&inode->i_sb->s_remove_count);
263 	}
264 
265 #ifdef CONFIG_FS_POSIX_ACL
266 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
267 		posix_acl_release(inode->i_acl);
268 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
269 		posix_acl_release(inode->i_default_acl);
270 #endif
271 	this_cpu_dec(nr_inodes);
272 }
273 EXPORT_SYMBOL(__destroy_inode);
274 
275 static void destroy_inode(struct inode *inode)
276 {
277 	const struct super_operations *ops = inode->i_sb->s_op;
278 
279 	BUG_ON(!list_empty(&inode->i_lru));
280 	__destroy_inode(inode);
281 	if (ops->destroy_inode) {
282 		ops->destroy_inode(inode);
283 		if (!ops->free_inode)
284 			return;
285 	}
286 	inode->free_inode = ops->free_inode;
287 	call_rcu(&inode->i_rcu, i_callback);
288 }
289 
290 /**
291  * drop_nlink - directly drop an inode's link count
292  * @inode: inode
293  *
294  * This is a low-level filesystem helper to replace any
295  * direct filesystem manipulation of i_nlink.  In cases
296  * where we are attempting to track writes to the
297  * filesystem, a decrement to zero means an imminent
298  * write when the file is truncated and actually unlinked
299  * on the filesystem.
300  */
301 void drop_nlink(struct inode *inode)
302 {
303 	WARN_ON(inode->i_nlink == 0);
304 	inode->__i_nlink--;
305 	if (!inode->i_nlink)
306 		atomic_long_inc(&inode->i_sb->s_remove_count);
307 }
308 EXPORT_SYMBOL(drop_nlink);
309 
310 /**
311  * clear_nlink - directly zero an inode's link count
312  * @inode: inode
313  *
314  * This is a low-level filesystem helper to replace any
315  * direct filesystem manipulation of i_nlink.  See
316  * drop_nlink() for why we care about i_nlink hitting zero.
317  */
318 void clear_nlink(struct inode *inode)
319 {
320 	if (inode->i_nlink) {
321 		inode->__i_nlink = 0;
322 		atomic_long_inc(&inode->i_sb->s_remove_count);
323 	}
324 }
325 EXPORT_SYMBOL(clear_nlink);
326 
327 /**
328  * set_nlink - directly set an inode's link count
329  * @inode: inode
330  * @nlink: new nlink (should be non-zero)
331  *
332  * This is a low-level filesystem helper to replace any
333  * direct filesystem manipulation of i_nlink.
334  */
335 void set_nlink(struct inode *inode, unsigned int nlink)
336 {
337 	if (!nlink) {
338 		clear_nlink(inode);
339 	} else {
340 		/* Yes, some filesystems do change nlink from zero to one */
341 		if (inode->i_nlink == 0)
342 			atomic_long_dec(&inode->i_sb->s_remove_count);
343 
344 		inode->__i_nlink = nlink;
345 	}
346 }
347 EXPORT_SYMBOL(set_nlink);
348 
349 /**
350  * inc_nlink - directly increment an inode's link count
351  * @inode: inode
352  *
353  * This is a low-level filesystem helper to replace any
354  * direct filesystem manipulation of i_nlink.  Currently,
355  * it is only here for parity with dec_nlink().
356  */
357 void inc_nlink(struct inode *inode)
358 {
359 	if (unlikely(inode->i_nlink == 0)) {
360 		WARN_ON(!(inode->i_state & I_LINKABLE));
361 		atomic_long_dec(&inode->i_sb->s_remove_count);
362 	}
363 
364 	inode->__i_nlink++;
365 }
366 EXPORT_SYMBOL(inc_nlink);
367 
368 static void __address_space_init_once(struct address_space *mapping)
369 {
370 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
371 	init_rwsem(&mapping->i_mmap_rwsem);
372 	INIT_LIST_HEAD(&mapping->private_list);
373 	spin_lock_init(&mapping->private_lock);
374 	mapping->i_mmap = RB_ROOT_CACHED;
375 }
376 
377 void address_space_init_once(struct address_space *mapping)
378 {
379 	memset(mapping, 0, sizeof(*mapping));
380 	__address_space_init_once(mapping);
381 }
382 EXPORT_SYMBOL(address_space_init_once);
383 
384 /*
385  * These are initializations that only need to be done
386  * once, because the fields are idempotent across use
387  * of the inode, so let the slab aware of that.
388  */
389 void inode_init_once(struct inode *inode)
390 {
391 	memset(inode, 0, sizeof(*inode));
392 	INIT_HLIST_NODE(&inode->i_hash);
393 	INIT_LIST_HEAD(&inode->i_devices);
394 	INIT_LIST_HEAD(&inode->i_io_list);
395 	INIT_LIST_HEAD(&inode->i_wb_list);
396 	INIT_LIST_HEAD(&inode->i_lru);
397 	__address_space_init_once(&inode->i_data);
398 	i_size_ordered_init(inode);
399 }
400 EXPORT_SYMBOL(inode_init_once);
401 
402 static void init_once(void *foo)
403 {
404 	struct inode *inode = (struct inode *) foo;
405 
406 	inode_init_once(inode);
407 }
408 
409 /*
410  * inode->i_lock must be held
411  */
412 void __iget(struct inode *inode)
413 {
414 	atomic_inc(&inode->i_count);
415 }
416 
417 /*
418  * get additional reference to inode; caller must already hold one.
419  */
420 void ihold(struct inode *inode)
421 {
422 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
423 }
424 EXPORT_SYMBOL(ihold);
425 
426 static void inode_lru_list_add(struct inode *inode)
427 {
428 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
429 		this_cpu_inc(nr_unused);
430 	else
431 		inode->i_state |= I_REFERENCED;
432 }
433 
434 /*
435  * Add inode to LRU if needed (inode is unused and clean).
436  *
437  * Needs inode->i_lock held.
438  */
439 void inode_add_lru(struct inode *inode)
440 {
441 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
442 				I_FREEING | I_WILL_FREE)) &&
443 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
444 		inode_lru_list_add(inode);
445 }
446 
447 
448 static void inode_lru_list_del(struct inode *inode)
449 {
450 
451 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
452 		this_cpu_dec(nr_unused);
453 }
454 
455 /**
456  * inode_sb_list_add - add inode to the superblock list of inodes
457  * @inode: inode to add
458  */
459 void inode_sb_list_add(struct inode *inode)
460 {
461 	spin_lock(&inode->i_sb->s_inode_list_lock);
462 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
463 	spin_unlock(&inode->i_sb->s_inode_list_lock);
464 }
465 EXPORT_SYMBOL_GPL(inode_sb_list_add);
466 
467 static inline void inode_sb_list_del(struct inode *inode)
468 {
469 	if (!list_empty(&inode->i_sb_list)) {
470 		spin_lock(&inode->i_sb->s_inode_list_lock);
471 		list_del_init(&inode->i_sb_list);
472 		spin_unlock(&inode->i_sb->s_inode_list_lock);
473 	}
474 }
475 
476 static unsigned long hash(struct super_block *sb, unsigned long hashval)
477 {
478 	unsigned long tmp;
479 
480 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
481 			L1_CACHE_BYTES;
482 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
483 	return tmp & i_hash_mask;
484 }
485 
486 /**
487  *	__insert_inode_hash - hash an inode
488  *	@inode: unhashed inode
489  *	@hashval: unsigned long value used to locate this object in the
490  *		inode_hashtable.
491  *
492  *	Add an inode to the inode hash for this superblock.
493  */
494 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
495 {
496 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
497 
498 	spin_lock(&inode_hash_lock);
499 	spin_lock(&inode->i_lock);
500 	hlist_add_head_rcu(&inode->i_hash, b);
501 	spin_unlock(&inode->i_lock);
502 	spin_unlock(&inode_hash_lock);
503 }
504 EXPORT_SYMBOL(__insert_inode_hash);
505 
506 /**
507  *	__remove_inode_hash - remove an inode from the hash
508  *	@inode: inode to unhash
509  *
510  *	Remove an inode from the superblock.
511  */
512 void __remove_inode_hash(struct inode *inode)
513 {
514 	spin_lock(&inode_hash_lock);
515 	spin_lock(&inode->i_lock);
516 	hlist_del_init_rcu(&inode->i_hash);
517 	spin_unlock(&inode->i_lock);
518 	spin_unlock(&inode_hash_lock);
519 }
520 EXPORT_SYMBOL(__remove_inode_hash);
521 
522 void clear_inode(struct inode *inode)
523 {
524 	/*
525 	 * We have to cycle the i_pages lock here because reclaim can be in the
526 	 * process of removing the last page (in __delete_from_page_cache())
527 	 * and we must not free the mapping under it.
528 	 */
529 	xa_lock_irq(&inode->i_data.i_pages);
530 	BUG_ON(inode->i_data.nrpages);
531 	BUG_ON(inode->i_data.nrexceptional);
532 	xa_unlock_irq(&inode->i_data.i_pages);
533 	BUG_ON(!list_empty(&inode->i_data.private_list));
534 	BUG_ON(!(inode->i_state & I_FREEING));
535 	BUG_ON(inode->i_state & I_CLEAR);
536 	BUG_ON(!list_empty(&inode->i_wb_list));
537 	/* don't need i_lock here, no concurrent mods to i_state */
538 	inode->i_state = I_FREEING | I_CLEAR;
539 }
540 EXPORT_SYMBOL(clear_inode);
541 
542 /*
543  * Free the inode passed in, removing it from the lists it is still connected
544  * to. We remove any pages still attached to the inode and wait for any IO that
545  * is still in progress before finally destroying the inode.
546  *
547  * An inode must already be marked I_FREEING so that we avoid the inode being
548  * moved back onto lists if we race with other code that manipulates the lists
549  * (e.g. writeback_single_inode). The caller is responsible for setting this.
550  *
551  * An inode must already be removed from the LRU list before being evicted from
552  * the cache. This should occur atomically with setting the I_FREEING state
553  * flag, so no inodes here should ever be on the LRU when being evicted.
554  */
555 static void evict(struct inode *inode)
556 {
557 	const struct super_operations *op = inode->i_sb->s_op;
558 
559 	BUG_ON(!(inode->i_state & I_FREEING));
560 	BUG_ON(!list_empty(&inode->i_lru));
561 
562 	if (!list_empty(&inode->i_io_list))
563 		inode_io_list_del(inode);
564 
565 	inode_sb_list_del(inode);
566 
567 	/*
568 	 * Wait for flusher thread to be done with the inode so that filesystem
569 	 * does not start destroying it while writeback is still running. Since
570 	 * the inode has I_FREEING set, flusher thread won't start new work on
571 	 * the inode.  We just have to wait for running writeback to finish.
572 	 */
573 	inode_wait_for_writeback(inode);
574 
575 	if (op->evict_inode) {
576 		op->evict_inode(inode);
577 	} else {
578 		truncate_inode_pages_final(&inode->i_data);
579 		clear_inode(inode);
580 	}
581 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
582 		bd_forget(inode);
583 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
584 		cd_forget(inode);
585 
586 	remove_inode_hash(inode);
587 
588 	spin_lock(&inode->i_lock);
589 	wake_up_bit(&inode->i_state, __I_NEW);
590 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
591 	spin_unlock(&inode->i_lock);
592 
593 	destroy_inode(inode);
594 }
595 
596 /*
597  * dispose_list - dispose of the contents of a local list
598  * @head: the head of the list to free
599  *
600  * Dispose-list gets a local list with local inodes in it, so it doesn't
601  * need to worry about list corruption and SMP locks.
602  */
603 static void dispose_list(struct list_head *head)
604 {
605 	while (!list_empty(head)) {
606 		struct inode *inode;
607 
608 		inode = list_first_entry(head, struct inode, i_lru);
609 		list_del_init(&inode->i_lru);
610 
611 		evict(inode);
612 		cond_resched();
613 	}
614 }
615 
616 /**
617  * evict_inodes	- evict all evictable inodes for a superblock
618  * @sb:		superblock to operate on
619  *
620  * Make sure that no inodes with zero refcount are retained.  This is
621  * called by superblock shutdown after having SB_ACTIVE flag removed,
622  * so any inode reaching zero refcount during or after that call will
623  * be immediately evicted.
624  */
625 void evict_inodes(struct super_block *sb)
626 {
627 	struct inode *inode, *next;
628 	LIST_HEAD(dispose);
629 
630 again:
631 	spin_lock(&sb->s_inode_list_lock);
632 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
633 		if (atomic_read(&inode->i_count))
634 			continue;
635 
636 		spin_lock(&inode->i_lock);
637 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
638 			spin_unlock(&inode->i_lock);
639 			continue;
640 		}
641 
642 		inode->i_state |= I_FREEING;
643 		inode_lru_list_del(inode);
644 		spin_unlock(&inode->i_lock);
645 		list_add(&inode->i_lru, &dispose);
646 
647 		/*
648 		 * We can have a ton of inodes to evict at unmount time given
649 		 * enough memory, check to see if we need to go to sleep for a
650 		 * bit so we don't livelock.
651 		 */
652 		if (need_resched()) {
653 			spin_unlock(&sb->s_inode_list_lock);
654 			cond_resched();
655 			dispose_list(&dispose);
656 			goto again;
657 		}
658 	}
659 	spin_unlock(&sb->s_inode_list_lock);
660 
661 	dispose_list(&dispose);
662 }
663 EXPORT_SYMBOL_GPL(evict_inodes);
664 
665 /**
666  * invalidate_inodes	- attempt to free all inodes on a superblock
667  * @sb:		superblock to operate on
668  * @kill_dirty: flag to guide handling of dirty inodes
669  *
670  * Attempts to free all inodes for a given superblock.  If there were any
671  * busy inodes return a non-zero value, else zero.
672  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
673  * them as busy.
674  */
675 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
676 {
677 	int busy = 0;
678 	struct inode *inode, *next;
679 	LIST_HEAD(dispose);
680 
681 again:
682 	spin_lock(&sb->s_inode_list_lock);
683 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
684 		spin_lock(&inode->i_lock);
685 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
686 			spin_unlock(&inode->i_lock);
687 			continue;
688 		}
689 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
690 			spin_unlock(&inode->i_lock);
691 			busy = 1;
692 			continue;
693 		}
694 		if (atomic_read(&inode->i_count)) {
695 			spin_unlock(&inode->i_lock);
696 			busy = 1;
697 			continue;
698 		}
699 
700 		inode->i_state |= I_FREEING;
701 		inode_lru_list_del(inode);
702 		spin_unlock(&inode->i_lock);
703 		list_add(&inode->i_lru, &dispose);
704 		if (need_resched()) {
705 			spin_unlock(&sb->s_inode_list_lock);
706 			cond_resched();
707 			dispose_list(&dispose);
708 			goto again;
709 		}
710 	}
711 	spin_unlock(&sb->s_inode_list_lock);
712 
713 	dispose_list(&dispose);
714 
715 	return busy;
716 }
717 
718 /*
719  * Isolate the inode from the LRU in preparation for freeing it.
720  *
721  * Any inodes which are pinned purely because of attached pagecache have their
722  * pagecache removed.  If the inode has metadata buffers attached to
723  * mapping->private_list then try to remove them.
724  *
725  * If the inode has the I_REFERENCED flag set, then it means that it has been
726  * used recently - the flag is set in iput_final(). When we encounter such an
727  * inode, clear the flag and move it to the back of the LRU so it gets another
728  * pass through the LRU before it gets reclaimed. This is necessary because of
729  * the fact we are doing lazy LRU updates to minimise lock contention so the
730  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
731  * with this flag set because they are the inodes that are out of order.
732  */
733 static enum lru_status inode_lru_isolate(struct list_head *item,
734 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
735 {
736 	struct list_head *freeable = arg;
737 	struct inode	*inode = container_of(item, struct inode, i_lru);
738 
739 	/*
740 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
741 	 * If we fail to get the lock, just skip it.
742 	 */
743 	if (!spin_trylock(&inode->i_lock))
744 		return LRU_SKIP;
745 
746 	/*
747 	 * Referenced or dirty inodes are still in use. Give them another pass
748 	 * through the LRU as we canot reclaim them now.
749 	 */
750 	if (atomic_read(&inode->i_count) ||
751 	    (inode->i_state & ~I_REFERENCED)) {
752 		list_lru_isolate(lru, &inode->i_lru);
753 		spin_unlock(&inode->i_lock);
754 		this_cpu_dec(nr_unused);
755 		return LRU_REMOVED;
756 	}
757 
758 	/* recently referenced inodes get one more pass */
759 	if (inode->i_state & I_REFERENCED) {
760 		inode->i_state &= ~I_REFERENCED;
761 		spin_unlock(&inode->i_lock);
762 		return LRU_ROTATE;
763 	}
764 
765 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
766 		__iget(inode);
767 		spin_unlock(&inode->i_lock);
768 		spin_unlock(lru_lock);
769 		if (remove_inode_buffers(inode)) {
770 			unsigned long reap;
771 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
772 			if (current_is_kswapd())
773 				__count_vm_events(KSWAPD_INODESTEAL, reap);
774 			else
775 				__count_vm_events(PGINODESTEAL, reap);
776 			if (current->reclaim_state)
777 				current->reclaim_state->reclaimed_slab += reap;
778 		}
779 		iput(inode);
780 		spin_lock(lru_lock);
781 		return LRU_RETRY;
782 	}
783 
784 	WARN_ON(inode->i_state & I_NEW);
785 	inode->i_state |= I_FREEING;
786 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
787 	spin_unlock(&inode->i_lock);
788 
789 	this_cpu_dec(nr_unused);
790 	return LRU_REMOVED;
791 }
792 
793 /*
794  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
795  * This is called from the superblock shrinker function with a number of inodes
796  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
797  * then are freed outside inode_lock by dispose_list().
798  */
799 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
800 {
801 	LIST_HEAD(freeable);
802 	long freed;
803 
804 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
805 				     inode_lru_isolate, &freeable);
806 	dispose_list(&freeable);
807 	return freed;
808 }
809 
810 static void __wait_on_freeing_inode(struct inode *inode);
811 /*
812  * Called with the inode lock held.
813  */
814 static struct inode *find_inode(struct super_block *sb,
815 				struct hlist_head *head,
816 				int (*test)(struct inode *, void *),
817 				void *data)
818 {
819 	struct inode *inode = NULL;
820 
821 repeat:
822 	hlist_for_each_entry(inode, head, i_hash) {
823 		if (inode->i_sb != sb)
824 			continue;
825 		if (!test(inode, data))
826 			continue;
827 		spin_lock(&inode->i_lock);
828 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
829 			__wait_on_freeing_inode(inode);
830 			goto repeat;
831 		}
832 		if (unlikely(inode->i_state & I_CREATING)) {
833 			spin_unlock(&inode->i_lock);
834 			return ERR_PTR(-ESTALE);
835 		}
836 		__iget(inode);
837 		spin_unlock(&inode->i_lock);
838 		return inode;
839 	}
840 	return NULL;
841 }
842 
843 /*
844  * find_inode_fast is the fast path version of find_inode, see the comment at
845  * iget_locked for details.
846  */
847 static struct inode *find_inode_fast(struct super_block *sb,
848 				struct hlist_head *head, unsigned long ino)
849 {
850 	struct inode *inode = NULL;
851 
852 repeat:
853 	hlist_for_each_entry(inode, head, i_hash) {
854 		if (inode->i_ino != ino)
855 			continue;
856 		if (inode->i_sb != sb)
857 			continue;
858 		spin_lock(&inode->i_lock);
859 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
860 			__wait_on_freeing_inode(inode);
861 			goto repeat;
862 		}
863 		if (unlikely(inode->i_state & I_CREATING)) {
864 			spin_unlock(&inode->i_lock);
865 			return ERR_PTR(-ESTALE);
866 		}
867 		__iget(inode);
868 		spin_unlock(&inode->i_lock);
869 		return inode;
870 	}
871 	return NULL;
872 }
873 
874 /*
875  * Each cpu owns a range of LAST_INO_BATCH numbers.
876  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
877  * to renew the exhausted range.
878  *
879  * This does not significantly increase overflow rate because every CPU can
880  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
881  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
882  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
883  * overflow rate by 2x, which does not seem too significant.
884  *
885  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
886  * error if st_ino won't fit in target struct field. Use 32bit counter
887  * here to attempt to avoid that.
888  */
889 #define LAST_INO_BATCH 1024
890 static DEFINE_PER_CPU(unsigned int, last_ino);
891 
892 unsigned int get_next_ino(void)
893 {
894 	unsigned int *p = &get_cpu_var(last_ino);
895 	unsigned int res = *p;
896 
897 #ifdef CONFIG_SMP
898 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
899 		static atomic_t shared_last_ino;
900 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
901 
902 		res = next - LAST_INO_BATCH;
903 	}
904 #endif
905 
906 	res++;
907 	/* get_next_ino should not provide a 0 inode number */
908 	if (unlikely(!res))
909 		res++;
910 	*p = res;
911 	put_cpu_var(last_ino);
912 	return res;
913 }
914 EXPORT_SYMBOL(get_next_ino);
915 
916 /**
917  *	new_inode_pseudo 	- obtain an inode
918  *	@sb: superblock
919  *
920  *	Allocates a new inode for given superblock.
921  *	Inode wont be chained in superblock s_inodes list
922  *	This means :
923  *	- fs can't be unmount
924  *	- quotas, fsnotify, writeback can't work
925  */
926 struct inode *new_inode_pseudo(struct super_block *sb)
927 {
928 	struct inode *inode = alloc_inode(sb);
929 
930 	if (inode) {
931 		spin_lock(&inode->i_lock);
932 		inode->i_state = 0;
933 		spin_unlock(&inode->i_lock);
934 		INIT_LIST_HEAD(&inode->i_sb_list);
935 	}
936 	return inode;
937 }
938 
939 /**
940  *	new_inode 	- obtain an inode
941  *	@sb: superblock
942  *
943  *	Allocates a new inode for given superblock. The default gfp_mask
944  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
945  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
946  *	for the page cache are not reclaimable or migratable,
947  *	mapping_set_gfp_mask() must be called with suitable flags on the
948  *	newly created inode's mapping
949  *
950  */
951 struct inode *new_inode(struct super_block *sb)
952 {
953 	struct inode *inode;
954 
955 	spin_lock_prefetch(&sb->s_inode_list_lock);
956 
957 	inode = new_inode_pseudo(sb);
958 	if (inode)
959 		inode_sb_list_add(inode);
960 	return inode;
961 }
962 EXPORT_SYMBOL(new_inode);
963 
964 #ifdef CONFIG_DEBUG_LOCK_ALLOC
965 void lockdep_annotate_inode_mutex_key(struct inode *inode)
966 {
967 	if (S_ISDIR(inode->i_mode)) {
968 		struct file_system_type *type = inode->i_sb->s_type;
969 
970 		/* Set new key only if filesystem hasn't already changed it */
971 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
972 			/*
973 			 * ensure nobody is actually holding i_mutex
974 			 */
975 			// mutex_destroy(&inode->i_mutex);
976 			init_rwsem(&inode->i_rwsem);
977 			lockdep_set_class(&inode->i_rwsem,
978 					  &type->i_mutex_dir_key);
979 		}
980 	}
981 }
982 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
983 #endif
984 
985 /**
986  * unlock_new_inode - clear the I_NEW state and wake up any waiters
987  * @inode:	new inode to unlock
988  *
989  * Called when the inode is fully initialised to clear the new state of the
990  * inode and wake up anyone waiting for the inode to finish initialisation.
991  */
992 void unlock_new_inode(struct inode *inode)
993 {
994 	lockdep_annotate_inode_mutex_key(inode);
995 	spin_lock(&inode->i_lock);
996 	WARN_ON(!(inode->i_state & I_NEW));
997 	inode->i_state &= ~I_NEW & ~I_CREATING;
998 	smp_mb();
999 	wake_up_bit(&inode->i_state, __I_NEW);
1000 	spin_unlock(&inode->i_lock);
1001 }
1002 EXPORT_SYMBOL(unlock_new_inode);
1003 
1004 void discard_new_inode(struct inode *inode)
1005 {
1006 	lockdep_annotate_inode_mutex_key(inode);
1007 	spin_lock(&inode->i_lock);
1008 	WARN_ON(!(inode->i_state & I_NEW));
1009 	inode->i_state &= ~I_NEW;
1010 	smp_mb();
1011 	wake_up_bit(&inode->i_state, __I_NEW);
1012 	spin_unlock(&inode->i_lock);
1013 	iput(inode);
1014 }
1015 EXPORT_SYMBOL(discard_new_inode);
1016 
1017 /**
1018  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1019  *
1020  * Lock any non-NULL argument that is not a directory.
1021  * Zero, one or two objects may be locked by this function.
1022  *
1023  * @inode1: first inode to lock
1024  * @inode2: second inode to lock
1025  */
1026 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1027 {
1028 	if (inode1 > inode2)
1029 		swap(inode1, inode2);
1030 
1031 	if (inode1 && !S_ISDIR(inode1->i_mode))
1032 		inode_lock(inode1);
1033 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1034 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1035 }
1036 EXPORT_SYMBOL(lock_two_nondirectories);
1037 
1038 /**
1039  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1040  * @inode1: first inode to unlock
1041  * @inode2: second inode to unlock
1042  */
1043 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1044 {
1045 	if (inode1 && !S_ISDIR(inode1->i_mode))
1046 		inode_unlock(inode1);
1047 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1048 		inode_unlock(inode2);
1049 }
1050 EXPORT_SYMBOL(unlock_two_nondirectories);
1051 
1052 /**
1053  * inode_insert5 - obtain an inode from a mounted file system
1054  * @inode:	pre-allocated inode to use for insert to cache
1055  * @hashval:	hash value (usually inode number) to get
1056  * @test:	callback used for comparisons between inodes
1057  * @set:	callback used to initialize a new struct inode
1058  * @data:	opaque data pointer to pass to @test and @set
1059  *
1060  * Search for the inode specified by @hashval and @data in the inode cache,
1061  * and if present it is return it with an increased reference count. This is
1062  * a variant of iget5_locked() for callers that don't want to fail on memory
1063  * allocation of inode.
1064  *
1065  * If the inode is not in cache, insert the pre-allocated inode to cache and
1066  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1067  * to fill it in before unlocking it via unlock_new_inode().
1068  *
1069  * Note both @test and @set are called with the inode_hash_lock held, so can't
1070  * sleep.
1071  */
1072 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1073 			    int (*test)(struct inode *, void *),
1074 			    int (*set)(struct inode *, void *), void *data)
1075 {
1076 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1077 	struct inode *old;
1078 	bool creating = inode->i_state & I_CREATING;
1079 
1080 again:
1081 	spin_lock(&inode_hash_lock);
1082 	old = find_inode(inode->i_sb, head, test, data);
1083 	if (unlikely(old)) {
1084 		/*
1085 		 * Uhhuh, somebody else created the same inode under us.
1086 		 * Use the old inode instead of the preallocated one.
1087 		 */
1088 		spin_unlock(&inode_hash_lock);
1089 		if (IS_ERR(old))
1090 			return NULL;
1091 		wait_on_inode(old);
1092 		if (unlikely(inode_unhashed(old))) {
1093 			iput(old);
1094 			goto again;
1095 		}
1096 		return old;
1097 	}
1098 
1099 	if (set && unlikely(set(inode, data))) {
1100 		inode = NULL;
1101 		goto unlock;
1102 	}
1103 
1104 	/*
1105 	 * Return the locked inode with I_NEW set, the
1106 	 * caller is responsible for filling in the contents
1107 	 */
1108 	spin_lock(&inode->i_lock);
1109 	inode->i_state |= I_NEW;
1110 	hlist_add_head_rcu(&inode->i_hash, head);
1111 	spin_unlock(&inode->i_lock);
1112 	if (!creating)
1113 		inode_sb_list_add(inode);
1114 unlock:
1115 	spin_unlock(&inode_hash_lock);
1116 
1117 	return inode;
1118 }
1119 EXPORT_SYMBOL(inode_insert5);
1120 
1121 /**
1122  * iget5_locked - obtain an inode from a mounted file system
1123  * @sb:		super block of file system
1124  * @hashval:	hash value (usually inode number) to get
1125  * @test:	callback used for comparisons between inodes
1126  * @set:	callback used to initialize a new struct inode
1127  * @data:	opaque data pointer to pass to @test and @set
1128  *
1129  * Search for the inode specified by @hashval and @data in the inode cache,
1130  * and if present it is return it with an increased reference count. This is
1131  * a generalized version of iget_locked() for file systems where the inode
1132  * number is not sufficient for unique identification of an inode.
1133  *
1134  * If the inode is not in cache, allocate a new inode and return it locked,
1135  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1136  * before unlocking it via unlock_new_inode().
1137  *
1138  * Note both @test and @set are called with the inode_hash_lock held, so can't
1139  * sleep.
1140  */
1141 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1142 		int (*test)(struct inode *, void *),
1143 		int (*set)(struct inode *, void *), void *data)
1144 {
1145 	struct inode *inode = ilookup5(sb, hashval, test, data);
1146 
1147 	if (!inode) {
1148 		struct inode *new = alloc_inode(sb);
1149 
1150 		if (new) {
1151 			new->i_state = 0;
1152 			inode = inode_insert5(new, hashval, test, set, data);
1153 			if (unlikely(inode != new))
1154 				destroy_inode(new);
1155 		}
1156 	}
1157 	return inode;
1158 }
1159 EXPORT_SYMBOL(iget5_locked);
1160 
1161 /**
1162  * iget_locked - obtain an inode from a mounted file system
1163  * @sb:		super block of file system
1164  * @ino:	inode number to get
1165  *
1166  * Search for the inode specified by @ino in the inode cache and if present
1167  * return it with an increased reference count. This is for file systems
1168  * where the inode number is sufficient for unique identification of an inode.
1169  *
1170  * If the inode is not in cache, allocate a new inode and return it locked,
1171  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1172  * before unlocking it via unlock_new_inode().
1173  */
1174 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1175 {
1176 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1177 	struct inode *inode;
1178 again:
1179 	spin_lock(&inode_hash_lock);
1180 	inode = find_inode_fast(sb, head, ino);
1181 	spin_unlock(&inode_hash_lock);
1182 	if (inode) {
1183 		if (IS_ERR(inode))
1184 			return NULL;
1185 		wait_on_inode(inode);
1186 		if (unlikely(inode_unhashed(inode))) {
1187 			iput(inode);
1188 			goto again;
1189 		}
1190 		return inode;
1191 	}
1192 
1193 	inode = alloc_inode(sb);
1194 	if (inode) {
1195 		struct inode *old;
1196 
1197 		spin_lock(&inode_hash_lock);
1198 		/* We released the lock, so.. */
1199 		old = find_inode_fast(sb, head, ino);
1200 		if (!old) {
1201 			inode->i_ino = ino;
1202 			spin_lock(&inode->i_lock);
1203 			inode->i_state = I_NEW;
1204 			hlist_add_head_rcu(&inode->i_hash, head);
1205 			spin_unlock(&inode->i_lock);
1206 			inode_sb_list_add(inode);
1207 			spin_unlock(&inode_hash_lock);
1208 
1209 			/* Return the locked inode with I_NEW set, the
1210 			 * caller is responsible for filling in the contents
1211 			 */
1212 			return inode;
1213 		}
1214 
1215 		/*
1216 		 * Uhhuh, somebody else created the same inode under
1217 		 * us. Use the old inode instead of the one we just
1218 		 * allocated.
1219 		 */
1220 		spin_unlock(&inode_hash_lock);
1221 		destroy_inode(inode);
1222 		if (IS_ERR(old))
1223 			return NULL;
1224 		inode = old;
1225 		wait_on_inode(inode);
1226 		if (unlikely(inode_unhashed(inode))) {
1227 			iput(inode);
1228 			goto again;
1229 		}
1230 	}
1231 	return inode;
1232 }
1233 EXPORT_SYMBOL(iget_locked);
1234 
1235 /*
1236  * search the inode cache for a matching inode number.
1237  * If we find one, then the inode number we are trying to
1238  * allocate is not unique and so we should not use it.
1239  *
1240  * Returns 1 if the inode number is unique, 0 if it is not.
1241  */
1242 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1243 {
1244 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1245 	struct inode *inode;
1246 
1247 	hlist_for_each_entry_rcu(inode, b, i_hash) {
1248 		if (inode->i_ino == ino && inode->i_sb == sb)
1249 			return 0;
1250 	}
1251 	return 1;
1252 }
1253 
1254 /**
1255  *	iunique - get a unique inode number
1256  *	@sb: superblock
1257  *	@max_reserved: highest reserved inode number
1258  *
1259  *	Obtain an inode number that is unique on the system for a given
1260  *	superblock. This is used by file systems that have no natural
1261  *	permanent inode numbering system. An inode number is returned that
1262  *	is higher than the reserved limit but unique.
1263  *
1264  *	BUGS:
1265  *	With a large number of inodes live on the file system this function
1266  *	currently becomes quite slow.
1267  */
1268 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1269 {
1270 	/*
1271 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1272 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1273 	 * here to attempt to avoid that.
1274 	 */
1275 	static DEFINE_SPINLOCK(iunique_lock);
1276 	static unsigned int counter;
1277 	ino_t res;
1278 
1279 	rcu_read_lock();
1280 	spin_lock(&iunique_lock);
1281 	do {
1282 		if (counter <= max_reserved)
1283 			counter = max_reserved + 1;
1284 		res = counter++;
1285 	} while (!test_inode_iunique(sb, res));
1286 	spin_unlock(&iunique_lock);
1287 	rcu_read_unlock();
1288 
1289 	return res;
1290 }
1291 EXPORT_SYMBOL(iunique);
1292 
1293 struct inode *igrab(struct inode *inode)
1294 {
1295 	spin_lock(&inode->i_lock);
1296 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1297 		__iget(inode);
1298 		spin_unlock(&inode->i_lock);
1299 	} else {
1300 		spin_unlock(&inode->i_lock);
1301 		/*
1302 		 * Handle the case where s_op->clear_inode is not been
1303 		 * called yet, and somebody is calling igrab
1304 		 * while the inode is getting freed.
1305 		 */
1306 		inode = NULL;
1307 	}
1308 	return inode;
1309 }
1310 EXPORT_SYMBOL(igrab);
1311 
1312 /**
1313  * ilookup5_nowait - search for an inode in the inode cache
1314  * @sb:		super block of file system to search
1315  * @hashval:	hash value (usually inode number) to search for
1316  * @test:	callback used for comparisons between inodes
1317  * @data:	opaque data pointer to pass to @test
1318  *
1319  * Search for the inode specified by @hashval and @data in the inode cache.
1320  * If the inode is in the cache, the inode is returned with an incremented
1321  * reference count.
1322  *
1323  * Note: I_NEW is not waited upon so you have to be very careful what you do
1324  * with the returned inode.  You probably should be using ilookup5() instead.
1325  *
1326  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1327  */
1328 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1329 		int (*test)(struct inode *, void *), void *data)
1330 {
1331 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1332 	struct inode *inode;
1333 
1334 	spin_lock(&inode_hash_lock);
1335 	inode = find_inode(sb, head, test, data);
1336 	spin_unlock(&inode_hash_lock);
1337 
1338 	return IS_ERR(inode) ? NULL : inode;
1339 }
1340 EXPORT_SYMBOL(ilookup5_nowait);
1341 
1342 /**
1343  * ilookup5 - search for an inode in the inode cache
1344  * @sb:		super block of file system to search
1345  * @hashval:	hash value (usually inode number) to search for
1346  * @test:	callback used for comparisons between inodes
1347  * @data:	opaque data pointer to pass to @test
1348  *
1349  * Search for the inode specified by @hashval and @data in the inode cache,
1350  * and if the inode is in the cache, return the inode with an incremented
1351  * reference count.  Waits on I_NEW before returning the inode.
1352  * returned with an incremented reference count.
1353  *
1354  * This is a generalized version of ilookup() for file systems where the
1355  * inode number is not sufficient for unique identification of an inode.
1356  *
1357  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1358  */
1359 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1360 		int (*test)(struct inode *, void *), void *data)
1361 {
1362 	struct inode *inode;
1363 again:
1364 	inode = ilookup5_nowait(sb, hashval, test, data);
1365 	if (inode) {
1366 		wait_on_inode(inode);
1367 		if (unlikely(inode_unhashed(inode))) {
1368 			iput(inode);
1369 			goto again;
1370 		}
1371 	}
1372 	return inode;
1373 }
1374 EXPORT_SYMBOL(ilookup5);
1375 
1376 /**
1377  * ilookup - search for an inode in the inode cache
1378  * @sb:		super block of file system to search
1379  * @ino:	inode number to search for
1380  *
1381  * Search for the inode @ino in the inode cache, and if the inode is in the
1382  * cache, the inode is returned with an incremented reference count.
1383  */
1384 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1385 {
1386 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1387 	struct inode *inode;
1388 again:
1389 	spin_lock(&inode_hash_lock);
1390 	inode = find_inode_fast(sb, head, ino);
1391 	spin_unlock(&inode_hash_lock);
1392 
1393 	if (inode) {
1394 		if (IS_ERR(inode))
1395 			return NULL;
1396 		wait_on_inode(inode);
1397 		if (unlikely(inode_unhashed(inode))) {
1398 			iput(inode);
1399 			goto again;
1400 		}
1401 	}
1402 	return inode;
1403 }
1404 EXPORT_SYMBOL(ilookup);
1405 
1406 /**
1407  * find_inode_nowait - find an inode in the inode cache
1408  * @sb:		super block of file system to search
1409  * @hashval:	hash value (usually inode number) to search for
1410  * @match:	callback used for comparisons between inodes
1411  * @data:	opaque data pointer to pass to @match
1412  *
1413  * Search for the inode specified by @hashval and @data in the inode
1414  * cache, where the helper function @match will return 0 if the inode
1415  * does not match, 1 if the inode does match, and -1 if the search
1416  * should be stopped.  The @match function must be responsible for
1417  * taking the i_lock spin_lock and checking i_state for an inode being
1418  * freed or being initialized, and incrementing the reference count
1419  * before returning 1.  It also must not sleep, since it is called with
1420  * the inode_hash_lock spinlock held.
1421  *
1422  * This is a even more generalized version of ilookup5() when the
1423  * function must never block --- find_inode() can block in
1424  * __wait_on_freeing_inode() --- or when the caller can not increment
1425  * the reference count because the resulting iput() might cause an
1426  * inode eviction.  The tradeoff is that the @match funtion must be
1427  * very carefully implemented.
1428  */
1429 struct inode *find_inode_nowait(struct super_block *sb,
1430 				unsigned long hashval,
1431 				int (*match)(struct inode *, unsigned long,
1432 					     void *),
1433 				void *data)
1434 {
1435 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1436 	struct inode *inode, *ret_inode = NULL;
1437 	int mval;
1438 
1439 	spin_lock(&inode_hash_lock);
1440 	hlist_for_each_entry(inode, head, i_hash) {
1441 		if (inode->i_sb != sb)
1442 			continue;
1443 		mval = match(inode, hashval, data);
1444 		if (mval == 0)
1445 			continue;
1446 		if (mval == 1)
1447 			ret_inode = inode;
1448 		goto out;
1449 	}
1450 out:
1451 	spin_unlock(&inode_hash_lock);
1452 	return ret_inode;
1453 }
1454 EXPORT_SYMBOL(find_inode_nowait);
1455 
1456 /**
1457  * find_inode_rcu - find an inode in the inode cache
1458  * @sb:		Super block of file system to search
1459  * @hashval:	Key to hash
1460  * @test:	Function to test match on an inode
1461  * @data:	Data for test function
1462  *
1463  * Search for the inode specified by @hashval and @data in the inode cache,
1464  * where the helper function @test will return 0 if the inode does not match
1465  * and 1 if it does.  The @test function must be responsible for taking the
1466  * i_lock spin_lock and checking i_state for an inode being freed or being
1467  * initialized.
1468  *
1469  * If successful, this will return the inode for which the @test function
1470  * returned 1 and NULL otherwise.
1471  *
1472  * The @test function is not permitted to take a ref on any inode presented.
1473  * It is also not permitted to sleep.
1474  *
1475  * The caller must hold the RCU read lock.
1476  */
1477 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1478 			     int (*test)(struct inode *, void *), void *data)
1479 {
1480 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1481 	struct inode *inode;
1482 
1483 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1484 			 "suspicious find_inode_rcu() usage");
1485 
1486 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1487 		if (inode->i_sb == sb &&
1488 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1489 		    test(inode, data))
1490 			return inode;
1491 	}
1492 	return NULL;
1493 }
1494 EXPORT_SYMBOL(find_inode_rcu);
1495 
1496 /**
1497  * find_inode_by_rcu - Find an inode in the inode cache
1498  * @sb:		Super block of file system to search
1499  * @ino:	The inode number to match
1500  *
1501  * Search for the inode specified by @hashval and @data in the inode cache,
1502  * where the helper function @test will return 0 if the inode does not match
1503  * and 1 if it does.  The @test function must be responsible for taking the
1504  * i_lock spin_lock and checking i_state for an inode being freed or being
1505  * initialized.
1506  *
1507  * If successful, this will return the inode for which the @test function
1508  * returned 1 and NULL otherwise.
1509  *
1510  * The @test function is not permitted to take a ref on any inode presented.
1511  * It is also not permitted to sleep.
1512  *
1513  * The caller must hold the RCU read lock.
1514  */
1515 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1516 				    unsigned long ino)
1517 {
1518 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1519 	struct inode *inode;
1520 
1521 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1522 			 "suspicious find_inode_by_ino_rcu() usage");
1523 
1524 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1525 		if (inode->i_ino == ino &&
1526 		    inode->i_sb == sb &&
1527 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1528 		    return inode;
1529 	}
1530 	return NULL;
1531 }
1532 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1533 
1534 int insert_inode_locked(struct inode *inode)
1535 {
1536 	struct super_block *sb = inode->i_sb;
1537 	ino_t ino = inode->i_ino;
1538 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1539 
1540 	while (1) {
1541 		struct inode *old = NULL;
1542 		spin_lock(&inode_hash_lock);
1543 		hlist_for_each_entry(old, head, i_hash) {
1544 			if (old->i_ino != ino)
1545 				continue;
1546 			if (old->i_sb != sb)
1547 				continue;
1548 			spin_lock(&old->i_lock);
1549 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1550 				spin_unlock(&old->i_lock);
1551 				continue;
1552 			}
1553 			break;
1554 		}
1555 		if (likely(!old)) {
1556 			spin_lock(&inode->i_lock);
1557 			inode->i_state |= I_NEW | I_CREATING;
1558 			hlist_add_head_rcu(&inode->i_hash, head);
1559 			spin_unlock(&inode->i_lock);
1560 			spin_unlock(&inode_hash_lock);
1561 			return 0;
1562 		}
1563 		if (unlikely(old->i_state & I_CREATING)) {
1564 			spin_unlock(&old->i_lock);
1565 			spin_unlock(&inode_hash_lock);
1566 			return -EBUSY;
1567 		}
1568 		__iget(old);
1569 		spin_unlock(&old->i_lock);
1570 		spin_unlock(&inode_hash_lock);
1571 		wait_on_inode(old);
1572 		if (unlikely(!inode_unhashed(old))) {
1573 			iput(old);
1574 			return -EBUSY;
1575 		}
1576 		iput(old);
1577 	}
1578 }
1579 EXPORT_SYMBOL(insert_inode_locked);
1580 
1581 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1582 		int (*test)(struct inode *, void *), void *data)
1583 {
1584 	struct inode *old;
1585 
1586 	inode->i_state |= I_CREATING;
1587 	old = inode_insert5(inode, hashval, test, NULL, data);
1588 
1589 	if (old != inode) {
1590 		iput(old);
1591 		return -EBUSY;
1592 	}
1593 	return 0;
1594 }
1595 EXPORT_SYMBOL(insert_inode_locked4);
1596 
1597 
1598 int generic_delete_inode(struct inode *inode)
1599 {
1600 	return 1;
1601 }
1602 EXPORT_SYMBOL(generic_delete_inode);
1603 
1604 /*
1605  * Called when we're dropping the last reference
1606  * to an inode.
1607  *
1608  * Call the FS "drop_inode()" function, defaulting to
1609  * the legacy UNIX filesystem behaviour.  If it tells
1610  * us to evict inode, do so.  Otherwise, retain inode
1611  * in cache if fs is alive, sync and evict if fs is
1612  * shutting down.
1613  */
1614 static void iput_final(struct inode *inode)
1615 {
1616 	struct super_block *sb = inode->i_sb;
1617 	const struct super_operations *op = inode->i_sb->s_op;
1618 	unsigned long state;
1619 	int drop;
1620 
1621 	WARN_ON(inode->i_state & I_NEW);
1622 
1623 	if (op->drop_inode)
1624 		drop = op->drop_inode(inode);
1625 	else
1626 		drop = generic_drop_inode(inode);
1627 
1628 	if (!drop && (sb->s_flags & SB_ACTIVE)) {
1629 		inode_add_lru(inode);
1630 		spin_unlock(&inode->i_lock);
1631 		return;
1632 	}
1633 
1634 	state = inode->i_state;
1635 	if (!drop) {
1636 		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1637 		spin_unlock(&inode->i_lock);
1638 
1639 		write_inode_now(inode, 1);
1640 
1641 		spin_lock(&inode->i_lock);
1642 		state = inode->i_state;
1643 		WARN_ON(state & I_NEW);
1644 		state &= ~I_WILL_FREE;
1645 	}
1646 
1647 	WRITE_ONCE(inode->i_state, state | I_FREEING);
1648 	if (!list_empty(&inode->i_lru))
1649 		inode_lru_list_del(inode);
1650 	spin_unlock(&inode->i_lock);
1651 
1652 	evict(inode);
1653 }
1654 
1655 /**
1656  *	iput	- put an inode
1657  *	@inode: inode to put
1658  *
1659  *	Puts an inode, dropping its usage count. If the inode use count hits
1660  *	zero, the inode is then freed and may also be destroyed.
1661  *
1662  *	Consequently, iput() can sleep.
1663  */
1664 void iput(struct inode *inode)
1665 {
1666 	if (!inode)
1667 		return;
1668 	BUG_ON(inode->i_state & I_CLEAR);
1669 retry:
1670 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1671 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1672 			atomic_inc(&inode->i_count);
1673 			spin_unlock(&inode->i_lock);
1674 			trace_writeback_lazytime_iput(inode);
1675 			mark_inode_dirty_sync(inode);
1676 			goto retry;
1677 		}
1678 		iput_final(inode);
1679 	}
1680 }
1681 EXPORT_SYMBOL(iput);
1682 
1683 #ifdef CONFIG_BLOCK
1684 /**
1685  *	bmap	- find a block number in a file
1686  *	@inode:  inode owning the block number being requested
1687  *	@block: pointer containing the block to find
1688  *
1689  *	Replaces the value in ``*block`` with the block number on the device holding
1690  *	corresponding to the requested block number in the file.
1691  *	That is, asked for block 4 of inode 1 the function will replace the
1692  *	4 in ``*block``, with disk block relative to the disk start that holds that
1693  *	block of the file.
1694  *
1695  *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1696  *	hole, returns 0 and ``*block`` is also set to 0.
1697  */
1698 int bmap(struct inode *inode, sector_t *block)
1699 {
1700 	if (!inode->i_mapping->a_ops->bmap)
1701 		return -EINVAL;
1702 
1703 	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1704 	return 0;
1705 }
1706 EXPORT_SYMBOL(bmap);
1707 #endif
1708 
1709 /*
1710  * With relative atime, only update atime if the previous atime is
1711  * earlier than either the ctime or mtime or if at least a day has
1712  * passed since the last atime update.
1713  */
1714 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1715 			     struct timespec64 now)
1716 {
1717 
1718 	if (!(mnt->mnt_flags & MNT_RELATIME))
1719 		return 1;
1720 	/*
1721 	 * Is mtime younger than atime? If yes, update atime:
1722 	 */
1723 	if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1724 		return 1;
1725 	/*
1726 	 * Is ctime younger than atime? If yes, update atime:
1727 	 */
1728 	if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1729 		return 1;
1730 
1731 	/*
1732 	 * Is the previous atime value older than a day? If yes,
1733 	 * update atime:
1734 	 */
1735 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1736 		return 1;
1737 	/*
1738 	 * Good, we can skip the atime update:
1739 	 */
1740 	return 0;
1741 }
1742 
1743 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1744 {
1745 	int iflags = I_DIRTY_TIME;
1746 	bool dirty = false;
1747 
1748 	if (flags & S_ATIME)
1749 		inode->i_atime = *time;
1750 	if (flags & S_VERSION)
1751 		dirty = inode_maybe_inc_iversion(inode, false);
1752 	if (flags & S_CTIME)
1753 		inode->i_ctime = *time;
1754 	if (flags & S_MTIME)
1755 		inode->i_mtime = *time;
1756 	if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1757 	    !(inode->i_sb->s_flags & SB_LAZYTIME))
1758 		dirty = true;
1759 
1760 	if (dirty)
1761 		iflags |= I_DIRTY_SYNC;
1762 	__mark_inode_dirty(inode, iflags);
1763 	return 0;
1764 }
1765 EXPORT_SYMBOL(generic_update_time);
1766 
1767 /*
1768  * This does the actual work of updating an inodes time or version.  Must have
1769  * had called mnt_want_write() before calling this.
1770  */
1771 static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1772 {
1773 	if (inode->i_op->update_time)
1774 		return inode->i_op->update_time(inode, time, flags);
1775 	return generic_update_time(inode, time, flags);
1776 }
1777 
1778 /**
1779  *	touch_atime	-	update the access time
1780  *	@path: the &struct path to update
1781  *	@inode: inode to update
1782  *
1783  *	Update the accessed time on an inode and mark it for writeback.
1784  *	This function automatically handles read only file systems and media,
1785  *	as well as the "noatime" flag and inode specific "noatime" markers.
1786  */
1787 bool atime_needs_update(const struct path *path, struct inode *inode)
1788 {
1789 	struct vfsmount *mnt = path->mnt;
1790 	struct timespec64 now;
1791 
1792 	if (inode->i_flags & S_NOATIME)
1793 		return false;
1794 
1795 	/* Atime updates will likely cause i_uid and i_gid to be written
1796 	 * back improprely if their true value is unknown to the vfs.
1797 	 */
1798 	if (HAS_UNMAPPED_ID(inode))
1799 		return false;
1800 
1801 	if (IS_NOATIME(inode))
1802 		return false;
1803 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1804 		return false;
1805 
1806 	if (mnt->mnt_flags & MNT_NOATIME)
1807 		return false;
1808 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1809 		return false;
1810 
1811 	now = current_time(inode);
1812 
1813 	if (!relatime_need_update(mnt, inode, now))
1814 		return false;
1815 
1816 	if (timespec64_equal(&inode->i_atime, &now))
1817 		return false;
1818 
1819 	return true;
1820 }
1821 
1822 void touch_atime(const struct path *path)
1823 {
1824 	struct vfsmount *mnt = path->mnt;
1825 	struct inode *inode = d_inode(path->dentry);
1826 	struct timespec64 now;
1827 
1828 	if (!atime_needs_update(path, inode))
1829 		return;
1830 
1831 	if (!sb_start_write_trylock(inode->i_sb))
1832 		return;
1833 
1834 	if (__mnt_want_write(mnt) != 0)
1835 		goto skip_update;
1836 	/*
1837 	 * File systems can error out when updating inodes if they need to
1838 	 * allocate new space to modify an inode (such is the case for
1839 	 * Btrfs), but since we touch atime while walking down the path we
1840 	 * really don't care if we failed to update the atime of the file,
1841 	 * so just ignore the return value.
1842 	 * We may also fail on filesystems that have the ability to make parts
1843 	 * of the fs read only, e.g. subvolumes in Btrfs.
1844 	 */
1845 	now = current_time(inode);
1846 	update_time(inode, &now, S_ATIME);
1847 	__mnt_drop_write(mnt);
1848 skip_update:
1849 	sb_end_write(inode->i_sb);
1850 }
1851 EXPORT_SYMBOL(touch_atime);
1852 
1853 /*
1854  * The logic we want is
1855  *
1856  *	if suid or (sgid and xgrp)
1857  *		remove privs
1858  */
1859 int should_remove_suid(struct dentry *dentry)
1860 {
1861 	umode_t mode = d_inode(dentry)->i_mode;
1862 	int kill = 0;
1863 
1864 	/* suid always must be killed */
1865 	if (unlikely(mode & S_ISUID))
1866 		kill = ATTR_KILL_SUID;
1867 
1868 	/*
1869 	 * sgid without any exec bits is just a mandatory locking mark; leave
1870 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1871 	 */
1872 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1873 		kill |= ATTR_KILL_SGID;
1874 
1875 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1876 		return kill;
1877 
1878 	return 0;
1879 }
1880 EXPORT_SYMBOL(should_remove_suid);
1881 
1882 /*
1883  * Return mask of changes for notify_change() that need to be done as a
1884  * response to write or truncate. Return 0 if nothing has to be changed.
1885  * Negative value on error (change should be denied).
1886  */
1887 int dentry_needs_remove_privs(struct dentry *dentry)
1888 {
1889 	struct inode *inode = d_inode(dentry);
1890 	int mask = 0;
1891 	int ret;
1892 
1893 	if (IS_NOSEC(inode))
1894 		return 0;
1895 
1896 	mask = should_remove_suid(dentry);
1897 	ret = security_inode_need_killpriv(dentry);
1898 	if (ret < 0)
1899 		return ret;
1900 	if (ret)
1901 		mask |= ATTR_KILL_PRIV;
1902 	return mask;
1903 }
1904 
1905 static int __remove_privs(struct dentry *dentry, int kill)
1906 {
1907 	struct iattr newattrs;
1908 
1909 	newattrs.ia_valid = ATTR_FORCE | kill;
1910 	/*
1911 	 * Note we call this on write, so notify_change will not
1912 	 * encounter any conflicting delegations:
1913 	 */
1914 	return notify_change(dentry, &newattrs, NULL);
1915 }
1916 
1917 /*
1918  * Remove special file priviledges (suid, capabilities) when file is written
1919  * to or truncated.
1920  */
1921 int file_remove_privs(struct file *file)
1922 {
1923 	struct dentry *dentry = file_dentry(file);
1924 	struct inode *inode = file_inode(file);
1925 	int kill;
1926 	int error = 0;
1927 
1928 	/*
1929 	 * Fast path for nothing security related.
1930 	 * As well for non-regular files, e.g. blkdev inodes.
1931 	 * For example, blkdev_write_iter() might get here
1932 	 * trying to remove privs which it is not allowed to.
1933 	 */
1934 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1935 		return 0;
1936 
1937 	kill = dentry_needs_remove_privs(dentry);
1938 	if (kill < 0)
1939 		return kill;
1940 	if (kill)
1941 		error = __remove_privs(dentry, kill);
1942 	if (!error)
1943 		inode_has_no_xattr(inode);
1944 
1945 	return error;
1946 }
1947 EXPORT_SYMBOL(file_remove_privs);
1948 
1949 /**
1950  *	file_update_time	-	update mtime and ctime time
1951  *	@file: file accessed
1952  *
1953  *	Update the mtime and ctime members of an inode and mark the inode
1954  *	for writeback.  Note that this function is meant exclusively for
1955  *	usage in the file write path of filesystems, and filesystems may
1956  *	choose to explicitly ignore update via this function with the
1957  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1958  *	timestamps are handled by the server.  This can return an error for
1959  *	file systems who need to allocate space in order to update an inode.
1960  */
1961 
1962 int file_update_time(struct file *file)
1963 {
1964 	struct inode *inode = file_inode(file);
1965 	struct timespec64 now;
1966 	int sync_it = 0;
1967 	int ret;
1968 
1969 	/* First try to exhaust all avenues to not sync */
1970 	if (IS_NOCMTIME(inode))
1971 		return 0;
1972 
1973 	now = current_time(inode);
1974 	if (!timespec64_equal(&inode->i_mtime, &now))
1975 		sync_it = S_MTIME;
1976 
1977 	if (!timespec64_equal(&inode->i_ctime, &now))
1978 		sync_it |= S_CTIME;
1979 
1980 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1981 		sync_it |= S_VERSION;
1982 
1983 	if (!sync_it)
1984 		return 0;
1985 
1986 	/* Finally allowed to write? Takes lock. */
1987 	if (__mnt_want_write_file(file))
1988 		return 0;
1989 
1990 	ret = update_time(inode, &now, sync_it);
1991 	__mnt_drop_write_file(file);
1992 
1993 	return ret;
1994 }
1995 EXPORT_SYMBOL(file_update_time);
1996 
1997 /* Caller must hold the file's inode lock */
1998 int file_modified(struct file *file)
1999 {
2000 	int err;
2001 
2002 	/*
2003 	 * Clear the security bits if the process is not being run by root.
2004 	 * This keeps people from modifying setuid and setgid binaries.
2005 	 */
2006 	err = file_remove_privs(file);
2007 	if (err)
2008 		return err;
2009 
2010 	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2011 		return 0;
2012 
2013 	return file_update_time(file);
2014 }
2015 EXPORT_SYMBOL(file_modified);
2016 
2017 int inode_needs_sync(struct inode *inode)
2018 {
2019 	if (IS_SYNC(inode))
2020 		return 1;
2021 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2022 		return 1;
2023 	return 0;
2024 }
2025 EXPORT_SYMBOL(inode_needs_sync);
2026 
2027 /*
2028  * If we try to find an inode in the inode hash while it is being
2029  * deleted, we have to wait until the filesystem completes its
2030  * deletion before reporting that it isn't found.  This function waits
2031  * until the deletion _might_ have completed.  Callers are responsible
2032  * to recheck inode state.
2033  *
2034  * It doesn't matter if I_NEW is not set initially, a call to
2035  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2036  * will DTRT.
2037  */
2038 static void __wait_on_freeing_inode(struct inode *inode)
2039 {
2040 	wait_queue_head_t *wq;
2041 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2042 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
2043 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2044 	spin_unlock(&inode->i_lock);
2045 	spin_unlock(&inode_hash_lock);
2046 	schedule();
2047 	finish_wait(wq, &wait.wq_entry);
2048 	spin_lock(&inode_hash_lock);
2049 }
2050 
2051 static __initdata unsigned long ihash_entries;
2052 static int __init set_ihash_entries(char *str)
2053 {
2054 	if (!str)
2055 		return 0;
2056 	ihash_entries = simple_strtoul(str, &str, 0);
2057 	return 1;
2058 }
2059 __setup("ihash_entries=", set_ihash_entries);
2060 
2061 /*
2062  * Initialize the waitqueues and inode hash table.
2063  */
2064 void __init inode_init_early(void)
2065 {
2066 	/* If hashes are distributed across NUMA nodes, defer
2067 	 * hash allocation until vmalloc space is available.
2068 	 */
2069 	if (hashdist)
2070 		return;
2071 
2072 	inode_hashtable =
2073 		alloc_large_system_hash("Inode-cache",
2074 					sizeof(struct hlist_head),
2075 					ihash_entries,
2076 					14,
2077 					HASH_EARLY | HASH_ZERO,
2078 					&i_hash_shift,
2079 					&i_hash_mask,
2080 					0,
2081 					0);
2082 }
2083 
2084 void __init inode_init(void)
2085 {
2086 	/* inode slab cache */
2087 	inode_cachep = kmem_cache_create("inode_cache",
2088 					 sizeof(struct inode),
2089 					 0,
2090 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2091 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2092 					 init_once);
2093 
2094 	/* Hash may have been set up in inode_init_early */
2095 	if (!hashdist)
2096 		return;
2097 
2098 	inode_hashtable =
2099 		alloc_large_system_hash("Inode-cache",
2100 					sizeof(struct hlist_head),
2101 					ihash_entries,
2102 					14,
2103 					HASH_ZERO,
2104 					&i_hash_shift,
2105 					&i_hash_mask,
2106 					0,
2107 					0);
2108 }
2109 
2110 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2111 {
2112 	inode->i_mode = mode;
2113 	if (S_ISCHR(mode)) {
2114 		inode->i_fop = &def_chr_fops;
2115 		inode->i_rdev = rdev;
2116 	} else if (S_ISBLK(mode)) {
2117 		inode->i_fop = &def_blk_fops;
2118 		inode->i_rdev = rdev;
2119 	} else if (S_ISFIFO(mode))
2120 		inode->i_fop = &pipefifo_fops;
2121 	else if (S_ISSOCK(mode))
2122 		;	/* leave it no_open_fops */
2123 	else
2124 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2125 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2126 				  inode->i_ino);
2127 }
2128 EXPORT_SYMBOL(init_special_inode);
2129 
2130 /**
2131  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2132  * @inode: New inode
2133  * @dir: Directory inode
2134  * @mode: mode of the new inode
2135  */
2136 void inode_init_owner(struct inode *inode, const struct inode *dir,
2137 			umode_t mode)
2138 {
2139 	inode->i_uid = current_fsuid();
2140 	if (dir && dir->i_mode & S_ISGID) {
2141 		inode->i_gid = dir->i_gid;
2142 
2143 		/* Directories are special, and always inherit S_ISGID */
2144 		if (S_ISDIR(mode))
2145 			mode |= S_ISGID;
2146 		else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2147 			 !in_group_p(inode->i_gid) &&
2148 			 !capable_wrt_inode_uidgid(dir, CAP_FSETID))
2149 			mode &= ~S_ISGID;
2150 	} else
2151 		inode->i_gid = current_fsgid();
2152 	inode->i_mode = mode;
2153 }
2154 EXPORT_SYMBOL(inode_init_owner);
2155 
2156 /**
2157  * inode_owner_or_capable - check current task permissions to inode
2158  * @inode: inode being checked
2159  *
2160  * Return true if current either has CAP_FOWNER in a namespace with the
2161  * inode owner uid mapped, or owns the file.
2162  */
2163 bool inode_owner_or_capable(const struct inode *inode)
2164 {
2165 	struct user_namespace *ns;
2166 
2167 	if (uid_eq(current_fsuid(), inode->i_uid))
2168 		return true;
2169 
2170 	ns = current_user_ns();
2171 	if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2172 		return true;
2173 	return false;
2174 }
2175 EXPORT_SYMBOL(inode_owner_or_capable);
2176 
2177 /*
2178  * Direct i/o helper functions
2179  */
2180 static void __inode_dio_wait(struct inode *inode)
2181 {
2182 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2183 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2184 
2185 	do {
2186 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2187 		if (atomic_read(&inode->i_dio_count))
2188 			schedule();
2189 	} while (atomic_read(&inode->i_dio_count));
2190 	finish_wait(wq, &q.wq_entry);
2191 }
2192 
2193 /**
2194  * inode_dio_wait - wait for outstanding DIO requests to finish
2195  * @inode: inode to wait for
2196  *
2197  * Waits for all pending direct I/O requests to finish so that we can
2198  * proceed with a truncate or equivalent operation.
2199  *
2200  * Must be called under a lock that serializes taking new references
2201  * to i_dio_count, usually by inode->i_mutex.
2202  */
2203 void inode_dio_wait(struct inode *inode)
2204 {
2205 	if (atomic_read(&inode->i_dio_count))
2206 		__inode_dio_wait(inode);
2207 }
2208 EXPORT_SYMBOL(inode_dio_wait);
2209 
2210 /*
2211  * inode_set_flags - atomically set some inode flags
2212  *
2213  * Note: the caller should be holding i_mutex, or else be sure that
2214  * they have exclusive access to the inode structure (i.e., while the
2215  * inode is being instantiated).  The reason for the cmpxchg() loop
2216  * --- which wouldn't be necessary if all code paths which modify
2217  * i_flags actually followed this rule, is that there is at least one
2218  * code path which doesn't today so we use cmpxchg() out of an abundance
2219  * of caution.
2220  *
2221  * In the long run, i_mutex is overkill, and we should probably look
2222  * at using the i_lock spinlock to protect i_flags, and then make sure
2223  * it is so documented in include/linux/fs.h and that all code follows
2224  * the locking convention!!
2225  */
2226 void inode_set_flags(struct inode *inode, unsigned int flags,
2227 		     unsigned int mask)
2228 {
2229 	WARN_ON_ONCE(flags & ~mask);
2230 	set_mask_bits(&inode->i_flags, mask, flags);
2231 }
2232 EXPORT_SYMBOL(inode_set_flags);
2233 
2234 void inode_nohighmem(struct inode *inode)
2235 {
2236 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2237 }
2238 EXPORT_SYMBOL(inode_nohighmem);
2239 
2240 /**
2241  * timestamp_truncate - Truncate timespec to a granularity
2242  * @t: Timespec
2243  * @inode: inode being updated
2244  *
2245  * Truncate a timespec to the granularity supported by the fs
2246  * containing the inode. Always rounds down. gran must
2247  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2248  */
2249 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2250 {
2251 	struct super_block *sb = inode->i_sb;
2252 	unsigned int gran = sb->s_time_gran;
2253 
2254 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2255 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2256 		t.tv_nsec = 0;
2257 
2258 	/* Avoid division in the common cases 1 ns and 1 s. */
2259 	if (gran == 1)
2260 		; /* nothing */
2261 	else if (gran == NSEC_PER_SEC)
2262 		t.tv_nsec = 0;
2263 	else if (gran > 1 && gran < NSEC_PER_SEC)
2264 		t.tv_nsec -= t.tv_nsec % gran;
2265 	else
2266 		WARN(1, "invalid file time granularity: %u", gran);
2267 	return t;
2268 }
2269 EXPORT_SYMBOL(timestamp_truncate);
2270 
2271 /**
2272  * current_time - Return FS time
2273  * @inode: inode.
2274  *
2275  * Return the current time truncated to the time granularity supported by
2276  * the fs.
2277  *
2278  * Note that inode and inode->sb cannot be NULL.
2279  * Otherwise, the function warns and returns time without truncation.
2280  */
2281 struct timespec64 current_time(struct inode *inode)
2282 {
2283 	struct timespec64 now;
2284 
2285 	ktime_get_coarse_real_ts64(&now);
2286 
2287 	if (unlikely(!inode->i_sb)) {
2288 		WARN(1, "current_time() called with uninitialized super_block in the inode");
2289 		return now;
2290 	}
2291 
2292 	return timestamp_truncate(now, inode);
2293 }
2294 EXPORT_SYMBOL(current_time);
2295 
2296 /*
2297  * Generic function to check FS_IOC_SETFLAGS values and reject any invalid
2298  * configurations.
2299  *
2300  * Note: the caller should be holding i_mutex, or else be sure that they have
2301  * exclusive access to the inode structure.
2302  */
2303 int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags,
2304 			     unsigned int flags)
2305 {
2306 	/*
2307 	 * The IMMUTABLE and APPEND_ONLY flags can only be changed by
2308 	 * the relevant capability.
2309 	 *
2310 	 * This test looks nicer. Thanks to Pauline Middelink
2311 	 */
2312 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) &&
2313 	    !capable(CAP_LINUX_IMMUTABLE))
2314 		return -EPERM;
2315 
2316 	return fscrypt_prepare_setflags(inode, oldflags, flags);
2317 }
2318 EXPORT_SYMBOL(vfs_ioc_setflags_prepare);
2319 
2320 /*
2321  * Generic function to check FS_IOC_FSSETXATTR values and reject any invalid
2322  * configurations.
2323  *
2324  * Note: the caller should be holding i_mutex, or else be sure that they have
2325  * exclusive access to the inode structure.
2326  */
2327 int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa,
2328 			     struct fsxattr *fa)
2329 {
2330 	/*
2331 	 * Can't modify an immutable/append-only file unless we have
2332 	 * appropriate permission.
2333 	 */
2334 	if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2335 			(FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND) &&
2336 	    !capable(CAP_LINUX_IMMUTABLE))
2337 		return -EPERM;
2338 
2339 	/*
2340 	 * Project Quota ID state is only allowed to change from within the init
2341 	 * namespace. Enforce that restriction only if we are trying to change
2342 	 * the quota ID state. Everything else is allowed in user namespaces.
2343 	 */
2344 	if (current_user_ns() != &init_user_ns) {
2345 		if (old_fa->fsx_projid != fa->fsx_projid)
2346 			return -EINVAL;
2347 		if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2348 				FS_XFLAG_PROJINHERIT)
2349 			return -EINVAL;
2350 	}
2351 
2352 	/* Check extent size hints. */
2353 	if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode))
2354 		return -EINVAL;
2355 
2356 	if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) &&
2357 			!S_ISDIR(inode->i_mode))
2358 		return -EINVAL;
2359 
2360 	if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) &&
2361 	    !S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
2362 		return -EINVAL;
2363 
2364 	/*
2365 	 * It is only valid to set the DAX flag on regular files and
2366 	 * directories on filesystems.
2367 	 */
2368 	if ((fa->fsx_xflags & FS_XFLAG_DAX) &&
2369 	    !(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
2370 		return -EINVAL;
2371 
2372 	/* Extent size hints of zero turn off the flags. */
2373 	if (fa->fsx_extsize == 0)
2374 		fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT);
2375 	if (fa->fsx_cowextsize == 0)
2376 		fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE;
2377 
2378 	return 0;
2379 }
2380 EXPORT_SYMBOL(vfs_ioc_fssetxattr_check);
2381