1 /* 2 * (C) 1997 Linus Torvalds 3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 4 */ 5 #include <linux/export.h> 6 #include <linux/fs.h> 7 #include <linux/mm.h> 8 #include <linux/backing-dev.h> 9 #include <linux/hash.h> 10 #include <linux/swap.h> 11 #include <linux/security.h> 12 #include <linux/cdev.h> 13 #include <linux/bootmem.h> 14 #include <linux/fsnotify.h> 15 #include <linux/mount.h> 16 #include <linux/posix_acl.h> 17 #include <linux/prefetch.h> 18 #include <linux/buffer_head.h> /* for inode_has_buffers */ 19 #include <linux/ratelimit.h> 20 #include <linux/list_lru.h> 21 #include <linux/iversion.h> 22 #include <trace/events/writeback.h> 23 #include "internal.h" 24 25 /* 26 * Inode locking rules: 27 * 28 * inode->i_lock protects: 29 * inode->i_state, inode->i_hash, __iget() 30 * Inode LRU list locks protect: 31 * inode->i_sb->s_inode_lru, inode->i_lru 32 * inode->i_sb->s_inode_list_lock protects: 33 * inode->i_sb->s_inodes, inode->i_sb_list 34 * bdi->wb.list_lock protects: 35 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 36 * inode_hash_lock protects: 37 * inode_hashtable, inode->i_hash 38 * 39 * Lock ordering: 40 * 41 * inode->i_sb->s_inode_list_lock 42 * inode->i_lock 43 * Inode LRU list locks 44 * 45 * bdi->wb.list_lock 46 * inode->i_lock 47 * 48 * inode_hash_lock 49 * inode->i_sb->s_inode_list_lock 50 * inode->i_lock 51 * 52 * iunique_lock 53 * inode_hash_lock 54 */ 55 56 static unsigned int i_hash_mask __read_mostly; 57 static unsigned int i_hash_shift __read_mostly; 58 static struct hlist_head *inode_hashtable __read_mostly; 59 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 60 61 /* 62 * Empty aops. Can be used for the cases where the user does not 63 * define any of the address_space operations. 64 */ 65 const struct address_space_operations empty_aops = { 66 }; 67 EXPORT_SYMBOL(empty_aops); 68 69 /* 70 * Statistics gathering.. 71 */ 72 struct inodes_stat_t inodes_stat; 73 74 static DEFINE_PER_CPU(unsigned long, nr_inodes); 75 static DEFINE_PER_CPU(unsigned long, nr_unused); 76 77 static struct kmem_cache *inode_cachep __read_mostly; 78 79 static long get_nr_inodes(void) 80 { 81 int i; 82 long sum = 0; 83 for_each_possible_cpu(i) 84 sum += per_cpu(nr_inodes, i); 85 return sum < 0 ? 0 : sum; 86 } 87 88 static inline long get_nr_inodes_unused(void) 89 { 90 int i; 91 long sum = 0; 92 for_each_possible_cpu(i) 93 sum += per_cpu(nr_unused, i); 94 return sum < 0 ? 0 : sum; 95 } 96 97 long get_nr_dirty_inodes(void) 98 { 99 /* not actually dirty inodes, but a wild approximation */ 100 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 101 return nr_dirty > 0 ? nr_dirty : 0; 102 } 103 104 /* 105 * Handle nr_inode sysctl 106 */ 107 #ifdef CONFIG_SYSCTL 108 int proc_nr_inodes(struct ctl_table *table, int write, 109 void __user *buffer, size_t *lenp, loff_t *ppos) 110 { 111 inodes_stat.nr_inodes = get_nr_inodes(); 112 inodes_stat.nr_unused = get_nr_inodes_unused(); 113 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 114 } 115 #endif 116 117 static int no_open(struct inode *inode, struct file *file) 118 { 119 return -ENXIO; 120 } 121 122 /** 123 * inode_init_always - perform inode structure initialisation 124 * @sb: superblock inode belongs to 125 * @inode: inode to initialise 126 * 127 * These are initializations that need to be done on every inode 128 * allocation as the fields are not initialised by slab allocation. 129 */ 130 int inode_init_always(struct super_block *sb, struct inode *inode) 131 { 132 static const struct inode_operations empty_iops; 133 static const struct file_operations no_open_fops = {.open = no_open}; 134 struct address_space *const mapping = &inode->i_data; 135 136 inode->i_sb = sb; 137 inode->i_blkbits = sb->s_blocksize_bits; 138 inode->i_flags = 0; 139 atomic_set(&inode->i_count, 1); 140 inode->i_op = &empty_iops; 141 inode->i_fop = &no_open_fops; 142 inode->__i_nlink = 1; 143 inode->i_opflags = 0; 144 if (sb->s_xattr) 145 inode->i_opflags |= IOP_XATTR; 146 i_uid_write(inode, 0); 147 i_gid_write(inode, 0); 148 atomic_set(&inode->i_writecount, 0); 149 inode->i_size = 0; 150 inode->i_write_hint = WRITE_LIFE_NOT_SET; 151 inode->i_blocks = 0; 152 inode->i_bytes = 0; 153 inode->i_generation = 0; 154 inode->i_pipe = NULL; 155 inode->i_bdev = NULL; 156 inode->i_cdev = NULL; 157 inode->i_link = NULL; 158 inode->i_dir_seq = 0; 159 inode->i_rdev = 0; 160 inode->dirtied_when = 0; 161 162 #ifdef CONFIG_CGROUP_WRITEBACK 163 inode->i_wb_frn_winner = 0; 164 inode->i_wb_frn_avg_time = 0; 165 inode->i_wb_frn_history = 0; 166 #endif 167 168 if (security_inode_alloc(inode)) 169 goto out; 170 spin_lock_init(&inode->i_lock); 171 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 172 173 init_rwsem(&inode->i_rwsem); 174 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 175 176 atomic_set(&inode->i_dio_count, 0); 177 178 mapping->a_ops = &empty_aops; 179 mapping->host = inode; 180 mapping->flags = 0; 181 atomic_set(&mapping->i_mmap_writable, 0); 182 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 183 mapping->private_data = NULL; 184 mapping->writeback_index = 0; 185 inode->i_private = NULL; 186 inode->i_mapping = mapping; 187 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 188 #ifdef CONFIG_FS_POSIX_ACL 189 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 190 #endif 191 192 #ifdef CONFIG_FSNOTIFY 193 inode->i_fsnotify_mask = 0; 194 #endif 195 inode->i_flctx = NULL; 196 this_cpu_inc(nr_inodes); 197 198 return 0; 199 out: 200 return -ENOMEM; 201 } 202 EXPORT_SYMBOL(inode_init_always); 203 204 static struct inode *alloc_inode(struct super_block *sb) 205 { 206 struct inode *inode; 207 208 if (sb->s_op->alloc_inode) 209 inode = sb->s_op->alloc_inode(sb); 210 else 211 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 212 213 if (!inode) 214 return NULL; 215 216 if (unlikely(inode_init_always(sb, inode))) { 217 if (inode->i_sb->s_op->destroy_inode) 218 inode->i_sb->s_op->destroy_inode(inode); 219 else 220 kmem_cache_free(inode_cachep, inode); 221 return NULL; 222 } 223 224 return inode; 225 } 226 227 void free_inode_nonrcu(struct inode *inode) 228 { 229 kmem_cache_free(inode_cachep, inode); 230 } 231 EXPORT_SYMBOL(free_inode_nonrcu); 232 233 void __destroy_inode(struct inode *inode) 234 { 235 BUG_ON(inode_has_buffers(inode)); 236 inode_detach_wb(inode); 237 security_inode_free(inode); 238 fsnotify_inode_delete(inode); 239 locks_free_lock_context(inode); 240 if (!inode->i_nlink) { 241 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 242 atomic_long_dec(&inode->i_sb->s_remove_count); 243 } 244 245 #ifdef CONFIG_FS_POSIX_ACL 246 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 247 posix_acl_release(inode->i_acl); 248 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 249 posix_acl_release(inode->i_default_acl); 250 #endif 251 this_cpu_dec(nr_inodes); 252 } 253 EXPORT_SYMBOL(__destroy_inode); 254 255 static void i_callback(struct rcu_head *head) 256 { 257 struct inode *inode = container_of(head, struct inode, i_rcu); 258 kmem_cache_free(inode_cachep, inode); 259 } 260 261 static void destroy_inode(struct inode *inode) 262 { 263 BUG_ON(!list_empty(&inode->i_lru)); 264 __destroy_inode(inode); 265 if (inode->i_sb->s_op->destroy_inode) 266 inode->i_sb->s_op->destroy_inode(inode); 267 else 268 call_rcu(&inode->i_rcu, i_callback); 269 } 270 271 /** 272 * drop_nlink - directly drop an inode's link count 273 * @inode: inode 274 * 275 * This is a low-level filesystem helper to replace any 276 * direct filesystem manipulation of i_nlink. In cases 277 * where we are attempting to track writes to the 278 * filesystem, a decrement to zero means an imminent 279 * write when the file is truncated and actually unlinked 280 * on the filesystem. 281 */ 282 void drop_nlink(struct inode *inode) 283 { 284 WARN_ON(inode->i_nlink == 0); 285 inode->__i_nlink--; 286 if (!inode->i_nlink) 287 atomic_long_inc(&inode->i_sb->s_remove_count); 288 } 289 EXPORT_SYMBOL(drop_nlink); 290 291 /** 292 * clear_nlink - directly zero an inode's link count 293 * @inode: inode 294 * 295 * This is a low-level filesystem helper to replace any 296 * direct filesystem manipulation of i_nlink. See 297 * drop_nlink() for why we care about i_nlink hitting zero. 298 */ 299 void clear_nlink(struct inode *inode) 300 { 301 if (inode->i_nlink) { 302 inode->__i_nlink = 0; 303 atomic_long_inc(&inode->i_sb->s_remove_count); 304 } 305 } 306 EXPORT_SYMBOL(clear_nlink); 307 308 /** 309 * set_nlink - directly set an inode's link count 310 * @inode: inode 311 * @nlink: new nlink (should be non-zero) 312 * 313 * This is a low-level filesystem helper to replace any 314 * direct filesystem manipulation of i_nlink. 315 */ 316 void set_nlink(struct inode *inode, unsigned int nlink) 317 { 318 if (!nlink) { 319 clear_nlink(inode); 320 } else { 321 /* Yes, some filesystems do change nlink from zero to one */ 322 if (inode->i_nlink == 0) 323 atomic_long_dec(&inode->i_sb->s_remove_count); 324 325 inode->__i_nlink = nlink; 326 } 327 } 328 EXPORT_SYMBOL(set_nlink); 329 330 /** 331 * inc_nlink - directly increment an inode's link count 332 * @inode: inode 333 * 334 * This is a low-level filesystem helper to replace any 335 * direct filesystem manipulation of i_nlink. Currently, 336 * it is only here for parity with dec_nlink(). 337 */ 338 void inc_nlink(struct inode *inode) 339 { 340 if (unlikely(inode->i_nlink == 0)) { 341 WARN_ON(!(inode->i_state & I_LINKABLE)); 342 atomic_long_dec(&inode->i_sb->s_remove_count); 343 } 344 345 inode->__i_nlink++; 346 } 347 EXPORT_SYMBOL(inc_nlink); 348 349 static void __address_space_init_once(struct address_space *mapping) 350 { 351 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC | __GFP_ACCOUNT); 352 spin_lock_init(&mapping->tree_lock); 353 init_rwsem(&mapping->i_mmap_rwsem); 354 INIT_LIST_HEAD(&mapping->private_list); 355 spin_lock_init(&mapping->private_lock); 356 mapping->i_mmap = RB_ROOT_CACHED; 357 } 358 359 void address_space_init_once(struct address_space *mapping) 360 { 361 memset(mapping, 0, sizeof(*mapping)); 362 __address_space_init_once(mapping); 363 } 364 EXPORT_SYMBOL(address_space_init_once); 365 366 /* 367 * These are initializations that only need to be done 368 * once, because the fields are idempotent across use 369 * of the inode, so let the slab aware of that. 370 */ 371 void inode_init_once(struct inode *inode) 372 { 373 memset(inode, 0, sizeof(*inode)); 374 INIT_HLIST_NODE(&inode->i_hash); 375 INIT_LIST_HEAD(&inode->i_devices); 376 INIT_LIST_HEAD(&inode->i_io_list); 377 INIT_LIST_HEAD(&inode->i_wb_list); 378 INIT_LIST_HEAD(&inode->i_lru); 379 __address_space_init_once(&inode->i_data); 380 i_size_ordered_init(inode); 381 } 382 EXPORT_SYMBOL(inode_init_once); 383 384 static void init_once(void *foo) 385 { 386 struct inode *inode = (struct inode *) foo; 387 388 inode_init_once(inode); 389 } 390 391 /* 392 * inode->i_lock must be held 393 */ 394 void __iget(struct inode *inode) 395 { 396 atomic_inc(&inode->i_count); 397 } 398 399 /* 400 * get additional reference to inode; caller must already hold one. 401 */ 402 void ihold(struct inode *inode) 403 { 404 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 405 } 406 EXPORT_SYMBOL(ihold); 407 408 static void inode_lru_list_add(struct inode *inode) 409 { 410 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) 411 this_cpu_inc(nr_unused); 412 else 413 inode->i_state |= I_REFERENCED; 414 } 415 416 /* 417 * Add inode to LRU if needed (inode is unused and clean). 418 * 419 * Needs inode->i_lock held. 420 */ 421 void inode_add_lru(struct inode *inode) 422 { 423 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC | 424 I_FREEING | I_WILL_FREE)) && 425 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE) 426 inode_lru_list_add(inode); 427 } 428 429 430 static void inode_lru_list_del(struct inode *inode) 431 { 432 433 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) 434 this_cpu_dec(nr_unused); 435 } 436 437 /** 438 * inode_sb_list_add - add inode to the superblock list of inodes 439 * @inode: inode to add 440 */ 441 void inode_sb_list_add(struct inode *inode) 442 { 443 spin_lock(&inode->i_sb->s_inode_list_lock); 444 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 445 spin_unlock(&inode->i_sb->s_inode_list_lock); 446 } 447 EXPORT_SYMBOL_GPL(inode_sb_list_add); 448 449 static inline void inode_sb_list_del(struct inode *inode) 450 { 451 if (!list_empty(&inode->i_sb_list)) { 452 spin_lock(&inode->i_sb->s_inode_list_lock); 453 list_del_init(&inode->i_sb_list); 454 spin_unlock(&inode->i_sb->s_inode_list_lock); 455 } 456 } 457 458 static unsigned long hash(struct super_block *sb, unsigned long hashval) 459 { 460 unsigned long tmp; 461 462 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 463 L1_CACHE_BYTES; 464 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 465 return tmp & i_hash_mask; 466 } 467 468 /** 469 * __insert_inode_hash - hash an inode 470 * @inode: unhashed inode 471 * @hashval: unsigned long value used to locate this object in the 472 * inode_hashtable. 473 * 474 * Add an inode to the inode hash for this superblock. 475 */ 476 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 477 { 478 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 479 480 spin_lock(&inode_hash_lock); 481 spin_lock(&inode->i_lock); 482 hlist_add_head(&inode->i_hash, b); 483 spin_unlock(&inode->i_lock); 484 spin_unlock(&inode_hash_lock); 485 } 486 EXPORT_SYMBOL(__insert_inode_hash); 487 488 /** 489 * __remove_inode_hash - remove an inode from the hash 490 * @inode: inode to unhash 491 * 492 * Remove an inode from the superblock. 493 */ 494 void __remove_inode_hash(struct inode *inode) 495 { 496 spin_lock(&inode_hash_lock); 497 spin_lock(&inode->i_lock); 498 hlist_del_init(&inode->i_hash); 499 spin_unlock(&inode->i_lock); 500 spin_unlock(&inode_hash_lock); 501 } 502 EXPORT_SYMBOL(__remove_inode_hash); 503 504 void clear_inode(struct inode *inode) 505 { 506 /* 507 * We have to cycle tree_lock here because reclaim can be still in the 508 * process of removing the last page (in __delete_from_page_cache()) 509 * and we must not free mapping under it. 510 */ 511 spin_lock_irq(&inode->i_data.tree_lock); 512 BUG_ON(inode->i_data.nrpages); 513 BUG_ON(inode->i_data.nrexceptional); 514 spin_unlock_irq(&inode->i_data.tree_lock); 515 BUG_ON(!list_empty(&inode->i_data.private_list)); 516 BUG_ON(!(inode->i_state & I_FREEING)); 517 BUG_ON(inode->i_state & I_CLEAR); 518 BUG_ON(!list_empty(&inode->i_wb_list)); 519 /* don't need i_lock here, no concurrent mods to i_state */ 520 inode->i_state = I_FREEING | I_CLEAR; 521 } 522 EXPORT_SYMBOL(clear_inode); 523 524 /* 525 * Free the inode passed in, removing it from the lists it is still connected 526 * to. We remove any pages still attached to the inode and wait for any IO that 527 * is still in progress before finally destroying the inode. 528 * 529 * An inode must already be marked I_FREEING so that we avoid the inode being 530 * moved back onto lists if we race with other code that manipulates the lists 531 * (e.g. writeback_single_inode). The caller is responsible for setting this. 532 * 533 * An inode must already be removed from the LRU list before being evicted from 534 * the cache. This should occur atomically with setting the I_FREEING state 535 * flag, so no inodes here should ever be on the LRU when being evicted. 536 */ 537 static void evict(struct inode *inode) 538 { 539 const struct super_operations *op = inode->i_sb->s_op; 540 541 BUG_ON(!(inode->i_state & I_FREEING)); 542 BUG_ON(!list_empty(&inode->i_lru)); 543 544 if (!list_empty(&inode->i_io_list)) 545 inode_io_list_del(inode); 546 547 inode_sb_list_del(inode); 548 549 /* 550 * Wait for flusher thread to be done with the inode so that filesystem 551 * does not start destroying it while writeback is still running. Since 552 * the inode has I_FREEING set, flusher thread won't start new work on 553 * the inode. We just have to wait for running writeback to finish. 554 */ 555 inode_wait_for_writeback(inode); 556 557 if (op->evict_inode) { 558 op->evict_inode(inode); 559 } else { 560 truncate_inode_pages_final(&inode->i_data); 561 clear_inode(inode); 562 } 563 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 564 bd_forget(inode); 565 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 566 cd_forget(inode); 567 568 remove_inode_hash(inode); 569 570 spin_lock(&inode->i_lock); 571 wake_up_bit(&inode->i_state, __I_NEW); 572 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 573 spin_unlock(&inode->i_lock); 574 575 destroy_inode(inode); 576 } 577 578 /* 579 * dispose_list - dispose of the contents of a local list 580 * @head: the head of the list to free 581 * 582 * Dispose-list gets a local list with local inodes in it, so it doesn't 583 * need to worry about list corruption and SMP locks. 584 */ 585 static void dispose_list(struct list_head *head) 586 { 587 while (!list_empty(head)) { 588 struct inode *inode; 589 590 inode = list_first_entry(head, struct inode, i_lru); 591 list_del_init(&inode->i_lru); 592 593 evict(inode); 594 cond_resched(); 595 } 596 } 597 598 /** 599 * evict_inodes - evict all evictable inodes for a superblock 600 * @sb: superblock to operate on 601 * 602 * Make sure that no inodes with zero refcount are retained. This is 603 * called by superblock shutdown after having SB_ACTIVE flag removed, 604 * so any inode reaching zero refcount during or after that call will 605 * be immediately evicted. 606 */ 607 void evict_inodes(struct super_block *sb) 608 { 609 struct inode *inode, *next; 610 LIST_HEAD(dispose); 611 612 again: 613 spin_lock(&sb->s_inode_list_lock); 614 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 615 if (atomic_read(&inode->i_count)) 616 continue; 617 618 spin_lock(&inode->i_lock); 619 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 620 spin_unlock(&inode->i_lock); 621 continue; 622 } 623 624 inode->i_state |= I_FREEING; 625 inode_lru_list_del(inode); 626 spin_unlock(&inode->i_lock); 627 list_add(&inode->i_lru, &dispose); 628 629 /* 630 * We can have a ton of inodes to evict at unmount time given 631 * enough memory, check to see if we need to go to sleep for a 632 * bit so we don't livelock. 633 */ 634 if (need_resched()) { 635 spin_unlock(&sb->s_inode_list_lock); 636 cond_resched(); 637 dispose_list(&dispose); 638 goto again; 639 } 640 } 641 spin_unlock(&sb->s_inode_list_lock); 642 643 dispose_list(&dispose); 644 } 645 EXPORT_SYMBOL_GPL(evict_inodes); 646 647 /** 648 * invalidate_inodes - attempt to free all inodes on a superblock 649 * @sb: superblock to operate on 650 * @kill_dirty: flag to guide handling of dirty inodes 651 * 652 * Attempts to free all inodes for a given superblock. If there were any 653 * busy inodes return a non-zero value, else zero. 654 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 655 * them as busy. 656 */ 657 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 658 { 659 int busy = 0; 660 struct inode *inode, *next; 661 LIST_HEAD(dispose); 662 663 spin_lock(&sb->s_inode_list_lock); 664 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 665 spin_lock(&inode->i_lock); 666 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 667 spin_unlock(&inode->i_lock); 668 continue; 669 } 670 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) { 671 spin_unlock(&inode->i_lock); 672 busy = 1; 673 continue; 674 } 675 if (atomic_read(&inode->i_count)) { 676 spin_unlock(&inode->i_lock); 677 busy = 1; 678 continue; 679 } 680 681 inode->i_state |= I_FREEING; 682 inode_lru_list_del(inode); 683 spin_unlock(&inode->i_lock); 684 list_add(&inode->i_lru, &dispose); 685 } 686 spin_unlock(&sb->s_inode_list_lock); 687 688 dispose_list(&dispose); 689 690 return busy; 691 } 692 693 /* 694 * Isolate the inode from the LRU in preparation for freeing it. 695 * 696 * Any inodes which are pinned purely because of attached pagecache have their 697 * pagecache removed. If the inode has metadata buffers attached to 698 * mapping->private_list then try to remove them. 699 * 700 * If the inode has the I_REFERENCED flag set, then it means that it has been 701 * used recently - the flag is set in iput_final(). When we encounter such an 702 * inode, clear the flag and move it to the back of the LRU so it gets another 703 * pass through the LRU before it gets reclaimed. This is necessary because of 704 * the fact we are doing lazy LRU updates to minimise lock contention so the 705 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 706 * with this flag set because they are the inodes that are out of order. 707 */ 708 static enum lru_status inode_lru_isolate(struct list_head *item, 709 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 710 { 711 struct list_head *freeable = arg; 712 struct inode *inode = container_of(item, struct inode, i_lru); 713 714 /* 715 * we are inverting the lru lock/inode->i_lock here, so use a trylock. 716 * If we fail to get the lock, just skip it. 717 */ 718 if (!spin_trylock(&inode->i_lock)) 719 return LRU_SKIP; 720 721 /* 722 * Referenced or dirty inodes are still in use. Give them another pass 723 * through the LRU as we canot reclaim them now. 724 */ 725 if (atomic_read(&inode->i_count) || 726 (inode->i_state & ~I_REFERENCED)) { 727 list_lru_isolate(lru, &inode->i_lru); 728 spin_unlock(&inode->i_lock); 729 this_cpu_dec(nr_unused); 730 return LRU_REMOVED; 731 } 732 733 /* recently referenced inodes get one more pass */ 734 if (inode->i_state & I_REFERENCED) { 735 inode->i_state &= ~I_REFERENCED; 736 spin_unlock(&inode->i_lock); 737 return LRU_ROTATE; 738 } 739 740 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 741 __iget(inode); 742 spin_unlock(&inode->i_lock); 743 spin_unlock(lru_lock); 744 if (remove_inode_buffers(inode)) { 745 unsigned long reap; 746 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 747 if (current_is_kswapd()) 748 __count_vm_events(KSWAPD_INODESTEAL, reap); 749 else 750 __count_vm_events(PGINODESTEAL, reap); 751 if (current->reclaim_state) 752 current->reclaim_state->reclaimed_slab += reap; 753 } 754 iput(inode); 755 spin_lock(lru_lock); 756 return LRU_RETRY; 757 } 758 759 WARN_ON(inode->i_state & I_NEW); 760 inode->i_state |= I_FREEING; 761 list_lru_isolate_move(lru, &inode->i_lru, freeable); 762 spin_unlock(&inode->i_lock); 763 764 this_cpu_dec(nr_unused); 765 return LRU_REMOVED; 766 } 767 768 /* 769 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 770 * This is called from the superblock shrinker function with a number of inodes 771 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 772 * then are freed outside inode_lock by dispose_list(). 773 */ 774 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 775 { 776 LIST_HEAD(freeable); 777 long freed; 778 779 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 780 inode_lru_isolate, &freeable); 781 dispose_list(&freeable); 782 return freed; 783 } 784 785 static void __wait_on_freeing_inode(struct inode *inode); 786 /* 787 * Called with the inode lock held. 788 */ 789 static struct inode *find_inode(struct super_block *sb, 790 struct hlist_head *head, 791 int (*test)(struct inode *, void *), 792 void *data) 793 { 794 struct inode *inode = NULL; 795 796 repeat: 797 hlist_for_each_entry(inode, head, i_hash) { 798 if (inode->i_sb != sb) 799 continue; 800 if (!test(inode, data)) 801 continue; 802 spin_lock(&inode->i_lock); 803 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 804 __wait_on_freeing_inode(inode); 805 goto repeat; 806 } 807 __iget(inode); 808 spin_unlock(&inode->i_lock); 809 return inode; 810 } 811 return NULL; 812 } 813 814 /* 815 * find_inode_fast is the fast path version of find_inode, see the comment at 816 * iget_locked for details. 817 */ 818 static struct inode *find_inode_fast(struct super_block *sb, 819 struct hlist_head *head, unsigned long ino) 820 { 821 struct inode *inode = NULL; 822 823 repeat: 824 hlist_for_each_entry(inode, head, i_hash) { 825 if (inode->i_ino != ino) 826 continue; 827 if (inode->i_sb != sb) 828 continue; 829 spin_lock(&inode->i_lock); 830 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 831 __wait_on_freeing_inode(inode); 832 goto repeat; 833 } 834 __iget(inode); 835 spin_unlock(&inode->i_lock); 836 return inode; 837 } 838 return NULL; 839 } 840 841 /* 842 * Each cpu owns a range of LAST_INO_BATCH numbers. 843 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 844 * to renew the exhausted range. 845 * 846 * This does not significantly increase overflow rate because every CPU can 847 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 848 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 849 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 850 * overflow rate by 2x, which does not seem too significant. 851 * 852 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 853 * error if st_ino won't fit in target struct field. Use 32bit counter 854 * here to attempt to avoid that. 855 */ 856 #define LAST_INO_BATCH 1024 857 static DEFINE_PER_CPU(unsigned int, last_ino); 858 859 unsigned int get_next_ino(void) 860 { 861 unsigned int *p = &get_cpu_var(last_ino); 862 unsigned int res = *p; 863 864 #ifdef CONFIG_SMP 865 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 866 static atomic_t shared_last_ino; 867 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 868 869 res = next - LAST_INO_BATCH; 870 } 871 #endif 872 873 res++; 874 /* get_next_ino should not provide a 0 inode number */ 875 if (unlikely(!res)) 876 res++; 877 *p = res; 878 put_cpu_var(last_ino); 879 return res; 880 } 881 EXPORT_SYMBOL(get_next_ino); 882 883 /** 884 * new_inode_pseudo - obtain an inode 885 * @sb: superblock 886 * 887 * Allocates a new inode for given superblock. 888 * Inode wont be chained in superblock s_inodes list 889 * This means : 890 * - fs can't be unmount 891 * - quotas, fsnotify, writeback can't work 892 */ 893 struct inode *new_inode_pseudo(struct super_block *sb) 894 { 895 struct inode *inode = alloc_inode(sb); 896 897 if (inode) { 898 spin_lock(&inode->i_lock); 899 inode->i_state = 0; 900 spin_unlock(&inode->i_lock); 901 INIT_LIST_HEAD(&inode->i_sb_list); 902 } 903 return inode; 904 } 905 906 /** 907 * new_inode - obtain an inode 908 * @sb: superblock 909 * 910 * Allocates a new inode for given superblock. The default gfp_mask 911 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 912 * If HIGHMEM pages are unsuitable or it is known that pages allocated 913 * for the page cache are not reclaimable or migratable, 914 * mapping_set_gfp_mask() must be called with suitable flags on the 915 * newly created inode's mapping 916 * 917 */ 918 struct inode *new_inode(struct super_block *sb) 919 { 920 struct inode *inode; 921 922 spin_lock_prefetch(&sb->s_inode_list_lock); 923 924 inode = new_inode_pseudo(sb); 925 if (inode) 926 inode_sb_list_add(inode); 927 return inode; 928 } 929 EXPORT_SYMBOL(new_inode); 930 931 #ifdef CONFIG_DEBUG_LOCK_ALLOC 932 void lockdep_annotate_inode_mutex_key(struct inode *inode) 933 { 934 if (S_ISDIR(inode->i_mode)) { 935 struct file_system_type *type = inode->i_sb->s_type; 936 937 /* Set new key only if filesystem hasn't already changed it */ 938 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 939 /* 940 * ensure nobody is actually holding i_mutex 941 */ 942 // mutex_destroy(&inode->i_mutex); 943 init_rwsem(&inode->i_rwsem); 944 lockdep_set_class(&inode->i_rwsem, 945 &type->i_mutex_dir_key); 946 } 947 } 948 } 949 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 950 #endif 951 952 /** 953 * unlock_new_inode - clear the I_NEW state and wake up any waiters 954 * @inode: new inode to unlock 955 * 956 * Called when the inode is fully initialised to clear the new state of the 957 * inode and wake up anyone waiting for the inode to finish initialisation. 958 */ 959 void unlock_new_inode(struct inode *inode) 960 { 961 lockdep_annotate_inode_mutex_key(inode); 962 spin_lock(&inode->i_lock); 963 WARN_ON(!(inode->i_state & I_NEW)); 964 inode->i_state &= ~I_NEW; 965 smp_mb(); 966 wake_up_bit(&inode->i_state, __I_NEW); 967 spin_unlock(&inode->i_lock); 968 } 969 EXPORT_SYMBOL(unlock_new_inode); 970 971 /** 972 * lock_two_nondirectories - take two i_mutexes on non-directory objects 973 * 974 * Lock any non-NULL argument that is not a directory. 975 * Zero, one or two objects may be locked by this function. 976 * 977 * @inode1: first inode to lock 978 * @inode2: second inode to lock 979 */ 980 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 981 { 982 if (inode1 > inode2) 983 swap(inode1, inode2); 984 985 if (inode1 && !S_ISDIR(inode1->i_mode)) 986 inode_lock(inode1); 987 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 988 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 989 } 990 EXPORT_SYMBOL(lock_two_nondirectories); 991 992 /** 993 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 994 * @inode1: first inode to unlock 995 * @inode2: second inode to unlock 996 */ 997 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 998 { 999 if (inode1 && !S_ISDIR(inode1->i_mode)) 1000 inode_unlock(inode1); 1001 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 1002 inode_unlock(inode2); 1003 } 1004 EXPORT_SYMBOL(unlock_two_nondirectories); 1005 1006 /** 1007 * iget5_locked - obtain an inode from a mounted file system 1008 * @sb: super block of file system 1009 * @hashval: hash value (usually inode number) to get 1010 * @test: callback used for comparisons between inodes 1011 * @set: callback used to initialize a new struct inode 1012 * @data: opaque data pointer to pass to @test and @set 1013 * 1014 * Search for the inode specified by @hashval and @data in the inode cache, 1015 * and if present it is return it with an increased reference count. This is 1016 * a generalized version of iget_locked() for file systems where the inode 1017 * number is not sufficient for unique identification of an inode. 1018 * 1019 * If the inode is not in cache, allocate a new inode and return it locked, 1020 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1021 * before unlocking it via unlock_new_inode(). 1022 * 1023 * Note both @test and @set are called with the inode_hash_lock held, so can't 1024 * sleep. 1025 */ 1026 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1027 int (*test)(struct inode *, void *), 1028 int (*set)(struct inode *, void *), void *data) 1029 { 1030 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1031 struct inode *inode; 1032 again: 1033 spin_lock(&inode_hash_lock); 1034 inode = find_inode(sb, head, test, data); 1035 spin_unlock(&inode_hash_lock); 1036 1037 if (inode) { 1038 wait_on_inode(inode); 1039 if (unlikely(inode_unhashed(inode))) { 1040 iput(inode); 1041 goto again; 1042 } 1043 return inode; 1044 } 1045 1046 inode = alloc_inode(sb); 1047 if (inode) { 1048 struct inode *old; 1049 1050 spin_lock(&inode_hash_lock); 1051 /* We released the lock, so.. */ 1052 old = find_inode(sb, head, test, data); 1053 if (!old) { 1054 if (set(inode, data)) 1055 goto set_failed; 1056 1057 spin_lock(&inode->i_lock); 1058 inode->i_state = I_NEW; 1059 hlist_add_head(&inode->i_hash, head); 1060 spin_unlock(&inode->i_lock); 1061 inode_sb_list_add(inode); 1062 spin_unlock(&inode_hash_lock); 1063 1064 /* Return the locked inode with I_NEW set, the 1065 * caller is responsible for filling in the contents 1066 */ 1067 return inode; 1068 } 1069 1070 /* 1071 * Uhhuh, somebody else created the same inode under 1072 * us. Use the old inode instead of the one we just 1073 * allocated. 1074 */ 1075 spin_unlock(&inode_hash_lock); 1076 destroy_inode(inode); 1077 inode = old; 1078 wait_on_inode(inode); 1079 if (unlikely(inode_unhashed(inode))) { 1080 iput(inode); 1081 goto again; 1082 } 1083 } 1084 return inode; 1085 1086 set_failed: 1087 spin_unlock(&inode_hash_lock); 1088 destroy_inode(inode); 1089 return NULL; 1090 } 1091 EXPORT_SYMBOL(iget5_locked); 1092 1093 /** 1094 * iget_locked - obtain an inode from a mounted file system 1095 * @sb: super block of file system 1096 * @ino: inode number to get 1097 * 1098 * Search for the inode specified by @ino in the inode cache and if present 1099 * return it with an increased reference count. This is for file systems 1100 * where the inode number is sufficient for unique identification of an inode. 1101 * 1102 * If the inode is not in cache, allocate a new inode and return it locked, 1103 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1104 * before unlocking it via unlock_new_inode(). 1105 */ 1106 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1107 { 1108 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1109 struct inode *inode; 1110 again: 1111 spin_lock(&inode_hash_lock); 1112 inode = find_inode_fast(sb, head, ino); 1113 spin_unlock(&inode_hash_lock); 1114 if (inode) { 1115 wait_on_inode(inode); 1116 if (unlikely(inode_unhashed(inode))) { 1117 iput(inode); 1118 goto again; 1119 } 1120 return inode; 1121 } 1122 1123 inode = alloc_inode(sb); 1124 if (inode) { 1125 struct inode *old; 1126 1127 spin_lock(&inode_hash_lock); 1128 /* We released the lock, so.. */ 1129 old = find_inode_fast(sb, head, ino); 1130 if (!old) { 1131 inode->i_ino = ino; 1132 spin_lock(&inode->i_lock); 1133 inode->i_state = I_NEW; 1134 hlist_add_head(&inode->i_hash, head); 1135 spin_unlock(&inode->i_lock); 1136 inode_sb_list_add(inode); 1137 spin_unlock(&inode_hash_lock); 1138 1139 /* Return the locked inode with I_NEW set, the 1140 * caller is responsible for filling in the contents 1141 */ 1142 return inode; 1143 } 1144 1145 /* 1146 * Uhhuh, somebody else created the same inode under 1147 * us. Use the old inode instead of the one we just 1148 * allocated. 1149 */ 1150 spin_unlock(&inode_hash_lock); 1151 destroy_inode(inode); 1152 inode = old; 1153 wait_on_inode(inode); 1154 if (unlikely(inode_unhashed(inode))) { 1155 iput(inode); 1156 goto again; 1157 } 1158 } 1159 return inode; 1160 } 1161 EXPORT_SYMBOL(iget_locked); 1162 1163 /* 1164 * search the inode cache for a matching inode number. 1165 * If we find one, then the inode number we are trying to 1166 * allocate is not unique and so we should not use it. 1167 * 1168 * Returns 1 if the inode number is unique, 0 if it is not. 1169 */ 1170 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1171 { 1172 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1173 struct inode *inode; 1174 1175 spin_lock(&inode_hash_lock); 1176 hlist_for_each_entry(inode, b, i_hash) { 1177 if (inode->i_ino == ino && inode->i_sb == sb) { 1178 spin_unlock(&inode_hash_lock); 1179 return 0; 1180 } 1181 } 1182 spin_unlock(&inode_hash_lock); 1183 1184 return 1; 1185 } 1186 1187 /** 1188 * iunique - get a unique inode number 1189 * @sb: superblock 1190 * @max_reserved: highest reserved inode number 1191 * 1192 * Obtain an inode number that is unique on the system for a given 1193 * superblock. This is used by file systems that have no natural 1194 * permanent inode numbering system. An inode number is returned that 1195 * is higher than the reserved limit but unique. 1196 * 1197 * BUGS: 1198 * With a large number of inodes live on the file system this function 1199 * currently becomes quite slow. 1200 */ 1201 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1202 { 1203 /* 1204 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1205 * error if st_ino won't fit in target struct field. Use 32bit counter 1206 * here to attempt to avoid that. 1207 */ 1208 static DEFINE_SPINLOCK(iunique_lock); 1209 static unsigned int counter; 1210 ino_t res; 1211 1212 spin_lock(&iunique_lock); 1213 do { 1214 if (counter <= max_reserved) 1215 counter = max_reserved + 1; 1216 res = counter++; 1217 } while (!test_inode_iunique(sb, res)); 1218 spin_unlock(&iunique_lock); 1219 1220 return res; 1221 } 1222 EXPORT_SYMBOL(iunique); 1223 1224 struct inode *igrab(struct inode *inode) 1225 { 1226 spin_lock(&inode->i_lock); 1227 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1228 __iget(inode); 1229 spin_unlock(&inode->i_lock); 1230 } else { 1231 spin_unlock(&inode->i_lock); 1232 /* 1233 * Handle the case where s_op->clear_inode is not been 1234 * called yet, and somebody is calling igrab 1235 * while the inode is getting freed. 1236 */ 1237 inode = NULL; 1238 } 1239 return inode; 1240 } 1241 EXPORT_SYMBOL(igrab); 1242 1243 /** 1244 * ilookup5_nowait - search for an inode in the inode cache 1245 * @sb: super block of file system to search 1246 * @hashval: hash value (usually inode number) to search for 1247 * @test: callback used for comparisons between inodes 1248 * @data: opaque data pointer to pass to @test 1249 * 1250 * Search for the inode specified by @hashval and @data in the inode cache. 1251 * If the inode is in the cache, the inode is returned with an incremented 1252 * reference count. 1253 * 1254 * Note: I_NEW is not waited upon so you have to be very careful what you do 1255 * with the returned inode. You probably should be using ilookup5() instead. 1256 * 1257 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1258 */ 1259 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1260 int (*test)(struct inode *, void *), void *data) 1261 { 1262 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1263 struct inode *inode; 1264 1265 spin_lock(&inode_hash_lock); 1266 inode = find_inode(sb, head, test, data); 1267 spin_unlock(&inode_hash_lock); 1268 1269 return inode; 1270 } 1271 EXPORT_SYMBOL(ilookup5_nowait); 1272 1273 /** 1274 * ilookup5 - search for an inode in the inode cache 1275 * @sb: super block of file system to search 1276 * @hashval: hash value (usually inode number) to search for 1277 * @test: callback used for comparisons between inodes 1278 * @data: opaque data pointer to pass to @test 1279 * 1280 * Search for the inode specified by @hashval and @data in the inode cache, 1281 * and if the inode is in the cache, return the inode with an incremented 1282 * reference count. Waits on I_NEW before returning the inode. 1283 * returned with an incremented reference count. 1284 * 1285 * This is a generalized version of ilookup() for file systems where the 1286 * inode number is not sufficient for unique identification of an inode. 1287 * 1288 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1289 */ 1290 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1291 int (*test)(struct inode *, void *), void *data) 1292 { 1293 struct inode *inode; 1294 again: 1295 inode = ilookup5_nowait(sb, hashval, test, data); 1296 if (inode) { 1297 wait_on_inode(inode); 1298 if (unlikely(inode_unhashed(inode))) { 1299 iput(inode); 1300 goto again; 1301 } 1302 } 1303 return inode; 1304 } 1305 EXPORT_SYMBOL(ilookup5); 1306 1307 /** 1308 * ilookup - search for an inode in the inode cache 1309 * @sb: super block of file system to search 1310 * @ino: inode number to search for 1311 * 1312 * Search for the inode @ino in the inode cache, and if the inode is in the 1313 * cache, the inode is returned with an incremented reference count. 1314 */ 1315 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1316 { 1317 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1318 struct inode *inode; 1319 again: 1320 spin_lock(&inode_hash_lock); 1321 inode = find_inode_fast(sb, head, ino); 1322 spin_unlock(&inode_hash_lock); 1323 1324 if (inode) { 1325 wait_on_inode(inode); 1326 if (unlikely(inode_unhashed(inode))) { 1327 iput(inode); 1328 goto again; 1329 } 1330 } 1331 return inode; 1332 } 1333 EXPORT_SYMBOL(ilookup); 1334 1335 /** 1336 * find_inode_nowait - find an inode in the inode cache 1337 * @sb: super block of file system to search 1338 * @hashval: hash value (usually inode number) to search for 1339 * @match: callback used for comparisons between inodes 1340 * @data: opaque data pointer to pass to @match 1341 * 1342 * Search for the inode specified by @hashval and @data in the inode 1343 * cache, where the helper function @match will return 0 if the inode 1344 * does not match, 1 if the inode does match, and -1 if the search 1345 * should be stopped. The @match function must be responsible for 1346 * taking the i_lock spin_lock and checking i_state for an inode being 1347 * freed or being initialized, and incrementing the reference count 1348 * before returning 1. It also must not sleep, since it is called with 1349 * the inode_hash_lock spinlock held. 1350 * 1351 * This is a even more generalized version of ilookup5() when the 1352 * function must never block --- find_inode() can block in 1353 * __wait_on_freeing_inode() --- or when the caller can not increment 1354 * the reference count because the resulting iput() might cause an 1355 * inode eviction. The tradeoff is that the @match funtion must be 1356 * very carefully implemented. 1357 */ 1358 struct inode *find_inode_nowait(struct super_block *sb, 1359 unsigned long hashval, 1360 int (*match)(struct inode *, unsigned long, 1361 void *), 1362 void *data) 1363 { 1364 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1365 struct inode *inode, *ret_inode = NULL; 1366 int mval; 1367 1368 spin_lock(&inode_hash_lock); 1369 hlist_for_each_entry(inode, head, i_hash) { 1370 if (inode->i_sb != sb) 1371 continue; 1372 mval = match(inode, hashval, data); 1373 if (mval == 0) 1374 continue; 1375 if (mval == 1) 1376 ret_inode = inode; 1377 goto out; 1378 } 1379 out: 1380 spin_unlock(&inode_hash_lock); 1381 return ret_inode; 1382 } 1383 EXPORT_SYMBOL(find_inode_nowait); 1384 1385 int insert_inode_locked(struct inode *inode) 1386 { 1387 struct super_block *sb = inode->i_sb; 1388 ino_t ino = inode->i_ino; 1389 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1390 1391 while (1) { 1392 struct inode *old = NULL; 1393 spin_lock(&inode_hash_lock); 1394 hlist_for_each_entry(old, head, i_hash) { 1395 if (old->i_ino != ino) 1396 continue; 1397 if (old->i_sb != sb) 1398 continue; 1399 spin_lock(&old->i_lock); 1400 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1401 spin_unlock(&old->i_lock); 1402 continue; 1403 } 1404 break; 1405 } 1406 if (likely(!old)) { 1407 spin_lock(&inode->i_lock); 1408 inode->i_state |= I_NEW; 1409 hlist_add_head(&inode->i_hash, head); 1410 spin_unlock(&inode->i_lock); 1411 spin_unlock(&inode_hash_lock); 1412 return 0; 1413 } 1414 __iget(old); 1415 spin_unlock(&old->i_lock); 1416 spin_unlock(&inode_hash_lock); 1417 wait_on_inode(old); 1418 if (unlikely(!inode_unhashed(old))) { 1419 iput(old); 1420 return -EBUSY; 1421 } 1422 iput(old); 1423 } 1424 } 1425 EXPORT_SYMBOL(insert_inode_locked); 1426 1427 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1428 int (*test)(struct inode *, void *), void *data) 1429 { 1430 struct super_block *sb = inode->i_sb; 1431 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1432 1433 while (1) { 1434 struct inode *old = NULL; 1435 1436 spin_lock(&inode_hash_lock); 1437 hlist_for_each_entry(old, head, i_hash) { 1438 if (old->i_sb != sb) 1439 continue; 1440 if (!test(old, data)) 1441 continue; 1442 spin_lock(&old->i_lock); 1443 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1444 spin_unlock(&old->i_lock); 1445 continue; 1446 } 1447 break; 1448 } 1449 if (likely(!old)) { 1450 spin_lock(&inode->i_lock); 1451 inode->i_state |= I_NEW; 1452 hlist_add_head(&inode->i_hash, head); 1453 spin_unlock(&inode->i_lock); 1454 spin_unlock(&inode_hash_lock); 1455 return 0; 1456 } 1457 __iget(old); 1458 spin_unlock(&old->i_lock); 1459 spin_unlock(&inode_hash_lock); 1460 wait_on_inode(old); 1461 if (unlikely(!inode_unhashed(old))) { 1462 iput(old); 1463 return -EBUSY; 1464 } 1465 iput(old); 1466 } 1467 } 1468 EXPORT_SYMBOL(insert_inode_locked4); 1469 1470 1471 int generic_delete_inode(struct inode *inode) 1472 { 1473 return 1; 1474 } 1475 EXPORT_SYMBOL(generic_delete_inode); 1476 1477 /* 1478 * Called when we're dropping the last reference 1479 * to an inode. 1480 * 1481 * Call the FS "drop_inode()" function, defaulting to 1482 * the legacy UNIX filesystem behaviour. If it tells 1483 * us to evict inode, do so. Otherwise, retain inode 1484 * in cache if fs is alive, sync and evict if fs is 1485 * shutting down. 1486 */ 1487 static void iput_final(struct inode *inode) 1488 { 1489 struct super_block *sb = inode->i_sb; 1490 const struct super_operations *op = inode->i_sb->s_op; 1491 int drop; 1492 1493 WARN_ON(inode->i_state & I_NEW); 1494 1495 if (op->drop_inode) 1496 drop = op->drop_inode(inode); 1497 else 1498 drop = generic_drop_inode(inode); 1499 1500 if (!drop && (sb->s_flags & SB_ACTIVE)) { 1501 inode_add_lru(inode); 1502 spin_unlock(&inode->i_lock); 1503 return; 1504 } 1505 1506 if (!drop) { 1507 inode->i_state |= I_WILL_FREE; 1508 spin_unlock(&inode->i_lock); 1509 write_inode_now(inode, 1); 1510 spin_lock(&inode->i_lock); 1511 WARN_ON(inode->i_state & I_NEW); 1512 inode->i_state &= ~I_WILL_FREE; 1513 } 1514 1515 inode->i_state |= I_FREEING; 1516 if (!list_empty(&inode->i_lru)) 1517 inode_lru_list_del(inode); 1518 spin_unlock(&inode->i_lock); 1519 1520 evict(inode); 1521 } 1522 1523 /** 1524 * iput - put an inode 1525 * @inode: inode to put 1526 * 1527 * Puts an inode, dropping its usage count. If the inode use count hits 1528 * zero, the inode is then freed and may also be destroyed. 1529 * 1530 * Consequently, iput() can sleep. 1531 */ 1532 void iput(struct inode *inode) 1533 { 1534 if (!inode) 1535 return; 1536 BUG_ON(inode->i_state & I_CLEAR); 1537 retry: 1538 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1539 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1540 atomic_inc(&inode->i_count); 1541 spin_unlock(&inode->i_lock); 1542 trace_writeback_lazytime_iput(inode); 1543 mark_inode_dirty_sync(inode); 1544 goto retry; 1545 } 1546 iput_final(inode); 1547 } 1548 } 1549 EXPORT_SYMBOL(iput); 1550 1551 /** 1552 * bmap - find a block number in a file 1553 * @inode: inode of file 1554 * @block: block to find 1555 * 1556 * Returns the block number on the device holding the inode that 1557 * is the disk block number for the block of the file requested. 1558 * That is, asked for block 4 of inode 1 the function will return the 1559 * disk block relative to the disk start that holds that block of the 1560 * file. 1561 */ 1562 sector_t bmap(struct inode *inode, sector_t block) 1563 { 1564 sector_t res = 0; 1565 if (inode->i_mapping->a_ops->bmap) 1566 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1567 return res; 1568 } 1569 EXPORT_SYMBOL(bmap); 1570 1571 /* 1572 * Update times in overlayed inode from underlying real inode 1573 */ 1574 static void update_ovl_inode_times(struct dentry *dentry, struct inode *inode, 1575 bool rcu) 1576 { 1577 struct dentry *upperdentry; 1578 1579 /* 1580 * Nothing to do if in rcu or if non-overlayfs 1581 */ 1582 if (rcu || likely(!(dentry->d_flags & DCACHE_OP_REAL))) 1583 return; 1584 1585 upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER); 1586 1587 /* 1588 * If file is on lower then we can't update atime, so no worries about 1589 * stale mtime/ctime. 1590 */ 1591 if (upperdentry) { 1592 struct inode *realinode = d_inode(upperdentry); 1593 1594 if ((!timespec_equal(&inode->i_mtime, &realinode->i_mtime) || 1595 !timespec_equal(&inode->i_ctime, &realinode->i_ctime))) { 1596 inode->i_mtime = realinode->i_mtime; 1597 inode->i_ctime = realinode->i_ctime; 1598 } 1599 } 1600 } 1601 1602 /* 1603 * With relative atime, only update atime if the previous atime is 1604 * earlier than either the ctime or mtime or if at least a day has 1605 * passed since the last atime update. 1606 */ 1607 static int relatime_need_update(const struct path *path, struct inode *inode, 1608 struct timespec now, bool rcu) 1609 { 1610 1611 if (!(path->mnt->mnt_flags & MNT_RELATIME)) 1612 return 1; 1613 1614 update_ovl_inode_times(path->dentry, inode, rcu); 1615 /* 1616 * Is mtime younger than atime? If yes, update atime: 1617 */ 1618 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1619 return 1; 1620 /* 1621 * Is ctime younger than atime? If yes, update atime: 1622 */ 1623 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1624 return 1; 1625 1626 /* 1627 * Is the previous atime value older than a day? If yes, 1628 * update atime: 1629 */ 1630 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1631 return 1; 1632 /* 1633 * Good, we can skip the atime update: 1634 */ 1635 return 0; 1636 } 1637 1638 int generic_update_time(struct inode *inode, struct timespec *time, int flags) 1639 { 1640 int iflags = I_DIRTY_TIME; 1641 bool dirty = false; 1642 1643 if (flags & S_ATIME) 1644 inode->i_atime = *time; 1645 if (flags & S_VERSION) 1646 dirty = inode_maybe_inc_iversion(inode, false); 1647 if (flags & S_CTIME) 1648 inode->i_ctime = *time; 1649 if (flags & S_MTIME) 1650 inode->i_mtime = *time; 1651 if ((flags & (S_ATIME | S_CTIME | S_MTIME)) && 1652 !(inode->i_sb->s_flags & SB_LAZYTIME)) 1653 dirty = true; 1654 1655 if (dirty) 1656 iflags |= I_DIRTY_SYNC; 1657 __mark_inode_dirty(inode, iflags); 1658 return 0; 1659 } 1660 EXPORT_SYMBOL(generic_update_time); 1661 1662 /* 1663 * This does the actual work of updating an inodes time or version. Must have 1664 * had called mnt_want_write() before calling this. 1665 */ 1666 static int update_time(struct inode *inode, struct timespec *time, int flags) 1667 { 1668 int (*update_time)(struct inode *, struct timespec *, int); 1669 1670 update_time = inode->i_op->update_time ? inode->i_op->update_time : 1671 generic_update_time; 1672 1673 return update_time(inode, time, flags); 1674 } 1675 1676 /** 1677 * touch_atime - update the access time 1678 * @path: the &struct path to update 1679 * @inode: inode to update 1680 * 1681 * Update the accessed time on an inode and mark it for writeback. 1682 * This function automatically handles read only file systems and media, 1683 * as well as the "noatime" flag and inode specific "noatime" markers. 1684 */ 1685 bool __atime_needs_update(const struct path *path, struct inode *inode, 1686 bool rcu) 1687 { 1688 struct vfsmount *mnt = path->mnt; 1689 struct timespec now; 1690 1691 if (inode->i_flags & S_NOATIME) 1692 return false; 1693 1694 /* Atime updates will likely cause i_uid and i_gid to be written 1695 * back improprely if their true value is unknown to the vfs. 1696 */ 1697 if (HAS_UNMAPPED_ID(inode)) 1698 return false; 1699 1700 if (IS_NOATIME(inode)) 1701 return false; 1702 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 1703 return false; 1704 1705 if (mnt->mnt_flags & MNT_NOATIME) 1706 return false; 1707 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1708 return false; 1709 1710 now = current_time(inode); 1711 1712 if (!relatime_need_update(path, inode, now, rcu)) 1713 return false; 1714 1715 if (timespec_equal(&inode->i_atime, &now)) 1716 return false; 1717 1718 return true; 1719 } 1720 1721 void touch_atime(const struct path *path) 1722 { 1723 struct vfsmount *mnt = path->mnt; 1724 struct inode *inode = d_inode(path->dentry); 1725 struct timespec now; 1726 1727 if (!__atime_needs_update(path, inode, false)) 1728 return; 1729 1730 if (!sb_start_write_trylock(inode->i_sb)) 1731 return; 1732 1733 if (__mnt_want_write(mnt) != 0) 1734 goto skip_update; 1735 /* 1736 * File systems can error out when updating inodes if they need to 1737 * allocate new space to modify an inode (such is the case for 1738 * Btrfs), but since we touch atime while walking down the path we 1739 * really don't care if we failed to update the atime of the file, 1740 * so just ignore the return value. 1741 * We may also fail on filesystems that have the ability to make parts 1742 * of the fs read only, e.g. subvolumes in Btrfs. 1743 */ 1744 now = current_time(inode); 1745 update_time(inode, &now, S_ATIME); 1746 __mnt_drop_write(mnt); 1747 skip_update: 1748 sb_end_write(inode->i_sb); 1749 } 1750 EXPORT_SYMBOL(touch_atime); 1751 1752 /* 1753 * The logic we want is 1754 * 1755 * if suid or (sgid and xgrp) 1756 * remove privs 1757 */ 1758 int should_remove_suid(struct dentry *dentry) 1759 { 1760 umode_t mode = d_inode(dentry)->i_mode; 1761 int kill = 0; 1762 1763 /* suid always must be killed */ 1764 if (unlikely(mode & S_ISUID)) 1765 kill = ATTR_KILL_SUID; 1766 1767 /* 1768 * sgid without any exec bits is just a mandatory locking mark; leave 1769 * it alone. If some exec bits are set, it's a real sgid; kill it. 1770 */ 1771 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1772 kill |= ATTR_KILL_SGID; 1773 1774 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1775 return kill; 1776 1777 return 0; 1778 } 1779 EXPORT_SYMBOL(should_remove_suid); 1780 1781 /* 1782 * Return mask of changes for notify_change() that need to be done as a 1783 * response to write or truncate. Return 0 if nothing has to be changed. 1784 * Negative value on error (change should be denied). 1785 */ 1786 int dentry_needs_remove_privs(struct dentry *dentry) 1787 { 1788 struct inode *inode = d_inode(dentry); 1789 int mask = 0; 1790 int ret; 1791 1792 if (IS_NOSEC(inode)) 1793 return 0; 1794 1795 mask = should_remove_suid(dentry); 1796 ret = security_inode_need_killpriv(dentry); 1797 if (ret < 0) 1798 return ret; 1799 if (ret) 1800 mask |= ATTR_KILL_PRIV; 1801 return mask; 1802 } 1803 1804 static int __remove_privs(struct dentry *dentry, int kill) 1805 { 1806 struct iattr newattrs; 1807 1808 newattrs.ia_valid = ATTR_FORCE | kill; 1809 /* 1810 * Note we call this on write, so notify_change will not 1811 * encounter any conflicting delegations: 1812 */ 1813 return notify_change(dentry, &newattrs, NULL); 1814 } 1815 1816 /* 1817 * Remove special file priviledges (suid, capabilities) when file is written 1818 * to or truncated. 1819 */ 1820 int file_remove_privs(struct file *file) 1821 { 1822 struct dentry *dentry = file_dentry(file); 1823 struct inode *inode = file_inode(file); 1824 int kill; 1825 int error = 0; 1826 1827 /* Fast path for nothing security related */ 1828 if (IS_NOSEC(inode)) 1829 return 0; 1830 1831 kill = dentry_needs_remove_privs(dentry); 1832 if (kill < 0) 1833 return kill; 1834 if (kill) 1835 error = __remove_privs(dentry, kill); 1836 if (!error) 1837 inode_has_no_xattr(inode); 1838 1839 return error; 1840 } 1841 EXPORT_SYMBOL(file_remove_privs); 1842 1843 /** 1844 * file_update_time - update mtime and ctime time 1845 * @file: file accessed 1846 * 1847 * Update the mtime and ctime members of an inode and mark the inode 1848 * for writeback. Note that this function is meant exclusively for 1849 * usage in the file write path of filesystems, and filesystems may 1850 * choose to explicitly ignore update via this function with the 1851 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1852 * timestamps are handled by the server. This can return an error for 1853 * file systems who need to allocate space in order to update an inode. 1854 */ 1855 1856 int file_update_time(struct file *file) 1857 { 1858 struct inode *inode = file_inode(file); 1859 struct timespec now; 1860 int sync_it = 0; 1861 int ret; 1862 1863 /* First try to exhaust all avenues to not sync */ 1864 if (IS_NOCMTIME(inode)) 1865 return 0; 1866 1867 now = current_time(inode); 1868 if (!timespec_equal(&inode->i_mtime, &now)) 1869 sync_it = S_MTIME; 1870 1871 if (!timespec_equal(&inode->i_ctime, &now)) 1872 sync_it |= S_CTIME; 1873 1874 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 1875 sync_it |= S_VERSION; 1876 1877 if (!sync_it) 1878 return 0; 1879 1880 /* Finally allowed to write? Takes lock. */ 1881 if (__mnt_want_write_file(file)) 1882 return 0; 1883 1884 ret = update_time(inode, &now, sync_it); 1885 __mnt_drop_write_file(file); 1886 1887 return ret; 1888 } 1889 EXPORT_SYMBOL(file_update_time); 1890 1891 int inode_needs_sync(struct inode *inode) 1892 { 1893 if (IS_SYNC(inode)) 1894 return 1; 1895 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1896 return 1; 1897 return 0; 1898 } 1899 EXPORT_SYMBOL(inode_needs_sync); 1900 1901 /* 1902 * If we try to find an inode in the inode hash while it is being 1903 * deleted, we have to wait until the filesystem completes its 1904 * deletion before reporting that it isn't found. This function waits 1905 * until the deletion _might_ have completed. Callers are responsible 1906 * to recheck inode state. 1907 * 1908 * It doesn't matter if I_NEW is not set initially, a call to 1909 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 1910 * will DTRT. 1911 */ 1912 static void __wait_on_freeing_inode(struct inode *inode) 1913 { 1914 wait_queue_head_t *wq; 1915 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 1916 wq = bit_waitqueue(&inode->i_state, __I_NEW); 1917 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 1918 spin_unlock(&inode->i_lock); 1919 spin_unlock(&inode_hash_lock); 1920 schedule(); 1921 finish_wait(wq, &wait.wq_entry); 1922 spin_lock(&inode_hash_lock); 1923 } 1924 1925 static __initdata unsigned long ihash_entries; 1926 static int __init set_ihash_entries(char *str) 1927 { 1928 if (!str) 1929 return 0; 1930 ihash_entries = simple_strtoul(str, &str, 0); 1931 return 1; 1932 } 1933 __setup("ihash_entries=", set_ihash_entries); 1934 1935 /* 1936 * Initialize the waitqueues and inode hash table. 1937 */ 1938 void __init inode_init_early(void) 1939 { 1940 /* If hashes are distributed across NUMA nodes, defer 1941 * hash allocation until vmalloc space is available. 1942 */ 1943 if (hashdist) 1944 return; 1945 1946 inode_hashtable = 1947 alloc_large_system_hash("Inode-cache", 1948 sizeof(struct hlist_head), 1949 ihash_entries, 1950 14, 1951 HASH_EARLY | HASH_ZERO, 1952 &i_hash_shift, 1953 &i_hash_mask, 1954 0, 1955 0); 1956 } 1957 1958 void __init inode_init(void) 1959 { 1960 /* inode slab cache */ 1961 inode_cachep = kmem_cache_create("inode_cache", 1962 sizeof(struct inode), 1963 0, 1964 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1965 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 1966 init_once); 1967 1968 /* Hash may have been set up in inode_init_early */ 1969 if (!hashdist) 1970 return; 1971 1972 inode_hashtable = 1973 alloc_large_system_hash("Inode-cache", 1974 sizeof(struct hlist_head), 1975 ihash_entries, 1976 14, 1977 HASH_ZERO, 1978 &i_hash_shift, 1979 &i_hash_mask, 1980 0, 1981 0); 1982 } 1983 1984 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1985 { 1986 inode->i_mode = mode; 1987 if (S_ISCHR(mode)) { 1988 inode->i_fop = &def_chr_fops; 1989 inode->i_rdev = rdev; 1990 } else if (S_ISBLK(mode)) { 1991 inode->i_fop = &def_blk_fops; 1992 inode->i_rdev = rdev; 1993 } else if (S_ISFIFO(mode)) 1994 inode->i_fop = &pipefifo_fops; 1995 else if (S_ISSOCK(mode)) 1996 ; /* leave it no_open_fops */ 1997 else 1998 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 1999 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2000 inode->i_ino); 2001 } 2002 EXPORT_SYMBOL(init_special_inode); 2003 2004 /** 2005 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2006 * @inode: New inode 2007 * @dir: Directory inode 2008 * @mode: mode of the new inode 2009 */ 2010 void inode_init_owner(struct inode *inode, const struct inode *dir, 2011 umode_t mode) 2012 { 2013 inode->i_uid = current_fsuid(); 2014 if (dir && dir->i_mode & S_ISGID) { 2015 inode->i_gid = dir->i_gid; 2016 if (S_ISDIR(mode)) 2017 mode |= S_ISGID; 2018 } else 2019 inode->i_gid = current_fsgid(); 2020 inode->i_mode = mode; 2021 } 2022 EXPORT_SYMBOL(inode_init_owner); 2023 2024 /** 2025 * inode_owner_or_capable - check current task permissions to inode 2026 * @inode: inode being checked 2027 * 2028 * Return true if current either has CAP_FOWNER in a namespace with the 2029 * inode owner uid mapped, or owns the file. 2030 */ 2031 bool inode_owner_or_capable(const struct inode *inode) 2032 { 2033 struct user_namespace *ns; 2034 2035 if (uid_eq(current_fsuid(), inode->i_uid)) 2036 return true; 2037 2038 ns = current_user_ns(); 2039 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER)) 2040 return true; 2041 return false; 2042 } 2043 EXPORT_SYMBOL(inode_owner_or_capable); 2044 2045 /* 2046 * Direct i/o helper functions 2047 */ 2048 static void __inode_dio_wait(struct inode *inode) 2049 { 2050 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2051 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2052 2053 do { 2054 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); 2055 if (atomic_read(&inode->i_dio_count)) 2056 schedule(); 2057 } while (atomic_read(&inode->i_dio_count)); 2058 finish_wait(wq, &q.wq_entry); 2059 } 2060 2061 /** 2062 * inode_dio_wait - wait for outstanding DIO requests to finish 2063 * @inode: inode to wait for 2064 * 2065 * Waits for all pending direct I/O requests to finish so that we can 2066 * proceed with a truncate or equivalent operation. 2067 * 2068 * Must be called under a lock that serializes taking new references 2069 * to i_dio_count, usually by inode->i_mutex. 2070 */ 2071 void inode_dio_wait(struct inode *inode) 2072 { 2073 if (atomic_read(&inode->i_dio_count)) 2074 __inode_dio_wait(inode); 2075 } 2076 EXPORT_SYMBOL(inode_dio_wait); 2077 2078 /* 2079 * inode_set_flags - atomically set some inode flags 2080 * 2081 * Note: the caller should be holding i_mutex, or else be sure that 2082 * they have exclusive access to the inode structure (i.e., while the 2083 * inode is being instantiated). The reason for the cmpxchg() loop 2084 * --- which wouldn't be necessary if all code paths which modify 2085 * i_flags actually followed this rule, is that there is at least one 2086 * code path which doesn't today so we use cmpxchg() out of an abundance 2087 * of caution. 2088 * 2089 * In the long run, i_mutex is overkill, and we should probably look 2090 * at using the i_lock spinlock to protect i_flags, and then make sure 2091 * it is so documented in include/linux/fs.h and that all code follows 2092 * the locking convention!! 2093 */ 2094 void inode_set_flags(struct inode *inode, unsigned int flags, 2095 unsigned int mask) 2096 { 2097 unsigned int old_flags, new_flags; 2098 2099 WARN_ON_ONCE(flags & ~mask); 2100 do { 2101 old_flags = READ_ONCE(inode->i_flags); 2102 new_flags = (old_flags & ~mask) | flags; 2103 } while (unlikely(cmpxchg(&inode->i_flags, old_flags, 2104 new_flags) != old_flags)); 2105 } 2106 EXPORT_SYMBOL(inode_set_flags); 2107 2108 void inode_nohighmem(struct inode *inode) 2109 { 2110 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2111 } 2112 EXPORT_SYMBOL(inode_nohighmem); 2113 2114 /** 2115 * current_time - Return FS time 2116 * @inode: inode. 2117 * 2118 * Return the current time truncated to the time granularity supported by 2119 * the fs. 2120 * 2121 * Note that inode and inode->sb cannot be NULL. 2122 * Otherwise, the function warns and returns time without truncation. 2123 */ 2124 struct timespec current_time(struct inode *inode) 2125 { 2126 struct timespec now = current_kernel_time(); 2127 2128 if (unlikely(!inode->i_sb)) { 2129 WARN(1, "current_time() called with uninitialized super_block in the inode"); 2130 return now; 2131 } 2132 2133 return timespec_trunc(now, inode->i_sb->s_time_gran); 2134 } 2135 EXPORT_SYMBOL(current_time); 2136