xref: /openbmc/linux/fs/inode.c (revision a1e58bbd)
1 /*
2  * linux/fs/inode.c
3  *
4  * (C) 1997 Linus Torvalds
5  */
6 
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/quotaops.h>
12 #include <linux/slab.h>
13 #include <linux/writeback.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/wait.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/inotify.h>
24 #include <linux/mount.h>
25 
26 /*
27  * This is needed for the following functions:
28  *  - inode_has_buffers
29  *  - invalidate_inode_buffers
30  *  - invalidate_bdev
31  *
32  * FIXME: remove all knowledge of the buffer layer from this file
33  */
34 #include <linux/buffer_head.h>
35 
36 /*
37  * New inode.c implementation.
38  *
39  * This implementation has the basic premise of trying
40  * to be extremely low-overhead and SMP-safe, yet be
41  * simple enough to be "obviously correct".
42  *
43  * Famous last words.
44  */
45 
46 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
47 
48 /* #define INODE_PARANOIA 1 */
49 /* #define INODE_DEBUG 1 */
50 
51 /*
52  * Inode lookup is no longer as critical as it used to be:
53  * most of the lookups are going to be through the dcache.
54  */
55 #define I_HASHBITS	i_hash_shift
56 #define I_HASHMASK	i_hash_mask
57 
58 static unsigned int i_hash_mask __read_mostly;
59 static unsigned int i_hash_shift __read_mostly;
60 
61 /*
62  * Each inode can be on two separate lists. One is
63  * the hash list of the inode, used for lookups. The
64  * other linked list is the "type" list:
65  *  "in_use" - valid inode, i_count > 0, i_nlink > 0
66  *  "dirty"  - as "in_use" but also dirty
67  *  "unused" - valid inode, i_count = 0
68  *
69  * A "dirty" list is maintained for each super block,
70  * allowing for low-overhead inode sync() operations.
71  */
72 
73 LIST_HEAD(inode_in_use);
74 LIST_HEAD(inode_unused);
75 static struct hlist_head *inode_hashtable __read_mostly;
76 
77 /*
78  * A simple spinlock to protect the list manipulations.
79  *
80  * NOTE! You also have to own the lock if you change
81  * the i_state of an inode while it is in use..
82  */
83 DEFINE_SPINLOCK(inode_lock);
84 
85 /*
86  * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
87  * icache shrinking path, and the umount path.  Without this exclusion,
88  * by the time prune_icache calls iput for the inode whose pages it has
89  * been invalidating, or by the time it calls clear_inode & destroy_inode
90  * from its final dispose_list, the struct super_block they refer to
91  * (for inode->i_sb->s_op) may already have been freed and reused.
92  */
93 static DEFINE_MUTEX(iprune_mutex);
94 
95 /*
96  * Statistics gathering..
97  */
98 struct inodes_stat_t inodes_stat;
99 
100 static struct kmem_cache * inode_cachep __read_mostly;
101 
102 static void wake_up_inode(struct inode *inode)
103 {
104 	/*
105 	 * Prevent speculative execution through spin_unlock(&inode_lock);
106 	 */
107 	smp_mb();
108 	wake_up_bit(&inode->i_state, __I_LOCK);
109 }
110 
111 static struct inode *alloc_inode(struct super_block *sb)
112 {
113 	static const struct address_space_operations empty_aops;
114 	static struct inode_operations empty_iops;
115 	static const struct file_operations empty_fops;
116 	struct inode *inode;
117 
118 	if (sb->s_op->alloc_inode)
119 		inode = sb->s_op->alloc_inode(sb);
120 	else
121 		inode = (struct inode *) kmem_cache_alloc(inode_cachep, GFP_KERNEL);
122 
123 	if (inode) {
124 		struct address_space * const mapping = &inode->i_data;
125 
126 		inode->i_sb = sb;
127 		inode->i_blkbits = sb->s_blocksize_bits;
128 		inode->i_flags = 0;
129 		atomic_set(&inode->i_count, 1);
130 		inode->i_op = &empty_iops;
131 		inode->i_fop = &empty_fops;
132 		inode->i_nlink = 1;
133 		atomic_set(&inode->i_writecount, 0);
134 		inode->i_size = 0;
135 		inode->i_blocks = 0;
136 		inode->i_bytes = 0;
137 		inode->i_generation = 0;
138 #ifdef CONFIG_QUOTA
139 		memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
140 #endif
141 		inode->i_pipe = NULL;
142 		inode->i_bdev = NULL;
143 		inode->i_cdev = NULL;
144 		inode->i_rdev = 0;
145 		inode->dirtied_when = 0;
146 		if (security_inode_alloc(inode)) {
147 			if (inode->i_sb->s_op->destroy_inode)
148 				inode->i_sb->s_op->destroy_inode(inode);
149 			else
150 				kmem_cache_free(inode_cachep, (inode));
151 			return NULL;
152 		}
153 
154 		spin_lock_init(&inode->i_lock);
155 		lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
156 
157 		mutex_init(&inode->i_mutex);
158 		lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
159 
160 		init_rwsem(&inode->i_alloc_sem);
161 		lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
162 
163 		mapping->a_ops = &empty_aops;
164  		mapping->host = inode;
165 		mapping->flags = 0;
166 		mapping_set_gfp_mask(mapping, GFP_HIGHUSER_PAGECACHE);
167 		mapping->assoc_mapping = NULL;
168 		mapping->backing_dev_info = &default_backing_dev_info;
169 
170 		/*
171 		 * If the block_device provides a backing_dev_info for client
172 		 * inodes then use that.  Otherwise the inode share the bdev's
173 		 * backing_dev_info.
174 		 */
175 		if (sb->s_bdev) {
176 			struct backing_dev_info *bdi;
177 
178 			bdi = sb->s_bdev->bd_inode_backing_dev_info;
179 			if (!bdi)
180 				bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
181 			mapping->backing_dev_info = bdi;
182 		}
183 		inode->i_private = NULL;
184 		inode->i_mapping = mapping;
185 	}
186 	return inode;
187 }
188 
189 void destroy_inode(struct inode *inode)
190 {
191 	BUG_ON(inode_has_buffers(inode));
192 	security_inode_free(inode);
193 	if (inode->i_sb->s_op->destroy_inode)
194 		inode->i_sb->s_op->destroy_inode(inode);
195 	else
196 		kmem_cache_free(inode_cachep, (inode));
197 }
198 
199 
200 /*
201  * These are initializations that only need to be done
202  * once, because the fields are idempotent across use
203  * of the inode, so let the slab aware of that.
204  */
205 void inode_init_once(struct inode *inode)
206 {
207 	memset(inode, 0, sizeof(*inode));
208 	INIT_HLIST_NODE(&inode->i_hash);
209 	INIT_LIST_HEAD(&inode->i_dentry);
210 	INIT_LIST_HEAD(&inode->i_devices);
211 	INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
212 	rwlock_init(&inode->i_data.tree_lock);
213 	spin_lock_init(&inode->i_data.i_mmap_lock);
214 	INIT_LIST_HEAD(&inode->i_data.private_list);
215 	spin_lock_init(&inode->i_data.private_lock);
216 	INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
217 	INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
218 	i_size_ordered_init(inode);
219 #ifdef CONFIG_INOTIFY
220 	INIT_LIST_HEAD(&inode->inotify_watches);
221 	mutex_init(&inode->inotify_mutex);
222 #endif
223 }
224 
225 EXPORT_SYMBOL(inode_init_once);
226 
227 static void init_once(struct kmem_cache * cachep, void *foo)
228 {
229 	struct inode * inode = (struct inode *) foo;
230 
231 	inode_init_once(inode);
232 }
233 
234 /*
235  * inode_lock must be held
236  */
237 void __iget(struct inode * inode)
238 {
239 	if (atomic_read(&inode->i_count)) {
240 		atomic_inc(&inode->i_count);
241 		return;
242 	}
243 	atomic_inc(&inode->i_count);
244 	if (!(inode->i_state & (I_DIRTY|I_SYNC)))
245 		list_move(&inode->i_list, &inode_in_use);
246 	inodes_stat.nr_unused--;
247 }
248 
249 /**
250  * clear_inode - clear an inode
251  * @inode: inode to clear
252  *
253  * This is called by the filesystem to tell us
254  * that the inode is no longer useful. We just
255  * terminate it with extreme prejudice.
256  */
257 void clear_inode(struct inode *inode)
258 {
259 	might_sleep();
260 	invalidate_inode_buffers(inode);
261 
262 	BUG_ON(inode->i_data.nrpages);
263 	BUG_ON(!(inode->i_state & I_FREEING));
264 	BUG_ON(inode->i_state & I_CLEAR);
265 	inode_sync_wait(inode);
266 	DQUOT_DROP(inode);
267 	if (inode->i_sb->s_op->clear_inode)
268 		inode->i_sb->s_op->clear_inode(inode);
269 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
270 		bd_forget(inode);
271 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
272 		cd_forget(inode);
273 	inode->i_state = I_CLEAR;
274 }
275 
276 EXPORT_SYMBOL(clear_inode);
277 
278 /*
279  * dispose_list - dispose of the contents of a local list
280  * @head: the head of the list to free
281  *
282  * Dispose-list gets a local list with local inodes in it, so it doesn't
283  * need to worry about list corruption and SMP locks.
284  */
285 static void dispose_list(struct list_head *head)
286 {
287 	int nr_disposed = 0;
288 
289 	while (!list_empty(head)) {
290 		struct inode *inode;
291 
292 		inode = list_first_entry(head, struct inode, i_list);
293 		list_del(&inode->i_list);
294 
295 		if (inode->i_data.nrpages)
296 			truncate_inode_pages(&inode->i_data, 0);
297 		clear_inode(inode);
298 
299 		spin_lock(&inode_lock);
300 		hlist_del_init(&inode->i_hash);
301 		list_del_init(&inode->i_sb_list);
302 		spin_unlock(&inode_lock);
303 
304 		wake_up_inode(inode);
305 		destroy_inode(inode);
306 		nr_disposed++;
307 	}
308 	spin_lock(&inode_lock);
309 	inodes_stat.nr_inodes -= nr_disposed;
310 	spin_unlock(&inode_lock);
311 }
312 
313 /*
314  * Invalidate all inodes for a device.
315  */
316 static int invalidate_list(struct list_head *head, struct list_head *dispose)
317 {
318 	struct list_head *next;
319 	int busy = 0, count = 0;
320 
321 	next = head->next;
322 	for (;;) {
323 		struct list_head * tmp = next;
324 		struct inode * inode;
325 
326 		/*
327 		 * We can reschedule here without worrying about the list's
328 		 * consistency because the per-sb list of inodes must not
329 		 * change during umount anymore, and because iprune_mutex keeps
330 		 * shrink_icache_memory() away.
331 		 */
332 		cond_resched_lock(&inode_lock);
333 
334 		next = next->next;
335 		if (tmp == head)
336 			break;
337 		inode = list_entry(tmp, struct inode, i_sb_list);
338 		invalidate_inode_buffers(inode);
339 		if (!atomic_read(&inode->i_count)) {
340 			list_move(&inode->i_list, dispose);
341 			inode->i_state |= I_FREEING;
342 			count++;
343 			continue;
344 		}
345 		busy = 1;
346 	}
347 	/* only unused inodes may be cached with i_count zero */
348 	inodes_stat.nr_unused -= count;
349 	return busy;
350 }
351 
352 /**
353  *	invalidate_inodes	- discard the inodes on a device
354  *	@sb: superblock
355  *
356  *	Discard all of the inodes for a given superblock. If the discard
357  *	fails because there are busy inodes then a non zero value is returned.
358  *	If the discard is successful all the inodes have been discarded.
359  */
360 int invalidate_inodes(struct super_block * sb)
361 {
362 	int busy;
363 	LIST_HEAD(throw_away);
364 
365 	mutex_lock(&iprune_mutex);
366 	spin_lock(&inode_lock);
367 	inotify_unmount_inodes(&sb->s_inodes);
368 	busy = invalidate_list(&sb->s_inodes, &throw_away);
369 	spin_unlock(&inode_lock);
370 
371 	dispose_list(&throw_away);
372 	mutex_unlock(&iprune_mutex);
373 
374 	return busy;
375 }
376 
377 EXPORT_SYMBOL(invalidate_inodes);
378 
379 static int can_unuse(struct inode *inode)
380 {
381 	if (inode->i_state)
382 		return 0;
383 	if (inode_has_buffers(inode))
384 		return 0;
385 	if (atomic_read(&inode->i_count))
386 		return 0;
387 	if (inode->i_data.nrpages)
388 		return 0;
389 	return 1;
390 }
391 
392 /*
393  * Scan `goal' inodes on the unused list for freeable ones. They are moved to
394  * a temporary list and then are freed outside inode_lock by dispose_list().
395  *
396  * Any inodes which are pinned purely because of attached pagecache have their
397  * pagecache removed.  We expect the final iput() on that inode to add it to
398  * the front of the inode_unused list.  So look for it there and if the
399  * inode is still freeable, proceed.  The right inode is found 99.9% of the
400  * time in testing on a 4-way.
401  *
402  * If the inode has metadata buffers attached to mapping->private_list then
403  * try to remove them.
404  */
405 static void prune_icache(int nr_to_scan)
406 {
407 	LIST_HEAD(freeable);
408 	int nr_pruned = 0;
409 	int nr_scanned;
410 	unsigned long reap = 0;
411 
412 	mutex_lock(&iprune_mutex);
413 	spin_lock(&inode_lock);
414 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
415 		struct inode *inode;
416 
417 		if (list_empty(&inode_unused))
418 			break;
419 
420 		inode = list_entry(inode_unused.prev, struct inode, i_list);
421 
422 		if (inode->i_state || atomic_read(&inode->i_count)) {
423 			list_move(&inode->i_list, &inode_unused);
424 			continue;
425 		}
426 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
427 			__iget(inode);
428 			spin_unlock(&inode_lock);
429 			if (remove_inode_buffers(inode))
430 				reap += invalidate_mapping_pages(&inode->i_data,
431 								0, -1);
432 			iput(inode);
433 			spin_lock(&inode_lock);
434 
435 			if (inode != list_entry(inode_unused.next,
436 						struct inode, i_list))
437 				continue;	/* wrong inode or list_empty */
438 			if (!can_unuse(inode))
439 				continue;
440 		}
441 		list_move(&inode->i_list, &freeable);
442 		inode->i_state |= I_FREEING;
443 		nr_pruned++;
444 	}
445 	inodes_stat.nr_unused -= nr_pruned;
446 	if (current_is_kswapd())
447 		__count_vm_events(KSWAPD_INODESTEAL, reap);
448 	else
449 		__count_vm_events(PGINODESTEAL, reap);
450 	spin_unlock(&inode_lock);
451 
452 	dispose_list(&freeable);
453 	mutex_unlock(&iprune_mutex);
454 }
455 
456 /*
457  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
458  * "unused" means that no dentries are referring to the inodes: the files are
459  * not open and the dcache references to those inodes have already been
460  * reclaimed.
461  *
462  * This function is passed the number of inodes to scan, and it returns the
463  * total number of remaining possibly-reclaimable inodes.
464  */
465 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
466 {
467 	if (nr) {
468 		/*
469 		 * Nasty deadlock avoidance.  We may hold various FS locks,
470 		 * and we don't want to recurse into the FS that called us
471 		 * in clear_inode() and friends..
472 	 	 */
473 		if (!(gfp_mask & __GFP_FS))
474 			return -1;
475 		prune_icache(nr);
476 	}
477 	return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
478 }
479 
480 static struct shrinker icache_shrinker = {
481 	.shrink = shrink_icache_memory,
482 	.seeks = DEFAULT_SEEKS,
483 };
484 
485 static void __wait_on_freeing_inode(struct inode *inode);
486 /*
487  * Called with the inode lock held.
488  * NOTE: we are not increasing the inode-refcount, you must call __iget()
489  * by hand after calling find_inode now! This simplifies iunique and won't
490  * add any additional branch in the common code.
491  */
492 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data)
493 {
494 	struct hlist_node *node;
495 	struct inode * inode = NULL;
496 
497 repeat:
498 	hlist_for_each (node, head) {
499 		inode = hlist_entry(node, struct inode, i_hash);
500 		if (inode->i_sb != sb)
501 			continue;
502 		if (!test(inode, data))
503 			continue;
504 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
505 			__wait_on_freeing_inode(inode);
506 			goto repeat;
507 		}
508 		break;
509 	}
510 	return node ? inode : NULL;
511 }
512 
513 /*
514  * find_inode_fast is the fast path version of find_inode, see the comment at
515  * iget_locked for details.
516  */
517 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino)
518 {
519 	struct hlist_node *node;
520 	struct inode * inode = NULL;
521 
522 repeat:
523 	hlist_for_each (node, head) {
524 		inode = hlist_entry(node, struct inode, i_hash);
525 		if (inode->i_ino != ino)
526 			continue;
527 		if (inode->i_sb != sb)
528 			continue;
529 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
530 			__wait_on_freeing_inode(inode);
531 			goto repeat;
532 		}
533 		break;
534 	}
535 	return node ? inode : NULL;
536 }
537 
538 /**
539  *	new_inode 	- obtain an inode
540  *	@sb: superblock
541  *
542  *	Allocates a new inode for given superblock. The default gfp_mask
543  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_PAGECACHE.
544  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
545  *	for the page cache are not reclaimable or migratable,
546  *	mapping_set_gfp_mask() must be called with suitable flags on the
547  *	newly created inode's mapping
548  *
549  */
550 struct inode *new_inode(struct super_block *sb)
551 {
552 	/*
553 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
554 	 * error if st_ino won't fit in target struct field. Use 32bit counter
555 	 * here to attempt to avoid that.
556 	 */
557 	static unsigned int last_ino;
558 	struct inode * inode;
559 
560 	spin_lock_prefetch(&inode_lock);
561 
562 	inode = alloc_inode(sb);
563 	if (inode) {
564 		spin_lock(&inode_lock);
565 		inodes_stat.nr_inodes++;
566 		list_add(&inode->i_list, &inode_in_use);
567 		list_add(&inode->i_sb_list, &sb->s_inodes);
568 		inode->i_ino = ++last_ino;
569 		inode->i_state = 0;
570 		spin_unlock(&inode_lock);
571 	}
572 	return inode;
573 }
574 
575 EXPORT_SYMBOL(new_inode);
576 
577 void unlock_new_inode(struct inode *inode)
578 {
579 #ifdef CONFIG_DEBUG_LOCK_ALLOC
580 	if (inode->i_mode & S_IFDIR) {
581 		struct file_system_type *type = inode->i_sb->s_type;
582 
583 		/*
584 		 * ensure nobody is actually holding i_mutex
585 		 */
586 		mutex_destroy(&inode->i_mutex);
587 		mutex_init(&inode->i_mutex);
588 		lockdep_set_class(&inode->i_mutex, &type->i_mutex_dir_key);
589 	}
590 #endif
591 	/*
592 	 * This is special!  We do not need the spinlock
593 	 * when clearing I_LOCK, because we're guaranteed
594 	 * that nobody else tries to do anything about the
595 	 * state of the inode when it is locked, as we
596 	 * just created it (so there can be no old holders
597 	 * that haven't tested I_LOCK).
598 	 */
599 	inode->i_state &= ~(I_LOCK|I_NEW);
600 	wake_up_inode(inode);
601 }
602 
603 EXPORT_SYMBOL(unlock_new_inode);
604 
605 /*
606  * This is called without the inode lock held.. Be careful.
607  *
608  * We no longer cache the sb_flags in i_flags - see fs.h
609  *	-- rmk@arm.uk.linux.org
610  */
611 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data)
612 {
613 	struct inode * inode;
614 
615 	inode = alloc_inode(sb);
616 	if (inode) {
617 		struct inode * old;
618 
619 		spin_lock(&inode_lock);
620 		/* We released the lock, so.. */
621 		old = find_inode(sb, head, test, data);
622 		if (!old) {
623 			if (set(inode, data))
624 				goto set_failed;
625 
626 			inodes_stat.nr_inodes++;
627 			list_add(&inode->i_list, &inode_in_use);
628 			list_add(&inode->i_sb_list, &sb->s_inodes);
629 			hlist_add_head(&inode->i_hash, head);
630 			inode->i_state = I_LOCK|I_NEW;
631 			spin_unlock(&inode_lock);
632 
633 			/* Return the locked inode with I_NEW set, the
634 			 * caller is responsible for filling in the contents
635 			 */
636 			return inode;
637 		}
638 
639 		/*
640 		 * Uhhuh, somebody else created the same inode under
641 		 * us. Use the old inode instead of the one we just
642 		 * allocated.
643 		 */
644 		__iget(old);
645 		spin_unlock(&inode_lock);
646 		destroy_inode(inode);
647 		inode = old;
648 		wait_on_inode(inode);
649 	}
650 	return inode;
651 
652 set_failed:
653 	spin_unlock(&inode_lock);
654 	destroy_inode(inode);
655 	return NULL;
656 }
657 
658 /*
659  * get_new_inode_fast is the fast path version of get_new_inode, see the
660  * comment at iget_locked for details.
661  */
662 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino)
663 {
664 	struct inode * inode;
665 
666 	inode = alloc_inode(sb);
667 	if (inode) {
668 		struct inode * old;
669 
670 		spin_lock(&inode_lock);
671 		/* We released the lock, so.. */
672 		old = find_inode_fast(sb, head, ino);
673 		if (!old) {
674 			inode->i_ino = ino;
675 			inodes_stat.nr_inodes++;
676 			list_add(&inode->i_list, &inode_in_use);
677 			list_add(&inode->i_sb_list, &sb->s_inodes);
678 			hlist_add_head(&inode->i_hash, head);
679 			inode->i_state = I_LOCK|I_NEW;
680 			spin_unlock(&inode_lock);
681 
682 			/* Return the locked inode with I_NEW set, the
683 			 * caller is responsible for filling in the contents
684 			 */
685 			return inode;
686 		}
687 
688 		/*
689 		 * Uhhuh, somebody else created the same inode under
690 		 * us. Use the old inode instead of the one we just
691 		 * allocated.
692 		 */
693 		__iget(old);
694 		spin_unlock(&inode_lock);
695 		destroy_inode(inode);
696 		inode = old;
697 		wait_on_inode(inode);
698 	}
699 	return inode;
700 }
701 
702 static unsigned long hash(struct super_block *sb, unsigned long hashval)
703 {
704 	unsigned long tmp;
705 
706 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
707 			L1_CACHE_BYTES;
708 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
709 	return tmp & I_HASHMASK;
710 }
711 
712 /**
713  *	iunique - get a unique inode number
714  *	@sb: superblock
715  *	@max_reserved: highest reserved inode number
716  *
717  *	Obtain an inode number that is unique on the system for a given
718  *	superblock. This is used by file systems that have no natural
719  *	permanent inode numbering system. An inode number is returned that
720  *	is higher than the reserved limit but unique.
721  *
722  *	BUGS:
723  *	With a large number of inodes live on the file system this function
724  *	currently becomes quite slow.
725  */
726 ino_t iunique(struct super_block *sb, ino_t max_reserved)
727 {
728 	/*
729 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
730 	 * error if st_ino won't fit in target struct field. Use 32bit counter
731 	 * here to attempt to avoid that.
732 	 */
733 	static unsigned int counter;
734 	struct inode *inode;
735 	struct hlist_head *head;
736 	ino_t res;
737 
738 	spin_lock(&inode_lock);
739 	do {
740 		if (counter <= max_reserved)
741 			counter = max_reserved + 1;
742 		res = counter++;
743 		head = inode_hashtable + hash(sb, res);
744 		inode = find_inode_fast(sb, head, res);
745 	} while (inode != NULL);
746 	spin_unlock(&inode_lock);
747 
748 	return res;
749 }
750 EXPORT_SYMBOL(iunique);
751 
752 struct inode *igrab(struct inode *inode)
753 {
754 	spin_lock(&inode_lock);
755 	if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)))
756 		__iget(inode);
757 	else
758 		/*
759 		 * Handle the case where s_op->clear_inode is not been
760 		 * called yet, and somebody is calling igrab
761 		 * while the inode is getting freed.
762 		 */
763 		inode = NULL;
764 	spin_unlock(&inode_lock);
765 	return inode;
766 }
767 
768 EXPORT_SYMBOL(igrab);
769 
770 /**
771  * ifind - internal function, you want ilookup5() or iget5().
772  * @sb:		super block of file system to search
773  * @head:       the head of the list to search
774  * @test:	callback used for comparisons between inodes
775  * @data:	opaque data pointer to pass to @test
776  * @wait:	if true wait for the inode to be unlocked, if false do not
777  *
778  * ifind() searches for the inode specified by @data in the inode
779  * cache. This is a generalized version of ifind_fast() for file systems where
780  * the inode number is not sufficient for unique identification of an inode.
781  *
782  * If the inode is in the cache, the inode is returned with an incremented
783  * reference count.
784  *
785  * Otherwise NULL is returned.
786  *
787  * Note, @test is called with the inode_lock held, so can't sleep.
788  */
789 static struct inode *ifind(struct super_block *sb,
790 		struct hlist_head *head, int (*test)(struct inode *, void *),
791 		void *data, const int wait)
792 {
793 	struct inode *inode;
794 
795 	spin_lock(&inode_lock);
796 	inode = find_inode(sb, head, test, data);
797 	if (inode) {
798 		__iget(inode);
799 		spin_unlock(&inode_lock);
800 		if (likely(wait))
801 			wait_on_inode(inode);
802 		return inode;
803 	}
804 	spin_unlock(&inode_lock);
805 	return NULL;
806 }
807 
808 /**
809  * ifind_fast - internal function, you want ilookup() or iget().
810  * @sb:		super block of file system to search
811  * @head:       head of the list to search
812  * @ino:	inode number to search for
813  *
814  * ifind_fast() searches for the inode @ino in the inode cache. This is for
815  * file systems where the inode number is sufficient for unique identification
816  * of an inode.
817  *
818  * If the inode is in the cache, the inode is returned with an incremented
819  * reference count.
820  *
821  * Otherwise NULL is returned.
822  */
823 static struct inode *ifind_fast(struct super_block *sb,
824 		struct hlist_head *head, unsigned long ino)
825 {
826 	struct inode *inode;
827 
828 	spin_lock(&inode_lock);
829 	inode = find_inode_fast(sb, head, ino);
830 	if (inode) {
831 		__iget(inode);
832 		spin_unlock(&inode_lock);
833 		wait_on_inode(inode);
834 		return inode;
835 	}
836 	spin_unlock(&inode_lock);
837 	return NULL;
838 }
839 
840 /**
841  * ilookup5_nowait - search for an inode in the inode cache
842  * @sb:		super block of file system to search
843  * @hashval:	hash value (usually inode number) to search for
844  * @test:	callback used for comparisons between inodes
845  * @data:	opaque data pointer to pass to @test
846  *
847  * ilookup5() uses ifind() to search for the inode specified by @hashval and
848  * @data in the inode cache. This is a generalized version of ilookup() for
849  * file systems where the inode number is not sufficient for unique
850  * identification of an inode.
851  *
852  * If the inode is in the cache, the inode is returned with an incremented
853  * reference count.  Note, the inode lock is not waited upon so you have to be
854  * very careful what you do with the returned inode.  You probably should be
855  * using ilookup5() instead.
856  *
857  * Otherwise NULL is returned.
858  *
859  * Note, @test is called with the inode_lock held, so can't sleep.
860  */
861 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
862 		int (*test)(struct inode *, void *), void *data)
863 {
864 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
865 
866 	return ifind(sb, head, test, data, 0);
867 }
868 
869 EXPORT_SYMBOL(ilookup5_nowait);
870 
871 /**
872  * ilookup5 - search for an inode in the inode cache
873  * @sb:		super block of file system to search
874  * @hashval:	hash value (usually inode number) to search for
875  * @test:	callback used for comparisons between inodes
876  * @data:	opaque data pointer to pass to @test
877  *
878  * ilookup5() uses ifind() to search for the inode specified by @hashval and
879  * @data in the inode cache. This is a generalized version of ilookup() for
880  * file systems where the inode number is not sufficient for unique
881  * identification of an inode.
882  *
883  * If the inode is in the cache, the inode lock is waited upon and the inode is
884  * returned with an incremented reference count.
885  *
886  * Otherwise NULL is returned.
887  *
888  * Note, @test is called with the inode_lock held, so can't sleep.
889  */
890 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
891 		int (*test)(struct inode *, void *), void *data)
892 {
893 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
894 
895 	return ifind(sb, head, test, data, 1);
896 }
897 
898 EXPORT_SYMBOL(ilookup5);
899 
900 /**
901  * ilookup - search for an inode in the inode cache
902  * @sb:		super block of file system to search
903  * @ino:	inode number to search for
904  *
905  * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
906  * This is for file systems where the inode number is sufficient for unique
907  * identification of an inode.
908  *
909  * If the inode is in the cache, the inode is returned with an incremented
910  * reference count.
911  *
912  * Otherwise NULL is returned.
913  */
914 struct inode *ilookup(struct super_block *sb, unsigned long ino)
915 {
916 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
917 
918 	return ifind_fast(sb, head, ino);
919 }
920 
921 EXPORT_SYMBOL(ilookup);
922 
923 /**
924  * iget5_locked - obtain an inode from a mounted file system
925  * @sb:		super block of file system
926  * @hashval:	hash value (usually inode number) to get
927  * @test:	callback used for comparisons between inodes
928  * @set:	callback used to initialize a new struct inode
929  * @data:	opaque data pointer to pass to @test and @set
930  *
931  * iget5_locked() uses ifind() to search for the inode specified by @hashval
932  * and @data in the inode cache and if present it is returned with an increased
933  * reference count. This is a generalized version of iget_locked() for file
934  * systems where the inode number is not sufficient for unique identification
935  * of an inode.
936  *
937  * If the inode is not in cache, get_new_inode() is called to allocate a new
938  * inode and this is returned locked, hashed, and with the I_NEW flag set. The
939  * file system gets to fill it in before unlocking it via unlock_new_inode().
940  *
941  * Note both @test and @set are called with the inode_lock held, so can't sleep.
942  */
943 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
944 		int (*test)(struct inode *, void *),
945 		int (*set)(struct inode *, void *), void *data)
946 {
947 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
948 	struct inode *inode;
949 
950 	inode = ifind(sb, head, test, data, 1);
951 	if (inode)
952 		return inode;
953 	/*
954 	 * get_new_inode() will do the right thing, re-trying the search
955 	 * in case it had to block at any point.
956 	 */
957 	return get_new_inode(sb, head, test, set, data);
958 }
959 
960 EXPORT_SYMBOL(iget5_locked);
961 
962 /**
963  * iget_locked - obtain an inode from a mounted file system
964  * @sb:		super block of file system
965  * @ino:	inode number to get
966  *
967  * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
968  * the inode cache and if present it is returned with an increased reference
969  * count. This is for file systems where the inode number is sufficient for
970  * unique identification of an inode.
971  *
972  * If the inode is not in cache, get_new_inode_fast() is called to allocate a
973  * new inode and this is returned locked, hashed, and with the I_NEW flag set.
974  * The file system gets to fill it in before unlocking it via
975  * unlock_new_inode().
976  */
977 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
978 {
979 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
980 	struct inode *inode;
981 
982 	inode = ifind_fast(sb, head, ino);
983 	if (inode)
984 		return inode;
985 	/*
986 	 * get_new_inode_fast() will do the right thing, re-trying the search
987 	 * in case it had to block at any point.
988 	 */
989 	return get_new_inode_fast(sb, head, ino);
990 }
991 
992 EXPORT_SYMBOL(iget_locked);
993 
994 /**
995  *	__insert_inode_hash - hash an inode
996  *	@inode: unhashed inode
997  *	@hashval: unsigned long value used to locate this object in the
998  *		inode_hashtable.
999  *
1000  *	Add an inode to the inode hash for this superblock.
1001  */
1002 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
1003 {
1004 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1005 	spin_lock(&inode_lock);
1006 	hlist_add_head(&inode->i_hash, head);
1007 	spin_unlock(&inode_lock);
1008 }
1009 
1010 EXPORT_SYMBOL(__insert_inode_hash);
1011 
1012 /**
1013  *	remove_inode_hash - remove an inode from the hash
1014  *	@inode: inode to unhash
1015  *
1016  *	Remove an inode from the superblock.
1017  */
1018 void remove_inode_hash(struct inode *inode)
1019 {
1020 	spin_lock(&inode_lock);
1021 	hlist_del_init(&inode->i_hash);
1022 	spin_unlock(&inode_lock);
1023 }
1024 
1025 EXPORT_SYMBOL(remove_inode_hash);
1026 
1027 /*
1028  * Tell the filesystem that this inode is no longer of any interest and should
1029  * be completely destroyed.
1030  *
1031  * We leave the inode in the inode hash table until *after* the filesystem's
1032  * ->delete_inode completes.  This ensures that an iget (such as nfsd might
1033  * instigate) will always find up-to-date information either in the hash or on
1034  * disk.
1035  *
1036  * I_FREEING is set so that no-one will take a new reference to the inode while
1037  * it is being deleted.
1038  */
1039 void generic_delete_inode(struct inode *inode)
1040 {
1041 	const struct super_operations *op = inode->i_sb->s_op;
1042 
1043 	list_del_init(&inode->i_list);
1044 	list_del_init(&inode->i_sb_list);
1045 	inode->i_state |= I_FREEING;
1046 	inodes_stat.nr_inodes--;
1047 	spin_unlock(&inode_lock);
1048 
1049 	security_inode_delete(inode);
1050 
1051 	if (op->delete_inode) {
1052 		void (*delete)(struct inode *) = op->delete_inode;
1053 		if (!is_bad_inode(inode))
1054 			DQUOT_INIT(inode);
1055 		/* Filesystems implementing their own
1056 		 * s_op->delete_inode are required to call
1057 		 * truncate_inode_pages and clear_inode()
1058 		 * internally */
1059 		delete(inode);
1060 	} else {
1061 		truncate_inode_pages(&inode->i_data, 0);
1062 		clear_inode(inode);
1063 	}
1064 	spin_lock(&inode_lock);
1065 	hlist_del_init(&inode->i_hash);
1066 	spin_unlock(&inode_lock);
1067 	wake_up_inode(inode);
1068 	BUG_ON(inode->i_state != I_CLEAR);
1069 	destroy_inode(inode);
1070 }
1071 
1072 EXPORT_SYMBOL(generic_delete_inode);
1073 
1074 static void generic_forget_inode(struct inode *inode)
1075 {
1076 	struct super_block *sb = inode->i_sb;
1077 
1078 	if (!hlist_unhashed(&inode->i_hash)) {
1079 		if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1080 			list_move(&inode->i_list, &inode_unused);
1081 		inodes_stat.nr_unused++;
1082 		if (sb->s_flags & MS_ACTIVE) {
1083 			spin_unlock(&inode_lock);
1084 			return;
1085 		}
1086 		inode->i_state |= I_WILL_FREE;
1087 		spin_unlock(&inode_lock);
1088 		write_inode_now(inode, 1);
1089 		spin_lock(&inode_lock);
1090 		inode->i_state &= ~I_WILL_FREE;
1091 		inodes_stat.nr_unused--;
1092 		hlist_del_init(&inode->i_hash);
1093 	}
1094 	list_del_init(&inode->i_list);
1095 	list_del_init(&inode->i_sb_list);
1096 	inode->i_state |= I_FREEING;
1097 	inodes_stat.nr_inodes--;
1098 	spin_unlock(&inode_lock);
1099 	if (inode->i_data.nrpages)
1100 		truncate_inode_pages(&inode->i_data, 0);
1101 	clear_inode(inode);
1102 	wake_up_inode(inode);
1103 	destroy_inode(inode);
1104 }
1105 
1106 /*
1107  * Normal UNIX filesystem behaviour: delete the
1108  * inode when the usage count drops to zero, and
1109  * i_nlink is zero.
1110  */
1111 void generic_drop_inode(struct inode *inode)
1112 {
1113 	if (!inode->i_nlink)
1114 		generic_delete_inode(inode);
1115 	else
1116 		generic_forget_inode(inode);
1117 }
1118 
1119 EXPORT_SYMBOL_GPL(generic_drop_inode);
1120 
1121 /*
1122  * Called when we're dropping the last reference
1123  * to an inode.
1124  *
1125  * Call the FS "drop()" function, defaulting to
1126  * the legacy UNIX filesystem behaviour..
1127  *
1128  * NOTE! NOTE! NOTE! We're called with the inode lock
1129  * held, and the drop function is supposed to release
1130  * the lock!
1131  */
1132 static inline void iput_final(struct inode *inode)
1133 {
1134 	const struct super_operations *op = inode->i_sb->s_op;
1135 	void (*drop)(struct inode *) = generic_drop_inode;
1136 
1137 	if (op && op->drop_inode)
1138 		drop = op->drop_inode;
1139 	drop(inode);
1140 }
1141 
1142 /**
1143  *	iput	- put an inode
1144  *	@inode: inode to put
1145  *
1146  *	Puts an inode, dropping its usage count. If the inode use count hits
1147  *	zero, the inode is then freed and may also be destroyed.
1148  *
1149  *	Consequently, iput() can sleep.
1150  */
1151 void iput(struct inode *inode)
1152 {
1153 	if (inode) {
1154 		const struct super_operations *op = inode->i_sb->s_op;
1155 
1156 		BUG_ON(inode->i_state == I_CLEAR);
1157 
1158 		if (op && op->put_inode)
1159 			op->put_inode(inode);
1160 
1161 		if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1162 			iput_final(inode);
1163 	}
1164 }
1165 
1166 EXPORT_SYMBOL(iput);
1167 
1168 /**
1169  *	bmap	- find a block number in a file
1170  *	@inode: inode of file
1171  *	@block: block to find
1172  *
1173  *	Returns the block number on the device holding the inode that
1174  *	is the disk block number for the block of the file requested.
1175  *	That is, asked for block 4 of inode 1 the function will return the
1176  *	disk block relative to the disk start that holds that block of the
1177  *	file.
1178  */
1179 sector_t bmap(struct inode * inode, sector_t block)
1180 {
1181 	sector_t res = 0;
1182 	if (inode->i_mapping->a_ops->bmap)
1183 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1184 	return res;
1185 }
1186 EXPORT_SYMBOL(bmap);
1187 
1188 /**
1189  *	touch_atime	-	update the access time
1190  *	@mnt: mount the inode is accessed on
1191  *	@dentry: dentry accessed
1192  *
1193  *	Update the accessed time on an inode and mark it for writeback.
1194  *	This function automatically handles read only file systems and media,
1195  *	as well as the "noatime" flag and inode specific "noatime" markers.
1196  */
1197 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1198 {
1199 	struct inode *inode = dentry->d_inode;
1200 	struct timespec now;
1201 
1202 	if (inode->i_flags & S_NOATIME)
1203 		return;
1204 	if (IS_NOATIME(inode))
1205 		return;
1206 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1207 		return;
1208 
1209 	/*
1210 	 * We may have a NULL vfsmount when coming from NFSD
1211 	 */
1212 	if (mnt) {
1213 		if (mnt->mnt_flags & MNT_NOATIME)
1214 			return;
1215 		if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1216 			return;
1217 
1218 		if (mnt->mnt_flags & MNT_RELATIME) {
1219 			/*
1220 			 * With relative atime, only update atime if the
1221 			 * previous atime is earlier than either the ctime or
1222 			 * mtime.
1223 			 */
1224 			if (timespec_compare(&inode->i_mtime,
1225 						&inode->i_atime) < 0 &&
1226 			    timespec_compare(&inode->i_ctime,
1227 						&inode->i_atime) < 0)
1228 				return;
1229 		}
1230 	}
1231 
1232 	now = current_fs_time(inode->i_sb);
1233 	if (timespec_equal(&inode->i_atime, &now))
1234 		return;
1235 
1236 	inode->i_atime = now;
1237 	mark_inode_dirty_sync(inode);
1238 }
1239 EXPORT_SYMBOL(touch_atime);
1240 
1241 /**
1242  *	file_update_time	-	update mtime and ctime time
1243  *	@file: file accessed
1244  *
1245  *	Update the mtime and ctime members of an inode and mark the inode
1246  *	for writeback.  Note that this function is meant exclusively for
1247  *	usage in the file write path of filesystems, and filesystems may
1248  *	choose to explicitly ignore update via this function with the
1249  *	S_NOCTIME inode flag, e.g. for network filesystem where these
1250  *	timestamps are handled by the server.
1251  */
1252 
1253 void file_update_time(struct file *file)
1254 {
1255 	struct inode *inode = file->f_path.dentry->d_inode;
1256 	struct timespec now;
1257 	int sync_it = 0;
1258 
1259 	if (IS_NOCMTIME(inode))
1260 		return;
1261 	if (IS_RDONLY(inode))
1262 		return;
1263 
1264 	now = current_fs_time(inode->i_sb);
1265 	if (!timespec_equal(&inode->i_mtime, &now)) {
1266 		inode->i_mtime = now;
1267 		sync_it = 1;
1268 	}
1269 
1270 	if (!timespec_equal(&inode->i_ctime, &now)) {
1271 		inode->i_ctime = now;
1272 		sync_it = 1;
1273 	}
1274 
1275 	if (IS_I_VERSION(inode)) {
1276 		inode_inc_iversion(inode);
1277 		sync_it = 1;
1278 	}
1279 
1280 	if (sync_it)
1281 		mark_inode_dirty_sync(inode);
1282 }
1283 
1284 EXPORT_SYMBOL(file_update_time);
1285 
1286 int inode_needs_sync(struct inode *inode)
1287 {
1288 	if (IS_SYNC(inode))
1289 		return 1;
1290 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1291 		return 1;
1292 	return 0;
1293 }
1294 
1295 EXPORT_SYMBOL(inode_needs_sync);
1296 
1297 int inode_wait(void *word)
1298 {
1299 	schedule();
1300 	return 0;
1301 }
1302 
1303 /*
1304  * If we try to find an inode in the inode hash while it is being
1305  * deleted, we have to wait until the filesystem completes its
1306  * deletion before reporting that it isn't found.  This function waits
1307  * until the deletion _might_ have completed.  Callers are responsible
1308  * to recheck inode state.
1309  *
1310  * It doesn't matter if I_LOCK is not set initially, a call to
1311  * wake_up_inode() after removing from the hash list will DTRT.
1312  *
1313  * This is called with inode_lock held.
1314  */
1315 static void __wait_on_freeing_inode(struct inode *inode)
1316 {
1317 	wait_queue_head_t *wq;
1318 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1319 	wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1320 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1321 	spin_unlock(&inode_lock);
1322 	schedule();
1323 	finish_wait(wq, &wait.wait);
1324 	spin_lock(&inode_lock);
1325 }
1326 
1327 /*
1328  * We rarely want to lock two inodes that do not have a parent/child
1329  * relationship (such as directory, child inode) simultaneously. The
1330  * vast majority of file systems should be able to get along fine
1331  * without this. Do not use these functions except as a last resort.
1332  */
1333 void inode_double_lock(struct inode *inode1, struct inode *inode2)
1334 {
1335 	if (inode1 == NULL || inode2 == NULL || inode1 == inode2) {
1336 		if (inode1)
1337 			mutex_lock(&inode1->i_mutex);
1338 		else if (inode2)
1339 			mutex_lock(&inode2->i_mutex);
1340 		return;
1341 	}
1342 
1343 	if (inode1 < inode2) {
1344 		mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
1345 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
1346 	} else {
1347 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_PARENT);
1348 		mutex_lock_nested(&inode1->i_mutex, I_MUTEX_CHILD);
1349 	}
1350 }
1351 EXPORT_SYMBOL(inode_double_lock);
1352 
1353 void inode_double_unlock(struct inode *inode1, struct inode *inode2)
1354 {
1355 	if (inode1)
1356 		mutex_unlock(&inode1->i_mutex);
1357 
1358 	if (inode2 && inode2 != inode1)
1359 		mutex_unlock(&inode2->i_mutex);
1360 }
1361 EXPORT_SYMBOL(inode_double_unlock);
1362 
1363 static __initdata unsigned long ihash_entries;
1364 static int __init set_ihash_entries(char *str)
1365 {
1366 	if (!str)
1367 		return 0;
1368 	ihash_entries = simple_strtoul(str, &str, 0);
1369 	return 1;
1370 }
1371 __setup("ihash_entries=", set_ihash_entries);
1372 
1373 /*
1374  * Initialize the waitqueues and inode hash table.
1375  */
1376 void __init inode_init_early(void)
1377 {
1378 	int loop;
1379 
1380 	/* If hashes are distributed across NUMA nodes, defer
1381 	 * hash allocation until vmalloc space is available.
1382 	 */
1383 	if (hashdist)
1384 		return;
1385 
1386 	inode_hashtable =
1387 		alloc_large_system_hash("Inode-cache",
1388 					sizeof(struct hlist_head),
1389 					ihash_entries,
1390 					14,
1391 					HASH_EARLY,
1392 					&i_hash_shift,
1393 					&i_hash_mask,
1394 					0);
1395 
1396 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1397 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1398 }
1399 
1400 void __init inode_init(void)
1401 {
1402 	int loop;
1403 
1404 	/* inode slab cache */
1405 	inode_cachep = kmem_cache_create("inode_cache",
1406 					 sizeof(struct inode),
1407 					 0,
1408 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1409 					 SLAB_MEM_SPREAD),
1410 					 init_once);
1411 	register_shrinker(&icache_shrinker);
1412 
1413 	/* Hash may have been set up in inode_init_early */
1414 	if (!hashdist)
1415 		return;
1416 
1417 	inode_hashtable =
1418 		alloc_large_system_hash("Inode-cache",
1419 					sizeof(struct hlist_head),
1420 					ihash_entries,
1421 					14,
1422 					0,
1423 					&i_hash_shift,
1424 					&i_hash_mask,
1425 					0);
1426 
1427 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1428 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1429 }
1430 
1431 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1432 {
1433 	inode->i_mode = mode;
1434 	if (S_ISCHR(mode)) {
1435 		inode->i_fop = &def_chr_fops;
1436 		inode->i_rdev = rdev;
1437 	} else if (S_ISBLK(mode)) {
1438 		inode->i_fop = &def_blk_fops;
1439 		inode->i_rdev = rdev;
1440 	} else if (S_ISFIFO(mode))
1441 		inode->i_fop = &def_fifo_fops;
1442 	else if (S_ISSOCK(mode))
1443 		inode->i_fop = &bad_sock_fops;
1444 	else
1445 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1446 		       mode);
1447 }
1448 EXPORT_SYMBOL(init_special_inode);
1449