1 /* 2 * (C) 1997 Linus Torvalds 3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 4 */ 5 #include <linux/export.h> 6 #include <linux/fs.h> 7 #include <linux/mm.h> 8 #include <linux/backing-dev.h> 9 #include <linux/hash.h> 10 #include <linux/swap.h> 11 #include <linux/security.h> 12 #include <linux/cdev.h> 13 #include <linux/bootmem.h> 14 #include <linux/fsnotify.h> 15 #include <linux/mount.h> 16 #include <linux/posix_acl.h> 17 #include <linux/prefetch.h> 18 #include <linux/buffer_head.h> /* for inode_has_buffers */ 19 #include <linux/ratelimit.h> 20 #include <linux/list_lru.h> 21 #include <linux/iversion.h> 22 #include <trace/events/writeback.h> 23 #include "internal.h" 24 25 /* 26 * Inode locking rules: 27 * 28 * inode->i_lock protects: 29 * inode->i_state, inode->i_hash, __iget() 30 * Inode LRU list locks protect: 31 * inode->i_sb->s_inode_lru, inode->i_lru 32 * inode->i_sb->s_inode_list_lock protects: 33 * inode->i_sb->s_inodes, inode->i_sb_list 34 * bdi->wb.list_lock protects: 35 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 36 * inode_hash_lock protects: 37 * inode_hashtable, inode->i_hash 38 * 39 * Lock ordering: 40 * 41 * inode->i_sb->s_inode_list_lock 42 * inode->i_lock 43 * Inode LRU list locks 44 * 45 * bdi->wb.list_lock 46 * inode->i_lock 47 * 48 * inode_hash_lock 49 * inode->i_sb->s_inode_list_lock 50 * inode->i_lock 51 * 52 * iunique_lock 53 * inode_hash_lock 54 */ 55 56 static unsigned int i_hash_mask __read_mostly; 57 static unsigned int i_hash_shift __read_mostly; 58 static struct hlist_head *inode_hashtable __read_mostly; 59 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 60 61 /* 62 * Empty aops. Can be used for the cases where the user does not 63 * define any of the address_space operations. 64 */ 65 const struct address_space_operations empty_aops = { 66 }; 67 EXPORT_SYMBOL(empty_aops); 68 69 /* 70 * Statistics gathering.. 71 */ 72 struct inodes_stat_t inodes_stat; 73 74 static DEFINE_PER_CPU(unsigned long, nr_inodes); 75 static DEFINE_PER_CPU(unsigned long, nr_unused); 76 77 static struct kmem_cache *inode_cachep __read_mostly; 78 79 static long get_nr_inodes(void) 80 { 81 int i; 82 long sum = 0; 83 for_each_possible_cpu(i) 84 sum += per_cpu(nr_inodes, i); 85 return sum < 0 ? 0 : sum; 86 } 87 88 static inline long get_nr_inodes_unused(void) 89 { 90 int i; 91 long sum = 0; 92 for_each_possible_cpu(i) 93 sum += per_cpu(nr_unused, i); 94 return sum < 0 ? 0 : sum; 95 } 96 97 long get_nr_dirty_inodes(void) 98 { 99 /* not actually dirty inodes, but a wild approximation */ 100 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 101 return nr_dirty > 0 ? nr_dirty : 0; 102 } 103 104 /* 105 * Handle nr_inode sysctl 106 */ 107 #ifdef CONFIG_SYSCTL 108 int proc_nr_inodes(struct ctl_table *table, int write, 109 void __user *buffer, size_t *lenp, loff_t *ppos) 110 { 111 inodes_stat.nr_inodes = get_nr_inodes(); 112 inodes_stat.nr_unused = get_nr_inodes_unused(); 113 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 114 } 115 #endif 116 117 static int no_open(struct inode *inode, struct file *file) 118 { 119 return -ENXIO; 120 } 121 122 /** 123 * inode_init_always - perform inode structure initialisation 124 * @sb: superblock inode belongs to 125 * @inode: inode to initialise 126 * 127 * These are initializations that need to be done on every inode 128 * allocation as the fields are not initialised by slab allocation. 129 */ 130 int inode_init_always(struct super_block *sb, struct inode *inode) 131 { 132 static const struct inode_operations empty_iops; 133 static const struct file_operations no_open_fops = {.open = no_open}; 134 struct address_space *const mapping = &inode->i_data; 135 136 inode->i_sb = sb; 137 inode->i_blkbits = sb->s_blocksize_bits; 138 inode->i_flags = 0; 139 atomic_set(&inode->i_count, 1); 140 inode->i_op = &empty_iops; 141 inode->i_fop = &no_open_fops; 142 inode->__i_nlink = 1; 143 inode->i_opflags = 0; 144 if (sb->s_xattr) 145 inode->i_opflags |= IOP_XATTR; 146 i_uid_write(inode, 0); 147 i_gid_write(inode, 0); 148 atomic_set(&inode->i_writecount, 0); 149 inode->i_size = 0; 150 inode->i_write_hint = WRITE_LIFE_NOT_SET; 151 inode->i_blocks = 0; 152 inode->i_bytes = 0; 153 inode->i_generation = 0; 154 inode->i_pipe = NULL; 155 inode->i_bdev = NULL; 156 inode->i_cdev = NULL; 157 inode->i_link = NULL; 158 inode->i_dir_seq = 0; 159 inode->i_rdev = 0; 160 inode->dirtied_when = 0; 161 162 #ifdef CONFIG_CGROUP_WRITEBACK 163 inode->i_wb_frn_winner = 0; 164 inode->i_wb_frn_avg_time = 0; 165 inode->i_wb_frn_history = 0; 166 #endif 167 168 if (security_inode_alloc(inode)) 169 goto out; 170 spin_lock_init(&inode->i_lock); 171 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 172 173 init_rwsem(&inode->i_rwsem); 174 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 175 176 atomic_set(&inode->i_dio_count, 0); 177 178 mapping->a_ops = &empty_aops; 179 mapping->host = inode; 180 mapping->flags = 0; 181 mapping->wb_err = 0; 182 atomic_set(&mapping->i_mmap_writable, 0); 183 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 184 mapping->private_data = NULL; 185 mapping->writeback_index = 0; 186 inode->i_private = NULL; 187 inode->i_mapping = mapping; 188 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 189 #ifdef CONFIG_FS_POSIX_ACL 190 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 191 #endif 192 193 #ifdef CONFIG_FSNOTIFY 194 inode->i_fsnotify_mask = 0; 195 #endif 196 inode->i_flctx = NULL; 197 this_cpu_inc(nr_inodes); 198 199 return 0; 200 out: 201 return -ENOMEM; 202 } 203 EXPORT_SYMBOL(inode_init_always); 204 205 static struct inode *alloc_inode(struct super_block *sb) 206 { 207 struct inode *inode; 208 209 if (sb->s_op->alloc_inode) 210 inode = sb->s_op->alloc_inode(sb); 211 else 212 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 213 214 if (!inode) 215 return NULL; 216 217 if (unlikely(inode_init_always(sb, inode))) { 218 if (inode->i_sb->s_op->destroy_inode) 219 inode->i_sb->s_op->destroy_inode(inode); 220 else 221 kmem_cache_free(inode_cachep, inode); 222 return NULL; 223 } 224 225 return inode; 226 } 227 228 void free_inode_nonrcu(struct inode *inode) 229 { 230 kmem_cache_free(inode_cachep, inode); 231 } 232 EXPORT_SYMBOL(free_inode_nonrcu); 233 234 void __destroy_inode(struct inode *inode) 235 { 236 BUG_ON(inode_has_buffers(inode)); 237 inode_detach_wb(inode); 238 security_inode_free(inode); 239 fsnotify_inode_delete(inode); 240 locks_free_lock_context(inode); 241 if (!inode->i_nlink) { 242 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 243 atomic_long_dec(&inode->i_sb->s_remove_count); 244 } 245 246 #ifdef CONFIG_FS_POSIX_ACL 247 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 248 posix_acl_release(inode->i_acl); 249 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 250 posix_acl_release(inode->i_default_acl); 251 #endif 252 this_cpu_dec(nr_inodes); 253 } 254 EXPORT_SYMBOL(__destroy_inode); 255 256 static void i_callback(struct rcu_head *head) 257 { 258 struct inode *inode = container_of(head, struct inode, i_rcu); 259 kmem_cache_free(inode_cachep, inode); 260 } 261 262 static void destroy_inode(struct inode *inode) 263 { 264 BUG_ON(!list_empty(&inode->i_lru)); 265 __destroy_inode(inode); 266 if (inode->i_sb->s_op->destroy_inode) 267 inode->i_sb->s_op->destroy_inode(inode); 268 else 269 call_rcu(&inode->i_rcu, i_callback); 270 } 271 272 /** 273 * drop_nlink - directly drop an inode's link count 274 * @inode: inode 275 * 276 * This is a low-level filesystem helper to replace any 277 * direct filesystem manipulation of i_nlink. In cases 278 * where we are attempting to track writes to the 279 * filesystem, a decrement to zero means an imminent 280 * write when the file is truncated and actually unlinked 281 * on the filesystem. 282 */ 283 void drop_nlink(struct inode *inode) 284 { 285 WARN_ON(inode->i_nlink == 0); 286 inode->__i_nlink--; 287 if (!inode->i_nlink) 288 atomic_long_inc(&inode->i_sb->s_remove_count); 289 } 290 EXPORT_SYMBOL(drop_nlink); 291 292 /** 293 * clear_nlink - directly zero an inode's link count 294 * @inode: inode 295 * 296 * This is a low-level filesystem helper to replace any 297 * direct filesystem manipulation of i_nlink. See 298 * drop_nlink() for why we care about i_nlink hitting zero. 299 */ 300 void clear_nlink(struct inode *inode) 301 { 302 if (inode->i_nlink) { 303 inode->__i_nlink = 0; 304 atomic_long_inc(&inode->i_sb->s_remove_count); 305 } 306 } 307 EXPORT_SYMBOL(clear_nlink); 308 309 /** 310 * set_nlink - directly set an inode's link count 311 * @inode: inode 312 * @nlink: new nlink (should be non-zero) 313 * 314 * This is a low-level filesystem helper to replace any 315 * direct filesystem manipulation of i_nlink. 316 */ 317 void set_nlink(struct inode *inode, unsigned int nlink) 318 { 319 if (!nlink) { 320 clear_nlink(inode); 321 } else { 322 /* Yes, some filesystems do change nlink from zero to one */ 323 if (inode->i_nlink == 0) 324 atomic_long_dec(&inode->i_sb->s_remove_count); 325 326 inode->__i_nlink = nlink; 327 } 328 } 329 EXPORT_SYMBOL(set_nlink); 330 331 /** 332 * inc_nlink - directly increment an inode's link count 333 * @inode: inode 334 * 335 * This is a low-level filesystem helper to replace any 336 * direct filesystem manipulation of i_nlink. Currently, 337 * it is only here for parity with dec_nlink(). 338 */ 339 void inc_nlink(struct inode *inode) 340 { 341 if (unlikely(inode->i_nlink == 0)) { 342 WARN_ON(!(inode->i_state & I_LINKABLE)); 343 atomic_long_dec(&inode->i_sb->s_remove_count); 344 } 345 346 inode->__i_nlink++; 347 } 348 EXPORT_SYMBOL(inc_nlink); 349 350 static void __address_space_init_once(struct address_space *mapping) 351 { 352 INIT_RADIX_TREE(&mapping->i_pages, GFP_ATOMIC | __GFP_ACCOUNT); 353 init_rwsem(&mapping->i_mmap_rwsem); 354 INIT_LIST_HEAD(&mapping->private_list); 355 spin_lock_init(&mapping->private_lock); 356 mapping->i_mmap = RB_ROOT_CACHED; 357 } 358 359 void address_space_init_once(struct address_space *mapping) 360 { 361 memset(mapping, 0, sizeof(*mapping)); 362 __address_space_init_once(mapping); 363 } 364 EXPORT_SYMBOL(address_space_init_once); 365 366 /* 367 * These are initializations that only need to be done 368 * once, because the fields are idempotent across use 369 * of the inode, so let the slab aware of that. 370 */ 371 void inode_init_once(struct inode *inode) 372 { 373 memset(inode, 0, sizeof(*inode)); 374 INIT_HLIST_NODE(&inode->i_hash); 375 INIT_LIST_HEAD(&inode->i_devices); 376 INIT_LIST_HEAD(&inode->i_io_list); 377 INIT_LIST_HEAD(&inode->i_wb_list); 378 INIT_LIST_HEAD(&inode->i_lru); 379 __address_space_init_once(&inode->i_data); 380 i_size_ordered_init(inode); 381 } 382 EXPORT_SYMBOL(inode_init_once); 383 384 static void init_once(void *foo) 385 { 386 struct inode *inode = (struct inode *) foo; 387 388 inode_init_once(inode); 389 } 390 391 /* 392 * inode->i_lock must be held 393 */ 394 void __iget(struct inode *inode) 395 { 396 atomic_inc(&inode->i_count); 397 } 398 399 /* 400 * get additional reference to inode; caller must already hold one. 401 */ 402 void ihold(struct inode *inode) 403 { 404 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 405 } 406 EXPORT_SYMBOL(ihold); 407 408 static void inode_lru_list_add(struct inode *inode) 409 { 410 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) 411 this_cpu_inc(nr_unused); 412 else 413 inode->i_state |= I_REFERENCED; 414 } 415 416 /* 417 * Add inode to LRU if needed (inode is unused and clean). 418 * 419 * Needs inode->i_lock held. 420 */ 421 void inode_add_lru(struct inode *inode) 422 { 423 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC | 424 I_FREEING | I_WILL_FREE)) && 425 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE) 426 inode_lru_list_add(inode); 427 } 428 429 430 static void inode_lru_list_del(struct inode *inode) 431 { 432 433 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) 434 this_cpu_dec(nr_unused); 435 } 436 437 /** 438 * inode_sb_list_add - add inode to the superblock list of inodes 439 * @inode: inode to add 440 */ 441 void inode_sb_list_add(struct inode *inode) 442 { 443 spin_lock(&inode->i_sb->s_inode_list_lock); 444 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 445 spin_unlock(&inode->i_sb->s_inode_list_lock); 446 } 447 EXPORT_SYMBOL_GPL(inode_sb_list_add); 448 449 static inline void inode_sb_list_del(struct inode *inode) 450 { 451 if (!list_empty(&inode->i_sb_list)) { 452 spin_lock(&inode->i_sb->s_inode_list_lock); 453 list_del_init(&inode->i_sb_list); 454 spin_unlock(&inode->i_sb->s_inode_list_lock); 455 } 456 } 457 458 static unsigned long hash(struct super_block *sb, unsigned long hashval) 459 { 460 unsigned long tmp; 461 462 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 463 L1_CACHE_BYTES; 464 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 465 return tmp & i_hash_mask; 466 } 467 468 /** 469 * __insert_inode_hash - hash an inode 470 * @inode: unhashed inode 471 * @hashval: unsigned long value used to locate this object in the 472 * inode_hashtable. 473 * 474 * Add an inode to the inode hash for this superblock. 475 */ 476 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 477 { 478 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 479 480 spin_lock(&inode_hash_lock); 481 spin_lock(&inode->i_lock); 482 hlist_add_head(&inode->i_hash, b); 483 spin_unlock(&inode->i_lock); 484 spin_unlock(&inode_hash_lock); 485 } 486 EXPORT_SYMBOL(__insert_inode_hash); 487 488 /** 489 * __remove_inode_hash - remove an inode from the hash 490 * @inode: inode to unhash 491 * 492 * Remove an inode from the superblock. 493 */ 494 void __remove_inode_hash(struct inode *inode) 495 { 496 spin_lock(&inode_hash_lock); 497 spin_lock(&inode->i_lock); 498 hlist_del_init(&inode->i_hash); 499 spin_unlock(&inode->i_lock); 500 spin_unlock(&inode_hash_lock); 501 } 502 EXPORT_SYMBOL(__remove_inode_hash); 503 504 void clear_inode(struct inode *inode) 505 { 506 /* 507 * We have to cycle the i_pages lock here because reclaim can be in the 508 * process of removing the last page (in __delete_from_page_cache()) 509 * and we must not free the mapping under it. 510 */ 511 xa_lock_irq(&inode->i_data.i_pages); 512 BUG_ON(inode->i_data.nrpages); 513 BUG_ON(inode->i_data.nrexceptional); 514 xa_unlock_irq(&inode->i_data.i_pages); 515 BUG_ON(!list_empty(&inode->i_data.private_list)); 516 BUG_ON(!(inode->i_state & I_FREEING)); 517 BUG_ON(inode->i_state & I_CLEAR); 518 BUG_ON(!list_empty(&inode->i_wb_list)); 519 /* don't need i_lock here, no concurrent mods to i_state */ 520 inode->i_state = I_FREEING | I_CLEAR; 521 } 522 EXPORT_SYMBOL(clear_inode); 523 524 /* 525 * Free the inode passed in, removing it from the lists it is still connected 526 * to. We remove any pages still attached to the inode and wait for any IO that 527 * is still in progress before finally destroying the inode. 528 * 529 * An inode must already be marked I_FREEING so that we avoid the inode being 530 * moved back onto lists if we race with other code that manipulates the lists 531 * (e.g. writeback_single_inode). The caller is responsible for setting this. 532 * 533 * An inode must already be removed from the LRU list before being evicted from 534 * the cache. This should occur atomically with setting the I_FREEING state 535 * flag, so no inodes here should ever be on the LRU when being evicted. 536 */ 537 static void evict(struct inode *inode) 538 { 539 const struct super_operations *op = inode->i_sb->s_op; 540 541 BUG_ON(!(inode->i_state & I_FREEING)); 542 BUG_ON(!list_empty(&inode->i_lru)); 543 544 if (!list_empty(&inode->i_io_list)) 545 inode_io_list_del(inode); 546 547 inode_sb_list_del(inode); 548 549 /* 550 * Wait for flusher thread to be done with the inode so that filesystem 551 * does not start destroying it while writeback is still running. Since 552 * the inode has I_FREEING set, flusher thread won't start new work on 553 * the inode. We just have to wait for running writeback to finish. 554 */ 555 inode_wait_for_writeback(inode); 556 557 if (op->evict_inode) { 558 op->evict_inode(inode); 559 } else { 560 truncate_inode_pages_final(&inode->i_data); 561 clear_inode(inode); 562 } 563 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 564 bd_forget(inode); 565 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 566 cd_forget(inode); 567 568 remove_inode_hash(inode); 569 570 spin_lock(&inode->i_lock); 571 wake_up_bit(&inode->i_state, __I_NEW); 572 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 573 spin_unlock(&inode->i_lock); 574 575 destroy_inode(inode); 576 } 577 578 /* 579 * dispose_list - dispose of the contents of a local list 580 * @head: the head of the list to free 581 * 582 * Dispose-list gets a local list with local inodes in it, so it doesn't 583 * need to worry about list corruption and SMP locks. 584 */ 585 static void dispose_list(struct list_head *head) 586 { 587 while (!list_empty(head)) { 588 struct inode *inode; 589 590 inode = list_first_entry(head, struct inode, i_lru); 591 list_del_init(&inode->i_lru); 592 593 evict(inode); 594 cond_resched(); 595 } 596 } 597 598 /** 599 * evict_inodes - evict all evictable inodes for a superblock 600 * @sb: superblock to operate on 601 * 602 * Make sure that no inodes with zero refcount are retained. This is 603 * called by superblock shutdown after having SB_ACTIVE flag removed, 604 * so any inode reaching zero refcount during or after that call will 605 * be immediately evicted. 606 */ 607 void evict_inodes(struct super_block *sb) 608 { 609 struct inode *inode, *next; 610 LIST_HEAD(dispose); 611 612 again: 613 spin_lock(&sb->s_inode_list_lock); 614 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 615 if (atomic_read(&inode->i_count)) 616 continue; 617 618 spin_lock(&inode->i_lock); 619 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 620 spin_unlock(&inode->i_lock); 621 continue; 622 } 623 624 inode->i_state |= I_FREEING; 625 inode_lru_list_del(inode); 626 spin_unlock(&inode->i_lock); 627 list_add(&inode->i_lru, &dispose); 628 629 /* 630 * We can have a ton of inodes to evict at unmount time given 631 * enough memory, check to see if we need to go to sleep for a 632 * bit so we don't livelock. 633 */ 634 if (need_resched()) { 635 spin_unlock(&sb->s_inode_list_lock); 636 cond_resched(); 637 dispose_list(&dispose); 638 goto again; 639 } 640 } 641 spin_unlock(&sb->s_inode_list_lock); 642 643 dispose_list(&dispose); 644 } 645 EXPORT_SYMBOL_GPL(evict_inodes); 646 647 /** 648 * invalidate_inodes - attempt to free all inodes on a superblock 649 * @sb: superblock to operate on 650 * @kill_dirty: flag to guide handling of dirty inodes 651 * 652 * Attempts to free all inodes for a given superblock. If there were any 653 * busy inodes return a non-zero value, else zero. 654 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 655 * them as busy. 656 */ 657 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 658 { 659 int busy = 0; 660 struct inode *inode, *next; 661 LIST_HEAD(dispose); 662 663 spin_lock(&sb->s_inode_list_lock); 664 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 665 spin_lock(&inode->i_lock); 666 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 667 spin_unlock(&inode->i_lock); 668 continue; 669 } 670 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) { 671 spin_unlock(&inode->i_lock); 672 busy = 1; 673 continue; 674 } 675 if (atomic_read(&inode->i_count)) { 676 spin_unlock(&inode->i_lock); 677 busy = 1; 678 continue; 679 } 680 681 inode->i_state |= I_FREEING; 682 inode_lru_list_del(inode); 683 spin_unlock(&inode->i_lock); 684 list_add(&inode->i_lru, &dispose); 685 } 686 spin_unlock(&sb->s_inode_list_lock); 687 688 dispose_list(&dispose); 689 690 return busy; 691 } 692 693 /* 694 * Isolate the inode from the LRU in preparation for freeing it. 695 * 696 * Any inodes which are pinned purely because of attached pagecache have their 697 * pagecache removed. If the inode has metadata buffers attached to 698 * mapping->private_list then try to remove them. 699 * 700 * If the inode has the I_REFERENCED flag set, then it means that it has been 701 * used recently - the flag is set in iput_final(). When we encounter such an 702 * inode, clear the flag and move it to the back of the LRU so it gets another 703 * pass through the LRU before it gets reclaimed. This is necessary because of 704 * the fact we are doing lazy LRU updates to minimise lock contention so the 705 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 706 * with this flag set because they are the inodes that are out of order. 707 */ 708 static enum lru_status inode_lru_isolate(struct list_head *item, 709 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 710 { 711 struct list_head *freeable = arg; 712 struct inode *inode = container_of(item, struct inode, i_lru); 713 714 /* 715 * we are inverting the lru lock/inode->i_lock here, so use a trylock. 716 * If we fail to get the lock, just skip it. 717 */ 718 if (!spin_trylock(&inode->i_lock)) 719 return LRU_SKIP; 720 721 /* 722 * Referenced or dirty inodes are still in use. Give them another pass 723 * through the LRU as we canot reclaim them now. 724 */ 725 if (atomic_read(&inode->i_count) || 726 (inode->i_state & ~I_REFERENCED)) { 727 list_lru_isolate(lru, &inode->i_lru); 728 spin_unlock(&inode->i_lock); 729 this_cpu_dec(nr_unused); 730 return LRU_REMOVED; 731 } 732 733 /* recently referenced inodes get one more pass */ 734 if (inode->i_state & I_REFERENCED) { 735 inode->i_state &= ~I_REFERENCED; 736 spin_unlock(&inode->i_lock); 737 return LRU_ROTATE; 738 } 739 740 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 741 __iget(inode); 742 spin_unlock(&inode->i_lock); 743 spin_unlock(lru_lock); 744 if (remove_inode_buffers(inode)) { 745 unsigned long reap; 746 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 747 if (current_is_kswapd()) 748 __count_vm_events(KSWAPD_INODESTEAL, reap); 749 else 750 __count_vm_events(PGINODESTEAL, reap); 751 if (current->reclaim_state) 752 current->reclaim_state->reclaimed_slab += reap; 753 } 754 iput(inode); 755 spin_lock(lru_lock); 756 return LRU_RETRY; 757 } 758 759 WARN_ON(inode->i_state & I_NEW); 760 inode->i_state |= I_FREEING; 761 list_lru_isolate_move(lru, &inode->i_lru, freeable); 762 spin_unlock(&inode->i_lock); 763 764 this_cpu_dec(nr_unused); 765 return LRU_REMOVED; 766 } 767 768 /* 769 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 770 * This is called from the superblock shrinker function with a number of inodes 771 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 772 * then are freed outside inode_lock by dispose_list(). 773 */ 774 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 775 { 776 LIST_HEAD(freeable); 777 long freed; 778 779 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 780 inode_lru_isolate, &freeable); 781 dispose_list(&freeable); 782 return freed; 783 } 784 785 static void __wait_on_freeing_inode(struct inode *inode); 786 /* 787 * Called with the inode lock held. 788 */ 789 static struct inode *find_inode(struct super_block *sb, 790 struct hlist_head *head, 791 int (*test)(struct inode *, void *), 792 void *data) 793 { 794 struct inode *inode = NULL; 795 796 repeat: 797 hlist_for_each_entry(inode, head, i_hash) { 798 if (inode->i_sb != sb) 799 continue; 800 if (!test(inode, data)) 801 continue; 802 spin_lock(&inode->i_lock); 803 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 804 __wait_on_freeing_inode(inode); 805 goto repeat; 806 } 807 __iget(inode); 808 spin_unlock(&inode->i_lock); 809 return inode; 810 } 811 return NULL; 812 } 813 814 /* 815 * find_inode_fast is the fast path version of find_inode, see the comment at 816 * iget_locked for details. 817 */ 818 static struct inode *find_inode_fast(struct super_block *sb, 819 struct hlist_head *head, unsigned long ino) 820 { 821 struct inode *inode = NULL; 822 823 repeat: 824 hlist_for_each_entry(inode, head, i_hash) { 825 if (inode->i_ino != ino) 826 continue; 827 if (inode->i_sb != sb) 828 continue; 829 spin_lock(&inode->i_lock); 830 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 831 __wait_on_freeing_inode(inode); 832 goto repeat; 833 } 834 __iget(inode); 835 spin_unlock(&inode->i_lock); 836 return inode; 837 } 838 return NULL; 839 } 840 841 /* 842 * Each cpu owns a range of LAST_INO_BATCH numbers. 843 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 844 * to renew the exhausted range. 845 * 846 * This does not significantly increase overflow rate because every CPU can 847 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 848 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 849 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 850 * overflow rate by 2x, which does not seem too significant. 851 * 852 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 853 * error if st_ino won't fit in target struct field. Use 32bit counter 854 * here to attempt to avoid that. 855 */ 856 #define LAST_INO_BATCH 1024 857 static DEFINE_PER_CPU(unsigned int, last_ino); 858 859 unsigned int get_next_ino(void) 860 { 861 unsigned int *p = &get_cpu_var(last_ino); 862 unsigned int res = *p; 863 864 #ifdef CONFIG_SMP 865 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 866 static atomic_t shared_last_ino; 867 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 868 869 res = next - LAST_INO_BATCH; 870 } 871 #endif 872 873 res++; 874 /* get_next_ino should not provide a 0 inode number */ 875 if (unlikely(!res)) 876 res++; 877 *p = res; 878 put_cpu_var(last_ino); 879 return res; 880 } 881 EXPORT_SYMBOL(get_next_ino); 882 883 /** 884 * new_inode_pseudo - obtain an inode 885 * @sb: superblock 886 * 887 * Allocates a new inode for given superblock. 888 * Inode wont be chained in superblock s_inodes list 889 * This means : 890 * - fs can't be unmount 891 * - quotas, fsnotify, writeback can't work 892 */ 893 struct inode *new_inode_pseudo(struct super_block *sb) 894 { 895 struct inode *inode = alloc_inode(sb); 896 897 if (inode) { 898 spin_lock(&inode->i_lock); 899 inode->i_state = 0; 900 spin_unlock(&inode->i_lock); 901 INIT_LIST_HEAD(&inode->i_sb_list); 902 } 903 return inode; 904 } 905 906 /** 907 * new_inode - obtain an inode 908 * @sb: superblock 909 * 910 * Allocates a new inode for given superblock. The default gfp_mask 911 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 912 * If HIGHMEM pages are unsuitable or it is known that pages allocated 913 * for the page cache are not reclaimable or migratable, 914 * mapping_set_gfp_mask() must be called with suitable flags on the 915 * newly created inode's mapping 916 * 917 */ 918 struct inode *new_inode(struct super_block *sb) 919 { 920 struct inode *inode; 921 922 spin_lock_prefetch(&sb->s_inode_list_lock); 923 924 inode = new_inode_pseudo(sb); 925 if (inode) 926 inode_sb_list_add(inode); 927 return inode; 928 } 929 EXPORT_SYMBOL(new_inode); 930 931 #ifdef CONFIG_DEBUG_LOCK_ALLOC 932 void lockdep_annotate_inode_mutex_key(struct inode *inode) 933 { 934 if (S_ISDIR(inode->i_mode)) { 935 struct file_system_type *type = inode->i_sb->s_type; 936 937 /* Set new key only if filesystem hasn't already changed it */ 938 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 939 /* 940 * ensure nobody is actually holding i_mutex 941 */ 942 // mutex_destroy(&inode->i_mutex); 943 init_rwsem(&inode->i_rwsem); 944 lockdep_set_class(&inode->i_rwsem, 945 &type->i_mutex_dir_key); 946 } 947 } 948 } 949 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 950 #endif 951 952 /** 953 * unlock_new_inode - clear the I_NEW state and wake up any waiters 954 * @inode: new inode to unlock 955 * 956 * Called when the inode is fully initialised to clear the new state of the 957 * inode and wake up anyone waiting for the inode to finish initialisation. 958 */ 959 void unlock_new_inode(struct inode *inode) 960 { 961 lockdep_annotate_inode_mutex_key(inode); 962 spin_lock(&inode->i_lock); 963 WARN_ON(!(inode->i_state & I_NEW)); 964 inode->i_state &= ~I_NEW; 965 smp_mb(); 966 wake_up_bit(&inode->i_state, __I_NEW); 967 spin_unlock(&inode->i_lock); 968 } 969 EXPORT_SYMBOL(unlock_new_inode); 970 971 /** 972 * lock_two_nondirectories - take two i_mutexes on non-directory objects 973 * 974 * Lock any non-NULL argument that is not a directory. 975 * Zero, one or two objects may be locked by this function. 976 * 977 * @inode1: first inode to lock 978 * @inode2: second inode to lock 979 */ 980 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 981 { 982 if (inode1 > inode2) 983 swap(inode1, inode2); 984 985 if (inode1 && !S_ISDIR(inode1->i_mode)) 986 inode_lock(inode1); 987 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 988 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 989 } 990 EXPORT_SYMBOL(lock_two_nondirectories); 991 992 /** 993 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 994 * @inode1: first inode to unlock 995 * @inode2: second inode to unlock 996 */ 997 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 998 { 999 if (inode1 && !S_ISDIR(inode1->i_mode)) 1000 inode_unlock(inode1); 1001 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 1002 inode_unlock(inode2); 1003 } 1004 EXPORT_SYMBOL(unlock_two_nondirectories); 1005 1006 /** 1007 * inode_insert5 - obtain an inode from a mounted file system 1008 * @inode: pre-allocated inode to use for insert to cache 1009 * @hashval: hash value (usually inode number) to get 1010 * @test: callback used for comparisons between inodes 1011 * @set: callback used to initialize a new struct inode 1012 * @data: opaque data pointer to pass to @test and @set 1013 * 1014 * Search for the inode specified by @hashval and @data in the inode cache, 1015 * and if present it is return it with an increased reference count. This is 1016 * a variant of iget5_locked() for callers that don't want to fail on memory 1017 * allocation of inode. 1018 * 1019 * If the inode is not in cache, insert the pre-allocated inode to cache and 1020 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1021 * to fill it in before unlocking it via unlock_new_inode(). 1022 * 1023 * Note both @test and @set are called with the inode_hash_lock held, so can't 1024 * sleep. 1025 */ 1026 struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1027 int (*test)(struct inode *, void *), 1028 int (*set)(struct inode *, void *), void *data) 1029 { 1030 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1031 struct inode *old; 1032 1033 again: 1034 spin_lock(&inode_hash_lock); 1035 old = find_inode(inode->i_sb, head, test, data); 1036 if (unlikely(old)) { 1037 /* 1038 * Uhhuh, somebody else created the same inode under us. 1039 * Use the old inode instead of the preallocated one. 1040 */ 1041 spin_unlock(&inode_hash_lock); 1042 wait_on_inode(old); 1043 if (unlikely(inode_unhashed(old))) { 1044 iput(old); 1045 goto again; 1046 } 1047 return old; 1048 } 1049 1050 if (set && unlikely(set(inode, data))) { 1051 inode = NULL; 1052 goto unlock; 1053 } 1054 1055 /* 1056 * Return the locked inode with I_NEW set, the 1057 * caller is responsible for filling in the contents 1058 */ 1059 spin_lock(&inode->i_lock); 1060 inode->i_state |= I_NEW; 1061 hlist_add_head(&inode->i_hash, head); 1062 spin_unlock(&inode->i_lock); 1063 unlock: 1064 spin_unlock(&inode_hash_lock); 1065 1066 return inode; 1067 } 1068 EXPORT_SYMBOL(inode_insert5); 1069 1070 /** 1071 * iget5_locked - obtain an inode from a mounted file system 1072 * @sb: super block of file system 1073 * @hashval: hash value (usually inode number) to get 1074 * @test: callback used for comparisons between inodes 1075 * @set: callback used to initialize a new struct inode 1076 * @data: opaque data pointer to pass to @test and @set 1077 * 1078 * Search for the inode specified by @hashval and @data in the inode cache, 1079 * and if present it is return it with an increased reference count. This is 1080 * a generalized version of iget_locked() for file systems where the inode 1081 * number is not sufficient for unique identification of an inode. 1082 * 1083 * If the inode is not in cache, allocate a new inode and return it locked, 1084 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1085 * before unlocking it via unlock_new_inode(). 1086 * 1087 * Note both @test and @set are called with the inode_hash_lock held, so can't 1088 * sleep. 1089 */ 1090 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1091 int (*test)(struct inode *, void *), 1092 int (*set)(struct inode *, void *), void *data) 1093 { 1094 struct inode *inode = ilookup5(sb, hashval, test, data); 1095 1096 if (!inode) { 1097 struct inode *new = new_inode(sb); 1098 1099 if (new) { 1100 inode = inode_insert5(new, hashval, test, set, data); 1101 if (unlikely(inode != new)) 1102 iput(new); 1103 } 1104 } 1105 return inode; 1106 } 1107 EXPORT_SYMBOL(iget5_locked); 1108 1109 /** 1110 * iget_locked - obtain an inode from a mounted file system 1111 * @sb: super block of file system 1112 * @ino: inode number to get 1113 * 1114 * Search for the inode specified by @ino in the inode cache and if present 1115 * return it with an increased reference count. This is for file systems 1116 * where the inode number is sufficient for unique identification of an inode. 1117 * 1118 * If the inode is not in cache, allocate a new inode and return it locked, 1119 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1120 * before unlocking it via unlock_new_inode(). 1121 */ 1122 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1123 { 1124 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1125 struct inode *inode; 1126 again: 1127 spin_lock(&inode_hash_lock); 1128 inode = find_inode_fast(sb, head, ino); 1129 spin_unlock(&inode_hash_lock); 1130 if (inode) { 1131 wait_on_inode(inode); 1132 if (unlikely(inode_unhashed(inode))) { 1133 iput(inode); 1134 goto again; 1135 } 1136 return inode; 1137 } 1138 1139 inode = alloc_inode(sb); 1140 if (inode) { 1141 struct inode *old; 1142 1143 spin_lock(&inode_hash_lock); 1144 /* We released the lock, so.. */ 1145 old = find_inode_fast(sb, head, ino); 1146 if (!old) { 1147 inode->i_ino = ino; 1148 spin_lock(&inode->i_lock); 1149 inode->i_state = I_NEW; 1150 hlist_add_head(&inode->i_hash, head); 1151 spin_unlock(&inode->i_lock); 1152 inode_sb_list_add(inode); 1153 spin_unlock(&inode_hash_lock); 1154 1155 /* Return the locked inode with I_NEW set, the 1156 * caller is responsible for filling in the contents 1157 */ 1158 return inode; 1159 } 1160 1161 /* 1162 * Uhhuh, somebody else created the same inode under 1163 * us. Use the old inode instead of the one we just 1164 * allocated. 1165 */ 1166 spin_unlock(&inode_hash_lock); 1167 destroy_inode(inode); 1168 inode = old; 1169 wait_on_inode(inode); 1170 if (unlikely(inode_unhashed(inode))) { 1171 iput(inode); 1172 goto again; 1173 } 1174 } 1175 return inode; 1176 } 1177 EXPORT_SYMBOL(iget_locked); 1178 1179 /* 1180 * search the inode cache for a matching inode number. 1181 * If we find one, then the inode number we are trying to 1182 * allocate is not unique and so we should not use it. 1183 * 1184 * Returns 1 if the inode number is unique, 0 if it is not. 1185 */ 1186 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1187 { 1188 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1189 struct inode *inode; 1190 1191 spin_lock(&inode_hash_lock); 1192 hlist_for_each_entry(inode, b, i_hash) { 1193 if (inode->i_ino == ino && inode->i_sb == sb) { 1194 spin_unlock(&inode_hash_lock); 1195 return 0; 1196 } 1197 } 1198 spin_unlock(&inode_hash_lock); 1199 1200 return 1; 1201 } 1202 1203 /** 1204 * iunique - get a unique inode number 1205 * @sb: superblock 1206 * @max_reserved: highest reserved inode number 1207 * 1208 * Obtain an inode number that is unique on the system for a given 1209 * superblock. This is used by file systems that have no natural 1210 * permanent inode numbering system. An inode number is returned that 1211 * is higher than the reserved limit but unique. 1212 * 1213 * BUGS: 1214 * With a large number of inodes live on the file system this function 1215 * currently becomes quite slow. 1216 */ 1217 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1218 { 1219 /* 1220 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1221 * error if st_ino won't fit in target struct field. Use 32bit counter 1222 * here to attempt to avoid that. 1223 */ 1224 static DEFINE_SPINLOCK(iunique_lock); 1225 static unsigned int counter; 1226 ino_t res; 1227 1228 spin_lock(&iunique_lock); 1229 do { 1230 if (counter <= max_reserved) 1231 counter = max_reserved + 1; 1232 res = counter++; 1233 } while (!test_inode_iunique(sb, res)); 1234 spin_unlock(&iunique_lock); 1235 1236 return res; 1237 } 1238 EXPORT_SYMBOL(iunique); 1239 1240 struct inode *igrab(struct inode *inode) 1241 { 1242 spin_lock(&inode->i_lock); 1243 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1244 __iget(inode); 1245 spin_unlock(&inode->i_lock); 1246 } else { 1247 spin_unlock(&inode->i_lock); 1248 /* 1249 * Handle the case where s_op->clear_inode is not been 1250 * called yet, and somebody is calling igrab 1251 * while the inode is getting freed. 1252 */ 1253 inode = NULL; 1254 } 1255 return inode; 1256 } 1257 EXPORT_SYMBOL(igrab); 1258 1259 /** 1260 * ilookup5_nowait - search for an inode in the inode cache 1261 * @sb: super block of file system to search 1262 * @hashval: hash value (usually inode number) to search for 1263 * @test: callback used for comparisons between inodes 1264 * @data: opaque data pointer to pass to @test 1265 * 1266 * Search for the inode specified by @hashval and @data in the inode cache. 1267 * If the inode is in the cache, the inode is returned with an incremented 1268 * reference count. 1269 * 1270 * Note: I_NEW is not waited upon so you have to be very careful what you do 1271 * with the returned inode. You probably should be using ilookup5() instead. 1272 * 1273 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1274 */ 1275 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1276 int (*test)(struct inode *, void *), void *data) 1277 { 1278 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1279 struct inode *inode; 1280 1281 spin_lock(&inode_hash_lock); 1282 inode = find_inode(sb, head, test, data); 1283 spin_unlock(&inode_hash_lock); 1284 1285 return inode; 1286 } 1287 EXPORT_SYMBOL(ilookup5_nowait); 1288 1289 /** 1290 * ilookup5 - search for an inode in the inode cache 1291 * @sb: super block of file system to search 1292 * @hashval: hash value (usually inode number) to search for 1293 * @test: callback used for comparisons between inodes 1294 * @data: opaque data pointer to pass to @test 1295 * 1296 * Search for the inode specified by @hashval and @data in the inode cache, 1297 * and if the inode is in the cache, return the inode with an incremented 1298 * reference count. Waits on I_NEW before returning the inode. 1299 * returned with an incremented reference count. 1300 * 1301 * This is a generalized version of ilookup() for file systems where the 1302 * inode number is not sufficient for unique identification of an inode. 1303 * 1304 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1305 */ 1306 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1307 int (*test)(struct inode *, void *), void *data) 1308 { 1309 struct inode *inode; 1310 again: 1311 inode = ilookup5_nowait(sb, hashval, test, data); 1312 if (inode) { 1313 wait_on_inode(inode); 1314 if (unlikely(inode_unhashed(inode))) { 1315 iput(inode); 1316 goto again; 1317 } 1318 } 1319 return inode; 1320 } 1321 EXPORT_SYMBOL(ilookup5); 1322 1323 /** 1324 * ilookup - search for an inode in the inode cache 1325 * @sb: super block of file system to search 1326 * @ino: inode number to search for 1327 * 1328 * Search for the inode @ino in the inode cache, and if the inode is in the 1329 * cache, the inode is returned with an incremented reference count. 1330 */ 1331 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1332 { 1333 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1334 struct inode *inode; 1335 again: 1336 spin_lock(&inode_hash_lock); 1337 inode = find_inode_fast(sb, head, ino); 1338 spin_unlock(&inode_hash_lock); 1339 1340 if (inode) { 1341 wait_on_inode(inode); 1342 if (unlikely(inode_unhashed(inode))) { 1343 iput(inode); 1344 goto again; 1345 } 1346 } 1347 return inode; 1348 } 1349 EXPORT_SYMBOL(ilookup); 1350 1351 /** 1352 * find_inode_nowait - find an inode in the inode cache 1353 * @sb: super block of file system to search 1354 * @hashval: hash value (usually inode number) to search for 1355 * @match: callback used for comparisons between inodes 1356 * @data: opaque data pointer to pass to @match 1357 * 1358 * Search for the inode specified by @hashval and @data in the inode 1359 * cache, where the helper function @match will return 0 if the inode 1360 * does not match, 1 if the inode does match, and -1 if the search 1361 * should be stopped. The @match function must be responsible for 1362 * taking the i_lock spin_lock and checking i_state for an inode being 1363 * freed or being initialized, and incrementing the reference count 1364 * before returning 1. It also must not sleep, since it is called with 1365 * the inode_hash_lock spinlock held. 1366 * 1367 * This is a even more generalized version of ilookup5() when the 1368 * function must never block --- find_inode() can block in 1369 * __wait_on_freeing_inode() --- or when the caller can not increment 1370 * the reference count because the resulting iput() might cause an 1371 * inode eviction. The tradeoff is that the @match funtion must be 1372 * very carefully implemented. 1373 */ 1374 struct inode *find_inode_nowait(struct super_block *sb, 1375 unsigned long hashval, 1376 int (*match)(struct inode *, unsigned long, 1377 void *), 1378 void *data) 1379 { 1380 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1381 struct inode *inode, *ret_inode = NULL; 1382 int mval; 1383 1384 spin_lock(&inode_hash_lock); 1385 hlist_for_each_entry(inode, head, i_hash) { 1386 if (inode->i_sb != sb) 1387 continue; 1388 mval = match(inode, hashval, data); 1389 if (mval == 0) 1390 continue; 1391 if (mval == 1) 1392 ret_inode = inode; 1393 goto out; 1394 } 1395 out: 1396 spin_unlock(&inode_hash_lock); 1397 return ret_inode; 1398 } 1399 EXPORT_SYMBOL(find_inode_nowait); 1400 1401 int insert_inode_locked(struct inode *inode) 1402 { 1403 struct super_block *sb = inode->i_sb; 1404 ino_t ino = inode->i_ino; 1405 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1406 1407 while (1) { 1408 struct inode *old = NULL; 1409 spin_lock(&inode_hash_lock); 1410 hlist_for_each_entry(old, head, i_hash) { 1411 if (old->i_ino != ino) 1412 continue; 1413 if (old->i_sb != sb) 1414 continue; 1415 spin_lock(&old->i_lock); 1416 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1417 spin_unlock(&old->i_lock); 1418 continue; 1419 } 1420 break; 1421 } 1422 if (likely(!old)) { 1423 spin_lock(&inode->i_lock); 1424 inode->i_state |= I_NEW; 1425 hlist_add_head(&inode->i_hash, head); 1426 spin_unlock(&inode->i_lock); 1427 spin_unlock(&inode_hash_lock); 1428 return 0; 1429 } 1430 __iget(old); 1431 spin_unlock(&old->i_lock); 1432 spin_unlock(&inode_hash_lock); 1433 wait_on_inode(old); 1434 if (unlikely(!inode_unhashed(old))) { 1435 iput(old); 1436 return -EBUSY; 1437 } 1438 iput(old); 1439 } 1440 } 1441 EXPORT_SYMBOL(insert_inode_locked); 1442 1443 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1444 int (*test)(struct inode *, void *), void *data) 1445 { 1446 struct inode *old = inode_insert5(inode, hashval, test, NULL, data); 1447 1448 if (old != inode) { 1449 iput(old); 1450 return -EBUSY; 1451 } 1452 return 0; 1453 } 1454 EXPORT_SYMBOL(insert_inode_locked4); 1455 1456 1457 int generic_delete_inode(struct inode *inode) 1458 { 1459 return 1; 1460 } 1461 EXPORT_SYMBOL(generic_delete_inode); 1462 1463 /* 1464 * Called when we're dropping the last reference 1465 * to an inode. 1466 * 1467 * Call the FS "drop_inode()" function, defaulting to 1468 * the legacy UNIX filesystem behaviour. If it tells 1469 * us to evict inode, do so. Otherwise, retain inode 1470 * in cache if fs is alive, sync and evict if fs is 1471 * shutting down. 1472 */ 1473 static void iput_final(struct inode *inode) 1474 { 1475 struct super_block *sb = inode->i_sb; 1476 const struct super_operations *op = inode->i_sb->s_op; 1477 int drop; 1478 1479 WARN_ON(inode->i_state & I_NEW); 1480 1481 if (op->drop_inode) 1482 drop = op->drop_inode(inode); 1483 else 1484 drop = generic_drop_inode(inode); 1485 1486 if (!drop && (sb->s_flags & SB_ACTIVE)) { 1487 inode_add_lru(inode); 1488 spin_unlock(&inode->i_lock); 1489 return; 1490 } 1491 1492 if (!drop) { 1493 inode->i_state |= I_WILL_FREE; 1494 spin_unlock(&inode->i_lock); 1495 write_inode_now(inode, 1); 1496 spin_lock(&inode->i_lock); 1497 WARN_ON(inode->i_state & I_NEW); 1498 inode->i_state &= ~I_WILL_FREE; 1499 } 1500 1501 inode->i_state |= I_FREEING; 1502 if (!list_empty(&inode->i_lru)) 1503 inode_lru_list_del(inode); 1504 spin_unlock(&inode->i_lock); 1505 1506 evict(inode); 1507 } 1508 1509 /** 1510 * iput - put an inode 1511 * @inode: inode to put 1512 * 1513 * Puts an inode, dropping its usage count. If the inode use count hits 1514 * zero, the inode is then freed and may also be destroyed. 1515 * 1516 * Consequently, iput() can sleep. 1517 */ 1518 void iput(struct inode *inode) 1519 { 1520 if (!inode) 1521 return; 1522 BUG_ON(inode->i_state & I_CLEAR); 1523 retry: 1524 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1525 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1526 atomic_inc(&inode->i_count); 1527 spin_unlock(&inode->i_lock); 1528 trace_writeback_lazytime_iput(inode); 1529 mark_inode_dirty_sync(inode); 1530 goto retry; 1531 } 1532 iput_final(inode); 1533 } 1534 } 1535 EXPORT_SYMBOL(iput); 1536 1537 /** 1538 * bmap - find a block number in a file 1539 * @inode: inode of file 1540 * @block: block to find 1541 * 1542 * Returns the block number on the device holding the inode that 1543 * is the disk block number for the block of the file requested. 1544 * That is, asked for block 4 of inode 1 the function will return the 1545 * disk block relative to the disk start that holds that block of the 1546 * file. 1547 */ 1548 sector_t bmap(struct inode *inode, sector_t block) 1549 { 1550 sector_t res = 0; 1551 if (inode->i_mapping->a_ops->bmap) 1552 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1553 return res; 1554 } 1555 EXPORT_SYMBOL(bmap); 1556 1557 /* 1558 * Update times in overlayed inode from underlying real inode 1559 */ 1560 static void update_ovl_inode_times(struct dentry *dentry, struct inode *inode, 1561 bool rcu) 1562 { 1563 struct dentry *upperdentry; 1564 1565 /* 1566 * Nothing to do if in rcu or if non-overlayfs 1567 */ 1568 if (rcu || likely(!(dentry->d_flags & DCACHE_OP_REAL))) 1569 return; 1570 1571 upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER); 1572 1573 /* 1574 * If file is on lower then we can't update atime, so no worries about 1575 * stale mtime/ctime. 1576 */ 1577 if (upperdentry) { 1578 struct inode *realinode = d_inode(upperdentry); 1579 1580 if ((!timespec64_equal(&inode->i_mtime, &realinode->i_mtime) || 1581 !timespec64_equal(&inode->i_ctime, &realinode->i_ctime))) { 1582 inode->i_mtime = realinode->i_mtime; 1583 inode->i_ctime = realinode->i_ctime; 1584 } 1585 } 1586 } 1587 1588 /* 1589 * With relative atime, only update atime if the previous atime is 1590 * earlier than either the ctime or mtime or if at least a day has 1591 * passed since the last atime update. 1592 */ 1593 static int relatime_need_update(const struct path *path, struct inode *inode, 1594 struct timespec now, bool rcu) 1595 { 1596 1597 if (!(path->mnt->mnt_flags & MNT_RELATIME)) 1598 return 1; 1599 1600 update_ovl_inode_times(path->dentry, inode, rcu); 1601 /* 1602 * Is mtime younger than atime? If yes, update atime: 1603 */ 1604 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1605 return 1; 1606 /* 1607 * Is ctime younger than atime? If yes, update atime: 1608 */ 1609 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1610 return 1; 1611 1612 /* 1613 * Is the previous atime value older than a day? If yes, 1614 * update atime: 1615 */ 1616 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1617 return 1; 1618 /* 1619 * Good, we can skip the atime update: 1620 */ 1621 return 0; 1622 } 1623 1624 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags) 1625 { 1626 int iflags = I_DIRTY_TIME; 1627 bool dirty = false; 1628 1629 if (flags & S_ATIME) 1630 inode->i_atime = *time; 1631 if (flags & S_VERSION) 1632 dirty = inode_maybe_inc_iversion(inode, false); 1633 if (flags & S_CTIME) 1634 inode->i_ctime = *time; 1635 if (flags & S_MTIME) 1636 inode->i_mtime = *time; 1637 if ((flags & (S_ATIME | S_CTIME | S_MTIME)) && 1638 !(inode->i_sb->s_flags & SB_LAZYTIME)) 1639 dirty = true; 1640 1641 if (dirty) 1642 iflags |= I_DIRTY_SYNC; 1643 __mark_inode_dirty(inode, iflags); 1644 return 0; 1645 } 1646 EXPORT_SYMBOL(generic_update_time); 1647 1648 /* 1649 * This does the actual work of updating an inodes time or version. Must have 1650 * had called mnt_want_write() before calling this. 1651 */ 1652 static int update_time(struct inode *inode, struct timespec64 *time, int flags) 1653 { 1654 int (*update_time)(struct inode *, struct timespec64 *, int); 1655 1656 update_time = inode->i_op->update_time ? inode->i_op->update_time : 1657 generic_update_time; 1658 1659 return update_time(inode, time, flags); 1660 } 1661 1662 /** 1663 * touch_atime - update the access time 1664 * @path: the &struct path to update 1665 * @inode: inode to update 1666 * 1667 * Update the accessed time on an inode and mark it for writeback. 1668 * This function automatically handles read only file systems and media, 1669 * as well as the "noatime" flag and inode specific "noatime" markers. 1670 */ 1671 bool __atime_needs_update(const struct path *path, struct inode *inode, 1672 bool rcu) 1673 { 1674 struct vfsmount *mnt = path->mnt; 1675 struct timespec64 now; 1676 1677 if (inode->i_flags & S_NOATIME) 1678 return false; 1679 1680 /* Atime updates will likely cause i_uid and i_gid to be written 1681 * back improprely if their true value is unknown to the vfs. 1682 */ 1683 if (HAS_UNMAPPED_ID(inode)) 1684 return false; 1685 1686 if (IS_NOATIME(inode)) 1687 return false; 1688 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 1689 return false; 1690 1691 if (mnt->mnt_flags & MNT_NOATIME) 1692 return false; 1693 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1694 return false; 1695 1696 now = current_time(inode); 1697 1698 if (!relatime_need_update(path, inode, timespec64_to_timespec(now), rcu)) 1699 return false; 1700 1701 if (timespec64_equal(&inode->i_atime, &now)) 1702 return false; 1703 1704 return true; 1705 } 1706 1707 void touch_atime(const struct path *path) 1708 { 1709 struct vfsmount *mnt = path->mnt; 1710 struct inode *inode = d_inode(path->dentry); 1711 struct timespec64 now; 1712 1713 if (!__atime_needs_update(path, inode, false)) 1714 return; 1715 1716 if (!sb_start_write_trylock(inode->i_sb)) 1717 return; 1718 1719 if (__mnt_want_write(mnt) != 0) 1720 goto skip_update; 1721 /* 1722 * File systems can error out when updating inodes if they need to 1723 * allocate new space to modify an inode (such is the case for 1724 * Btrfs), but since we touch atime while walking down the path we 1725 * really don't care if we failed to update the atime of the file, 1726 * so just ignore the return value. 1727 * We may also fail on filesystems that have the ability to make parts 1728 * of the fs read only, e.g. subvolumes in Btrfs. 1729 */ 1730 now = current_time(inode); 1731 update_time(inode, &now, S_ATIME); 1732 __mnt_drop_write(mnt); 1733 skip_update: 1734 sb_end_write(inode->i_sb); 1735 } 1736 EXPORT_SYMBOL(touch_atime); 1737 1738 /* 1739 * The logic we want is 1740 * 1741 * if suid or (sgid and xgrp) 1742 * remove privs 1743 */ 1744 int should_remove_suid(struct dentry *dentry) 1745 { 1746 umode_t mode = d_inode(dentry)->i_mode; 1747 int kill = 0; 1748 1749 /* suid always must be killed */ 1750 if (unlikely(mode & S_ISUID)) 1751 kill = ATTR_KILL_SUID; 1752 1753 /* 1754 * sgid without any exec bits is just a mandatory locking mark; leave 1755 * it alone. If some exec bits are set, it's a real sgid; kill it. 1756 */ 1757 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1758 kill |= ATTR_KILL_SGID; 1759 1760 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1761 return kill; 1762 1763 return 0; 1764 } 1765 EXPORT_SYMBOL(should_remove_suid); 1766 1767 /* 1768 * Return mask of changes for notify_change() that need to be done as a 1769 * response to write or truncate. Return 0 if nothing has to be changed. 1770 * Negative value on error (change should be denied). 1771 */ 1772 int dentry_needs_remove_privs(struct dentry *dentry) 1773 { 1774 struct inode *inode = d_inode(dentry); 1775 int mask = 0; 1776 int ret; 1777 1778 if (IS_NOSEC(inode)) 1779 return 0; 1780 1781 mask = should_remove_suid(dentry); 1782 ret = security_inode_need_killpriv(dentry); 1783 if (ret < 0) 1784 return ret; 1785 if (ret) 1786 mask |= ATTR_KILL_PRIV; 1787 return mask; 1788 } 1789 1790 static int __remove_privs(struct dentry *dentry, int kill) 1791 { 1792 struct iattr newattrs; 1793 1794 newattrs.ia_valid = ATTR_FORCE | kill; 1795 /* 1796 * Note we call this on write, so notify_change will not 1797 * encounter any conflicting delegations: 1798 */ 1799 return notify_change(dentry, &newattrs, NULL); 1800 } 1801 1802 /* 1803 * Remove special file priviledges (suid, capabilities) when file is written 1804 * to or truncated. 1805 */ 1806 int file_remove_privs(struct file *file) 1807 { 1808 struct dentry *dentry = file_dentry(file); 1809 struct inode *inode = file_inode(file); 1810 int kill; 1811 int error = 0; 1812 1813 /* Fast path for nothing security related */ 1814 if (IS_NOSEC(inode)) 1815 return 0; 1816 1817 kill = dentry_needs_remove_privs(dentry); 1818 if (kill < 0) 1819 return kill; 1820 if (kill) 1821 error = __remove_privs(dentry, kill); 1822 if (!error) 1823 inode_has_no_xattr(inode); 1824 1825 return error; 1826 } 1827 EXPORT_SYMBOL(file_remove_privs); 1828 1829 /** 1830 * file_update_time - update mtime and ctime time 1831 * @file: file accessed 1832 * 1833 * Update the mtime and ctime members of an inode and mark the inode 1834 * for writeback. Note that this function is meant exclusively for 1835 * usage in the file write path of filesystems, and filesystems may 1836 * choose to explicitly ignore update via this function with the 1837 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1838 * timestamps are handled by the server. This can return an error for 1839 * file systems who need to allocate space in order to update an inode. 1840 */ 1841 1842 int file_update_time(struct file *file) 1843 { 1844 struct inode *inode = file_inode(file); 1845 struct timespec64 now; 1846 int sync_it = 0; 1847 int ret; 1848 1849 /* First try to exhaust all avenues to not sync */ 1850 if (IS_NOCMTIME(inode)) 1851 return 0; 1852 1853 now = current_time(inode); 1854 if (!timespec64_equal(&inode->i_mtime, &now)) 1855 sync_it = S_MTIME; 1856 1857 if (!timespec64_equal(&inode->i_ctime, &now)) 1858 sync_it |= S_CTIME; 1859 1860 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 1861 sync_it |= S_VERSION; 1862 1863 if (!sync_it) 1864 return 0; 1865 1866 /* Finally allowed to write? Takes lock. */ 1867 if (__mnt_want_write_file(file)) 1868 return 0; 1869 1870 ret = update_time(inode, &now, sync_it); 1871 __mnt_drop_write_file(file); 1872 1873 return ret; 1874 } 1875 EXPORT_SYMBOL(file_update_time); 1876 1877 int inode_needs_sync(struct inode *inode) 1878 { 1879 if (IS_SYNC(inode)) 1880 return 1; 1881 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1882 return 1; 1883 return 0; 1884 } 1885 EXPORT_SYMBOL(inode_needs_sync); 1886 1887 /* 1888 * If we try to find an inode in the inode hash while it is being 1889 * deleted, we have to wait until the filesystem completes its 1890 * deletion before reporting that it isn't found. This function waits 1891 * until the deletion _might_ have completed. Callers are responsible 1892 * to recheck inode state. 1893 * 1894 * It doesn't matter if I_NEW is not set initially, a call to 1895 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 1896 * will DTRT. 1897 */ 1898 static void __wait_on_freeing_inode(struct inode *inode) 1899 { 1900 wait_queue_head_t *wq; 1901 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 1902 wq = bit_waitqueue(&inode->i_state, __I_NEW); 1903 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 1904 spin_unlock(&inode->i_lock); 1905 spin_unlock(&inode_hash_lock); 1906 schedule(); 1907 finish_wait(wq, &wait.wq_entry); 1908 spin_lock(&inode_hash_lock); 1909 } 1910 1911 static __initdata unsigned long ihash_entries; 1912 static int __init set_ihash_entries(char *str) 1913 { 1914 if (!str) 1915 return 0; 1916 ihash_entries = simple_strtoul(str, &str, 0); 1917 return 1; 1918 } 1919 __setup("ihash_entries=", set_ihash_entries); 1920 1921 /* 1922 * Initialize the waitqueues and inode hash table. 1923 */ 1924 void __init inode_init_early(void) 1925 { 1926 /* If hashes are distributed across NUMA nodes, defer 1927 * hash allocation until vmalloc space is available. 1928 */ 1929 if (hashdist) 1930 return; 1931 1932 inode_hashtable = 1933 alloc_large_system_hash("Inode-cache", 1934 sizeof(struct hlist_head), 1935 ihash_entries, 1936 14, 1937 HASH_EARLY | HASH_ZERO, 1938 &i_hash_shift, 1939 &i_hash_mask, 1940 0, 1941 0); 1942 } 1943 1944 void __init inode_init(void) 1945 { 1946 /* inode slab cache */ 1947 inode_cachep = kmem_cache_create("inode_cache", 1948 sizeof(struct inode), 1949 0, 1950 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1951 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 1952 init_once); 1953 1954 /* Hash may have been set up in inode_init_early */ 1955 if (!hashdist) 1956 return; 1957 1958 inode_hashtable = 1959 alloc_large_system_hash("Inode-cache", 1960 sizeof(struct hlist_head), 1961 ihash_entries, 1962 14, 1963 HASH_ZERO, 1964 &i_hash_shift, 1965 &i_hash_mask, 1966 0, 1967 0); 1968 } 1969 1970 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1971 { 1972 inode->i_mode = mode; 1973 if (S_ISCHR(mode)) { 1974 inode->i_fop = &def_chr_fops; 1975 inode->i_rdev = rdev; 1976 } else if (S_ISBLK(mode)) { 1977 inode->i_fop = &def_blk_fops; 1978 inode->i_rdev = rdev; 1979 } else if (S_ISFIFO(mode)) 1980 inode->i_fop = &pipefifo_fops; 1981 else if (S_ISSOCK(mode)) 1982 ; /* leave it no_open_fops */ 1983 else 1984 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 1985 " inode %s:%lu\n", mode, inode->i_sb->s_id, 1986 inode->i_ino); 1987 } 1988 EXPORT_SYMBOL(init_special_inode); 1989 1990 /** 1991 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 1992 * @inode: New inode 1993 * @dir: Directory inode 1994 * @mode: mode of the new inode 1995 */ 1996 void inode_init_owner(struct inode *inode, const struct inode *dir, 1997 umode_t mode) 1998 { 1999 inode->i_uid = current_fsuid(); 2000 if (dir && dir->i_mode & S_ISGID) { 2001 inode->i_gid = dir->i_gid; 2002 2003 /* Directories are special, and always inherit S_ISGID */ 2004 if (S_ISDIR(mode)) 2005 mode |= S_ISGID; 2006 else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) && 2007 !in_group_p(inode->i_gid) && 2008 !capable_wrt_inode_uidgid(dir, CAP_FSETID)) 2009 mode &= ~S_ISGID; 2010 } else 2011 inode->i_gid = current_fsgid(); 2012 inode->i_mode = mode; 2013 } 2014 EXPORT_SYMBOL(inode_init_owner); 2015 2016 /** 2017 * inode_owner_or_capable - check current task permissions to inode 2018 * @inode: inode being checked 2019 * 2020 * Return true if current either has CAP_FOWNER in a namespace with the 2021 * inode owner uid mapped, or owns the file. 2022 */ 2023 bool inode_owner_or_capable(const struct inode *inode) 2024 { 2025 struct user_namespace *ns; 2026 2027 if (uid_eq(current_fsuid(), inode->i_uid)) 2028 return true; 2029 2030 ns = current_user_ns(); 2031 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER)) 2032 return true; 2033 return false; 2034 } 2035 EXPORT_SYMBOL(inode_owner_or_capable); 2036 2037 /* 2038 * Direct i/o helper functions 2039 */ 2040 static void __inode_dio_wait(struct inode *inode) 2041 { 2042 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2043 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2044 2045 do { 2046 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); 2047 if (atomic_read(&inode->i_dio_count)) 2048 schedule(); 2049 } while (atomic_read(&inode->i_dio_count)); 2050 finish_wait(wq, &q.wq_entry); 2051 } 2052 2053 /** 2054 * inode_dio_wait - wait for outstanding DIO requests to finish 2055 * @inode: inode to wait for 2056 * 2057 * Waits for all pending direct I/O requests to finish so that we can 2058 * proceed with a truncate or equivalent operation. 2059 * 2060 * Must be called under a lock that serializes taking new references 2061 * to i_dio_count, usually by inode->i_mutex. 2062 */ 2063 void inode_dio_wait(struct inode *inode) 2064 { 2065 if (atomic_read(&inode->i_dio_count)) 2066 __inode_dio_wait(inode); 2067 } 2068 EXPORT_SYMBOL(inode_dio_wait); 2069 2070 /* 2071 * inode_set_flags - atomically set some inode flags 2072 * 2073 * Note: the caller should be holding i_mutex, or else be sure that 2074 * they have exclusive access to the inode structure (i.e., while the 2075 * inode is being instantiated). The reason for the cmpxchg() loop 2076 * --- which wouldn't be necessary if all code paths which modify 2077 * i_flags actually followed this rule, is that there is at least one 2078 * code path which doesn't today so we use cmpxchg() out of an abundance 2079 * of caution. 2080 * 2081 * In the long run, i_mutex is overkill, and we should probably look 2082 * at using the i_lock spinlock to protect i_flags, and then make sure 2083 * it is so documented in include/linux/fs.h and that all code follows 2084 * the locking convention!! 2085 */ 2086 void inode_set_flags(struct inode *inode, unsigned int flags, 2087 unsigned int mask) 2088 { 2089 unsigned int old_flags, new_flags; 2090 2091 WARN_ON_ONCE(flags & ~mask); 2092 do { 2093 old_flags = READ_ONCE(inode->i_flags); 2094 new_flags = (old_flags & ~mask) | flags; 2095 } while (unlikely(cmpxchg(&inode->i_flags, old_flags, 2096 new_flags) != old_flags)); 2097 } 2098 EXPORT_SYMBOL(inode_set_flags); 2099 2100 void inode_nohighmem(struct inode *inode) 2101 { 2102 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2103 } 2104 EXPORT_SYMBOL(inode_nohighmem); 2105 2106 /** 2107 * timespec64_trunc - Truncate timespec64 to a granularity 2108 * @t: Timespec64 2109 * @gran: Granularity in ns. 2110 * 2111 * Truncate a timespec64 to a granularity. Always rounds down. gran must 2112 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2113 */ 2114 struct timespec64 timespec64_trunc(struct timespec64 t, unsigned gran) 2115 { 2116 /* Avoid division in the common cases 1 ns and 1 s. */ 2117 if (gran == 1) { 2118 /* nothing */ 2119 } else if (gran == NSEC_PER_SEC) { 2120 t.tv_nsec = 0; 2121 } else if (gran > 1 && gran < NSEC_PER_SEC) { 2122 t.tv_nsec -= t.tv_nsec % gran; 2123 } else { 2124 WARN(1, "illegal file time granularity: %u", gran); 2125 } 2126 return t; 2127 } 2128 EXPORT_SYMBOL(timespec64_trunc); 2129 2130 /** 2131 * current_time - Return FS time 2132 * @inode: inode. 2133 * 2134 * Return the current time truncated to the time granularity supported by 2135 * the fs. 2136 * 2137 * Note that inode and inode->sb cannot be NULL. 2138 * Otherwise, the function warns and returns time without truncation. 2139 */ 2140 struct timespec64 current_time(struct inode *inode) 2141 { 2142 struct timespec64 now = current_kernel_time64(); 2143 2144 if (unlikely(!inode->i_sb)) { 2145 WARN(1, "current_time() called with uninitialized super_block in the inode"); 2146 return now; 2147 } 2148 2149 return timespec64_trunc(now, inode->i_sb->s_time_gran); 2150 } 2151 EXPORT_SYMBOL(current_time); 2152