1 /* 2 * (C) 1997 Linus Torvalds 3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 4 */ 5 #include <linux/export.h> 6 #include <linux/fs.h> 7 #include <linux/mm.h> 8 #include <linux/backing-dev.h> 9 #include <linux/hash.h> 10 #include <linux/swap.h> 11 #include <linux/security.h> 12 #include <linux/cdev.h> 13 #include <linux/bootmem.h> 14 #include <linux/fsnotify.h> 15 #include <linux/mount.h> 16 #include <linux/posix_acl.h> 17 #include <linux/prefetch.h> 18 #include <linux/buffer_head.h> /* for inode_has_buffers */ 19 #include <linux/ratelimit.h> 20 #include <linux/list_lru.h> 21 #include <trace/events/writeback.h> 22 #include "internal.h" 23 24 /* 25 * Inode locking rules: 26 * 27 * inode->i_lock protects: 28 * inode->i_state, inode->i_hash, __iget() 29 * Inode LRU list locks protect: 30 * inode->i_sb->s_inode_lru, inode->i_lru 31 * inode->i_sb->s_inode_list_lock protects: 32 * inode->i_sb->s_inodes, inode->i_sb_list 33 * bdi->wb.list_lock protects: 34 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 35 * inode_hash_lock protects: 36 * inode_hashtable, inode->i_hash 37 * 38 * Lock ordering: 39 * 40 * inode->i_sb->s_inode_list_lock 41 * inode->i_lock 42 * Inode LRU list locks 43 * 44 * bdi->wb.list_lock 45 * inode->i_lock 46 * 47 * inode_hash_lock 48 * inode->i_sb->s_inode_list_lock 49 * inode->i_lock 50 * 51 * iunique_lock 52 * inode_hash_lock 53 */ 54 55 static unsigned int i_hash_mask __read_mostly; 56 static unsigned int i_hash_shift __read_mostly; 57 static struct hlist_head *inode_hashtable __read_mostly; 58 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 59 60 /* 61 * Empty aops. Can be used for the cases where the user does not 62 * define any of the address_space operations. 63 */ 64 const struct address_space_operations empty_aops = { 65 }; 66 EXPORT_SYMBOL(empty_aops); 67 68 /* 69 * Statistics gathering.. 70 */ 71 struct inodes_stat_t inodes_stat; 72 73 static DEFINE_PER_CPU(unsigned long, nr_inodes); 74 static DEFINE_PER_CPU(unsigned long, nr_unused); 75 76 static struct kmem_cache *inode_cachep __read_mostly; 77 78 static long get_nr_inodes(void) 79 { 80 int i; 81 long sum = 0; 82 for_each_possible_cpu(i) 83 sum += per_cpu(nr_inodes, i); 84 return sum < 0 ? 0 : sum; 85 } 86 87 static inline long get_nr_inodes_unused(void) 88 { 89 int i; 90 long sum = 0; 91 for_each_possible_cpu(i) 92 sum += per_cpu(nr_unused, i); 93 return sum < 0 ? 0 : sum; 94 } 95 96 long get_nr_dirty_inodes(void) 97 { 98 /* not actually dirty inodes, but a wild approximation */ 99 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 100 return nr_dirty > 0 ? nr_dirty : 0; 101 } 102 103 /* 104 * Handle nr_inode sysctl 105 */ 106 #ifdef CONFIG_SYSCTL 107 int proc_nr_inodes(struct ctl_table *table, int write, 108 void __user *buffer, size_t *lenp, loff_t *ppos) 109 { 110 inodes_stat.nr_inodes = get_nr_inodes(); 111 inodes_stat.nr_unused = get_nr_inodes_unused(); 112 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 113 } 114 #endif 115 116 static int no_open(struct inode *inode, struct file *file) 117 { 118 return -ENXIO; 119 } 120 121 /** 122 * inode_init_always - perform inode structure initialisation 123 * @sb: superblock inode belongs to 124 * @inode: inode to initialise 125 * 126 * These are initializations that need to be done on every inode 127 * allocation as the fields are not initialised by slab allocation. 128 */ 129 int inode_init_always(struct super_block *sb, struct inode *inode) 130 { 131 static const struct inode_operations empty_iops; 132 static const struct file_operations no_open_fops = {.open = no_open}; 133 struct address_space *const mapping = &inode->i_data; 134 135 inode->i_sb = sb; 136 inode->i_blkbits = sb->s_blocksize_bits; 137 inode->i_flags = 0; 138 atomic_set(&inode->i_count, 1); 139 inode->i_op = &empty_iops; 140 inode->i_fop = &no_open_fops; 141 inode->__i_nlink = 1; 142 inode->i_opflags = 0; 143 if (sb->s_xattr) 144 inode->i_opflags |= IOP_XATTR; 145 i_uid_write(inode, 0); 146 i_gid_write(inode, 0); 147 atomic_set(&inode->i_writecount, 0); 148 inode->i_size = 0; 149 inode->i_write_hint = WRITE_LIFE_NOT_SET; 150 inode->i_blocks = 0; 151 inode->i_bytes = 0; 152 inode->i_generation = 0; 153 inode->i_pipe = NULL; 154 inode->i_bdev = NULL; 155 inode->i_cdev = NULL; 156 inode->i_link = NULL; 157 inode->i_dir_seq = 0; 158 inode->i_rdev = 0; 159 inode->dirtied_when = 0; 160 161 #ifdef CONFIG_CGROUP_WRITEBACK 162 inode->i_wb_frn_winner = 0; 163 inode->i_wb_frn_avg_time = 0; 164 inode->i_wb_frn_history = 0; 165 #endif 166 167 if (security_inode_alloc(inode)) 168 goto out; 169 spin_lock_init(&inode->i_lock); 170 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 171 172 init_rwsem(&inode->i_rwsem); 173 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 174 175 atomic_set(&inode->i_dio_count, 0); 176 177 mapping->a_ops = &empty_aops; 178 mapping->host = inode; 179 mapping->flags = 0; 180 atomic_set(&mapping->i_mmap_writable, 0); 181 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 182 mapping->private_data = NULL; 183 mapping->writeback_index = 0; 184 inode->i_private = NULL; 185 inode->i_mapping = mapping; 186 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 187 #ifdef CONFIG_FS_POSIX_ACL 188 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 189 #endif 190 191 #ifdef CONFIG_FSNOTIFY 192 inode->i_fsnotify_mask = 0; 193 #endif 194 inode->i_flctx = NULL; 195 this_cpu_inc(nr_inodes); 196 197 return 0; 198 out: 199 return -ENOMEM; 200 } 201 EXPORT_SYMBOL(inode_init_always); 202 203 static struct inode *alloc_inode(struct super_block *sb) 204 { 205 struct inode *inode; 206 207 if (sb->s_op->alloc_inode) 208 inode = sb->s_op->alloc_inode(sb); 209 else 210 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 211 212 if (!inode) 213 return NULL; 214 215 if (unlikely(inode_init_always(sb, inode))) { 216 if (inode->i_sb->s_op->destroy_inode) 217 inode->i_sb->s_op->destroy_inode(inode); 218 else 219 kmem_cache_free(inode_cachep, inode); 220 return NULL; 221 } 222 223 return inode; 224 } 225 226 void free_inode_nonrcu(struct inode *inode) 227 { 228 kmem_cache_free(inode_cachep, inode); 229 } 230 EXPORT_SYMBOL(free_inode_nonrcu); 231 232 void __destroy_inode(struct inode *inode) 233 { 234 BUG_ON(inode_has_buffers(inode)); 235 inode_detach_wb(inode); 236 security_inode_free(inode); 237 fsnotify_inode_delete(inode); 238 locks_free_lock_context(inode); 239 if (!inode->i_nlink) { 240 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 241 atomic_long_dec(&inode->i_sb->s_remove_count); 242 } 243 244 #ifdef CONFIG_FS_POSIX_ACL 245 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 246 posix_acl_release(inode->i_acl); 247 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 248 posix_acl_release(inode->i_default_acl); 249 #endif 250 this_cpu_dec(nr_inodes); 251 } 252 EXPORT_SYMBOL(__destroy_inode); 253 254 static void i_callback(struct rcu_head *head) 255 { 256 struct inode *inode = container_of(head, struct inode, i_rcu); 257 kmem_cache_free(inode_cachep, inode); 258 } 259 260 static void destroy_inode(struct inode *inode) 261 { 262 BUG_ON(!list_empty(&inode->i_lru)); 263 __destroy_inode(inode); 264 if (inode->i_sb->s_op->destroy_inode) 265 inode->i_sb->s_op->destroy_inode(inode); 266 else 267 call_rcu(&inode->i_rcu, i_callback); 268 } 269 270 /** 271 * drop_nlink - directly drop an inode's link count 272 * @inode: inode 273 * 274 * This is a low-level filesystem helper to replace any 275 * direct filesystem manipulation of i_nlink. In cases 276 * where we are attempting to track writes to the 277 * filesystem, a decrement to zero means an imminent 278 * write when the file is truncated and actually unlinked 279 * on the filesystem. 280 */ 281 void drop_nlink(struct inode *inode) 282 { 283 WARN_ON(inode->i_nlink == 0); 284 inode->__i_nlink--; 285 if (!inode->i_nlink) 286 atomic_long_inc(&inode->i_sb->s_remove_count); 287 } 288 EXPORT_SYMBOL(drop_nlink); 289 290 /** 291 * clear_nlink - directly zero an inode's link count 292 * @inode: inode 293 * 294 * This is a low-level filesystem helper to replace any 295 * direct filesystem manipulation of i_nlink. See 296 * drop_nlink() for why we care about i_nlink hitting zero. 297 */ 298 void clear_nlink(struct inode *inode) 299 { 300 if (inode->i_nlink) { 301 inode->__i_nlink = 0; 302 atomic_long_inc(&inode->i_sb->s_remove_count); 303 } 304 } 305 EXPORT_SYMBOL(clear_nlink); 306 307 /** 308 * set_nlink - directly set an inode's link count 309 * @inode: inode 310 * @nlink: new nlink (should be non-zero) 311 * 312 * This is a low-level filesystem helper to replace any 313 * direct filesystem manipulation of i_nlink. 314 */ 315 void set_nlink(struct inode *inode, unsigned int nlink) 316 { 317 if (!nlink) { 318 clear_nlink(inode); 319 } else { 320 /* Yes, some filesystems do change nlink from zero to one */ 321 if (inode->i_nlink == 0) 322 atomic_long_dec(&inode->i_sb->s_remove_count); 323 324 inode->__i_nlink = nlink; 325 } 326 } 327 EXPORT_SYMBOL(set_nlink); 328 329 /** 330 * inc_nlink - directly increment an inode's link count 331 * @inode: inode 332 * 333 * This is a low-level filesystem helper to replace any 334 * direct filesystem manipulation of i_nlink. Currently, 335 * it is only here for parity with dec_nlink(). 336 */ 337 void inc_nlink(struct inode *inode) 338 { 339 if (unlikely(inode->i_nlink == 0)) { 340 WARN_ON(!(inode->i_state & I_LINKABLE)); 341 atomic_long_dec(&inode->i_sb->s_remove_count); 342 } 343 344 inode->__i_nlink++; 345 } 346 EXPORT_SYMBOL(inc_nlink); 347 348 void address_space_init_once(struct address_space *mapping) 349 { 350 memset(mapping, 0, sizeof(*mapping)); 351 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC | __GFP_ACCOUNT); 352 spin_lock_init(&mapping->tree_lock); 353 init_rwsem(&mapping->i_mmap_rwsem); 354 INIT_LIST_HEAD(&mapping->private_list); 355 spin_lock_init(&mapping->private_lock); 356 mapping->i_mmap = RB_ROOT; 357 } 358 EXPORT_SYMBOL(address_space_init_once); 359 360 /* 361 * These are initializations that only need to be done 362 * once, because the fields are idempotent across use 363 * of the inode, so let the slab aware of that. 364 */ 365 void inode_init_once(struct inode *inode) 366 { 367 memset(inode, 0, sizeof(*inode)); 368 INIT_HLIST_NODE(&inode->i_hash); 369 INIT_LIST_HEAD(&inode->i_devices); 370 INIT_LIST_HEAD(&inode->i_io_list); 371 INIT_LIST_HEAD(&inode->i_wb_list); 372 INIT_LIST_HEAD(&inode->i_lru); 373 address_space_init_once(&inode->i_data); 374 i_size_ordered_init(inode); 375 } 376 EXPORT_SYMBOL(inode_init_once); 377 378 static void init_once(void *foo) 379 { 380 struct inode *inode = (struct inode *) foo; 381 382 inode_init_once(inode); 383 } 384 385 /* 386 * inode->i_lock must be held 387 */ 388 void __iget(struct inode *inode) 389 { 390 atomic_inc(&inode->i_count); 391 } 392 393 /* 394 * get additional reference to inode; caller must already hold one. 395 */ 396 void ihold(struct inode *inode) 397 { 398 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 399 } 400 EXPORT_SYMBOL(ihold); 401 402 static void inode_lru_list_add(struct inode *inode) 403 { 404 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) 405 this_cpu_inc(nr_unused); 406 else 407 inode->i_state |= I_REFERENCED; 408 } 409 410 /* 411 * Add inode to LRU if needed (inode is unused and clean). 412 * 413 * Needs inode->i_lock held. 414 */ 415 void inode_add_lru(struct inode *inode) 416 { 417 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC | 418 I_FREEING | I_WILL_FREE)) && 419 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE) 420 inode_lru_list_add(inode); 421 } 422 423 424 static void inode_lru_list_del(struct inode *inode) 425 { 426 427 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) 428 this_cpu_dec(nr_unused); 429 } 430 431 /** 432 * inode_sb_list_add - add inode to the superblock list of inodes 433 * @inode: inode to add 434 */ 435 void inode_sb_list_add(struct inode *inode) 436 { 437 spin_lock(&inode->i_sb->s_inode_list_lock); 438 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 439 spin_unlock(&inode->i_sb->s_inode_list_lock); 440 } 441 EXPORT_SYMBOL_GPL(inode_sb_list_add); 442 443 static inline void inode_sb_list_del(struct inode *inode) 444 { 445 if (!list_empty(&inode->i_sb_list)) { 446 spin_lock(&inode->i_sb->s_inode_list_lock); 447 list_del_init(&inode->i_sb_list); 448 spin_unlock(&inode->i_sb->s_inode_list_lock); 449 } 450 } 451 452 static unsigned long hash(struct super_block *sb, unsigned long hashval) 453 { 454 unsigned long tmp; 455 456 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 457 L1_CACHE_BYTES; 458 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 459 return tmp & i_hash_mask; 460 } 461 462 /** 463 * __insert_inode_hash - hash an inode 464 * @inode: unhashed inode 465 * @hashval: unsigned long value used to locate this object in the 466 * inode_hashtable. 467 * 468 * Add an inode to the inode hash for this superblock. 469 */ 470 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 471 { 472 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 473 474 spin_lock(&inode_hash_lock); 475 spin_lock(&inode->i_lock); 476 hlist_add_head(&inode->i_hash, b); 477 spin_unlock(&inode->i_lock); 478 spin_unlock(&inode_hash_lock); 479 } 480 EXPORT_SYMBOL(__insert_inode_hash); 481 482 /** 483 * __remove_inode_hash - remove an inode from the hash 484 * @inode: inode to unhash 485 * 486 * Remove an inode from the superblock. 487 */ 488 void __remove_inode_hash(struct inode *inode) 489 { 490 spin_lock(&inode_hash_lock); 491 spin_lock(&inode->i_lock); 492 hlist_del_init(&inode->i_hash); 493 spin_unlock(&inode->i_lock); 494 spin_unlock(&inode_hash_lock); 495 } 496 EXPORT_SYMBOL(__remove_inode_hash); 497 498 void clear_inode(struct inode *inode) 499 { 500 might_sleep(); 501 /* 502 * We have to cycle tree_lock here because reclaim can be still in the 503 * process of removing the last page (in __delete_from_page_cache()) 504 * and we must not free mapping under it. 505 */ 506 spin_lock_irq(&inode->i_data.tree_lock); 507 BUG_ON(inode->i_data.nrpages); 508 BUG_ON(inode->i_data.nrexceptional); 509 spin_unlock_irq(&inode->i_data.tree_lock); 510 BUG_ON(!list_empty(&inode->i_data.private_list)); 511 BUG_ON(!(inode->i_state & I_FREEING)); 512 BUG_ON(inode->i_state & I_CLEAR); 513 BUG_ON(!list_empty(&inode->i_wb_list)); 514 /* don't need i_lock here, no concurrent mods to i_state */ 515 inode->i_state = I_FREEING | I_CLEAR; 516 } 517 EXPORT_SYMBOL(clear_inode); 518 519 /* 520 * Free the inode passed in, removing it from the lists it is still connected 521 * to. We remove any pages still attached to the inode and wait for any IO that 522 * is still in progress before finally destroying the inode. 523 * 524 * An inode must already be marked I_FREEING so that we avoid the inode being 525 * moved back onto lists if we race with other code that manipulates the lists 526 * (e.g. writeback_single_inode). The caller is responsible for setting this. 527 * 528 * An inode must already be removed from the LRU list before being evicted from 529 * the cache. This should occur atomically with setting the I_FREEING state 530 * flag, so no inodes here should ever be on the LRU when being evicted. 531 */ 532 static void evict(struct inode *inode) 533 { 534 const struct super_operations *op = inode->i_sb->s_op; 535 536 BUG_ON(!(inode->i_state & I_FREEING)); 537 BUG_ON(!list_empty(&inode->i_lru)); 538 539 if (!list_empty(&inode->i_io_list)) 540 inode_io_list_del(inode); 541 542 inode_sb_list_del(inode); 543 544 /* 545 * Wait for flusher thread to be done with the inode so that filesystem 546 * does not start destroying it while writeback is still running. Since 547 * the inode has I_FREEING set, flusher thread won't start new work on 548 * the inode. We just have to wait for running writeback to finish. 549 */ 550 inode_wait_for_writeback(inode); 551 552 if (op->evict_inode) { 553 op->evict_inode(inode); 554 } else { 555 truncate_inode_pages_final(&inode->i_data); 556 clear_inode(inode); 557 } 558 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 559 bd_forget(inode); 560 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 561 cd_forget(inode); 562 563 remove_inode_hash(inode); 564 565 spin_lock(&inode->i_lock); 566 wake_up_bit(&inode->i_state, __I_NEW); 567 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 568 spin_unlock(&inode->i_lock); 569 570 destroy_inode(inode); 571 } 572 573 /* 574 * dispose_list - dispose of the contents of a local list 575 * @head: the head of the list to free 576 * 577 * Dispose-list gets a local list with local inodes in it, so it doesn't 578 * need to worry about list corruption and SMP locks. 579 */ 580 static void dispose_list(struct list_head *head) 581 { 582 while (!list_empty(head)) { 583 struct inode *inode; 584 585 inode = list_first_entry(head, struct inode, i_lru); 586 list_del_init(&inode->i_lru); 587 588 evict(inode); 589 cond_resched(); 590 } 591 } 592 593 /** 594 * evict_inodes - evict all evictable inodes for a superblock 595 * @sb: superblock to operate on 596 * 597 * Make sure that no inodes with zero refcount are retained. This is 598 * called by superblock shutdown after having MS_ACTIVE flag removed, 599 * so any inode reaching zero refcount during or after that call will 600 * be immediately evicted. 601 */ 602 void evict_inodes(struct super_block *sb) 603 { 604 struct inode *inode, *next; 605 LIST_HEAD(dispose); 606 607 again: 608 spin_lock(&sb->s_inode_list_lock); 609 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 610 if (atomic_read(&inode->i_count)) 611 continue; 612 613 spin_lock(&inode->i_lock); 614 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 615 spin_unlock(&inode->i_lock); 616 continue; 617 } 618 619 inode->i_state |= I_FREEING; 620 inode_lru_list_del(inode); 621 spin_unlock(&inode->i_lock); 622 list_add(&inode->i_lru, &dispose); 623 624 /* 625 * We can have a ton of inodes to evict at unmount time given 626 * enough memory, check to see if we need to go to sleep for a 627 * bit so we don't livelock. 628 */ 629 if (need_resched()) { 630 spin_unlock(&sb->s_inode_list_lock); 631 cond_resched(); 632 dispose_list(&dispose); 633 goto again; 634 } 635 } 636 spin_unlock(&sb->s_inode_list_lock); 637 638 dispose_list(&dispose); 639 } 640 641 /** 642 * invalidate_inodes - attempt to free all inodes on a superblock 643 * @sb: superblock to operate on 644 * @kill_dirty: flag to guide handling of dirty inodes 645 * 646 * Attempts to free all inodes for a given superblock. If there were any 647 * busy inodes return a non-zero value, else zero. 648 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 649 * them as busy. 650 */ 651 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 652 { 653 int busy = 0; 654 struct inode *inode, *next; 655 LIST_HEAD(dispose); 656 657 spin_lock(&sb->s_inode_list_lock); 658 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 659 spin_lock(&inode->i_lock); 660 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 661 spin_unlock(&inode->i_lock); 662 continue; 663 } 664 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) { 665 spin_unlock(&inode->i_lock); 666 busy = 1; 667 continue; 668 } 669 if (atomic_read(&inode->i_count)) { 670 spin_unlock(&inode->i_lock); 671 busy = 1; 672 continue; 673 } 674 675 inode->i_state |= I_FREEING; 676 inode_lru_list_del(inode); 677 spin_unlock(&inode->i_lock); 678 list_add(&inode->i_lru, &dispose); 679 } 680 spin_unlock(&sb->s_inode_list_lock); 681 682 dispose_list(&dispose); 683 684 return busy; 685 } 686 687 /* 688 * Isolate the inode from the LRU in preparation for freeing it. 689 * 690 * Any inodes which are pinned purely because of attached pagecache have their 691 * pagecache removed. If the inode has metadata buffers attached to 692 * mapping->private_list then try to remove them. 693 * 694 * If the inode has the I_REFERENCED flag set, then it means that it has been 695 * used recently - the flag is set in iput_final(). When we encounter such an 696 * inode, clear the flag and move it to the back of the LRU so it gets another 697 * pass through the LRU before it gets reclaimed. This is necessary because of 698 * the fact we are doing lazy LRU updates to minimise lock contention so the 699 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 700 * with this flag set because they are the inodes that are out of order. 701 */ 702 static enum lru_status inode_lru_isolate(struct list_head *item, 703 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 704 { 705 struct list_head *freeable = arg; 706 struct inode *inode = container_of(item, struct inode, i_lru); 707 708 /* 709 * we are inverting the lru lock/inode->i_lock here, so use a trylock. 710 * If we fail to get the lock, just skip it. 711 */ 712 if (!spin_trylock(&inode->i_lock)) 713 return LRU_SKIP; 714 715 /* 716 * Referenced or dirty inodes are still in use. Give them another pass 717 * through the LRU as we canot reclaim them now. 718 */ 719 if (atomic_read(&inode->i_count) || 720 (inode->i_state & ~I_REFERENCED)) { 721 list_lru_isolate(lru, &inode->i_lru); 722 spin_unlock(&inode->i_lock); 723 this_cpu_dec(nr_unused); 724 return LRU_REMOVED; 725 } 726 727 /* recently referenced inodes get one more pass */ 728 if (inode->i_state & I_REFERENCED) { 729 inode->i_state &= ~I_REFERENCED; 730 spin_unlock(&inode->i_lock); 731 return LRU_ROTATE; 732 } 733 734 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 735 __iget(inode); 736 spin_unlock(&inode->i_lock); 737 spin_unlock(lru_lock); 738 if (remove_inode_buffers(inode)) { 739 unsigned long reap; 740 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 741 if (current_is_kswapd()) 742 __count_vm_events(KSWAPD_INODESTEAL, reap); 743 else 744 __count_vm_events(PGINODESTEAL, reap); 745 if (current->reclaim_state) 746 current->reclaim_state->reclaimed_slab += reap; 747 } 748 iput(inode); 749 spin_lock(lru_lock); 750 return LRU_RETRY; 751 } 752 753 WARN_ON(inode->i_state & I_NEW); 754 inode->i_state |= I_FREEING; 755 list_lru_isolate_move(lru, &inode->i_lru, freeable); 756 spin_unlock(&inode->i_lock); 757 758 this_cpu_dec(nr_unused); 759 return LRU_REMOVED; 760 } 761 762 /* 763 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 764 * This is called from the superblock shrinker function with a number of inodes 765 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 766 * then are freed outside inode_lock by dispose_list(). 767 */ 768 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 769 { 770 LIST_HEAD(freeable); 771 long freed; 772 773 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 774 inode_lru_isolate, &freeable); 775 dispose_list(&freeable); 776 return freed; 777 } 778 779 static void __wait_on_freeing_inode(struct inode *inode); 780 /* 781 * Called with the inode lock held. 782 */ 783 static struct inode *find_inode(struct super_block *sb, 784 struct hlist_head *head, 785 int (*test)(struct inode *, void *), 786 void *data) 787 { 788 struct inode *inode = NULL; 789 790 repeat: 791 hlist_for_each_entry(inode, head, i_hash) { 792 if (inode->i_sb != sb) 793 continue; 794 if (!test(inode, data)) 795 continue; 796 spin_lock(&inode->i_lock); 797 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 798 __wait_on_freeing_inode(inode); 799 goto repeat; 800 } 801 __iget(inode); 802 spin_unlock(&inode->i_lock); 803 return inode; 804 } 805 return NULL; 806 } 807 808 /* 809 * find_inode_fast is the fast path version of find_inode, see the comment at 810 * iget_locked for details. 811 */ 812 static struct inode *find_inode_fast(struct super_block *sb, 813 struct hlist_head *head, unsigned long ino) 814 { 815 struct inode *inode = NULL; 816 817 repeat: 818 hlist_for_each_entry(inode, head, i_hash) { 819 if (inode->i_ino != ino) 820 continue; 821 if (inode->i_sb != sb) 822 continue; 823 spin_lock(&inode->i_lock); 824 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 825 __wait_on_freeing_inode(inode); 826 goto repeat; 827 } 828 __iget(inode); 829 spin_unlock(&inode->i_lock); 830 return inode; 831 } 832 return NULL; 833 } 834 835 /* 836 * Each cpu owns a range of LAST_INO_BATCH numbers. 837 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 838 * to renew the exhausted range. 839 * 840 * This does not significantly increase overflow rate because every CPU can 841 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 842 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 843 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 844 * overflow rate by 2x, which does not seem too significant. 845 * 846 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 847 * error if st_ino won't fit in target struct field. Use 32bit counter 848 * here to attempt to avoid that. 849 */ 850 #define LAST_INO_BATCH 1024 851 static DEFINE_PER_CPU(unsigned int, last_ino); 852 853 unsigned int get_next_ino(void) 854 { 855 unsigned int *p = &get_cpu_var(last_ino); 856 unsigned int res = *p; 857 858 #ifdef CONFIG_SMP 859 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 860 static atomic_t shared_last_ino; 861 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 862 863 res = next - LAST_INO_BATCH; 864 } 865 #endif 866 867 res++; 868 /* get_next_ino should not provide a 0 inode number */ 869 if (unlikely(!res)) 870 res++; 871 *p = res; 872 put_cpu_var(last_ino); 873 return res; 874 } 875 EXPORT_SYMBOL(get_next_ino); 876 877 /** 878 * new_inode_pseudo - obtain an inode 879 * @sb: superblock 880 * 881 * Allocates a new inode for given superblock. 882 * Inode wont be chained in superblock s_inodes list 883 * This means : 884 * - fs can't be unmount 885 * - quotas, fsnotify, writeback can't work 886 */ 887 struct inode *new_inode_pseudo(struct super_block *sb) 888 { 889 struct inode *inode = alloc_inode(sb); 890 891 if (inode) { 892 spin_lock(&inode->i_lock); 893 inode->i_state = 0; 894 spin_unlock(&inode->i_lock); 895 INIT_LIST_HEAD(&inode->i_sb_list); 896 } 897 return inode; 898 } 899 900 /** 901 * new_inode - obtain an inode 902 * @sb: superblock 903 * 904 * Allocates a new inode for given superblock. The default gfp_mask 905 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 906 * If HIGHMEM pages are unsuitable or it is known that pages allocated 907 * for the page cache are not reclaimable or migratable, 908 * mapping_set_gfp_mask() must be called with suitable flags on the 909 * newly created inode's mapping 910 * 911 */ 912 struct inode *new_inode(struct super_block *sb) 913 { 914 struct inode *inode; 915 916 spin_lock_prefetch(&sb->s_inode_list_lock); 917 918 inode = new_inode_pseudo(sb); 919 if (inode) 920 inode_sb_list_add(inode); 921 return inode; 922 } 923 EXPORT_SYMBOL(new_inode); 924 925 #ifdef CONFIG_DEBUG_LOCK_ALLOC 926 void lockdep_annotate_inode_mutex_key(struct inode *inode) 927 { 928 if (S_ISDIR(inode->i_mode)) { 929 struct file_system_type *type = inode->i_sb->s_type; 930 931 /* Set new key only if filesystem hasn't already changed it */ 932 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 933 /* 934 * ensure nobody is actually holding i_mutex 935 */ 936 // mutex_destroy(&inode->i_mutex); 937 init_rwsem(&inode->i_rwsem); 938 lockdep_set_class(&inode->i_rwsem, 939 &type->i_mutex_dir_key); 940 } 941 } 942 } 943 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 944 #endif 945 946 /** 947 * unlock_new_inode - clear the I_NEW state and wake up any waiters 948 * @inode: new inode to unlock 949 * 950 * Called when the inode is fully initialised to clear the new state of the 951 * inode and wake up anyone waiting for the inode to finish initialisation. 952 */ 953 void unlock_new_inode(struct inode *inode) 954 { 955 lockdep_annotate_inode_mutex_key(inode); 956 spin_lock(&inode->i_lock); 957 WARN_ON(!(inode->i_state & I_NEW)); 958 inode->i_state &= ~I_NEW; 959 smp_mb(); 960 wake_up_bit(&inode->i_state, __I_NEW); 961 spin_unlock(&inode->i_lock); 962 } 963 EXPORT_SYMBOL(unlock_new_inode); 964 965 /** 966 * lock_two_nondirectories - take two i_mutexes on non-directory objects 967 * 968 * Lock any non-NULL argument that is not a directory. 969 * Zero, one or two objects may be locked by this function. 970 * 971 * @inode1: first inode to lock 972 * @inode2: second inode to lock 973 */ 974 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 975 { 976 if (inode1 > inode2) 977 swap(inode1, inode2); 978 979 if (inode1 && !S_ISDIR(inode1->i_mode)) 980 inode_lock(inode1); 981 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 982 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 983 } 984 EXPORT_SYMBOL(lock_two_nondirectories); 985 986 /** 987 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 988 * @inode1: first inode to unlock 989 * @inode2: second inode to unlock 990 */ 991 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 992 { 993 if (inode1 && !S_ISDIR(inode1->i_mode)) 994 inode_unlock(inode1); 995 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 996 inode_unlock(inode2); 997 } 998 EXPORT_SYMBOL(unlock_two_nondirectories); 999 1000 /** 1001 * iget5_locked - obtain an inode from a mounted file system 1002 * @sb: super block of file system 1003 * @hashval: hash value (usually inode number) to get 1004 * @test: callback used for comparisons between inodes 1005 * @set: callback used to initialize a new struct inode 1006 * @data: opaque data pointer to pass to @test and @set 1007 * 1008 * Search for the inode specified by @hashval and @data in the inode cache, 1009 * and if present it is return it with an increased reference count. This is 1010 * a generalized version of iget_locked() for file systems where the inode 1011 * number is not sufficient for unique identification of an inode. 1012 * 1013 * If the inode is not in cache, allocate a new inode and return it locked, 1014 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1015 * before unlocking it via unlock_new_inode(). 1016 * 1017 * Note both @test and @set are called with the inode_hash_lock held, so can't 1018 * sleep. 1019 */ 1020 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1021 int (*test)(struct inode *, void *), 1022 int (*set)(struct inode *, void *), void *data) 1023 { 1024 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1025 struct inode *inode; 1026 again: 1027 spin_lock(&inode_hash_lock); 1028 inode = find_inode(sb, head, test, data); 1029 spin_unlock(&inode_hash_lock); 1030 1031 if (inode) { 1032 wait_on_inode(inode); 1033 if (unlikely(inode_unhashed(inode))) { 1034 iput(inode); 1035 goto again; 1036 } 1037 return inode; 1038 } 1039 1040 inode = alloc_inode(sb); 1041 if (inode) { 1042 struct inode *old; 1043 1044 spin_lock(&inode_hash_lock); 1045 /* We released the lock, so.. */ 1046 old = find_inode(sb, head, test, data); 1047 if (!old) { 1048 if (set(inode, data)) 1049 goto set_failed; 1050 1051 spin_lock(&inode->i_lock); 1052 inode->i_state = I_NEW; 1053 hlist_add_head(&inode->i_hash, head); 1054 spin_unlock(&inode->i_lock); 1055 inode_sb_list_add(inode); 1056 spin_unlock(&inode_hash_lock); 1057 1058 /* Return the locked inode with I_NEW set, the 1059 * caller is responsible for filling in the contents 1060 */ 1061 return inode; 1062 } 1063 1064 /* 1065 * Uhhuh, somebody else created the same inode under 1066 * us. Use the old inode instead of the one we just 1067 * allocated. 1068 */ 1069 spin_unlock(&inode_hash_lock); 1070 destroy_inode(inode); 1071 inode = old; 1072 wait_on_inode(inode); 1073 if (unlikely(inode_unhashed(inode))) { 1074 iput(inode); 1075 goto again; 1076 } 1077 } 1078 return inode; 1079 1080 set_failed: 1081 spin_unlock(&inode_hash_lock); 1082 destroy_inode(inode); 1083 return NULL; 1084 } 1085 EXPORT_SYMBOL(iget5_locked); 1086 1087 /** 1088 * iget_locked - obtain an inode from a mounted file system 1089 * @sb: super block of file system 1090 * @ino: inode number to get 1091 * 1092 * Search for the inode specified by @ino in the inode cache and if present 1093 * return it with an increased reference count. This is for file systems 1094 * where the inode number is sufficient for unique identification of an inode. 1095 * 1096 * If the inode is not in cache, allocate a new inode and return it locked, 1097 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1098 * before unlocking it via unlock_new_inode(). 1099 */ 1100 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1101 { 1102 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1103 struct inode *inode; 1104 again: 1105 spin_lock(&inode_hash_lock); 1106 inode = find_inode_fast(sb, head, ino); 1107 spin_unlock(&inode_hash_lock); 1108 if (inode) { 1109 wait_on_inode(inode); 1110 if (unlikely(inode_unhashed(inode))) { 1111 iput(inode); 1112 goto again; 1113 } 1114 return inode; 1115 } 1116 1117 inode = alloc_inode(sb); 1118 if (inode) { 1119 struct inode *old; 1120 1121 spin_lock(&inode_hash_lock); 1122 /* We released the lock, so.. */ 1123 old = find_inode_fast(sb, head, ino); 1124 if (!old) { 1125 inode->i_ino = ino; 1126 spin_lock(&inode->i_lock); 1127 inode->i_state = I_NEW; 1128 hlist_add_head(&inode->i_hash, head); 1129 spin_unlock(&inode->i_lock); 1130 inode_sb_list_add(inode); 1131 spin_unlock(&inode_hash_lock); 1132 1133 /* Return the locked inode with I_NEW set, the 1134 * caller is responsible for filling in the contents 1135 */ 1136 return inode; 1137 } 1138 1139 /* 1140 * Uhhuh, somebody else created the same inode under 1141 * us. Use the old inode instead of the one we just 1142 * allocated. 1143 */ 1144 spin_unlock(&inode_hash_lock); 1145 destroy_inode(inode); 1146 inode = old; 1147 wait_on_inode(inode); 1148 if (unlikely(inode_unhashed(inode))) { 1149 iput(inode); 1150 goto again; 1151 } 1152 } 1153 return inode; 1154 } 1155 EXPORT_SYMBOL(iget_locked); 1156 1157 /* 1158 * search the inode cache for a matching inode number. 1159 * If we find one, then the inode number we are trying to 1160 * allocate is not unique and so we should not use it. 1161 * 1162 * Returns 1 if the inode number is unique, 0 if it is not. 1163 */ 1164 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1165 { 1166 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1167 struct inode *inode; 1168 1169 spin_lock(&inode_hash_lock); 1170 hlist_for_each_entry(inode, b, i_hash) { 1171 if (inode->i_ino == ino && inode->i_sb == sb) { 1172 spin_unlock(&inode_hash_lock); 1173 return 0; 1174 } 1175 } 1176 spin_unlock(&inode_hash_lock); 1177 1178 return 1; 1179 } 1180 1181 /** 1182 * iunique - get a unique inode number 1183 * @sb: superblock 1184 * @max_reserved: highest reserved inode number 1185 * 1186 * Obtain an inode number that is unique on the system for a given 1187 * superblock. This is used by file systems that have no natural 1188 * permanent inode numbering system. An inode number is returned that 1189 * is higher than the reserved limit but unique. 1190 * 1191 * BUGS: 1192 * With a large number of inodes live on the file system this function 1193 * currently becomes quite slow. 1194 */ 1195 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1196 { 1197 /* 1198 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1199 * error if st_ino won't fit in target struct field. Use 32bit counter 1200 * here to attempt to avoid that. 1201 */ 1202 static DEFINE_SPINLOCK(iunique_lock); 1203 static unsigned int counter; 1204 ino_t res; 1205 1206 spin_lock(&iunique_lock); 1207 do { 1208 if (counter <= max_reserved) 1209 counter = max_reserved + 1; 1210 res = counter++; 1211 } while (!test_inode_iunique(sb, res)); 1212 spin_unlock(&iunique_lock); 1213 1214 return res; 1215 } 1216 EXPORT_SYMBOL(iunique); 1217 1218 struct inode *igrab(struct inode *inode) 1219 { 1220 spin_lock(&inode->i_lock); 1221 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1222 __iget(inode); 1223 spin_unlock(&inode->i_lock); 1224 } else { 1225 spin_unlock(&inode->i_lock); 1226 /* 1227 * Handle the case where s_op->clear_inode is not been 1228 * called yet, and somebody is calling igrab 1229 * while the inode is getting freed. 1230 */ 1231 inode = NULL; 1232 } 1233 return inode; 1234 } 1235 EXPORT_SYMBOL(igrab); 1236 1237 /** 1238 * ilookup5_nowait - search for an inode in the inode cache 1239 * @sb: super block of file system to search 1240 * @hashval: hash value (usually inode number) to search for 1241 * @test: callback used for comparisons between inodes 1242 * @data: opaque data pointer to pass to @test 1243 * 1244 * Search for the inode specified by @hashval and @data in the inode cache. 1245 * If the inode is in the cache, the inode is returned with an incremented 1246 * reference count. 1247 * 1248 * Note: I_NEW is not waited upon so you have to be very careful what you do 1249 * with the returned inode. You probably should be using ilookup5() instead. 1250 * 1251 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1252 */ 1253 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1254 int (*test)(struct inode *, void *), void *data) 1255 { 1256 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1257 struct inode *inode; 1258 1259 spin_lock(&inode_hash_lock); 1260 inode = find_inode(sb, head, test, data); 1261 spin_unlock(&inode_hash_lock); 1262 1263 return inode; 1264 } 1265 EXPORT_SYMBOL(ilookup5_nowait); 1266 1267 /** 1268 * ilookup5 - search for an inode in the inode cache 1269 * @sb: super block of file system to search 1270 * @hashval: hash value (usually inode number) to search for 1271 * @test: callback used for comparisons between inodes 1272 * @data: opaque data pointer to pass to @test 1273 * 1274 * Search for the inode specified by @hashval and @data in the inode cache, 1275 * and if the inode is in the cache, return the inode with an incremented 1276 * reference count. Waits on I_NEW before returning the inode. 1277 * returned with an incremented reference count. 1278 * 1279 * This is a generalized version of ilookup() for file systems where the 1280 * inode number is not sufficient for unique identification of an inode. 1281 * 1282 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1283 */ 1284 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1285 int (*test)(struct inode *, void *), void *data) 1286 { 1287 struct inode *inode; 1288 again: 1289 inode = ilookup5_nowait(sb, hashval, test, data); 1290 if (inode) { 1291 wait_on_inode(inode); 1292 if (unlikely(inode_unhashed(inode))) { 1293 iput(inode); 1294 goto again; 1295 } 1296 } 1297 return inode; 1298 } 1299 EXPORT_SYMBOL(ilookup5); 1300 1301 /** 1302 * ilookup - search for an inode in the inode cache 1303 * @sb: super block of file system to search 1304 * @ino: inode number to search for 1305 * 1306 * Search for the inode @ino in the inode cache, and if the inode is in the 1307 * cache, the inode is returned with an incremented reference count. 1308 */ 1309 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1310 { 1311 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1312 struct inode *inode; 1313 again: 1314 spin_lock(&inode_hash_lock); 1315 inode = find_inode_fast(sb, head, ino); 1316 spin_unlock(&inode_hash_lock); 1317 1318 if (inode) { 1319 wait_on_inode(inode); 1320 if (unlikely(inode_unhashed(inode))) { 1321 iput(inode); 1322 goto again; 1323 } 1324 } 1325 return inode; 1326 } 1327 EXPORT_SYMBOL(ilookup); 1328 1329 /** 1330 * find_inode_nowait - find an inode in the inode cache 1331 * @sb: super block of file system to search 1332 * @hashval: hash value (usually inode number) to search for 1333 * @match: callback used for comparisons between inodes 1334 * @data: opaque data pointer to pass to @match 1335 * 1336 * Search for the inode specified by @hashval and @data in the inode 1337 * cache, where the helper function @match will return 0 if the inode 1338 * does not match, 1 if the inode does match, and -1 if the search 1339 * should be stopped. The @match function must be responsible for 1340 * taking the i_lock spin_lock and checking i_state for an inode being 1341 * freed or being initialized, and incrementing the reference count 1342 * before returning 1. It also must not sleep, since it is called with 1343 * the inode_hash_lock spinlock held. 1344 * 1345 * This is a even more generalized version of ilookup5() when the 1346 * function must never block --- find_inode() can block in 1347 * __wait_on_freeing_inode() --- or when the caller can not increment 1348 * the reference count because the resulting iput() might cause an 1349 * inode eviction. The tradeoff is that the @match funtion must be 1350 * very carefully implemented. 1351 */ 1352 struct inode *find_inode_nowait(struct super_block *sb, 1353 unsigned long hashval, 1354 int (*match)(struct inode *, unsigned long, 1355 void *), 1356 void *data) 1357 { 1358 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1359 struct inode *inode, *ret_inode = NULL; 1360 int mval; 1361 1362 spin_lock(&inode_hash_lock); 1363 hlist_for_each_entry(inode, head, i_hash) { 1364 if (inode->i_sb != sb) 1365 continue; 1366 mval = match(inode, hashval, data); 1367 if (mval == 0) 1368 continue; 1369 if (mval == 1) 1370 ret_inode = inode; 1371 goto out; 1372 } 1373 out: 1374 spin_unlock(&inode_hash_lock); 1375 return ret_inode; 1376 } 1377 EXPORT_SYMBOL(find_inode_nowait); 1378 1379 int insert_inode_locked(struct inode *inode) 1380 { 1381 struct super_block *sb = inode->i_sb; 1382 ino_t ino = inode->i_ino; 1383 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1384 1385 while (1) { 1386 struct inode *old = NULL; 1387 spin_lock(&inode_hash_lock); 1388 hlist_for_each_entry(old, head, i_hash) { 1389 if (old->i_ino != ino) 1390 continue; 1391 if (old->i_sb != sb) 1392 continue; 1393 spin_lock(&old->i_lock); 1394 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1395 spin_unlock(&old->i_lock); 1396 continue; 1397 } 1398 break; 1399 } 1400 if (likely(!old)) { 1401 spin_lock(&inode->i_lock); 1402 inode->i_state |= I_NEW; 1403 hlist_add_head(&inode->i_hash, head); 1404 spin_unlock(&inode->i_lock); 1405 spin_unlock(&inode_hash_lock); 1406 return 0; 1407 } 1408 __iget(old); 1409 spin_unlock(&old->i_lock); 1410 spin_unlock(&inode_hash_lock); 1411 wait_on_inode(old); 1412 if (unlikely(!inode_unhashed(old))) { 1413 iput(old); 1414 return -EBUSY; 1415 } 1416 iput(old); 1417 } 1418 } 1419 EXPORT_SYMBOL(insert_inode_locked); 1420 1421 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1422 int (*test)(struct inode *, void *), void *data) 1423 { 1424 struct super_block *sb = inode->i_sb; 1425 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1426 1427 while (1) { 1428 struct inode *old = NULL; 1429 1430 spin_lock(&inode_hash_lock); 1431 hlist_for_each_entry(old, head, i_hash) { 1432 if (old->i_sb != sb) 1433 continue; 1434 if (!test(old, data)) 1435 continue; 1436 spin_lock(&old->i_lock); 1437 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1438 spin_unlock(&old->i_lock); 1439 continue; 1440 } 1441 break; 1442 } 1443 if (likely(!old)) { 1444 spin_lock(&inode->i_lock); 1445 inode->i_state |= I_NEW; 1446 hlist_add_head(&inode->i_hash, head); 1447 spin_unlock(&inode->i_lock); 1448 spin_unlock(&inode_hash_lock); 1449 return 0; 1450 } 1451 __iget(old); 1452 spin_unlock(&old->i_lock); 1453 spin_unlock(&inode_hash_lock); 1454 wait_on_inode(old); 1455 if (unlikely(!inode_unhashed(old))) { 1456 iput(old); 1457 return -EBUSY; 1458 } 1459 iput(old); 1460 } 1461 } 1462 EXPORT_SYMBOL(insert_inode_locked4); 1463 1464 1465 int generic_delete_inode(struct inode *inode) 1466 { 1467 return 1; 1468 } 1469 EXPORT_SYMBOL(generic_delete_inode); 1470 1471 /* 1472 * Called when we're dropping the last reference 1473 * to an inode. 1474 * 1475 * Call the FS "drop_inode()" function, defaulting to 1476 * the legacy UNIX filesystem behaviour. If it tells 1477 * us to evict inode, do so. Otherwise, retain inode 1478 * in cache if fs is alive, sync and evict if fs is 1479 * shutting down. 1480 */ 1481 static void iput_final(struct inode *inode) 1482 { 1483 struct super_block *sb = inode->i_sb; 1484 const struct super_operations *op = inode->i_sb->s_op; 1485 int drop; 1486 1487 WARN_ON(inode->i_state & I_NEW); 1488 1489 if (op->drop_inode) 1490 drop = op->drop_inode(inode); 1491 else 1492 drop = generic_drop_inode(inode); 1493 1494 if (!drop && (sb->s_flags & MS_ACTIVE)) { 1495 inode_add_lru(inode); 1496 spin_unlock(&inode->i_lock); 1497 return; 1498 } 1499 1500 if (!drop) { 1501 inode->i_state |= I_WILL_FREE; 1502 spin_unlock(&inode->i_lock); 1503 write_inode_now(inode, 1); 1504 spin_lock(&inode->i_lock); 1505 WARN_ON(inode->i_state & I_NEW); 1506 inode->i_state &= ~I_WILL_FREE; 1507 } 1508 1509 inode->i_state |= I_FREEING; 1510 if (!list_empty(&inode->i_lru)) 1511 inode_lru_list_del(inode); 1512 spin_unlock(&inode->i_lock); 1513 1514 evict(inode); 1515 } 1516 1517 /** 1518 * iput - put an inode 1519 * @inode: inode to put 1520 * 1521 * Puts an inode, dropping its usage count. If the inode use count hits 1522 * zero, the inode is then freed and may also be destroyed. 1523 * 1524 * Consequently, iput() can sleep. 1525 */ 1526 void iput(struct inode *inode) 1527 { 1528 if (!inode) 1529 return; 1530 BUG_ON(inode->i_state & I_CLEAR); 1531 retry: 1532 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1533 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1534 atomic_inc(&inode->i_count); 1535 inode->i_state &= ~I_DIRTY_TIME; 1536 spin_unlock(&inode->i_lock); 1537 trace_writeback_lazytime_iput(inode); 1538 mark_inode_dirty_sync(inode); 1539 goto retry; 1540 } 1541 iput_final(inode); 1542 } 1543 } 1544 EXPORT_SYMBOL(iput); 1545 1546 /** 1547 * bmap - find a block number in a file 1548 * @inode: inode of file 1549 * @block: block to find 1550 * 1551 * Returns the block number on the device holding the inode that 1552 * is the disk block number for the block of the file requested. 1553 * That is, asked for block 4 of inode 1 the function will return the 1554 * disk block relative to the disk start that holds that block of the 1555 * file. 1556 */ 1557 sector_t bmap(struct inode *inode, sector_t block) 1558 { 1559 sector_t res = 0; 1560 if (inode->i_mapping->a_ops->bmap) 1561 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1562 return res; 1563 } 1564 EXPORT_SYMBOL(bmap); 1565 1566 /* 1567 * Update times in overlayed inode from underlying real inode 1568 */ 1569 static void update_ovl_inode_times(struct dentry *dentry, struct inode *inode, 1570 bool rcu) 1571 { 1572 if (!rcu) { 1573 struct inode *realinode = d_real_inode(dentry); 1574 1575 if (unlikely(inode != realinode) && 1576 (!timespec_equal(&inode->i_mtime, &realinode->i_mtime) || 1577 !timespec_equal(&inode->i_ctime, &realinode->i_ctime))) { 1578 inode->i_mtime = realinode->i_mtime; 1579 inode->i_ctime = realinode->i_ctime; 1580 } 1581 } 1582 } 1583 1584 /* 1585 * With relative atime, only update atime if the previous atime is 1586 * earlier than either the ctime or mtime or if at least a day has 1587 * passed since the last atime update. 1588 */ 1589 static int relatime_need_update(const struct path *path, struct inode *inode, 1590 struct timespec now, bool rcu) 1591 { 1592 1593 if (!(path->mnt->mnt_flags & MNT_RELATIME)) 1594 return 1; 1595 1596 update_ovl_inode_times(path->dentry, inode, rcu); 1597 /* 1598 * Is mtime younger than atime? If yes, update atime: 1599 */ 1600 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1601 return 1; 1602 /* 1603 * Is ctime younger than atime? If yes, update atime: 1604 */ 1605 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1606 return 1; 1607 1608 /* 1609 * Is the previous atime value older than a day? If yes, 1610 * update atime: 1611 */ 1612 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1613 return 1; 1614 /* 1615 * Good, we can skip the atime update: 1616 */ 1617 return 0; 1618 } 1619 1620 int generic_update_time(struct inode *inode, struct timespec *time, int flags) 1621 { 1622 int iflags = I_DIRTY_TIME; 1623 1624 if (flags & S_ATIME) 1625 inode->i_atime = *time; 1626 if (flags & S_VERSION) 1627 inode_inc_iversion(inode); 1628 if (flags & S_CTIME) 1629 inode->i_ctime = *time; 1630 if (flags & S_MTIME) 1631 inode->i_mtime = *time; 1632 1633 if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION)) 1634 iflags |= I_DIRTY_SYNC; 1635 __mark_inode_dirty(inode, iflags); 1636 return 0; 1637 } 1638 EXPORT_SYMBOL(generic_update_time); 1639 1640 /* 1641 * This does the actual work of updating an inodes time or version. Must have 1642 * had called mnt_want_write() before calling this. 1643 */ 1644 static int update_time(struct inode *inode, struct timespec *time, int flags) 1645 { 1646 int (*update_time)(struct inode *, struct timespec *, int); 1647 1648 update_time = inode->i_op->update_time ? inode->i_op->update_time : 1649 generic_update_time; 1650 1651 return update_time(inode, time, flags); 1652 } 1653 1654 /** 1655 * touch_atime - update the access time 1656 * @path: the &struct path to update 1657 * @inode: inode to update 1658 * 1659 * Update the accessed time on an inode and mark it for writeback. 1660 * This function automatically handles read only file systems and media, 1661 * as well as the "noatime" flag and inode specific "noatime" markers. 1662 */ 1663 bool __atime_needs_update(const struct path *path, struct inode *inode, 1664 bool rcu) 1665 { 1666 struct vfsmount *mnt = path->mnt; 1667 struct timespec now; 1668 1669 if (inode->i_flags & S_NOATIME) 1670 return false; 1671 1672 /* Atime updates will likely cause i_uid and i_gid to be written 1673 * back improprely if their true value is unknown to the vfs. 1674 */ 1675 if (HAS_UNMAPPED_ID(inode)) 1676 return false; 1677 1678 if (IS_NOATIME(inode)) 1679 return false; 1680 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1681 return false; 1682 1683 if (mnt->mnt_flags & MNT_NOATIME) 1684 return false; 1685 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1686 return false; 1687 1688 now = current_time(inode); 1689 1690 if (!relatime_need_update(path, inode, now, rcu)) 1691 return false; 1692 1693 if (timespec_equal(&inode->i_atime, &now)) 1694 return false; 1695 1696 return true; 1697 } 1698 1699 void touch_atime(const struct path *path) 1700 { 1701 struct vfsmount *mnt = path->mnt; 1702 struct inode *inode = d_inode(path->dentry); 1703 struct timespec now; 1704 1705 if (!__atime_needs_update(path, inode, false)) 1706 return; 1707 1708 if (!sb_start_write_trylock(inode->i_sb)) 1709 return; 1710 1711 if (__mnt_want_write(mnt) != 0) 1712 goto skip_update; 1713 /* 1714 * File systems can error out when updating inodes if they need to 1715 * allocate new space to modify an inode (such is the case for 1716 * Btrfs), but since we touch atime while walking down the path we 1717 * really don't care if we failed to update the atime of the file, 1718 * so just ignore the return value. 1719 * We may also fail on filesystems that have the ability to make parts 1720 * of the fs read only, e.g. subvolumes in Btrfs. 1721 */ 1722 now = current_time(inode); 1723 update_time(inode, &now, S_ATIME); 1724 __mnt_drop_write(mnt); 1725 skip_update: 1726 sb_end_write(inode->i_sb); 1727 } 1728 EXPORT_SYMBOL(touch_atime); 1729 1730 /* 1731 * The logic we want is 1732 * 1733 * if suid or (sgid and xgrp) 1734 * remove privs 1735 */ 1736 int should_remove_suid(struct dentry *dentry) 1737 { 1738 umode_t mode = d_inode(dentry)->i_mode; 1739 int kill = 0; 1740 1741 /* suid always must be killed */ 1742 if (unlikely(mode & S_ISUID)) 1743 kill = ATTR_KILL_SUID; 1744 1745 /* 1746 * sgid without any exec bits is just a mandatory locking mark; leave 1747 * it alone. If some exec bits are set, it's a real sgid; kill it. 1748 */ 1749 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1750 kill |= ATTR_KILL_SGID; 1751 1752 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1753 return kill; 1754 1755 return 0; 1756 } 1757 EXPORT_SYMBOL(should_remove_suid); 1758 1759 /* 1760 * Return mask of changes for notify_change() that need to be done as a 1761 * response to write or truncate. Return 0 if nothing has to be changed. 1762 * Negative value on error (change should be denied). 1763 */ 1764 int dentry_needs_remove_privs(struct dentry *dentry) 1765 { 1766 struct inode *inode = d_inode(dentry); 1767 int mask = 0; 1768 int ret; 1769 1770 if (IS_NOSEC(inode)) 1771 return 0; 1772 1773 mask = should_remove_suid(dentry); 1774 ret = security_inode_need_killpriv(dentry); 1775 if (ret < 0) 1776 return ret; 1777 if (ret) 1778 mask |= ATTR_KILL_PRIV; 1779 return mask; 1780 } 1781 1782 static int __remove_privs(struct dentry *dentry, int kill) 1783 { 1784 struct iattr newattrs; 1785 1786 newattrs.ia_valid = ATTR_FORCE | kill; 1787 /* 1788 * Note we call this on write, so notify_change will not 1789 * encounter any conflicting delegations: 1790 */ 1791 return notify_change(dentry, &newattrs, NULL); 1792 } 1793 1794 /* 1795 * Remove special file priviledges (suid, capabilities) when file is written 1796 * to or truncated. 1797 */ 1798 int file_remove_privs(struct file *file) 1799 { 1800 struct dentry *dentry = file_dentry(file); 1801 struct inode *inode = file_inode(file); 1802 int kill; 1803 int error = 0; 1804 1805 /* Fast path for nothing security related */ 1806 if (IS_NOSEC(inode)) 1807 return 0; 1808 1809 kill = dentry_needs_remove_privs(dentry); 1810 if (kill < 0) 1811 return kill; 1812 if (kill) 1813 error = __remove_privs(dentry, kill); 1814 if (!error) 1815 inode_has_no_xattr(inode); 1816 1817 return error; 1818 } 1819 EXPORT_SYMBOL(file_remove_privs); 1820 1821 /** 1822 * file_update_time - update mtime and ctime time 1823 * @file: file accessed 1824 * 1825 * Update the mtime and ctime members of an inode and mark the inode 1826 * for writeback. Note that this function is meant exclusively for 1827 * usage in the file write path of filesystems, and filesystems may 1828 * choose to explicitly ignore update via this function with the 1829 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1830 * timestamps are handled by the server. This can return an error for 1831 * file systems who need to allocate space in order to update an inode. 1832 */ 1833 1834 int file_update_time(struct file *file) 1835 { 1836 struct inode *inode = file_inode(file); 1837 struct timespec now; 1838 int sync_it = 0; 1839 int ret; 1840 1841 /* First try to exhaust all avenues to not sync */ 1842 if (IS_NOCMTIME(inode)) 1843 return 0; 1844 1845 now = current_time(inode); 1846 if (!timespec_equal(&inode->i_mtime, &now)) 1847 sync_it = S_MTIME; 1848 1849 if (!timespec_equal(&inode->i_ctime, &now)) 1850 sync_it |= S_CTIME; 1851 1852 if (IS_I_VERSION(inode)) 1853 sync_it |= S_VERSION; 1854 1855 if (!sync_it) 1856 return 0; 1857 1858 /* Finally allowed to write? Takes lock. */ 1859 if (__mnt_want_write_file(file)) 1860 return 0; 1861 1862 ret = update_time(inode, &now, sync_it); 1863 __mnt_drop_write_file(file); 1864 1865 return ret; 1866 } 1867 EXPORT_SYMBOL(file_update_time); 1868 1869 int inode_needs_sync(struct inode *inode) 1870 { 1871 if (IS_SYNC(inode)) 1872 return 1; 1873 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1874 return 1; 1875 return 0; 1876 } 1877 EXPORT_SYMBOL(inode_needs_sync); 1878 1879 /* 1880 * If we try to find an inode in the inode hash while it is being 1881 * deleted, we have to wait until the filesystem completes its 1882 * deletion before reporting that it isn't found. This function waits 1883 * until the deletion _might_ have completed. Callers are responsible 1884 * to recheck inode state. 1885 * 1886 * It doesn't matter if I_NEW is not set initially, a call to 1887 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 1888 * will DTRT. 1889 */ 1890 static void __wait_on_freeing_inode(struct inode *inode) 1891 { 1892 wait_queue_head_t *wq; 1893 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 1894 wq = bit_waitqueue(&inode->i_state, __I_NEW); 1895 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 1896 spin_unlock(&inode->i_lock); 1897 spin_unlock(&inode_hash_lock); 1898 schedule(); 1899 finish_wait(wq, &wait.wq_entry); 1900 spin_lock(&inode_hash_lock); 1901 } 1902 1903 static __initdata unsigned long ihash_entries; 1904 static int __init set_ihash_entries(char *str) 1905 { 1906 if (!str) 1907 return 0; 1908 ihash_entries = simple_strtoul(str, &str, 0); 1909 return 1; 1910 } 1911 __setup("ihash_entries=", set_ihash_entries); 1912 1913 /* 1914 * Initialize the waitqueues and inode hash table. 1915 */ 1916 void __init inode_init_early(void) 1917 { 1918 /* If hashes are distributed across NUMA nodes, defer 1919 * hash allocation until vmalloc space is available. 1920 */ 1921 if (hashdist) 1922 return; 1923 1924 inode_hashtable = 1925 alloc_large_system_hash("Inode-cache", 1926 sizeof(struct hlist_head), 1927 ihash_entries, 1928 14, 1929 HASH_EARLY | HASH_ZERO, 1930 &i_hash_shift, 1931 &i_hash_mask, 1932 0, 1933 0); 1934 } 1935 1936 void __init inode_init(void) 1937 { 1938 /* inode slab cache */ 1939 inode_cachep = kmem_cache_create("inode_cache", 1940 sizeof(struct inode), 1941 0, 1942 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1943 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 1944 init_once); 1945 1946 /* Hash may have been set up in inode_init_early */ 1947 if (!hashdist) 1948 return; 1949 1950 inode_hashtable = 1951 alloc_large_system_hash("Inode-cache", 1952 sizeof(struct hlist_head), 1953 ihash_entries, 1954 14, 1955 HASH_ZERO, 1956 &i_hash_shift, 1957 &i_hash_mask, 1958 0, 1959 0); 1960 } 1961 1962 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1963 { 1964 inode->i_mode = mode; 1965 if (S_ISCHR(mode)) { 1966 inode->i_fop = &def_chr_fops; 1967 inode->i_rdev = rdev; 1968 } else if (S_ISBLK(mode)) { 1969 inode->i_fop = &def_blk_fops; 1970 inode->i_rdev = rdev; 1971 } else if (S_ISFIFO(mode)) 1972 inode->i_fop = &pipefifo_fops; 1973 else if (S_ISSOCK(mode)) 1974 ; /* leave it no_open_fops */ 1975 else 1976 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 1977 " inode %s:%lu\n", mode, inode->i_sb->s_id, 1978 inode->i_ino); 1979 } 1980 EXPORT_SYMBOL(init_special_inode); 1981 1982 /** 1983 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 1984 * @inode: New inode 1985 * @dir: Directory inode 1986 * @mode: mode of the new inode 1987 */ 1988 void inode_init_owner(struct inode *inode, const struct inode *dir, 1989 umode_t mode) 1990 { 1991 inode->i_uid = current_fsuid(); 1992 if (dir && dir->i_mode & S_ISGID) { 1993 inode->i_gid = dir->i_gid; 1994 if (S_ISDIR(mode)) 1995 mode |= S_ISGID; 1996 } else 1997 inode->i_gid = current_fsgid(); 1998 inode->i_mode = mode; 1999 } 2000 EXPORT_SYMBOL(inode_init_owner); 2001 2002 /** 2003 * inode_owner_or_capable - check current task permissions to inode 2004 * @inode: inode being checked 2005 * 2006 * Return true if current either has CAP_FOWNER in a namespace with the 2007 * inode owner uid mapped, or owns the file. 2008 */ 2009 bool inode_owner_or_capable(const struct inode *inode) 2010 { 2011 struct user_namespace *ns; 2012 2013 if (uid_eq(current_fsuid(), inode->i_uid)) 2014 return true; 2015 2016 ns = current_user_ns(); 2017 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER)) 2018 return true; 2019 return false; 2020 } 2021 EXPORT_SYMBOL(inode_owner_or_capable); 2022 2023 /* 2024 * Direct i/o helper functions 2025 */ 2026 static void __inode_dio_wait(struct inode *inode) 2027 { 2028 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2029 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2030 2031 do { 2032 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); 2033 if (atomic_read(&inode->i_dio_count)) 2034 schedule(); 2035 } while (atomic_read(&inode->i_dio_count)); 2036 finish_wait(wq, &q.wq_entry); 2037 } 2038 2039 /** 2040 * inode_dio_wait - wait for outstanding DIO requests to finish 2041 * @inode: inode to wait for 2042 * 2043 * Waits for all pending direct I/O requests to finish so that we can 2044 * proceed with a truncate or equivalent operation. 2045 * 2046 * Must be called under a lock that serializes taking new references 2047 * to i_dio_count, usually by inode->i_mutex. 2048 */ 2049 void inode_dio_wait(struct inode *inode) 2050 { 2051 if (atomic_read(&inode->i_dio_count)) 2052 __inode_dio_wait(inode); 2053 } 2054 EXPORT_SYMBOL(inode_dio_wait); 2055 2056 /* 2057 * inode_set_flags - atomically set some inode flags 2058 * 2059 * Note: the caller should be holding i_mutex, or else be sure that 2060 * they have exclusive access to the inode structure (i.e., while the 2061 * inode is being instantiated). The reason for the cmpxchg() loop 2062 * --- which wouldn't be necessary if all code paths which modify 2063 * i_flags actually followed this rule, is that there is at least one 2064 * code path which doesn't today so we use cmpxchg() out of an abundance 2065 * of caution. 2066 * 2067 * In the long run, i_mutex is overkill, and we should probably look 2068 * at using the i_lock spinlock to protect i_flags, and then make sure 2069 * it is so documented in include/linux/fs.h and that all code follows 2070 * the locking convention!! 2071 */ 2072 void inode_set_flags(struct inode *inode, unsigned int flags, 2073 unsigned int mask) 2074 { 2075 unsigned int old_flags, new_flags; 2076 2077 WARN_ON_ONCE(flags & ~mask); 2078 do { 2079 old_flags = ACCESS_ONCE(inode->i_flags); 2080 new_flags = (old_flags & ~mask) | flags; 2081 } while (unlikely(cmpxchg(&inode->i_flags, old_flags, 2082 new_flags) != old_flags)); 2083 } 2084 EXPORT_SYMBOL(inode_set_flags); 2085 2086 void inode_nohighmem(struct inode *inode) 2087 { 2088 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2089 } 2090 EXPORT_SYMBOL(inode_nohighmem); 2091 2092 /** 2093 * current_time - Return FS time 2094 * @inode: inode. 2095 * 2096 * Return the current time truncated to the time granularity supported by 2097 * the fs. 2098 * 2099 * Note that inode and inode->sb cannot be NULL. 2100 * Otherwise, the function warns and returns time without truncation. 2101 */ 2102 struct timespec current_time(struct inode *inode) 2103 { 2104 struct timespec now = current_kernel_time(); 2105 2106 if (unlikely(!inode->i_sb)) { 2107 WARN(1, "current_time() called with uninitialized super_block in the inode"); 2108 return now; 2109 } 2110 2111 return timespec_trunc(now, inode->i_sb->s_time_gran); 2112 } 2113 EXPORT_SYMBOL(current_time); 2114