1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) 1997 Linus Torvalds 4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 5 */ 6 #include <linux/export.h> 7 #include <linux/fs.h> 8 #include <linux/filelock.h> 9 #include <linux/mm.h> 10 #include <linux/backing-dev.h> 11 #include <linux/hash.h> 12 #include <linux/swap.h> 13 #include <linux/security.h> 14 #include <linux/cdev.h> 15 #include <linux/memblock.h> 16 #include <linux/fsnotify.h> 17 #include <linux/mount.h> 18 #include <linux/posix_acl.h> 19 #include <linux/buffer_head.h> /* for inode_has_buffers */ 20 #include <linux/ratelimit.h> 21 #include <linux/list_lru.h> 22 #include <linux/iversion.h> 23 #include <trace/events/writeback.h> 24 #include "internal.h" 25 26 /* 27 * Inode locking rules: 28 * 29 * inode->i_lock protects: 30 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list 31 * Inode LRU list locks protect: 32 * inode->i_sb->s_inode_lru, inode->i_lru 33 * inode->i_sb->s_inode_list_lock protects: 34 * inode->i_sb->s_inodes, inode->i_sb_list 35 * bdi->wb.list_lock protects: 36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 37 * inode_hash_lock protects: 38 * inode_hashtable, inode->i_hash 39 * 40 * Lock ordering: 41 * 42 * inode->i_sb->s_inode_list_lock 43 * inode->i_lock 44 * Inode LRU list locks 45 * 46 * bdi->wb.list_lock 47 * inode->i_lock 48 * 49 * inode_hash_lock 50 * inode->i_sb->s_inode_list_lock 51 * inode->i_lock 52 * 53 * iunique_lock 54 * inode_hash_lock 55 */ 56 57 static unsigned int i_hash_mask __read_mostly; 58 static unsigned int i_hash_shift __read_mostly; 59 static struct hlist_head *inode_hashtable __read_mostly; 60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 61 62 /* 63 * Empty aops. Can be used for the cases where the user does not 64 * define any of the address_space operations. 65 */ 66 const struct address_space_operations empty_aops = { 67 }; 68 EXPORT_SYMBOL(empty_aops); 69 70 static DEFINE_PER_CPU(unsigned long, nr_inodes); 71 static DEFINE_PER_CPU(unsigned long, nr_unused); 72 73 static struct kmem_cache *inode_cachep __read_mostly; 74 75 static long get_nr_inodes(void) 76 { 77 int i; 78 long sum = 0; 79 for_each_possible_cpu(i) 80 sum += per_cpu(nr_inodes, i); 81 return sum < 0 ? 0 : sum; 82 } 83 84 static inline long get_nr_inodes_unused(void) 85 { 86 int i; 87 long sum = 0; 88 for_each_possible_cpu(i) 89 sum += per_cpu(nr_unused, i); 90 return sum < 0 ? 0 : sum; 91 } 92 93 long get_nr_dirty_inodes(void) 94 { 95 /* not actually dirty inodes, but a wild approximation */ 96 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 97 return nr_dirty > 0 ? nr_dirty : 0; 98 } 99 100 /* 101 * Handle nr_inode sysctl 102 */ 103 #ifdef CONFIG_SYSCTL 104 /* 105 * Statistics gathering.. 106 */ 107 static struct inodes_stat_t inodes_stat; 108 109 static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer, 110 size_t *lenp, loff_t *ppos) 111 { 112 inodes_stat.nr_inodes = get_nr_inodes(); 113 inodes_stat.nr_unused = get_nr_inodes_unused(); 114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 115 } 116 117 static struct ctl_table inodes_sysctls[] = { 118 { 119 .procname = "inode-nr", 120 .data = &inodes_stat, 121 .maxlen = 2*sizeof(long), 122 .mode = 0444, 123 .proc_handler = proc_nr_inodes, 124 }, 125 { 126 .procname = "inode-state", 127 .data = &inodes_stat, 128 .maxlen = 7*sizeof(long), 129 .mode = 0444, 130 .proc_handler = proc_nr_inodes, 131 }, 132 { } 133 }; 134 135 static int __init init_fs_inode_sysctls(void) 136 { 137 register_sysctl_init("fs", inodes_sysctls); 138 return 0; 139 } 140 early_initcall(init_fs_inode_sysctls); 141 #endif 142 143 static int no_open(struct inode *inode, struct file *file) 144 { 145 return -ENXIO; 146 } 147 148 /** 149 * inode_init_always - perform inode structure initialisation 150 * @sb: superblock inode belongs to 151 * @inode: inode to initialise 152 * 153 * These are initializations that need to be done on every inode 154 * allocation as the fields are not initialised by slab allocation. 155 */ 156 int inode_init_always(struct super_block *sb, struct inode *inode) 157 { 158 static const struct inode_operations empty_iops; 159 static const struct file_operations no_open_fops = {.open = no_open}; 160 struct address_space *const mapping = &inode->i_data; 161 162 inode->i_sb = sb; 163 inode->i_blkbits = sb->s_blocksize_bits; 164 inode->i_flags = 0; 165 atomic64_set(&inode->i_sequence, 0); 166 atomic_set(&inode->i_count, 1); 167 inode->i_op = &empty_iops; 168 inode->i_fop = &no_open_fops; 169 inode->i_ino = 0; 170 inode->__i_nlink = 1; 171 inode->i_opflags = 0; 172 if (sb->s_xattr) 173 inode->i_opflags |= IOP_XATTR; 174 i_uid_write(inode, 0); 175 i_gid_write(inode, 0); 176 atomic_set(&inode->i_writecount, 0); 177 inode->i_size = 0; 178 inode->i_write_hint = WRITE_LIFE_NOT_SET; 179 inode->i_blocks = 0; 180 inode->i_bytes = 0; 181 inode->i_generation = 0; 182 inode->i_pipe = NULL; 183 inode->i_cdev = NULL; 184 inode->i_link = NULL; 185 inode->i_dir_seq = 0; 186 inode->i_rdev = 0; 187 inode->dirtied_when = 0; 188 189 #ifdef CONFIG_CGROUP_WRITEBACK 190 inode->i_wb_frn_winner = 0; 191 inode->i_wb_frn_avg_time = 0; 192 inode->i_wb_frn_history = 0; 193 #endif 194 195 spin_lock_init(&inode->i_lock); 196 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 197 198 init_rwsem(&inode->i_rwsem); 199 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 200 201 atomic_set(&inode->i_dio_count, 0); 202 203 mapping->a_ops = &empty_aops; 204 mapping->host = inode; 205 mapping->flags = 0; 206 mapping->wb_err = 0; 207 atomic_set(&mapping->i_mmap_writable, 0); 208 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 209 atomic_set(&mapping->nr_thps, 0); 210 #endif 211 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 212 mapping->private_data = NULL; 213 mapping->writeback_index = 0; 214 init_rwsem(&mapping->invalidate_lock); 215 lockdep_set_class_and_name(&mapping->invalidate_lock, 216 &sb->s_type->invalidate_lock_key, 217 "mapping.invalidate_lock"); 218 if (sb->s_iflags & SB_I_STABLE_WRITES) 219 mapping_set_stable_writes(mapping); 220 inode->i_private = NULL; 221 inode->i_mapping = mapping; 222 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 223 #ifdef CONFIG_FS_POSIX_ACL 224 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 225 #endif 226 227 #ifdef CONFIG_FSNOTIFY 228 inode->i_fsnotify_mask = 0; 229 #endif 230 inode->i_flctx = NULL; 231 232 if (unlikely(security_inode_alloc(inode))) 233 return -ENOMEM; 234 this_cpu_inc(nr_inodes); 235 236 return 0; 237 } 238 EXPORT_SYMBOL(inode_init_always); 239 240 void free_inode_nonrcu(struct inode *inode) 241 { 242 kmem_cache_free(inode_cachep, inode); 243 } 244 EXPORT_SYMBOL(free_inode_nonrcu); 245 246 static void i_callback(struct rcu_head *head) 247 { 248 struct inode *inode = container_of(head, struct inode, i_rcu); 249 if (inode->free_inode) 250 inode->free_inode(inode); 251 else 252 free_inode_nonrcu(inode); 253 } 254 255 static struct inode *alloc_inode(struct super_block *sb) 256 { 257 const struct super_operations *ops = sb->s_op; 258 struct inode *inode; 259 260 if (ops->alloc_inode) 261 inode = ops->alloc_inode(sb); 262 else 263 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL); 264 265 if (!inode) 266 return NULL; 267 268 if (unlikely(inode_init_always(sb, inode))) { 269 if (ops->destroy_inode) { 270 ops->destroy_inode(inode); 271 if (!ops->free_inode) 272 return NULL; 273 } 274 inode->free_inode = ops->free_inode; 275 i_callback(&inode->i_rcu); 276 return NULL; 277 } 278 279 return inode; 280 } 281 282 void __destroy_inode(struct inode *inode) 283 { 284 BUG_ON(inode_has_buffers(inode)); 285 inode_detach_wb(inode); 286 security_inode_free(inode); 287 fsnotify_inode_delete(inode); 288 locks_free_lock_context(inode); 289 if (!inode->i_nlink) { 290 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 291 atomic_long_dec(&inode->i_sb->s_remove_count); 292 } 293 294 #ifdef CONFIG_FS_POSIX_ACL 295 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 296 posix_acl_release(inode->i_acl); 297 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 298 posix_acl_release(inode->i_default_acl); 299 #endif 300 this_cpu_dec(nr_inodes); 301 } 302 EXPORT_SYMBOL(__destroy_inode); 303 304 static void destroy_inode(struct inode *inode) 305 { 306 const struct super_operations *ops = inode->i_sb->s_op; 307 308 BUG_ON(!list_empty(&inode->i_lru)); 309 __destroy_inode(inode); 310 if (ops->destroy_inode) { 311 ops->destroy_inode(inode); 312 if (!ops->free_inode) 313 return; 314 } 315 inode->free_inode = ops->free_inode; 316 call_rcu(&inode->i_rcu, i_callback); 317 } 318 319 /** 320 * drop_nlink - directly drop an inode's link count 321 * @inode: inode 322 * 323 * This is a low-level filesystem helper to replace any 324 * direct filesystem manipulation of i_nlink. In cases 325 * where we are attempting to track writes to the 326 * filesystem, a decrement to zero means an imminent 327 * write when the file is truncated and actually unlinked 328 * on the filesystem. 329 */ 330 void drop_nlink(struct inode *inode) 331 { 332 WARN_ON(inode->i_nlink == 0); 333 inode->__i_nlink--; 334 if (!inode->i_nlink) 335 atomic_long_inc(&inode->i_sb->s_remove_count); 336 } 337 EXPORT_SYMBOL(drop_nlink); 338 339 /** 340 * clear_nlink - directly zero an inode's link count 341 * @inode: inode 342 * 343 * This is a low-level filesystem helper to replace any 344 * direct filesystem manipulation of i_nlink. See 345 * drop_nlink() for why we care about i_nlink hitting zero. 346 */ 347 void clear_nlink(struct inode *inode) 348 { 349 if (inode->i_nlink) { 350 inode->__i_nlink = 0; 351 atomic_long_inc(&inode->i_sb->s_remove_count); 352 } 353 } 354 EXPORT_SYMBOL(clear_nlink); 355 356 /** 357 * set_nlink - directly set an inode's link count 358 * @inode: inode 359 * @nlink: new nlink (should be non-zero) 360 * 361 * This is a low-level filesystem helper to replace any 362 * direct filesystem manipulation of i_nlink. 363 */ 364 void set_nlink(struct inode *inode, unsigned int nlink) 365 { 366 if (!nlink) { 367 clear_nlink(inode); 368 } else { 369 /* Yes, some filesystems do change nlink from zero to one */ 370 if (inode->i_nlink == 0) 371 atomic_long_dec(&inode->i_sb->s_remove_count); 372 373 inode->__i_nlink = nlink; 374 } 375 } 376 EXPORT_SYMBOL(set_nlink); 377 378 /** 379 * inc_nlink - directly increment an inode's link count 380 * @inode: inode 381 * 382 * This is a low-level filesystem helper to replace any 383 * direct filesystem manipulation of i_nlink. Currently, 384 * it is only here for parity with dec_nlink(). 385 */ 386 void inc_nlink(struct inode *inode) 387 { 388 if (unlikely(inode->i_nlink == 0)) { 389 WARN_ON(!(inode->i_state & I_LINKABLE)); 390 atomic_long_dec(&inode->i_sb->s_remove_count); 391 } 392 393 inode->__i_nlink++; 394 } 395 EXPORT_SYMBOL(inc_nlink); 396 397 static void __address_space_init_once(struct address_space *mapping) 398 { 399 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 400 init_rwsem(&mapping->i_mmap_rwsem); 401 INIT_LIST_HEAD(&mapping->private_list); 402 spin_lock_init(&mapping->private_lock); 403 mapping->i_mmap = RB_ROOT_CACHED; 404 } 405 406 void address_space_init_once(struct address_space *mapping) 407 { 408 memset(mapping, 0, sizeof(*mapping)); 409 __address_space_init_once(mapping); 410 } 411 EXPORT_SYMBOL(address_space_init_once); 412 413 /* 414 * These are initializations that only need to be done 415 * once, because the fields are idempotent across use 416 * of the inode, so let the slab aware of that. 417 */ 418 void inode_init_once(struct inode *inode) 419 { 420 memset(inode, 0, sizeof(*inode)); 421 INIT_HLIST_NODE(&inode->i_hash); 422 INIT_LIST_HEAD(&inode->i_devices); 423 INIT_LIST_HEAD(&inode->i_io_list); 424 INIT_LIST_HEAD(&inode->i_wb_list); 425 INIT_LIST_HEAD(&inode->i_lru); 426 INIT_LIST_HEAD(&inode->i_sb_list); 427 __address_space_init_once(&inode->i_data); 428 i_size_ordered_init(inode); 429 } 430 EXPORT_SYMBOL(inode_init_once); 431 432 static void init_once(void *foo) 433 { 434 struct inode *inode = (struct inode *) foo; 435 436 inode_init_once(inode); 437 } 438 439 /* 440 * inode->i_lock must be held 441 */ 442 void __iget(struct inode *inode) 443 { 444 atomic_inc(&inode->i_count); 445 } 446 447 /* 448 * get additional reference to inode; caller must already hold one. 449 */ 450 void ihold(struct inode *inode) 451 { 452 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 453 } 454 EXPORT_SYMBOL(ihold); 455 456 static void __inode_add_lru(struct inode *inode, bool rotate) 457 { 458 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE)) 459 return; 460 if (atomic_read(&inode->i_count)) 461 return; 462 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 463 return; 464 if (!mapping_shrinkable(&inode->i_data)) 465 return; 466 467 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) 468 this_cpu_inc(nr_unused); 469 else if (rotate) 470 inode->i_state |= I_REFERENCED; 471 } 472 473 /* 474 * Add inode to LRU if needed (inode is unused and clean). 475 * 476 * Needs inode->i_lock held. 477 */ 478 void inode_add_lru(struct inode *inode) 479 { 480 __inode_add_lru(inode, false); 481 } 482 483 static void inode_lru_list_del(struct inode *inode) 484 { 485 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) 486 this_cpu_dec(nr_unused); 487 } 488 489 static void inode_pin_lru_isolating(struct inode *inode) 490 { 491 lockdep_assert_held(&inode->i_lock); 492 WARN_ON(inode->i_state & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE)); 493 inode->i_state |= I_LRU_ISOLATING; 494 } 495 496 static void inode_unpin_lru_isolating(struct inode *inode) 497 { 498 spin_lock(&inode->i_lock); 499 WARN_ON(!(inode->i_state & I_LRU_ISOLATING)); 500 inode->i_state &= ~I_LRU_ISOLATING; 501 smp_mb(); 502 wake_up_bit(&inode->i_state, __I_LRU_ISOLATING); 503 spin_unlock(&inode->i_lock); 504 } 505 506 static void inode_wait_for_lru_isolating(struct inode *inode) 507 { 508 spin_lock(&inode->i_lock); 509 if (inode->i_state & I_LRU_ISOLATING) { 510 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_LRU_ISOLATING); 511 wait_queue_head_t *wqh; 512 513 wqh = bit_waitqueue(&inode->i_state, __I_LRU_ISOLATING); 514 spin_unlock(&inode->i_lock); 515 __wait_on_bit(wqh, &wq, bit_wait, TASK_UNINTERRUPTIBLE); 516 spin_lock(&inode->i_lock); 517 WARN_ON(inode->i_state & I_LRU_ISOLATING); 518 } 519 spin_unlock(&inode->i_lock); 520 } 521 522 /** 523 * inode_sb_list_add - add inode to the superblock list of inodes 524 * @inode: inode to add 525 */ 526 void inode_sb_list_add(struct inode *inode) 527 { 528 spin_lock(&inode->i_sb->s_inode_list_lock); 529 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 530 spin_unlock(&inode->i_sb->s_inode_list_lock); 531 } 532 EXPORT_SYMBOL_GPL(inode_sb_list_add); 533 534 static inline void inode_sb_list_del(struct inode *inode) 535 { 536 if (!list_empty(&inode->i_sb_list)) { 537 spin_lock(&inode->i_sb->s_inode_list_lock); 538 list_del_init(&inode->i_sb_list); 539 spin_unlock(&inode->i_sb->s_inode_list_lock); 540 } 541 } 542 543 static unsigned long hash(struct super_block *sb, unsigned long hashval) 544 { 545 unsigned long tmp; 546 547 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 548 L1_CACHE_BYTES; 549 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 550 return tmp & i_hash_mask; 551 } 552 553 /** 554 * __insert_inode_hash - hash an inode 555 * @inode: unhashed inode 556 * @hashval: unsigned long value used to locate this object in the 557 * inode_hashtable. 558 * 559 * Add an inode to the inode hash for this superblock. 560 */ 561 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 562 { 563 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 564 565 spin_lock(&inode_hash_lock); 566 spin_lock(&inode->i_lock); 567 hlist_add_head_rcu(&inode->i_hash, b); 568 spin_unlock(&inode->i_lock); 569 spin_unlock(&inode_hash_lock); 570 } 571 EXPORT_SYMBOL(__insert_inode_hash); 572 573 /** 574 * __remove_inode_hash - remove an inode from the hash 575 * @inode: inode to unhash 576 * 577 * Remove an inode from the superblock. 578 */ 579 void __remove_inode_hash(struct inode *inode) 580 { 581 spin_lock(&inode_hash_lock); 582 spin_lock(&inode->i_lock); 583 hlist_del_init_rcu(&inode->i_hash); 584 spin_unlock(&inode->i_lock); 585 spin_unlock(&inode_hash_lock); 586 } 587 EXPORT_SYMBOL(__remove_inode_hash); 588 589 void dump_mapping(const struct address_space *mapping) 590 { 591 struct inode *host; 592 const struct address_space_operations *a_ops; 593 struct hlist_node *dentry_first; 594 struct dentry *dentry_ptr; 595 struct dentry dentry; 596 char fname[64] = {}; 597 unsigned long ino; 598 599 /* 600 * If mapping is an invalid pointer, we don't want to crash 601 * accessing it, so probe everything depending on it carefully. 602 */ 603 if (get_kernel_nofault(host, &mapping->host) || 604 get_kernel_nofault(a_ops, &mapping->a_ops)) { 605 pr_warn("invalid mapping:%px\n", mapping); 606 return; 607 } 608 609 if (!host) { 610 pr_warn("aops:%ps\n", a_ops); 611 return; 612 } 613 614 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) || 615 get_kernel_nofault(ino, &host->i_ino)) { 616 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host); 617 return; 618 } 619 620 if (!dentry_first) { 621 pr_warn("aops:%ps ino:%lx\n", a_ops, ino); 622 return; 623 } 624 625 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias); 626 if (get_kernel_nofault(dentry, dentry_ptr)) { 627 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n", 628 a_ops, ino, dentry_ptr); 629 return; 630 } 631 632 if (strncpy_from_kernel_nofault(fname, dentry.d_name.name, 63) < 0) 633 strscpy(fname, "<invalid>", 63); 634 /* 635 * Even if strncpy_from_kernel_nofault() succeeded, 636 * the fname could be unreliable 637 */ 638 pr_warn("aops:%ps ino:%lx dentry name(?):\"%s\"\n", 639 a_ops, ino, fname); 640 } 641 642 void clear_inode(struct inode *inode) 643 { 644 /* 645 * We have to cycle the i_pages lock here because reclaim can be in the 646 * process of removing the last page (in __filemap_remove_folio()) 647 * and we must not free the mapping under it. 648 */ 649 xa_lock_irq(&inode->i_data.i_pages); 650 BUG_ON(inode->i_data.nrpages); 651 /* 652 * Almost always, mapping_empty(&inode->i_data) here; but there are 653 * two known and long-standing ways in which nodes may get left behind 654 * (when deep radix-tree node allocation failed partway; or when THP 655 * collapse_file() failed). Until those two known cases are cleaned up, 656 * or a cleanup function is called here, do not BUG_ON(!mapping_empty), 657 * nor even WARN_ON(!mapping_empty). 658 */ 659 xa_unlock_irq(&inode->i_data.i_pages); 660 BUG_ON(!list_empty(&inode->i_data.private_list)); 661 BUG_ON(!(inode->i_state & I_FREEING)); 662 BUG_ON(inode->i_state & I_CLEAR); 663 BUG_ON(!list_empty(&inode->i_wb_list)); 664 /* don't need i_lock here, no concurrent mods to i_state */ 665 inode->i_state = I_FREEING | I_CLEAR; 666 } 667 EXPORT_SYMBOL(clear_inode); 668 669 /* 670 * Free the inode passed in, removing it from the lists it is still connected 671 * to. We remove any pages still attached to the inode and wait for any IO that 672 * is still in progress before finally destroying the inode. 673 * 674 * An inode must already be marked I_FREEING so that we avoid the inode being 675 * moved back onto lists if we race with other code that manipulates the lists 676 * (e.g. writeback_single_inode). The caller is responsible for setting this. 677 * 678 * An inode must already be removed from the LRU list before being evicted from 679 * the cache. This should occur atomically with setting the I_FREEING state 680 * flag, so no inodes here should ever be on the LRU when being evicted. 681 */ 682 static void evict(struct inode *inode) 683 { 684 const struct super_operations *op = inode->i_sb->s_op; 685 686 BUG_ON(!(inode->i_state & I_FREEING)); 687 BUG_ON(!list_empty(&inode->i_lru)); 688 689 if (!list_empty(&inode->i_io_list)) 690 inode_io_list_del(inode); 691 692 inode_sb_list_del(inode); 693 694 inode_wait_for_lru_isolating(inode); 695 696 /* 697 * Wait for flusher thread to be done with the inode so that filesystem 698 * does not start destroying it while writeback is still running. Since 699 * the inode has I_FREEING set, flusher thread won't start new work on 700 * the inode. We just have to wait for running writeback to finish. 701 */ 702 inode_wait_for_writeback(inode); 703 704 if (op->evict_inode) { 705 op->evict_inode(inode); 706 } else { 707 truncate_inode_pages_final(&inode->i_data); 708 clear_inode(inode); 709 } 710 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 711 cd_forget(inode); 712 713 remove_inode_hash(inode); 714 715 spin_lock(&inode->i_lock); 716 wake_up_bit(&inode->i_state, __I_NEW); 717 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 718 spin_unlock(&inode->i_lock); 719 720 destroy_inode(inode); 721 } 722 723 /* 724 * dispose_list - dispose of the contents of a local list 725 * @head: the head of the list to free 726 * 727 * Dispose-list gets a local list with local inodes in it, so it doesn't 728 * need to worry about list corruption and SMP locks. 729 */ 730 static void dispose_list(struct list_head *head) 731 { 732 while (!list_empty(head)) { 733 struct inode *inode; 734 735 inode = list_first_entry(head, struct inode, i_lru); 736 list_del_init(&inode->i_lru); 737 738 evict(inode); 739 cond_resched(); 740 } 741 } 742 743 /** 744 * evict_inodes - evict all evictable inodes for a superblock 745 * @sb: superblock to operate on 746 * 747 * Make sure that no inodes with zero refcount are retained. This is 748 * called by superblock shutdown after having SB_ACTIVE flag removed, 749 * so any inode reaching zero refcount during or after that call will 750 * be immediately evicted. 751 */ 752 void evict_inodes(struct super_block *sb) 753 { 754 struct inode *inode, *next; 755 LIST_HEAD(dispose); 756 757 again: 758 spin_lock(&sb->s_inode_list_lock); 759 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 760 if (atomic_read(&inode->i_count)) 761 continue; 762 763 spin_lock(&inode->i_lock); 764 if (atomic_read(&inode->i_count)) { 765 spin_unlock(&inode->i_lock); 766 continue; 767 } 768 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 769 spin_unlock(&inode->i_lock); 770 continue; 771 } 772 773 inode->i_state |= I_FREEING; 774 inode_lru_list_del(inode); 775 spin_unlock(&inode->i_lock); 776 list_add(&inode->i_lru, &dispose); 777 778 /* 779 * We can have a ton of inodes to evict at unmount time given 780 * enough memory, check to see if we need to go to sleep for a 781 * bit so we don't livelock. 782 */ 783 if (need_resched()) { 784 spin_unlock(&sb->s_inode_list_lock); 785 cond_resched(); 786 dispose_list(&dispose); 787 goto again; 788 } 789 } 790 spin_unlock(&sb->s_inode_list_lock); 791 792 dispose_list(&dispose); 793 } 794 EXPORT_SYMBOL_GPL(evict_inodes); 795 796 /** 797 * invalidate_inodes - attempt to free all inodes on a superblock 798 * @sb: superblock to operate on 799 * 800 * Attempts to free all inodes (including dirty inodes) for a given superblock. 801 */ 802 void invalidate_inodes(struct super_block *sb) 803 { 804 struct inode *inode, *next; 805 LIST_HEAD(dispose); 806 807 again: 808 spin_lock(&sb->s_inode_list_lock); 809 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 810 spin_lock(&inode->i_lock); 811 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 812 spin_unlock(&inode->i_lock); 813 continue; 814 } 815 if (atomic_read(&inode->i_count)) { 816 spin_unlock(&inode->i_lock); 817 continue; 818 } 819 820 inode->i_state |= I_FREEING; 821 inode_lru_list_del(inode); 822 spin_unlock(&inode->i_lock); 823 list_add(&inode->i_lru, &dispose); 824 if (need_resched()) { 825 spin_unlock(&sb->s_inode_list_lock); 826 cond_resched(); 827 dispose_list(&dispose); 828 goto again; 829 } 830 } 831 spin_unlock(&sb->s_inode_list_lock); 832 833 dispose_list(&dispose); 834 } 835 836 /* 837 * Isolate the inode from the LRU in preparation for freeing it. 838 * 839 * If the inode has the I_REFERENCED flag set, then it means that it has been 840 * used recently - the flag is set in iput_final(). When we encounter such an 841 * inode, clear the flag and move it to the back of the LRU so it gets another 842 * pass through the LRU before it gets reclaimed. This is necessary because of 843 * the fact we are doing lazy LRU updates to minimise lock contention so the 844 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 845 * with this flag set because they are the inodes that are out of order. 846 */ 847 static enum lru_status inode_lru_isolate(struct list_head *item, 848 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 849 { 850 struct list_head *freeable = arg; 851 struct inode *inode = container_of(item, struct inode, i_lru); 852 853 /* 854 * We are inverting the lru lock/inode->i_lock here, so use a 855 * trylock. If we fail to get the lock, just skip it. 856 */ 857 if (!spin_trylock(&inode->i_lock)) 858 return LRU_SKIP; 859 860 /* 861 * Inodes can get referenced, redirtied, or repopulated while 862 * they're already on the LRU, and this can make them 863 * unreclaimable for a while. Remove them lazily here; iput, 864 * sync, or the last page cache deletion will requeue them. 865 */ 866 if (atomic_read(&inode->i_count) || 867 (inode->i_state & ~I_REFERENCED) || 868 !mapping_shrinkable(&inode->i_data)) { 869 list_lru_isolate(lru, &inode->i_lru); 870 spin_unlock(&inode->i_lock); 871 this_cpu_dec(nr_unused); 872 return LRU_REMOVED; 873 } 874 875 /* Recently referenced inodes get one more pass */ 876 if (inode->i_state & I_REFERENCED) { 877 inode->i_state &= ~I_REFERENCED; 878 spin_unlock(&inode->i_lock); 879 return LRU_ROTATE; 880 } 881 882 /* 883 * On highmem systems, mapping_shrinkable() permits dropping 884 * page cache in order to free up struct inodes: lowmem might 885 * be under pressure before the cache inside the highmem zone. 886 */ 887 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) { 888 inode_pin_lru_isolating(inode); 889 spin_unlock(&inode->i_lock); 890 spin_unlock(lru_lock); 891 if (remove_inode_buffers(inode)) { 892 unsigned long reap; 893 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 894 if (current_is_kswapd()) 895 __count_vm_events(KSWAPD_INODESTEAL, reap); 896 else 897 __count_vm_events(PGINODESTEAL, reap); 898 mm_account_reclaimed_pages(reap); 899 } 900 inode_unpin_lru_isolating(inode); 901 spin_lock(lru_lock); 902 return LRU_RETRY; 903 } 904 905 WARN_ON(inode->i_state & I_NEW); 906 inode->i_state |= I_FREEING; 907 list_lru_isolate_move(lru, &inode->i_lru, freeable); 908 spin_unlock(&inode->i_lock); 909 910 this_cpu_dec(nr_unused); 911 return LRU_REMOVED; 912 } 913 914 /* 915 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 916 * This is called from the superblock shrinker function with a number of inodes 917 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 918 * then are freed outside inode_lock by dispose_list(). 919 */ 920 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 921 { 922 LIST_HEAD(freeable); 923 long freed; 924 925 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 926 inode_lru_isolate, &freeable); 927 dispose_list(&freeable); 928 return freed; 929 } 930 931 static void __wait_on_freeing_inode(struct inode *inode); 932 /* 933 * Called with the inode lock held. 934 */ 935 static struct inode *find_inode(struct super_block *sb, 936 struct hlist_head *head, 937 int (*test)(struct inode *, void *), 938 void *data) 939 { 940 struct inode *inode = NULL; 941 942 repeat: 943 hlist_for_each_entry(inode, head, i_hash) { 944 if (inode->i_sb != sb) 945 continue; 946 if (!test(inode, data)) 947 continue; 948 spin_lock(&inode->i_lock); 949 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 950 __wait_on_freeing_inode(inode); 951 goto repeat; 952 } 953 if (unlikely(inode->i_state & I_CREATING)) { 954 spin_unlock(&inode->i_lock); 955 return ERR_PTR(-ESTALE); 956 } 957 __iget(inode); 958 spin_unlock(&inode->i_lock); 959 return inode; 960 } 961 return NULL; 962 } 963 964 /* 965 * find_inode_fast is the fast path version of find_inode, see the comment at 966 * iget_locked for details. 967 */ 968 static struct inode *find_inode_fast(struct super_block *sb, 969 struct hlist_head *head, unsigned long ino) 970 { 971 struct inode *inode = NULL; 972 973 repeat: 974 hlist_for_each_entry(inode, head, i_hash) { 975 if (inode->i_ino != ino) 976 continue; 977 if (inode->i_sb != sb) 978 continue; 979 spin_lock(&inode->i_lock); 980 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 981 __wait_on_freeing_inode(inode); 982 goto repeat; 983 } 984 if (unlikely(inode->i_state & I_CREATING)) { 985 spin_unlock(&inode->i_lock); 986 return ERR_PTR(-ESTALE); 987 } 988 __iget(inode); 989 spin_unlock(&inode->i_lock); 990 return inode; 991 } 992 return NULL; 993 } 994 995 /* 996 * Each cpu owns a range of LAST_INO_BATCH numbers. 997 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 998 * to renew the exhausted range. 999 * 1000 * This does not significantly increase overflow rate because every CPU can 1001 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 1002 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 1003 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 1004 * overflow rate by 2x, which does not seem too significant. 1005 * 1006 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1007 * error if st_ino won't fit in target struct field. Use 32bit counter 1008 * here to attempt to avoid that. 1009 */ 1010 #define LAST_INO_BATCH 1024 1011 static DEFINE_PER_CPU(unsigned int, last_ino); 1012 1013 unsigned int get_next_ino(void) 1014 { 1015 unsigned int *p = &get_cpu_var(last_ino); 1016 unsigned int res = *p; 1017 1018 #ifdef CONFIG_SMP 1019 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 1020 static atomic_t shared_last_ino; 1021 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 1022 1023 res = next - LAST_INO_BATCH; 1024 } 1025 #endif 1026 1027 res++; 1028 /* get_next_ino should not provide a 0 inode number */ 1029 if (unlikely(!res)) 1030 res++; 1031 *p = res; 1032 put_cpu_var(last_ino); 1033 return res; 1034 } 1035 EXPORT_SYMBOL(get_next_ino); 1036 1037 /** 1038 * new_inode_pseudo - obtain an inode 1039 * @sb: superblock 1040 * 1041 * Allocates a new inode for given superblock. 1042 * Inode wont be chained in superblock s_inodes list 1043 * This means : 1044 * - fs can't be unmount 1045 * - quotas, fsnotify, writeback can't work 1046 */ 1047 struct inode *new_inode_pseudo(struct super_block *sb) 1048 { 1049 struct inode *inode = alloc_inode(sb); 1050 1051 if (inode) { 1052 spin_lock(&inode->i_lock); 1053 inode->i_state = 0; 1054 spin_unlock(&inode->i_lock); 1055 } 1056 return inode; 1057 } 1058 1059 /** 1060 * new_inode - obtain an inode 1061 * @sb: superblock 1062 * 1063 * Allocates a new inode for given superblock. The default gfp_mask 1064 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 1065 * If HIGHMEM pages are unsuitable or it is known that pages allocated 1066 * for the page cache are not reclaimable or migratable, 1067 * mapping_set_gfp_mask() must be called with suitable flags on the 1068 * newly created inode's mapping 1069 * 1070 */ 1071 struct inode *new_inode(struct super_block *sb) 1072 { 1073 struct inode *inode; 1074 1075 inode = new_inode_pseudo(sb); 1076 if (inode) 1077 inode_sb_list_add(inode); 1078 return inode; 1079 } 1080 EXPORT_SYMBOL(new_inode); 1081 1082 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1083 void lockdep_annotate_inode_mutex_key(struct inode *inode) 1084 { 1085 if (S_ISDIR(inode->i_mode)) { 1086 struct file_system_type *type = inode->i_sb->s_type; 1087 1088 /* Set new key only if filesystem hasn't already changed it */ 1089 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 1090 /* 1091 * ensure nobody is actually holding i_mutex 1092 */ 1093 // mutex_destroy(&inode->i_mutex); 1094 init_rwsem(&inode->i_rwsem); 1095 lockdep_set_class(&inode->i_rwsem, 1096 &type->i_mutex_dir_key); 1097 } 1098 } 1099 } 1100 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 1101 #endif 1102 1103 /** 1104 * unlock_new_inode - clear the I_NEW state and wake up any waiters 1105 * @inode: new inode to unlock 1106 * 1107 * Called when the inode is fully initialised to clear the new state of the 1108 * inode and wake up anyone waiting for the inode to finish initialisation. 1109 */ 1110 void unlock_new_inode(struct inode *inode) 1111 { 1112 lockdep_annotate_inode_mutex_key(inode); 1113 spin_lock(&inode->i_lock); 1114 WARN_ON(!(inode->i_state & I_NEW)); 1115 inode->i_state &= ~I_NEW & ~I_CREATING; 1116 smp_mb(); 1117 wake_up_bit(&inode->i_state, __I_NEW); 1118 spin_unlock(&inode->i_lock); 1119 } 1120 EXPORT_SYMBOL(unlock_new_inode); 1121 1122 void discard_new_inode(struct inode *inode) 1123 { 1124 lockdep_annotate_inode_mutex_key(inode); 1125 spin_lock(&inode->i_lock); 1126 WARN_ON(!(inode->i_state & I_NEW)); 1127 inode->i_state &= ~I_NEW; 1128 smp_mb(); 1129 wake_up_bit(&inode->i_state, __I_NEW); 1130 spin_unlock(&inode->i_lock); 1131 iput(inode); 1132 } 1133 EXPORT_SYMBOL(discard_new_inode); 1134 1135 /** 1136 * lock_two_inodes - lock two inodes (may be regular files but also dirs) 1137 * 1138 * Lock any non-NULL argument. The caller must make sure that if he is passing 1139 * in two directories, one is not ancestor of the other. Zero, one or two 1140 * objects may be locked by this function. 1141 * 1142 * @inode1: first inode to lock 1143 * @inode2: second inode to lock 1144 * @subclass1: inode lock subclass for the first lock obtained 1145 * @subclass2: inode lock subclass for the second lock obtained 1146 */ 1147 void lock_two_inodes(struct inode *inode1, struct inode *inode2, 1148 unsigned subclass1, unsigned subclass2) 1149 { 1150 if (!inode1 || !inode2) { 1151 /* 1152 * Make sure @subclass1 will be used for the acquired lock. 1153 * This is not strictly necessary (no current caller cares) but 1154 * let's keep things consistent. 1155 */ 1156 if (!inode1) 1157 swap(inode1, inode2); 1158 goto lock; 1159 } 1160 1161 /* 1162 * If one object is directory and the other is not, we must make sure 1163 * to lock directory first as the other object may be its child. 1164 */ 1165 if (S_ISDIR(inode2->i_mode) == S_ISDIR(inode1->i_mode)) { 1166 if (inode1 > inode2) 1167 swap(inode1, inode2); 1168 } else if (!S_ISDIR(inode1->i_mode)) 1169 swap(inode1, inode2); 1170 lock: 1171 if (inode1) 1172 inode_lock_nested(inode1, subclass1); 1173 if (inode2 && inode2 != inode1) 1174 inode_lock_nested(inode2, subclass2); 1175 } 1176 1177 /** 1178 * lock_two_nondirectories - take two i_mutexes on non-directory objects 1179 * 1180 * Lock any non-NULL argument. Passed objects must not be directories. 1181 * Zero, one or two objects may be locked by this function. 1182 * 1183 * @inode1: first inode to lock 1184 * @inode2: second inode to lock 1185 */ 1186 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1187 { 1188 if (inode1) 1189 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1190 if (inode2) 1191 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1192 lock_two_inodes(inode1, inode2, I_MUTEX_NORMAL, I_MUTEX_NONDIR2); 1193 } 1194 EXPORT_SYMBOL(lock_two_nondirectories); 1195 1196 /** 1197 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1198 * @inode1: first inode to unlock 1199 * @inode2: second inode to unlock 1200 */ 1201 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1202 { 1203 if (inode1) { 1204 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1205 inode_unlock(inode1); 1206 } 1207 if (inode2 && inode2 != inode1) { 1208 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1209 inode_unlock(inode2); 1210 } 1211 } 1212 EXPORT_SYMBOL(unlock_two_nondirectories); 1213 1214 /** 1215 * inode_insert5 - obtain an inode from a mounted file system 1216 * @inode: pre-allocated inode to use for insert to cache 1217 * @hashval: hash value (usually inode number) to get 1218 * @test: callback used for comparisons between inodes 1219 * @set: callback used to initialize a new struct inode 1220 * @data: opaque data pointer to pass to @test and @set 1221 * 1222 * Search for the inode specified by @hashval and @data in the inode cache, 1223 * and if present it is return it with an increased reference count. This is 1224 * a variant of iget5_locked() for callers that don't want to fail on memory 1225 * allocation of inode. 1226 * 1227 * If the inode is not in cache, insert the pre-allocated inode to cache and 1228 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1229 * to fill it in before unlocking it via unlock_new_inode(). 1230 * 1231 * Note both @test and @set are called with the inode_hash_lock held, so can't 1232 * sleep. 1233 */ 1234 struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1235 int (*test)(struct inode *, void *), 1236 int (*set)(struct inode *, void *), void *data) 1237 { 1238 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1239 struct inode *old; 1240 1241 again: 1242 spin_lock(&inode_hash_lock); 1243 old = find_inode(inode->i_sb, head, test, data); 1244 if (unlikely(old)) { 1245 /* 1246 * Uhhuh, somebody else created the same inode under us. 1247 * Use the old inode instead of the preallocated one. 1248 */ 1249 spin_unlock(&inode_hash_lock); 1250 if (IS_ERR(old)) 1251 return NULL; 1252 wait_on_inode(old); 1253 if (unlikely(inode_unhashed(old))) { 1254 iput(old); 1255 goto again; 1256 } 1257 return old; 1258 } 1259 1260 if (set && unlikely(set(inode, data))) { 1261 inode = NULL; 1262 goto unlock; 1263 } 1264 1265 /* 1266 * Return the locked inode with I_NEW set, the 1267 * caller is responsible for filling in the contents 1268 */ 1269 spin_lock(&inode->i_lock); 1270 inode->i_state |= I_NEW; 1271 hlist_add_head_rcu(&inode->i_hash, head); 1272 spin_unlock(&inode->i_lock); 1273 1274 /* 1275 * Add inode to the sb list if it's not already. It has I_NEW at this 1276 * point, so it should be safe to test i_sb_list locklessly. 1277 */ 1278 if (list_empty(&inode->i_sb_list)) 1279 inode_sb_list_add(inode); 1280 unlock: 1281 spin_unlock(&inode_hash_lock); 1282 1283 return inode; 1284 } 1285 EXPORT_SYMBOL(inode_insert5); 1286 1287 /** 1288 * iget5_locked - obtain an inode from a mounted file system 1289 * @sb: super block of file system 1290 * @hashval: hash value (usually inode number) to get 1291 * @test: callback used for comparisons between inodes 1292 * @set: callback used to initialize a new struct inode 1293 * @data: opaque data pointer to pass to @test and @set 1294 * 1295 * Search for the inode specified by @hashval and @data in the inode cache, 1296 * and if present it is return it with an increased reference count. This is 1297 * a generalized version of iget_locked() for file systems where the inode 1298 * number is not sufficient for unique identification of an inode. 1299 * 1300 * If the inode is not in cache, allocate a new inode and return it locked, 1301 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1302 * before unlocking it via unlock_new_inode(). 1303 * 1304 * Note both @test and @set are called with the inode_hash_lock held, so can't 1305 * sleep. 1306 */ 1307 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1308 int (*test)(struct inode *, void *), 1309 int (*set)(struct inode *, void *), void *data) 1310 { 1311 struct inode *inode = ilookup5(sb, hashval, test, data); 1312 1313 if (!inode) { 1314 struct inode *new = alloc_inode(sb); 1315 1316 if (new) { 1317 new->i_state = 0; 1318 inode = inode_insert5(new, hashval, test, set, data); 1319 if (unlikely(inode != new)) 1320 destroy_inode(new); 1321 } 1322 } 1323 return inode; 1324 } 1325 EXPORT_SYMBOL(iget5_locked); 1326 1327 /** 1328 * iget_locked - obtain an inode from a mounted file system 1329 * @sb: super block of file system 1330 * @ino: inode number to get 1331 * 1332 * Search for the inode specified by @ino in the inode cache and if present 1333 * return it with an increased reference count. This is for file systems 1334 * where the inode number is sufficient for unique identification of an inode. 1335 * 1336 * If the inode is not in cache, allocate a new inode and return it locked, 1337 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1338 * before unlocking it via unlock_new_inode(). 1339 */ 1340 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1341 { 1342 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1343 struct inode *inode; 1344 again: 1345 spin_lock(&inode_hash_lock); 1346 inode = find_inode_fast(sb, head, ino); 1347 spin_unlock(&inode_hash_lock); 1348 if (inode) { 1349 if (IS_ERR(inode)) 1350 return NULL; 1351 wait_on_inode(inode); 1352 if (unlikely(inode_unhashed(inode))) { 1353 iput(inode); 1354 goto again; 1355 } 1356 return inode; 1357 } 1358 1359 inode = alloc_inode(sb); 1360 if (inode) { 1361 struct inode *old; 1362 1363 spin_lock(&inode_hash_lock); 1364 /* We released the lock, so.. */ 1365 old = find_inode_fast(sb, head, ino); 1366 if (!old) { 1367 inode->i_ino = ino; 1368 spin_lock(&inode->i_lock); 1369 inode->i_state = I_NEW; 1370 hlist_add_head_rcu(&inode->i_hash, head); 1371 spin_unlock(&inode->i_lock); 1372 inode_sb_list_add(inode); 1373 spin_unlock(&inode_hash_lock); 1374 1375 /* Return the locked inode with I_NEW set, the 1376 * caller is responsible for filling in the contents 1377 */ 1378 return inode; 1379 } 1380 1381 /* 1382 * Uhhuh, somebody else created the same inode under 1383 * us. Use the old inode instead of the one we just 1384 * allocated. 1385 */ 1386 spin_unlock(&inode_hash_lock); 1387 destroy_inode(inode); 1388 if (IS_ERR(old)) 1389 return NULL; 1390 inode = old; 1391 wait_on_inode(inode); 1392 if (unlikely(inode_unhashed(inode))) { 1393 iput(inode); 1394 goto again; 1395 } 1396 } 1397 return inode; 1398 } 1399 EXPORT_SYMBOL(iget_locked); 1400 1401 /* 1402 * search the inode cache for a matching inode number. 1403 * If we find one, then the inode number we are trying to 1404 * allocate is not unique and so we should not use it. 1405 * 1406 * Returns 1 if the inode number is unique, 0 if it is not. 1407 */ 1408 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1409 { 1410 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1411 struct inode *inode; 1412 1413 hlist_for_each_entry_rcu(inode, b, i_hash) { 1414 if (inode->i_ino == ino && inode->i_sb == sb) 1415 return 0; 1416 } 1417 return 1; 1418 } 1419 1420 /** 1421 * iunique - get a unique inode number 1422 * @sb: superblock 1423 * @max_reserved: highest reserved inode number 1424 * 1425 * Obtain an inode number that is unique on the system for a given 1426 * superblock. This is used by file systems that have no natural 1427 * permanent inode numbering system. An inode number is returned that 1428 * is higher than the reserved limit but unique. 1429 * 1430 * BUGS: 1431 * With a large number of inodes live on the file system this function 1432 * currently becomes quite slow. 1433 */ 1434 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1435 { 1436 /* 1437 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1438 * error if st_ino won't fit in target struct field. Use 32bit counter 1439 * here to attempt to avoid that. 1440 */ 1441 static DEFINE_SPINLOCK(iunique_lock); 1442 static unsigned int counter; 1443 ino_t res; 1444 1445 rcu_read_lock(); 1446 spin_lock(&iunique_lock); 1447 do { 1448 if (counter <= max_reserved) 1449 counter = max_reserved + 1; 1450 res = counter++; 1451 } while (!test_inode_iunique(sb, res)); 1452 spin_unlock(&iunique_lock); 1453 rcu_read_unlock(); 1454 1455 return res; 1456 } 1457 EXPORT_SYMBOL(iunique); 1458 1459 struct inode *igrab(struct inode *inode) 1460 { 1461 spin_lock(&inode->i_lock); 1462 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1463 __iget(inode); 1464 spin_unlock(&inode->i_lock); 1465 } else { 1466 spin_unlock(&inode->i_lock); 1467 /* 1468 * Handle the case where s_op->clear_inode is not been 1469 * called yet, and somebody is calling igrab 1470 * while the inode is getting freed. 1471 */ 1472 inode = NULL; 1473 } 1474 return inode; 1475 } 1476 EXPORT_SYMBOL(igrab); 1477 1478 /** 1479 * ilookup5_nowait - search for an inode in the inode cache 1480 * @sb: super block of file system to search 1481 * @hashval: hash value (usually inode number) to search for 1482 * @test: callback used for comparisons between inodes 1483 * @data: opaque data pointer to pass to @test 1484 * 1485 * Search for the inode specified by @hashval and @data in the inode cache. 1486 * If the inode is in the cache, the inode is returned with an incremented 1487 * reference count. 1488 * 1489 * Note: I_NEW is not waited upon so you have to be very careful what you do 1490 * with the returned inode. You probably should be using ilookup5() instead. 1491 * 1492 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1493 */ 1494 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1495 int (*test)(struct inode *, void *), void *data) 1496 { 1497 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1498 struct inode *inode; 1499 1500 spin_lock(&inode_hash_lock); 1501 inode = find_inode(sb, head, test, data); 1502 spin_unlock(&inode_hash_lock); 1503 1504 return IS_ERR(inode) ? NULL : inode; 1505 } 1506 EXPORT_SYMBOL(ilookup5_nowait); 1507 1508 /** 1509 * ilookup5 - search for an inode in the inode cache 1510 * @sb: super block of file system to search 1511 * @hashval: hash value (usually inode number) to search for 1512 * @test: callback used for comparisons between inodes 1513 * @data: opaque data pointer to pass to @test 1514 * 1515 * Search for the inode specified by @hashval and @data in the inode cache, 1516 * and if the inode is in the cache, return the inode with an incremented 1517 * reference count. Waits on I_NEW before returning the inode. 1518 * returned with an incremented reference count. 1519 * 1520 * This is a generalized version of ilookup() for file systems where the 1521 * inode number is not sufficient for unique identification of an inode. 1522 * 1523 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1524 */ 1525 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1526 int (*test)(struct inode *, void *), void *data) 1527 { 1528 struct inode *inode; 1529 again: 1530 inode = ilookup5_nowait(sb, hashval, test, data); 1531 if (inode) { 1532 wait_on_inode(inode); 1533 if (unlikely(inode_unhashed(inode))) { 1534 iput(inode); 1535 goto again; 1536 } 1537 } 1538 return inode; 1539 } 1540 EXPORT_SYMBOL(ilookup5); 1541 1542 /** 1543 * ilookup - search for an inode in the inode cache 1544 * @sb: super block of file system to search 1545 * @ino: inode number to search for 1546 * 1547 * Search for the inode @ino in the inode cache, and if the inode is in the 1548 * cache, the inode is returned with an incremented reference count. 1549 */ 1550 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1551 { 1552 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1553 struct inode *inode; 1554 again: 1555 spin_lock(&inode_hash_lock); 1556 inode = find_inode_fast(sb, head, ino); 1557 spin_unlock(&inode_hash_lock); 1558 1559 if (inode) { 1560 if (IS_ERR(inode)) 1561 return NULL; 1562 wait_on_inode(inode); 1563 if (unlikely(inode_unhashed(inode))) { 1564 iput(inode); 1565 goto again; 1566 } 1567 } 1568 return inode; 1569 } 1570 EXPORT_SYMBOL(ilookup); 1571 1572 /** 1573 * find_inode_nowait - find an inode in the inode cache 1574 * @sb: super block of file system to search 1575 * @hashval: hash value (usually inode number) to search for 1576 * @match: callback used for comparisons between inodes 1577 * @data: opaque data pointer to pass to @match 1578 * 1579 * Search for the inode specified by @hashval and @data in the inode 1580 * cache, where the helper function @match will return 0 if the inode 1581 * does not match, 1 if the inode does match, and -1 if the search 1582 * should be stopped. The @match function must be responsible for 1583 * taking the i_lock spin_lock and checking i_state for an inode being 1584 * freed or being initialized, and incrementing the reference count 1585 * before returning 1. It also must not sleep, since it is called with 1586 * the inode_hash_lock spinlock held. 1587 * 1588 * This is a even more generalized version of ilookup5() when the 1589 * function must never block --- find_inode() can block in 1590 * __wait_on_freeing_inode() --- or when the caller can not increment 1591 * the reference count because the resulting iput() might cause an 1592 * inode eviction. The tradeoff is that the @match funtion must be 1593 * very carefully implemented. 1594 */ 1595 struct inode *find_inode_nowait(struct super_block *sb, 1596 unsigned long hashval, 1597 int (*match)(struct inode *, unsigned long, 1598 void *), 1599 void *data) 1600 { 1601 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1602 struct inode *inode, *ret_inode = NULL; 1603 int mval; 1604 1605 spin_lock(&inode_hash_lock); 1606 hlist_for_each_entry(inode, head, i_hash) { 1607 if (inode->i_sb != sb) 1608 continue; 1609 mval = match(inode, hashval, data); 1610 if (mval == 0) 1611 continue; 1612 if (mval == 1) 1613 ret_inode = inode; 1614 goto out; 1615 } 1616 out: 1617 spin_unlock(&inode_hash_lock); 1618 return ret_inode; 1619 } 1620 EXPORT_SYMBOL(find_inode_nowait); 1621 1622 /** 1623 * find_inode_rcu - find an inode in the inode cache 1624 * @sb: Super block of file system to search 1625 * @hashval: Key to hash 1626 * @test: Function to test match on an inode 1627 * @data: Data for test function 1628 * 1629 * Search for the inode specified by @hashval and @data in the inode cache, 1630 * where the helper function @test will return 0 if the inode does not match 1631 * and 1 if it does. The @test function must be responsible for taking the 1632 * i_lock spin_lock and checking i_state for an inode being freed or being 1633 * initialized. 1634 * 1635 * If successful, this will return the inode for which the @test function 1636 * returned 1 and NULL otherwise. 1637 * 1638 * The @test function is not permitted to take a ref on any inode presented. 1639 * It is also not permitted to sleep. 1640 * 1641 * The caller must hold the RCU read lock. 1642 */ 1643 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, 1644 int (*test)(struct inode *, void *), void *data) 1645 { 1646 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1647 struct inode *inode; 1648 1649 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1650 "suspicious find_inode_rcu() usage"); 1651 1652 hlist_for_each_entry_rcu(inode, head, i_hash) { 1653 if (inode->i_sb == sb && 1654 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) && 1655 test(inode, data)) 1656 return inode; 1657 } 1658 return NULL; 1659 } 1660 EXPORT_SYMBOL(find_inode_rcu); 1661 1662 /** 1663 * find_inode_by_ino_rcu - Find an inode in the inode cache 1664 * @sb: Super block of file system to search 1665 * @ino: The inode number to match 1666 * 1667 * Search for the inode specified by @hashval and @data in the inode cache, 1668 * where the helper function @test will return 0 if the inode does not match 1669 * and 1 if it does. The @test function must be responsible for taking the 1670 * i_lock spin_lock and checking i_state for an inode being freed or being 1671 * initialized. 1672 * 1673 * If successful, this will return the inode for which the @test function 1674 * returned 1 and NULL otherwise. 1675 * 1676 * The @test function is not permitted to take a ref on any inode presented. 1677 * It is also not permitted to sleep. 1678 * 1679 * The caller must hold the RCU read lock. 1680 */ 1681 struct inode *find_inode_by_ino_rcu(struct super_block *sb, 1682 unsigned long ino) 1683 { 1684 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1685 struct inode *inode; 1686 1687 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1688 "suspicious find_inode_by_ino_rcu() usage"); 1689 1690 hlist_for_each_entry_rcu(inode, head, i_hash) { 1691 if (inode->i_ino == ino && 1692 inode->i_sb == sb && 1693 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE))) 1694 return inode; 1695 } 1696 return NULL; 1697 } 1698 EXPORT_SYMBOL(find_inode_by_ino_rcu); 1699 1700 int insert_inode_locked(struct inode *inode) 1701 { 1702 struct super_block *sb = inode->i_sb; 1703 ino_t ino = inode->i_ino; 1704 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1705 1706 while (1) { 1707 struct inode *old = NULL; 1708 spin_lock(&inode_hash_lock); 1709 hlist_for_each_entry(old, head, i_hash) { 1710 if (old->i_ino != ino) 1711 continue; 1712 if (old->i_sb != sb) 1713 continue; 1714 spin_lock(&old->i_lock); 1715 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1716 spin_unlock(&old->i_lock); 1717 continue; 1718 } 1719 break; 1720 } 1721 if (likely(!old)) { 1722 spin_lock(&inode->i_lock); 1723 inode->i_state |= I_NEW | I_CREATING; 1724 hlist_add_head_rcu(&inode->i_hash, head); 1725 spin_unlock(&inode->i_lock); 1726 spin_unlock(&inode_hash_lock); 1727 return 0; 1728 } 1729 if (unlikely(old->i_state & I_CREATING)) { 1730 spin_unlock(&old->i_lock); 1731 spin_unlock(&inode_hash_lock); 1732 return -EBUSY; 1733 } 1734 __iget(old); 1735 spin_unlock(&old->i_lock); 1736 spin_unlock(&inode_hash_lock); 1737 wait_on_inode(old); 1738 if (unlikely(!inode_unhashed(old))) { 1739 iput(old); 1740 return -EBUSY; 1741 } 1742 iput(old); 1743 } 1744 } 1745 EXPORT_SYMBOL(insert_inode_locked); 1746 1747 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1748 int (*test)(struct inode *, void *), void *data) 1749 { 1750 struct inode *old; 1751 1752 inode->i_state |= I_CREATING; 1753 old = inode_insert5(inode, hashval, test, NULL, data); 1754 1755 if (old != inode) { 1756 iput(old); 1757 return -EBUSY; 1758 } 1759 return 0; 1760 } 1761 EXPORT_SYMBOL(insert_inode_locked4); 1762 1763 1764 int generic_delete_inode(struct inode *inode) 1765 { 1766 return 1; 1767 } 1768 EXPORT_SYMBOL(generic_delete_inode); 1769 1770 /* 1771 * Called when we're dropping the last reference 1772 * to an inode. 1773 * 1774 * Call the FS "drop_inode()" function, defaulting to 1775 * the legacy UNIX filesystem behaviour. If it tells 1776 * us to evict inode, do so. Otherwise, retain inode 1777 * in cache if fs is alive, sync and evict if fs is 1778 * shutting down. 1779 */ 1780 static void iput_final(struct inode *inode) 1781 { 1782 struct super_block *sb = inode->i_sb; 1783 const struct super_operations *op = inode->i_sb->s_op; 1784 unsigned long state; 1785 int drop; 1786 1787 WARN_ON(inode->i_state & I_NEW); 1788 1789 if (op->drop_inode) 1790 drop = op->drop_inode(inode); 1791 else 1792 drop = generic_drop_inode(inode); 1793 1794 if (!drop && 1795 !(inode->i_state & I_DONTCACHE) && 1796 (sb->s_flags & SB_ACTIVE)) { 1797 __inode_add_lru(inode, true); 1798 spin_unlock(&inode->i_lock); 1799 return; 1800 } 1801 1802 state = inode->i_state; 1803 if (!drop) { 1804 WRITE_ONCE(inode->i_state, state | I_WILL_FREE); 1805 spin_unlock(&inode->i_lock); 1806 1807 write_inode_now(inode, 1); 1808 1809 spin_lock(&inode->i_lock); 1810 state = inode->i_state; 1811 WARN_ON(state & I_NEW); 1812 state &= ~I_WILL_FREE; 1813 } 1814 1815 WRITE_ONCE(inode->i_state, state | I_FREEING); 1816 if (!list_empty(&inode->i_lru)) 1817 inode_lru_list_del(inode); 1818 spin_unlock(&inode->i_lock); 1819 1820 evict(inode); 1821 } 1822 1823 /** 1824 * iput - put an inode 1825 * @inode: inode to put 1826 * 1827 * Puts an inode, dropping its usage count. If the inode use count hits 1828 * zero, the inode is then freed and may also be destroyed. 1829 * 1830 * Consequently, iput() can sleep. 1831 */ 1832 void iput(struct inode *inode) 1833 { 1834 if (!inode) 1835 return; 1836 BUG_ON(inode->i_state & I_CLEAR); 1837 retry: 1838 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1839 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1840 atomic_inc(&inode->i_count); 1841 spin_unlock(&inode->i_lock); 1842 trace_writeback_lazytime_iput(inode); 1843 mark_inode_dirty_sync(inode); 1844 goto retry; 1845 } 1846 iput_final(inode); 1847 } 1848 } 1849 EXPORT_SYMBOL(iput); 1850 1851 #ifdef CONFIG_BLOCK 1852 /** 1853 * bmap - find a block number in a file 1854 * @inode: inode owning the block number being requested 1855 * @block: pointer containing the block to find 1856 * 1857 * Replaces the value in ``*block`` with the block number on the device holding 1858 * corresponding to the requested block number in the file. 1859 * That is, asked for block 4 of inode 1 the function will replace the 1860 * 4 in ``*block``, with disk block relative to the disk start that holds that 1861 * block of the file. 1862 * 1863 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a 1864 * hole, returns 0 and ``*block`` is also set to 0. 1865 */ 1866 int bmap(struct inode *inode, sector_t *block) 1867 { 1868 if (!inode->i_mapping->a_ops->bmap) 1869 return -EINVAL; 1870 1871 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); 1872 return 0; 1873 } 1874 EXPORT_SYMBOL(bmap); 1875 #endif 1876 1877 /* 1878 * With relative atime, only update atime if the previous atime is 1879 * earlier than or equal to either the ctime or mtime, 1880 * or if at least a day has passed since the last atime update. 1881 */ 1882 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1883 struct timespec64 now) 1884 { 1885 struct timespec64 ctime; 1886 1887 if (!(mnt->mnt_flags & MNT_RELATIME)) 1888 return 1; 1889 /* 1890 * Is mtime younger than or equal to atime? If yes, update atime: 1891 */ 1892 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1893 return 1; 1894 /* 1895 * Is ctime younger than or equal to atime? If yes, update atime: 1896 */ 1897 ctime = inode_get_ctime(inode); 1898 if (timespec64_compare(&ctime, &inode->i_atime) >= 0) 1899 return 1; 1900 1901 /* 1902 * Is the previous atime value older than a day? If yes, 1903 * update atime: 1904 */ 1905 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1906 return 1; 1907 /* 1908 * Good, we can skip the atime update: 1909 */ 1910 return 0; 1911 } 1912 1913 /** 1914 * inode_update_timestamps - update the timestamps on the inode 1915 * @inode: inode to be updated 1916 * @flags: S_* flags that needed to be updated 1917 * 1918 * The update_time function is called when an inode's timestamps need to be 1919 * updated for a read or write operation. This function handles updating the 1920 * actual timestamps. It's up to the caller to ensure that the inode is marked 1921 * dirty appropriately. 1922 * 1923 * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated, 1924 * attempt to update all three of them. S_ATIME updates can be handled 1925 * independently of the rest. 1926 * 1927 * Returns a set of S_* flags indicating which values changed. 1928 */ 1929 int inode_update_timestamps(struct inode *inode, int flags) 1930 { 1931 int updated = 0; 1932 struct timespec64 now; 1933 1934 if (flags & (S_MTIME|S_CTIME|S_VERSION)) { 1935 struct timespec64 ctime = inode_get_ctime(inode); 1936 1937 now = inode_set_ctime_current(inode); 1938 if (!timespec64_equal(&now, &ctime)) 1939 updated |= S_CTIME; 1940 if (!timespec64_equal(&now, &inode->i_mtime)) { 1941 inode->i_mtime = now; 1942 updated |= S_MTIME; 1943 } 1944 if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated)) 1945 updated |= S_VERSION; 1946 } else { 1947 now = current_time(inode); 1948 } 1949 1950 if (flags & S_ATIME) { 1951 if (!timespec64_equal(&now, &inode->i_atime)) { 1952 inode->i_atime = now; 1953 updated |= S_ATIME; 1954 } 1955 } 1956 return updated; 1957 } 1958 EXPORT_SYMBOL(inode_update_timestamps); 1959 1960 /** 1961 * generic_update_time - update the timestamps on the inode 1962 * @inode: inode to be updated 1963 * @flags: S_* flags that needed to be updated 1964 * 1965 * The update_time function is called when an inode's timestamps need to be 1966 * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME, 1967 * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME 1968 * updates can be handled done independently of the rest. 1969 * 1970 * Returns a S_* mask indicating which fields were updated. 1971 */ 1972 int generic_update_time(struct inode *inode, int flags) 1973 { 1974 int updated = inode_update_timestamps(inode, flags); 1975 int dirty_flags = 0; 1976 1977 if (updated & (S_ATIME|S_MTIME|S_CTIME)) 1978 dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC; 1979 if (updated & S_VERSION) 1980 dirty_flags |= I_DIRTY_SYNC; 1981 __mark_inode_dirty(inode, dirty_flags); 1982 return updated; 1983 } 1984 EXPORT_SYMBOL(generic_update_time); 1985 1986 /* 1987 * This does the actual work of updating an inodes time or version. Must have 1988 * had called mnt_want_write() before calling this. 1989 */ 1990 int inode_update_time(struct inode *inode, int flags) 1991 { 1992 if (inode->i_op->update_time) 1993 return inode->i_op->update_time(inode, flags); 1994 generic_update_time(inode, flags); 1995 return 0; 1996 } 1997 EXPORT_SYMBOL(inode_update_time); 1998 1999 /** 2000 * atime_needs_update - update the access time 2001 * @path: the &struct path to update 2002 * @inode: inode to update 2003 * 2004 * Update the accessed time on an inode and mark it for writeback. 2005 * This function automatically handles read only file systems and media, 2006 * as well as the "noatime" flag and inode specific "noatime" markers. 2007 */ 2008 bool atime_needs_update(const struct path *path, struct inode *inode) 2009 { 2010 struct vfsmount *mnt = path->mnt; 2011 struct timespec64 now; 2012 2013 if (inode->i_flags & S_NOATIME) 2014 return false; 2015 2016 /* Atime updates will likely cause i_uid and i_gid to be written 2017 * back improprely if their true value is unknown to the vfs. 2018 */ 2019 if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode)) 2020 return false; 2021 2022 if (IS_NOATIME(inode)) 2023 return false; 2024 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 2025 return false; 2026 2027 if (mnt->mnt_flags & MNT_NOATIME) 2028 return false; 2029 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 2030 return false; 2031 2032 now = current_time(inode); 2033 2034 if (!relatime_need_update(mnt, inode, now)) 2035 return false; 2036 2037 if (timespec64_equal(&inode->i_atime, &now)) 2038 return false; 2039 2040 return true; 2041 } 2042 2043 void touch_atime(const struct path *path) 2044 { 2045 struct vfsmount *mnt = path->mnt; 2046 struct inode *inode = d_inode(path->dentry); 2047 2048 if (!atime_needs_update(path, inode)) 2049 return; 2050 2051 if (!sb_start_write_trylock(inode->i_sb)) 2052 return; 2053 2054 if (__mnt_want_write(mnt) != 0) 2055 goto skip_update; 2056 /* 2057 * File systems can error out when updating inodes if they need to 2058 * allocate new space to modify an inode (such is the case for 2059 * Btrfs), but since we touch atime while walking down the path we 2060 * really don't care if we failed to update the atime of the file, 2061 * so just ignore the return value. 2062 * We may also fail on filesystems that have the ability to make parts 2063 * of the fs read only, e.g. subvolumes in Btrfs. 2064 */ 2065 inode_update_time(inode, S_ATIME); 2066 __mnt_drop_write(mnt); 2067 skip_update: 2068 sb_end_write(inode->i_sb); 2069 } 2070 EXPORT_SYMBOL(touch_atime); 2071 2072 /* 2073 * Return mask of changes for notify_change() that need to be done as a 2074 * response to write or truncate. Return 0 if nothing has to be changed. 2075 * Negative value on error (change should be denied). 2076 */ 2077 int dentry_needs_remove_privs(struct mnt_idmap *idmap, 2078 struct dentry *dentry) 2079 { 2080 struct inode *inode = d_inode(dentry); 2081 int mask = 0; 2082 int ret; 2083 2084 if (IS_NOSEC(inode)) 2085 return 0; 2086 2087 mask = setattr_should_drop_suidgid(idmap, inode); 2088 ret = security_inode_need_killpriv(dentry); 2089 if (ret < 0) 2090 return ret; 2091 if (ret) 2092 mask |= ATTR_KILL_PRIV; 2093 return mask; 2094 } 2095 2096 static int __remove_privs(struct mnt_idmap *idmap, 2097 struct dentry *dentry, int kill) 2098 { 2099 struct iattr newattrs; 2100 2101 newattrs.ia_valid = ATTR_FORCE | kill; 2102 /* 2103 * Note we call this on write, so notify_change will not 2104 * encounter any conflicting delegations: 2105 */ 2106 return notify_change(idmap, dentry, &newattrs, NULL); 2107 } 2108 2109 static int __file_remove_privs(struct file *file, unsigned int flags) 2110 { 2111 struct dentry *dentry = file_dentry(file); 2112 struct inode *inode = file_inode(file); 2113 int error = 0; 2114 int kill; 2115 2116 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) 2117 return 0; 2118 2119 kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry); 2120 if (kill < 0) 2121 return kill; 2122 2123 if (kill) { 2124 if (flags & IOCB_NOWAIT) 2125 return -EAGAIN; 2126 2127 error = __remove_privs(file_mnt_idmap(file), dentry, kill); 2128 } 2129 2130 if (!error) 2131 inode_has_no_xattr(inode); 2132 return error; 2133 } 2134 2135 /** 2136 * file_remove_privs - remove special file privileges (suid, capabilities) 2137 * @file: file to remove privileges from 2138 * 2139 * When file is modified by a write or truncation ensure that special 2140 * file privileges are removed. 2141 * 2142 * Return: 0 on success, negative errno on failure. 2143 */ 2144 int file_remove_privs(struct file *file) 2145 { 2146 return __file_remove_privs(file, 0); 2147 } 2148 EXPORT_SYMBOL(file_remove_privs); 2149 2150 static int inode_needs_update_time(struct inode *inode) 2151 { 2152 int sync_it = 0; 2153 struct timespec64 now = current_time(inode); 2154 struct timespec64 ctime; 2155 2156 /* First try to exhaust all avenues to not sync */ 2157 if (IS_NOCMTIME(inode)) 2158 return 0; 2159 2160 if (!timespec64_equal(&inode->i_mtime, &now)) 2161 sync_it = S_MTIME; 2162 2163 ctime = inode_get_ctime(inode); 2164 if (!timespec64_equal(&ctime, &now)) 2165 sync_it |= S_CTIME; 2166 2167 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 2168 sync_it |= S_VERSION; 2169 2170 return sync_it; 2171 } 2172 2173 static int __file_update_time(struct file *file, int sync_mode) 2174 { 2175 int ret = 0; 2176 struct inode *inode = file_inode(file); 2177 2178 /* try to update time settings */ 2179 if (!__mnt_want_write_file(file)) { 2180 ret = inode_update_time(inode, sync_mode); 2181 __mnt_drop_write_file(file); 2182 } 2183 2184 return ret; 2185 } 2186 2187 /** 2188 * file_update_time - update mtime and ctime time 2189 * @file: file accessed 2190 * 2191 * Update the mtime and ctime members of an inode and mark the inode for 2192 * writeback. Note that this function is meant exclusively for usage in 2193 * the file write path of filesystems, and filesystems may choose to 2194 * explicitly ignore updates via this function with the _NOCMTIME inode 2195 * flag, e.g. for network filesystem where these imestamps are handled 2196 * by the server. This can return an error for file systems who need to 2197 * allocate space in order to update an inode. 2198 * 2199 * Return: 0 on success, negative errno on failure. 2200 */ 2201 int file_update_time(struct file *file) 2202 { 2203 int ret; 2204 struct inode *inode = file_inode(file); 2205 2206 ret = inode_needs_update_time(inode); 2207 if (ret <= 0) 2208 return ret; 2209 2210 return __file_update_time(file, ret); 2211 } 2212 EXPORT_SYMBOL(file_update_time); 2213 2214 /** 2215 * file_modified_flags - handle mandated vfs changes when modifying a file 2216 * @file: file that was modified 2217 * @flags: kiocb flags 2218 * 2219 * When file has been modified ensure that special 2220 * file privileges are removed and time settings are updated. 2221 * 2222 * If IOCB_NOWAIT is set, special file privileges will not be removed and 2223 * time settings will not be updated. It will return -EAGAIN. 2224 * 2225 * Context: Caller must hold the file's inode lock. 2226 * 2227 * Return: 0 on success, negative errno on failure. 2228 */ 2229 static int file_modified_flags(struct file *file, int flags) 2230 { 2231 int ret; 2232 struct inode *inode = file_inode(file); 2233 2234 /* 2235 * Clear the security bits if the process is not being run by root. 2236 * This keeps people from modifying setuid and setgid binaries. 2237 */ 2238 ret = __file_remove_privs(file, flags); 2239 if (ret) 2240 return ret; 2241 2242 if (unlikely(file->f_mode & FMODE_NOCMTIME)) 2243 return 0; 2244 2245 ret = inode_needs_update_time(inode); 2246 if (ret <= 0) 2247 return ret; 2248 if (flags & IOCB_NOWAIT) 2249 return -EAGAIN; 2250 2251 return __file_update_time(file, ret); 2252 } 2253 2254 /** 2255 * file_modified - handle mandated vfs changes when modifying a file 2256 * @file: file that was modified 2257 * 2258 * When file has been modified ensure that special 2259 * file privileges are removed and time settings are updated. 2260 * 2261 * Context: Caller must hold the file's inode lock. 2262 * 2263 * Return: 0 on success, negative errno on failure. 2264 */ 2265 int file_modified(struct file *file) 2266 { 2267 return file_modified_flags(file, 0); 2268 } 2269 EXPORT_SYMBOL(file_modified); 2270 2271 /** 2272 * kiocb_modified - handle mandated vfs changes when modifying a file 2273 * @iocb: iocb that was modified 2274 * 2275 * When file has been modified ensure that special 2276 * file privileges are removed and time settings are updated. 2277 * 2278 * Context: Caller must hold the file's inode lock. 2279 * 2280 * Return: 0 on success, negative errno on failure. 2281 */ 2282 int kiocb_modified(struct kiocb *iocb) 2283 { 2284 return file_modified_flags(iocb->ki_filp, iocb->ki_flags); 2285 } 2286 EXPORT_SYMBOL_GPL(kiocb_modified); 2287 2288 int inode_needs_sync(struct inode *inode) 2289 { 2290 if (IS_SYNC(inode)) 2291 return 1; 2292 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 2293 return 1; 2294 return 0; 2295 } 2296 EXPORT_SYMBOL(inode_needs_sync); 2297 2298 /* 2299 * If we try to find an inode in the inode hash while it is being 2300 * deleted, we have to wait until the filesystem completes its 2301 * deletion before reporting that it isn't found. This function waits 2302 * until the deletion _might_ have completed. Callers are responsible 2303 * to recheck inode state. 2304 * 2305 * It doesn't matter if I_NEW is not set initially, a call to 2306 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 2307 * will DTRT. 2308 */ 2309 static void __wait_on_freeing_inode(struct inode *inode) 2310 { 2311 wait_queue_head_t *wq; 2312 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 2313 wq = bit_waitqueue(&inode->i_state, __I_NEW); 2314 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2315 spin_unlock(&inode->i_lock); 2316 spin_unlock(&inode_hash_lock); 2317 schedule(); 2318 finish_wait(wq, &wait.wq_entry); 2319 spin_lock(&inode_hash_lock); 2320 } 2321 2322 static __initdata unsigned long ihash_entries; 2323 static int __init set_ihash_entries(char *str) 2324 { 2325 if (!str) 2326 return 0; 2327 ihash_entries = simple_strtoul(str, &str, 0); 2328 return 1; 2329 } 2330 __setup("ihash_entries=", set_ihash_entries); 2331 2332 /* 2333 * Initialize the waitqueues and inode hash table. 2334 */ 2335 void __init inode_init_early(void) 2336 { 2337 /* If hashes are distributed across NUMA nodes, defer 2338 * hash allocation until vmalloc space is available. 2339 */ 2340 if (hashdist) 2341 return; 2342 2343 inode_hashtable = 2344 alloc_large_system_hash("Inode-cache", 2345 sizeof(struct hlist_head), 2346 ihash_entries, 2347 14, 2348 HASH_EARLY | HASH_ZERO, 2349 &i_hash_shift, 2350 &i_hash_mask, 2351 0, 2352 0); 2353 } 2354 2355 void __init inode_init(void) 2356 { 2357 /* inode slab cache */ 2358 inode_cachep = kmem_cache_create("inode_cache", 2359 sizeof(struct inode), 2360 0, 2361 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2362 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 2363 init_once); 2364 2365 /* Hash may have been set up in inode_init_early */ 2366 if (!hashdist) 2367 return; 2368 2369 inode_hashtable = 2370 alloc_large_system_hash("Inode-cache", 2371 sizeof(struct hlist_head), 2372 ihash_entries, 2373 14, 2374 HASH_ZERO, 2375 &i_hash_shift, 2376 &i_hash_mask, 2377 0, 2378 0); 2379 } 2380 2381 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 2382 { 2383 inode->i_mode = mode; 2384 if (S_ISCHR(mode)) { 2385 inode->i_fop = &def_chr_fops; 2386 inode->i_rdev = rdev; 2387 } else if (S_ISBLK(mode)) { 2388 if (IS_ENABLED(CONFIG_BLOCK)) 2389 inode->i_fop = &def_blk_fops; 2390 inode->i_rdev = rdev; 2391 } else if (S_ISFIFO(mode)) 2392 inode->i_fop = &pipefifo_fops; 2393 else if (S_ISSOCK(mode)) 2394 ; /* leave it no_open_fops */ 2395 else 2396 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 2397 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2398 inode->i_ino); 2399 } 2400 EXPORT_SYMBOL(init_special_inode); 2401 2402 /** 2403 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2404 * @idmap: idmap of the mount the inode was created from 2405 * @inode: New inode 2406 * @dir: Directory inode 2407 * @mode: mode of the new inode 2408 * 2409 * If the inode has been created through an idmapped mount the idmap of 2410 * the vfsmount must be passed through @idmap. This function will then take 2411 * care to map the inode according to @idmap before checking permissions 2412 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission 2413 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap. 2414 */ 2415 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 2416 const struct inode *dir, umode_t mode) 2417 { 2418 inode_fsuid_set(inode, idmap); 2419 if (dir && dir->i_mode & S_ISGID) { 2420 inode->i_gid = dir->i_gid; 2421 2422 /* Directories are special, and always inherit S_ISGID */ 2423 if (S_ISDIR(mode)) 2424 mode |= S_ISGID; 2425 } else 2426 inode_fsgid_set(inode, idmap); 2427 inode->i_mode = mode; 2428 } 2429 EXPORT_SYMBOL(inode_init_owner); 2430 2431 /** 2432 * inode_owner_or_capable - check current task permissions to inode 2433 * @idmap: idmap of the mount the inode was found from 2434 * @inode: inode being checked 2435 * 2436 * Return true if current either has CAP_FOWNER in a namespace with the 2437 * inode owner uid mapped, or owns the file. 2438 * 2439 * If the inode has been found through an idmapped mount the idmap of 2440 * the vfsmount must be passed through @idmap. This function will then take 2441 * care to map the inode according to @idmap before checking permissions. 2442 * On non-idmapped mounts or if permission checking is to be performed on the 2443 * raw inode simply passs @nop_mnt_idmap. 2444 */ 2445 bool inode_owner_or_capable(struct mnt_idmap *idmap, 2446 const struct inode *inode) 2447 { 2448 vfsuid_t vfsuid; 2449 struct user_namespace *ns; 2450 2451 vfsuid = i_uid_into_vfsuid(idmap, inode); 2452 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 2453 return true; 2454 2455 ns = current_user_ns(); 2456 if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER)) 2457 return true; 2458 return false; 2459 } 2460 EXPORT_SYMBOL(inode_owner_or_capable); 2461 2462 /* 2463 * Direct i/o helper functions 2464 */ 2465 static void __inode_dio_wait(struct inode *inode) 2466 { 2467 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2468 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2469 2470 do { 2471 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); 2472 if (atomic_read(&inode->i_dio_count)) 2473 schedule(); 2474 } while (atomic_read(&inode->i_dio_count)); 2475 finish_wait(wq, &q.wq_entry); 2476 } 2477 2478 /** 2479 * inode_dio_wait - wait for outstanding DIO requests to finish 2480 * @inode: inode to wait for 2481 * 2482 * Waits for all pending direct I/O requests to finish so that we can 2483 * proceed with a truncate or equivalent operation. 2484 * 2485 * Must be called under a lock that serializes taking new references 2486 * to i_dio_count, usually by inode->i_mutex. 2487 */ 2488 void inode_dio_wait(struct inode *inode) 2489 { 2490 if (atomic_read(&inode->i_dio_count)) 2491 __inode_dio_wait(inode); 2492 } 2493 EXPORT_SYMBOL(inode_dio_wait); 2494 2495 /* 2496 * inode_set_flags - atomically set some inode flags 2497 * 2498 * Note: the caller should be holding i_mutex, or else be sure that 2499 * they have exclusive access to the inode structure (i.e., while the 2500 * inode is being instantiated). The reason for the cmpxchg() loop 2501 * --- which wouldn't be necessary if all code paths which modify 2502 * i_flags actually followed this rule, is that there is at least one 2503 * code path which doesn't today so we use cmpxchg() out of an abundance 2504 * of caution. 2505 * 2506 * In the long run, i_mutex is overkill, and we should probably look 2507 * at using the i_lock spinlock to protect i_flags, and then make sure 2508 * it is so documented in include/linux/fs.h and that all code follows 2509 * the locking convention!! 2510 */ 2511 void inode_set_flags(struct inode *inode, unsigned int flags, 2512 unsigned int mask) 2513 { 2514 WARN_ON_ONCE(flags & ~mask); 2515 set_mask_bits(&inode->i_flags, mask, flags); 2516 } 2517 EXPORT_SYMBOL(inode_set_flags); 2518 2519 void inode_nohighmem(struct inode *inode) 2520 { 2521 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2522 } 2523 EXPORT_SYMBOL(inode_nohighmem); 2524 2525 /** 2526 * timestamp_truncate - Truncate timespec to a granularity 2527 * @t: Timespec 2528 * @inode: inode being updated 2529 * 2530 * Truncate a timespec to the granularity supported by the fs 2531 * containing the inode. Always rounds down. gran must 2532 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2533 */ 2534 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) 2535 { 2536 struct super_block *sb = inode->i_sb; 2537 unsigned int gran = sb->s_time_gran; 2538 2539 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); 2540 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) 2541 t.tv_nsec = 0; 2542 2543 /* Avoid division in the common cases 1 ns and 1 s. */ 2544 if (gran == 1) 2545 ; /* nothing */ 2546 else if (gran == NSEC_PER_SEC) 2547 t.tv_nsec = 0; 2548 else if (gran > 1 && gran < NSEC_PER_SEC) 2549 t.tv_nsec -= t.tv_nsec % gran; 2550 else 2551 WARN(1, "invalid file time granularity: %u", gran); 2552 return t; 2553 } 2554 EXPORT_SYMBOL(timestamp_truncate); 2555 2556 /** 2557 * current_time - Return FS time 2558 * @inode: inode. 2559 * 2560 * Return the current time truncated to the time granularity supported by 2561 * the fs. 2562 * 2563 * Note that inode and inode->sb cannot be NULL. 2564 * Otherwise, the function warns and returns time without truncation. 2565 */ 2566 struct timespec64 current_time(struct inode *inode) 2567 { 2568 struct timespec64 now; 2569 2570 ktime_get_coarse_real_ts64(&now); 2571 return timestamp_truncate(now, inode); 2572 } 2573 EXPORT_SYMBOL(current_time); 2574 2575 /** 2576 * inode_set_ctime_current - set the ctime to current_time 2577 * @inode: inode 2578 * 2579 * Set the inode->i_ctime to the current value for the inode. Returns 2580 * the current value that was assigned to i_ctime. 2581 */ 2582 struct timespec64 inode_set_ctime_current(struct inode *inode) 2583 { 2584 struct timespec64 now = current_time(inode); 2585 2586 inode_set_ctime(inode, now.tv_sec, now.tv_nsec); 2587 return now; 2588 } 2589 EXPORT_SYMBOL(inode_set_ctime_current); 2590 2591 /** 2592 * in_group_or_capable - check whether caller is CAP_FSETID privileged 2593 * @idmap: idmap of the mount @inode was found from 2594 * @inode: inode to check 2595 * @vfsgid: the new/current vfsgid of @inode 2596 * 2597 * Check wether @vfsgid is in the caller's group list or if the caller is 2598 * privileged with CAP_FSETID over @inode. This can be used to determine 2599 * whether the setgid bit can be kept or must be dropped. 2600 * 2601 * Return: true if the caller is sufficiently privileged, false if not. 2602 */ 2603 bool in_group_or_capable(struct mnt_idmap *idmap, 2604 const struct inode *inode, vfsgid_t vfsgid) 2605 { 2606 if (vfsgid_in_group_p(vfsgid)) 2607 return true; 2608 if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID)) 2609 return true; 2610 return false; 2611 } 2612 2613 /** 2614 * mode_strip_sgid - handle the sgid bit for non-directories 2615 * @idmap: idmap of the mount the inode was created from 2616 * @dir: parent directory inode 2617 * @mode: mode of the file to be created in @dir 2618 * 2619 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit 2620 * raised and @dir has the S_ISGID bit raised ensure that the caller is 2621 * either in the group of the parent directory or they have CAP_FSETID 2622 * in their user namespace and are privileged over the parent directory. 2623 * In all other cases, strip the S_ISGID bit from @mode. 2624 * 2625 * Return: the new mode to use for the file 2626 */ 2627 umode_t mode_strip_sgid(struct mnt_idmap *idmap, 2628 const struct inode *dir, umode_t mode) 2629 { 2630 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP)) 2631 return mode; 2632 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID)) 2633 return mode; 2634 if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir))) 2635 return mode; 2636 return mode & ~S_ISGID; 2637 } 2638 EXPORT_SYMBOL(mode_strip_sgid); 2639