xref: /openbmc/linux/fs/inode.c (revision 8b036556)
1 /*
2  * (C) 1997 Linus Torvalds
3  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4  */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <trace/events/writeback.h>
22 #include "internal.h"
23 
24 /*
25  * Inode locking rules:
26  *
27  * inode->i_lock protects:
28  *   inode->i_state, inode->i_hash, __iget()
29  * Inode LRU list locks protect:
30  *   inode->i_sb->s_inode_lru, inode->i_lru
31  * inode_sb_list_lock protects:
32  *   sb->s_inodes, inode->i_sb_list
33  * bdi->wb.list_lock protects:
34  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_wb_list
35  * inode_hash_lock protects:
36  *   inode_hashtable, inode->i_hash
37  *
38  * Lock ordering:
39  *
40  * inode_sb_list_lock
41  *   inode->i_lock
42  *     Inode LRU list locks
43  *
44  * bdi->wb.list_lock
45  *   inode->i_lock
46  *
47  * inode_hash_lock
48  *   inode_sb_list_lock
49  *   inode->i_lock
50  *
51  * iunique_lock
52  *   inode_hash_lock
53  */
54 
55 static unsigned int i_hash_mask __read_mostly;
56 static unsigned int i_hash_shift __read_mostly;
57 static struct hlist_head *inode_hashtable __read_mostly;
58 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
59 
60 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
61 
62 /*
63  * Empty aops. Can be used for the cases where the user does not
64  * define any of the address_space operations.
65  */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69 
70 /*
71  * Statistics gathering..
72  */
73 struct inodes_stat_t inodes_stat;
74 
75 static DEFINE_PER_CPU(unsigned long, nr_inodes);
76 static DEFINE_PER_CPU(unsigned long, nr_unused);
77 
78 static struct kmem_cache *inode_cachep __read_mostly;
79 
80 static long get_nr_inodes(void)
81 {
82 	int i;
83 	long sum = 0;
84 	for_each_possible_cpu(i)
85 		sum += per_cpu(nr_inodes, i);
86 	return sum < 0 ? 0 : sum;
87 }
88 
89 static inline long get_nr_inodes_unused(void)
90 {
91 	int i;
92 	long sum = 0;
93 	for_each_possible_cpu(i)
94 		sum += per_cpu(nr_unused, i);
95 	return sum < 0 ? 0 : sum;
96 }
97 
98 long get_nr_dirty_inodes(void)
99 {
100 	/* not actually dirty inodes, but a wild approximation */
101 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
102 	return nr_dirty > 0 ? nr_dirty : 0;
103 }
104 
105 /*
106  * Handle nr_inode sysctl
107  */
108 #ifdef CONFIG_SYSCTL
109 int proc_nr_inodes(struct ctl_table *table, int write,
110 		   void __user *buffer, size_t *lenp, loff_t *ppos)
111 {
112 	inodes_stat.nr_inodes = get_nr_inodes();
113 	inodes_stat.nr_unused = get_nr_inodes_unused();
114 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116 #endif
117 
118 static int no_open(struct inode *inode, struct file *file)
119 {
120 	return -ENXIO;
121 }
122 
123 /**
124  * inode_init_always - perform inode structure intialisation
125  * @sb: superblock inode belongs to
126  * @inode: inode to initialise
127  *
128  * These are initializations that need to be done on every inode
129  * allocation as the fields are not initialised by slab allocation.
130  */
131 int inode_init_always(struct super_block *sb, struct inode *inode)
132 {
133 	static const struct inode_operations empty_iops;
134 	static const struct file_operations no_open_fops = {.open = no_open};
135 	struct address_space *const mapping = &inode->i_data;
136 
137 	inode->i_sb = sb;
138 	inode->i_blkbits = sb->s_blocksize_bits;
139 	inode->i_flags = 0;
140 	atomic_set(&inode->i_count, 1);
141 	inode->i_op = &empty_iops;
142 	inode->i_fop = &no_open_fops;
143 	inode->__i_nlink = 1;
144 	inode->i_opflags = 0;
145 	i_uid_write(inode, 0);
146 	i_gid_write(inode, 0);
147 	atomic_set(&inode->i_writecount, 0);
148 	inode->i_size = 0;
149 	inode->i_blocks = 0;
150 	inode->i_bytes = 0;
151 	inode->i_generation = 0;
152 	inode->i_pipe = NULL;
153 	inode->i_bdev = NULL;
154 	inode->i_cdev = NULL;
155 	inode->i_rdev = 0;
156 	inode->dirtied_when = 0;
157 
158 	if (security_inode_alloc(inode))
159 		goto out;
160 	spin_lock_init(&inode->i_lock);
161 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
162 
163 	mutex_init(&inode->i_mutex);
164 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
165 
166 	atomic_set(&inode->i_dio_count, 0);
167 
168 	mapping->a_ops = &empty_aops;
169 	mapping->host = inode;
170 	mapping->flags = 0;
171 	atomic_set(&mapping->i_mmap_writable, 0);
172 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
173 	mapping->private_data = NULL;
174 	mapping->writeback_index = 0;
175 	inode->i_private = NULL;
176 	inode->i_mapping = mapping;
177 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
178 #ifdef CONFIG_FS_POSIX_ACL
179 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
180 #endif
181 
182 #ifdef CONFIG_FSNOTIFY
183 	inode->i_fsnotify_mask = 0;
184 #endif
185 	inode->i_flctx = NULL;
186 	this_cpu_inc(nr_inodes);
187 
188 	return 0;
189 out:
190 	return -ENOMEM;
191 }
192 EXPORT_SYMBOL(inode_init_always);
193 
194 static struct inode *alloc_inode(struct super_block *sb)
195 {
196 	struct inode *inode;
197 
198 	if (sb->s_op->alloc_inode)
199 		inode = sb->s_op->alloc_inode(sb);
200 	else
201 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
202 
203 	if (!inode)
204 		return NULL;
205 
206 	if (unlikely(inode_init_always(sb, inode))) {
207 		if (inode->i_sb->s_op->destroy_inode)
208 			inode->i_sb->s_op->destroy_inode(inode);
209 		else
210 			kmem_cache_free(inode_cachep, inode);
211 		return NULL;
212 	}
213 
214 	return inode;
215 }
216 
217 void free_inode_nonrcu(struct inode *inode)
218 {
219 	kmem_cache_free(inode_cachep, inode);
220 }
221 EXPORT_SYMBOL(free_inode_nonrcu);
222 
223 void __destroy_inode(struct inode *inode)
224 {
225 	BUG_ON(inode_has_buffers(inode));
226 	security_inode_free(inode);
227 	fsnotify_inode_delete(inode);
228 	locks_free_lock_context(inode->i_flctx);
229 	if (!inode->i_nlink) {
230 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
231 		atomic_long_dec(&inode->i_sb->s_remove_count);
232 	}
233 
234 #ifdef CONFIG_FS_POSIX_ACL
235 	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
236 		posix_acl_release(inode->i_acl);
237 	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
238 		posix_acl_release(inode->i_default_acl);
239 #endif
240 	this_cpu_dec(nr_inodes);
241 }
242 EXPORT_SYMBOL(__destroy_inode);
243 
244 static void i_callback(struct rcu_head *head)
245 {
246 	struct inode *inode = container_of(head, struct inode, i_rcu);
247 	kmem_cache_free(inode_cachep, inode);
248 }
249 
250 static void destroy_inode(struct inode *inode)
251 {
252 	BUG_ON(!list_empty(&inode->i_lru));
253 	__destroy_inode(inode);
254 	if (inode->i_sb->s_op->destroy_inode)
255 		inode->i_sb->s_op->destroy_inode(inode);
256 	else
257 		call_rcu(&inode->i_rcu, i_callback);
258 }
259 
260 /**
261  * drop_nlink - directly drop an inode's link count
262  * @inode: inode
263  *
264  * This is a low-level filesystem helper to replace any
265  * direct filesystem manipulation of i_nlink.  In cases
266  * where we are attempting to track writes to the
267  * filesystem, a decrement to zero means an imminent
268  * write when the file is truncated and actually unlinked
269  * on the filesystem.
270  */
271 void drop_nlink(struct inode *inode)
272 {
273 	WARN_ON(inode->i_nlink == 0);
274 	inode->__i_nlink--;
275 	if (!inode->i_nlink)
276 		atomic_long_inc(&inode->i_sb->s_remove_count);
277 }
278 EXPORT_SYMBOL(drop_nlink);
279 
280 /**
281  * clear_nlink - directly zero an inode's link count
282  * @inode: inode
283  *
284  * This is a low-level filesystem helper to replace any
285  * direct filesystem manipulation of i_nlink.  See
286  * drop_nlink() for why we care about i_nlink hitting zero.
287  */
288 void clear_nlink(struct inode *inode)
289 {
290 	if (inode->i_nlink) {
291 		inode->__i_nlink = 0;
292 		atomic_long_inc(&inode->i_sb->s_remove_count);
293 	}
294 }
295 EXPORT_SYMBOL(clear_nlink);
296 
297 /**
298  * set_nlink - directly set an inode's link count
299  * @inode: inode
300  * @nlink: new nlink (should be non-zero)
301  *
302  * This is a low-level filesystem helper to replace any
303  * direct filesystem manipulation of i_nlink.
304  */
305 void set_nlink(struct inode *inode, unsigned int nlink)
306 {
307 	if (!nlink) {
308 		clear_nlink(inode);
309 	} else {
310 		/* Yes, some filesystems do change nlink from zero to one */
311 		if (inode->i_nlink == 0)
312 			atomic_long_dec(&inode->i_sb->s_remove_count);
313 
314 		inode->__i_nlink = nlink;
315 	}
316 }
317 EXPORT_SYMBOL(set_nlink);
318 
319 /**
320  * inc_nlink - directly increment an inode's link count
321  * @inode: inode
322  *
323  * This is a low-level filesystem helper to replace any
324  * direct filesystem manipulation of i_nlink.  Currently,
325  * it is only here for parity with dec_nlink().
326  */
327 void inc_nlink(struct inode *inode)
328 {
329 	if (unlikely(inode->i_nlink == 0)) {
330 		WARN_ON(!(inode->i_state & I_LINKABLE));
331 		atomic_long_dec(&inode->i_sb->s_remove_count);
332 	}
333 
334 	inode->__i_nlink++;
335 }
336 EXPORT_SYMBOL(inc_nlink);
337 
338 void address_space_init_once(struct address_space *mapping)
339 {
340 	memset(mapping, 0, sizeof(*mapping));
341 	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
342 	spin_lock_init(&mapping->tree_lock);
343 	init_rwsem(&mapping->i_mmap_rwsem);
344 	INIT_LIST_HEAD(&mapping->private_list);
345 	spin_lock_init(&mapping->private_lock);
346 	mapping->i_mmap = RB_ROOT;
347 }
348 EXPORT_SYMBOL(address_space_init_once);
349 
350 /*
351  * These are initializations that only need to be done
352  * once, because the fields are idempotent across use
353  * of the inode, so let the slab aware of that.
354  */
355 void inode_init_once(struct inode *inode)
356 {
357 	memset(inode, 0, sizeof(*inode));
358 	INIT_HLIST_NODE(&inode->i_hash);
359 	INIT_LIST_HEAD(&inode->i_devices);
360 	INIT_LIST_HEAD(&inode->i_wb_list);
361 	INIT_LIST_HEAD(&inode->i_lru);
362 	address_space_init_once(&inode->i_data);
363 	i_size_ordered_init(inode);
364 #ifdef CONFIG_FSNOTIFY
365 	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
366 #endif
367 }
368 EXPORT_SYMBOL(inode_init_once);
369 
370 static void init_once(void *foo)
371 {
372 	struct inode *inode = (struct inode *) foo;
373 
374 	inode_init_once(inode);
375 }
376 
377 /*
378  * inode->i_lock must be held
379  */
380 void __iget(struct inode *inode)
381 {
382 	atomic_inc(&inode->i_count);
383 }
384 
385 /*
386  * get additional reference to inode; caller must already hold one.
387  */
388 void ihold(struct inode *inode)
389 {
390 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
391 }
392 EXPORT_SYMBOL(ihold);
393 
394 static void inode_lru_list_add(struct inode *inode)
395 {
396 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
397 		this_cpu_inc(nr_unused);
398 }
399 
400 /*
401  * Add inode to LRU if needed (inode is unused and clean).
402  *
403  * Needs inode->i_lock held.
404  */
405 void inode_add_lru(struct inode *inode)
406 {
407 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
408 				I_FREEING | I_WILL_FREE)) &&
409 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
410 		inode_lru_list_add(inode);
411 }
412 
413 
414 static void inode_lru_list_del(struct inode *inode)
415 {
416 
417 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
418 		this_cpu_dec(nr_unused);
419 }
420 
421 /**
422  * inode_sb_list_add - add inode to the superblock list of inodes
423  * @inode: inode to add
424  */
425 void inode_sb_list_add(struct inode *inode)
426 {
427 	spin_lock(&inode_sb_list_lock);
428 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
429 	spin_unlock(&inode_sb_list_lock);
430 }
431 EXPORT_SYMBOL_GPL(inode_sb_list_add);
432 
433 static inline void inode_sb_list_del(struct inode *inode)
434 {
435 	if (!list_empty(&inode->i_sb_list)) {
436 		spin_lock(&inode_sb_list_lock);
437 		list_del_init(&inode->i_sb_list);
438 		spin_unlock(&inode_sb_list_lock);
439 	}
440 }
441 
442 static unsigned long hash(struct super_block *sb, unsigned long hashval)
443 {
444 	unsigned long tmp;
445 
446 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
447 			L1_CACHE_BYTES;
448 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
449 	return tmp & i_hash_mask;
450 }
451 
452 /**
453  *	__insert_inode_hash - hash an inode
454  *	@inode: unhashed inode
455  *	@hashval: unsigned long value used to locate this object in the
456  *		inode_hashtable.
457  *
458  *	Add an inode to the inode hash for this superblock.
459  */
460 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
461 {
462 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
463 
464 	spin_lock(&inode_hash_lock);
465 	spin_lock(&inode->i_lock);
466 	hlist_add_head(&inode->i_hash, b);
467 	spin_unlock(&inode->i_lock);
468 	spin_unlock(&inode_hash_lock);
469 }
470 EXPORT_SYMBOL(__insert_inode_hash);
471 
472 /**
473  *	__remove_inode_hash - remove an inode from the hash
474  *	@inode: inode to unhash
475  *
476  *	Remove an inode from the superblock.
477  */
478 void __remove_inode_hash(struct inode *inode)
479 {
480 	spin_lock(&inode_hash_lock);
481 	spin_lock(&inode->i_lock);
482 	hlist_del_init(&inode->i_hash);
483 	spin_unlock(&inode->i_lock);
484 	spin_unlock(&inode_hash_lock);
485 }
486 EXPORT_SYMBOL(__remove_inode_hash);
487 
488 void clear_inode(struct inode *inode)
489 {
490 	might_sleep();
491 	/*
492 	 * We have to cycle tree_lock here because reclaim can be still in the
493 	 * process of removing the last page (in __delete_from_page_cache())
494 	 * and we must not free mapping under it.
495 	 */
496 	spin_lock_irq(&inode->i_data.tree_lock);
497 	BUG_ON(inode->i_data.nrpages);
498 	BUG_ON(inode->i_data.nrshadows);
499 	spin_unlock_irq(&inode->i_data.tree_lock);
500 	BUG_ON(!list_empty(&inode->i_data.private_list));
501 	BUG_ON(!(inode->i_state & I_FREEING));
502 	BUG_ON(inode->i_state & I_CLEAR);
503 	/* don't need i_lock here, no concurrent mods to i_state */
504 	inode->i_state = I_FREEING | I_CLEAR;
505 }
506 EXPORT_SYMBOL(clear_inode);
507 
508 /*
509  * Free the inode passed in, removing it from the lists it is still connected
510  * to. We remove any pages still attached to the inode and wait for any IO that
511  * is still in progress before finally destroying the inode.
512  *
513  * An inode must already be marked I_FREEING so that we avoid the inode being
514  * moved back onto lists if we race with other code that manipulates the lists
515  * (e.g. writeback_single_inode). The caller is responsible for setting this.
516  *
517  * An inode must already be removed from the LRU list before being evicted from
518  * the cache. This should occur atomically with setting the I_FREEING state
519  * flag, so no inodes here should ever be on the LRU when being evicted.
520  */
521 static void evict(struct inode *inode)
522 {
523 	const struct super_operations *op = inode->i_sb->s_op;
524 
525 	BUG_ON(!(inode->i_state & I_FREEING));
526 	BUG_ON(!list_empty(&inode->i_lru));
527 
528 	if (!list_empty(&inode->i_wb_list))
529 		inode_wb_list_del(inode);
530 
531 	inode_sb_list_del(inode);
532 
533 	/*
534 	 * Wait for flusher thread to be done with the inode so that filesystem
535 	 * does not start destroying it while writeback is still running. Since
536 	 * the inode has I_FREEING set, flusher thread won't start new work on
537 	 * the inode.  We just have to wait for running writeback to finish.
538 	 */
539 	inode_wait_for_writeback(inode);
540 
541 	if (op->evict_inode) {
542 		op->evict_inode(inode);
543 	} else {
544 		truncate_inode_pages_final(&inode->i_data);
545 		clear_inode(inode);
546 	}
547 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
548 		bd_forget(inode);
549 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
550 		cd_forget(inode);
551 
552 	remove_inode_hash(inode);
553 
554 	spin_lock(&inode->i_lock);
555 	wake_up_bit(&inode->i_state, __I_NEW);
556 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
557 	spin_unlock(&inode->i_lock);
558 
559 	destroy_inode(inode);
560 }
561 
562 /*
563  * dispose_list - dispose of the contents of a local list
564  * @head: the head of the list to free
565  *
566  * Dispose-list gets a local list with local inodes in it, so it doesn't
567  * need to worry about list corruption and SMP locks.
568  */
569 static void dispose_list(struct list_head *head)
570 {
571 	while (!list_empty(head)) {
572 		struct inode *inode;
573 
574 		inode = list_first_entry(head, struct inode, i_lru);
575 		list_del_init(&inode->i_lru);
576 
577 		evict(inode);
578 	}
579 }
580 
581 /**
582  * evict_inodes	- evict all evictable inodes for a superblock
583  * @sb:		superblock to operate on
584  *
585  * Make sure that no inodes with zero refcount are retained.  This is
586  * called by superblock shutdown after having MS_ACTIVE flag removed,
587  * so any inode reaching zero refcount during or after that call will
588  * be immediately evicted.
589  */
590 void evict_inodes(struct super_block *sb)
591 {
592 	struct inode *inode, *next;
593 	LIST_HEAD(dispose);
594 
595 	spin_lock(&inode_sb_list_lock);
596 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
597 		if (atomic_read(&inode->i_count))
598 			continue;
599 
600 		spin_lock(&inode->i_lock);
601 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
602 			spin_unlock(&inode->i_lock);
603 			continue;
604 		}
605 
606 		inode->i_state |= I_FREEING;
607 		inode_lru_list_del(inode);
608 		spin_unlock(&inode->i_lock);
609 		list_add(&inode->i_lru, &dispose);
610 	}
611 	spin_unlock(&inode_sb_list_lock);
612 
613 	dispose_list(&dispose);
614 }
615 
616 /**
617  * invalidate_inodes	- attempt to free all inodes on a superblock
618  * @sb:		superblock to operate on
619  * @kill_dirty: flag to guide handling of dirty inodes
620  *
621  * Attempts to free all inodes for a given superblock.  If there were any
622  * busy inodes return a non-zero value, else zero.
623  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
624  * them as busy.
625  */
626 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
627 {
628 	int busy = 0;
629 	struct inode *inode, *next;
630 	LIST_HEAD(dispose);
631 
632 	spin_lock(&inode_sb_list_lock);
633 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
634 		spin_lock(&inode->i_lock);
635 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
636 			spin_unlock(&inode->i_lock);
637 			continue;
638 		}
639 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
640 			spin_unlock(&inode->i_lock);
641 			busy = 1;
642 			continue;
643 		}
644 		if (atomic_read(&inode->i_count)) {
645 			spin_unlock(&inode->i_lock);
646 			busy = 1;
647 			continue;
648 		}
649 
650 		inode->i_state |= I_FREEING;
651 		inode_lru_list_del(inode);
652 		spin_unlock(&inode->i_lock);
653 		list_add(&inode->i_lru, &dispose);
654 	}
655 	spin_unlock(&inode_sb_list_lock);
656 
657 	dispose_list(&dispose);
658 
659 	return busy;
660 }
661 
662 /*
663  * Isolate the inode from the LRU in preparation for freeing it.
664  *
665  * Any inodes which are pinned purely because of attached pagecache have their
666  * pagecache removed.  If the inode has metadata buffers attached to
667  * mapping->private_list then try to remove them.
668  *
669  * If the inode has the I_REFERENCED flag set, then it means that it has been
670  * used recently - the flag is set in iput_final(). When we encounter such an
671  * inode, clear the flag and move it to the back of the LRU so it gets another
672  * pass through the LRU before it gets reclaimed. This is necessary because of
673  * the fact we are doing lazy LRU updates to minimise lock contention so the
674  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
675  * with this flag set because they are the inodes that are out of order.
676  */
677 static enum lru_status inode_lru_isolate(struct list_head *item,
678 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
679 {
680 	struct list_head *freeable = arg;
681 	struct inode	*inode = container_of(item, struct inode, i_lru);
682 
683 	/*
684 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
685 	 * If we fail to get the lock, just skip it.
686 	 */
687 	if (!spin_trylock(&inode->i_lock))
688 		return LRU_SKIP;
689 
690 	/*
691 	 * Referenced or dirty inodes are still in use. Give them another pass
692 	 * through the LRU as we canot reclaim them now.
693 	 */
694 	if (atomic_read(&inode->i_count) ||
695 	    (inode->i_state & ~I_REFERENCED)) {
696 		list_lru_isolate(lru, &inode->i_lru);
697 		spin_unlock(&inode->i_lock);
698 		this_cpu_dec(nr_unused);
699 		return LRU_REMOVED;
700 	}
701 
702 	/* recently referenced inodes get one more pass */
703 	if (inode->i_state & I_REFERENCED) {
704 		inode->i_state &= ~I_REFERENCED;
705 		spin_unlock(&inode->i_lock);
706 		return LRU_ROTATE;
707 	}
708 
709 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
710 		__iget(inode);
711 		spin_unlock(&inode->i_lock);
712 		spin_unlock(lru_lock);
713 		if (remove_inode_buffers(inode)) {
714 			unsigned long reap;
715 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
716 			if (current_is_kswapd())
717 				__count_vm_events(KSWAPD_INODESTEAL, reap);
718 			else
719 				__count_vm_events(PGINODESTEAL, reap);
720 			if (current->reclaim_state)
721 				current->reclaim_state->reclaimed_slab += reap;
722 		}
723 		iput(inode);
724 		spin_lock(lru_lock);
725 		return LRU_RETRY;
726 	}
727 
728 	WARN_ON(inode->i_state & I_NEW);
729 	inode->i_state |= I_FREEING;
730 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
731 	spin_unlock(&inode->i_lock);
732 
733 	this_cpu_dec(nr_unused);
734 	return LRU_REMOVED;
735 }
736 
737 /*
738  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
739  * This is called from the superblock shrinker function with a number of inodes
740  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
741  * then are freed outside inode_lock by dispose_list().
742  */
743 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
744 {
745 	LIST_HEAD(freeable);
746 	long freed;
747 
748 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
749 				     inode_lru_isolate, &freeable);
750 	dispose_list(&freeable);
751 	return freed;
752 }
753 
754 static void __wait_on_freeing_inode(struct inode *inode);
755 /*
756  * Called with the inode lock held.
757  */
758 static struct inode *find_inode(struct super_block *sb,
759 				struct hlist_head *head,
760 				int (*test)(struct inode *, void *),
761 				void *data)
762 {
763 	struct inode *inode = NULL;
764 
765 repeat:
766 	hlist_for_each_entry(inode, head, i_hash) {
767 		if (inode->i_sb != sb)
768 			continue;
769 		if (!test(inode, data))
770 			continue;
771 		spin_lock(&inode->i_lock);
772 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
773 			__wait_on_freeing_inode(inode);
774 			goto repeat;
775 		}
776 		__iget(inode);
777 		spin_unlock(&inode->i_lock);
778 		return inode;
779 	}
780 	return NULL;
781 }
782 
783 /*
784  * find_inode_fast is the fast path version of find_inode, see the comment at
785  * iget_locked for details.
786  */
787 static struct inode *find_inode_fast(struct super_block *sb,
788 				struct hlist_head *head, unsigned long ino)
789 {
790 	struct inode *inode = NULL;
791 
792 repeat:
793 	hlist_for_each_entry(inode, head, i_hash) {
794 		if (inode->i_ino != ino)
795 			continue;
796 		if (inode->i_sb != sb)
797 			continue;
798 		spin_lock(&inode->i_lock);
799 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
800 			__wait_on_freeing_inode(inode);
801 			goto repeat;
802 		}
803 		__iget(inode);
804 		spin_unlock(&inode->i_lock);
805 		return inode;
806 	}
807 	return NULL;
808 }
809 
810 /*
811  * Each cpu owns a range of LAST_INO_BATCH numbers.
812  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
813  * to renew the exhausted range.
814  *
815  * This does not significantly increase overflow rate because every CPU can
816  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
817  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
818  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
819  * overflow rate by 2x, which does not seem too significant.
820  *
821  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
822  * error if st_ino won't fit in target struct field. Use 32bit counter
823  * here to attempt to avoid that.
824  */
825 #define LAST_INO_BATCH 1024
826 static DEFINE_PER_CPU(unsigned int, last_ino);
827 
828 unsigned int get_next_ino(void)
829 {
830 	unsigned int *p = &get_cpu_var(last_ino);
831 	unsigned int res = *p;
832 
833 #ifdef CONFIG_SMP
834 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
835 		static atomic_t shared_last_ino;
836 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
837 
838 		res = next - LAST_INO_BATCH;
839 	}
840 #endif
841 
842 	*p = ++res;
843 	put_cpu_var(last_ino);
844 	return res;
845 }
846 EXPORT_SYMBOL(get_next_ino);
847 
848 /**
849  *	new_inode_pseudo 	- obtain an inode
850  *	@sb: superblock
851  *
852  *	Allocates a new inode for given superblock.
853  *	Inode wont be chained in superblock s_inodes list
854  *	This means :
855  *	- fs can't be unmount
856  *	- quotas, fsnotify, writeback can't work
857  */
858 struct inode *new_inode_pseudo(struct super_block *sb)
859 {
860 	struct inode *inode = alloc_inode(sb);
861 
862 	if (inode) {
863 		spin_lock(&inode->i_lock);
864 		inode->i_state = 0;
865 		spin_unlock(&inode->i_lock);
866 		INIT_LIST_HEAD(&inode->i_sb_list);
867 	}
868 	return inode;
869 }
870 
871 /**
872  *	new_inode 	- obtain an inode
873  *	@sb: superblock
874  *
875  *	Allocates a new inode for given superblock. The default gfp_mask
876  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
877  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
878  *	for the page cache are not reclaimable or migratable,
879  *	mapping_set_gfp_mask() must be called with suitable flags on the
880  *	newly created inode's mapping
881  *
882  */
883 struct inode *new_inode(struct super_block *sb)
884 {
885 	struct inode *inode;
886 
887 	spin_lock_prefetch(&inode_sb_list_lock);
888 
889 	inode = new_inode_pseudo(sb);
890 	if (inode)
891 		inode_sb_list_add(inode);
892 	return inode;
893 }
894 EXPORT_SYMBOL(new_inode);
895 
896 #ifdef CONFIG_DEBUG_LOCK_ALLOC
897 void lockdep_annotate_inode_mutex_key(struct inode *inode)
898 {
899 	if (S_ISDIR(inode->i_mode)) {
900 		struct file_system_type *type = inode->i_sb->s_type;
901 
902 		/* Set new key only if filesystem hasn't already changed it */
903 		if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
904 			/*
905 			 * ensure nobody is actually holding i_mutex
906 			 */
907 			mutex_destroy(&inode->i_mutex);
908 			mutex_init(&inode->i_mutex);
909 			lockdep_set_class(&inode->i_mutex,
910 					  &type->i_mutex_dir_key);
911 		}
912 	}
913 }
914 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
915 #endif
916 
917 /**
918  * unlock_new_inode - clear the I_NEW state and wake up any waiters
919  * @inode:	new inode to unlock
920  *
921  * Called when the inode is fully initialised to clear the new state of the
922  * inode and wake up anyone waiting for the inode to finish initialisation.
923  */
924 void unlock_new_inode(struct inode *inode)
925 {
926 	lockdep_annotate_inode_mutex_key(inode);
927 	spin_lock(&inode->i_lock);
928 	WARN_ON(!(inode->i_state & I_NEW));
929 	inode->i_state &= ~I_NEW;
930 	smp_mb();
931 	wake_up_bit(&inode->i_state, __I_NEW);
932 	spin_unlock(&inode->i_lock);
933 }
934 EXPORT_SYMBOL(unlock_new_inode);
935 
936 /**
937  * lock_two_nondirectories - take two i_mutexes on non-directory objects
938  *
939  * Lock any non-NULL argument that is not a directory.
940  * Zero, one or two objects may be locked by this function.
941  *
942  * @inode1: first inode to lock
943  * @inode2: second inode to lock
944  */
945 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
946 {
947 	if (inode1 > inode2)
948 		swap(inode1, inode2);
949 
950 	if (inode1 && !S_ISDIR(inode1->i_mode))
951 		mutex_lock(&inode1->i_mutex);
952 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
953 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_NONDIR2);
954 }
955 EXPORT_SYMBOL(lock_two_nondirectories);
956 
957 /**
958  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
959  * @inode1: first inode to unlock
960  * @inode2: second inode to unlock
961  */
962 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
963 {
964 	if (inode1 && !S_ISDIR(inode1->i_mode))
965 		mutex_unlock(&inode1->i_mutex);
966 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
967 		mutex_unlock(&inode2->i_mutex);
968 }
969 EXPORT_SYMBOL(unlock_two_nondirectories);
970 
971 /**
972  * iget5_locked - obtain an inode from a mounted file system
973  * @sb:		super block of file system
974  * @hashval:	hash value (usually inode number) to get
975  * @test:	callback used for comparisons between inodes
976  * @set:	callback used to initialize a new struct inode
977  * @data:	opaque data pointer to pass to @test and @set
978  *
979  * Search for the inode specified by @hashval and @data in the inode cache,
980  * and if present it is return it with an increased reference count. This is
981  * a generalized version of iget_locked() for file systems where the inode
982  * number is not sufficient for unique identification of an inode.
983  *
984  * If the inode is not in cache, allocate a new inode and return it locked,
985  * hashed, and with the I_NEW flag set. The file system gets to fill it in
986  * before unlocking it via unlock_new_inode().
987  *
988  * Note both @test and @set are called with the inode_hash_lock held, so can't
989  * sleep.
990  */
991 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
992 		int (*test)(struct inode *, void *),
993 		int (*set)(struct inode *, void *), void *data)
994 {
995 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
996 	struct inode *inode;
997 
998 	spin_lock(&inode_hash_lock);
999 	inode = find_inode(sb, head, test, data);
1000 	spin_unlock(&inode_hash_lock);
1001 
1002 	if (inode) {
1003 		wait_on_inode(inode);
1004 		return inode;
1005 	}
1006 
1007 	inode = alloc_inode(sb);
1008 	if (inode) {
1009 		struct inode *old;
1010 
1011 		spin_lock(&inode_hash_lock);
1012 		/* We released the lock, so.. */
1013 		old = find_inode(sb, head, test, data);
1014 		if (!old) {
1015 			if (set(inode, data))
1016 				goto set_failed;
1017 
1018 			spin_lock(&inode->i_lock);
1019 			inode->i_state = I_NEW;
1020 			hlist_add_head(&inode->i_hash, head);
1021 			spin_unlock(&inode->i_lock);
1022 			inode_sb_list_add(inode);
1023 			spin_unlock(&inode_hash_lock);
1024 
1025 			/* Return the locked inode with I_NEW set, the
1026 			 * caller is responsible for filling in the contents
1027 			 */
1028 			return inode;
1029 		}
1030 
1031 		/*
1032 		 * Uhhuh, somebody else created the same inode under
1033 		 * us. Use the old inode instead of the one we just
1034 		 * allocated.
1035 		 */
1036 		spin_unlock(&inode_hash_lock);
1037 		destroy_inode(inode);
1038 		inode = old;
1039 		wait_on_inode(inode);
1040 	}
1041 	return inode;
1042 
1043 set_failed:
1044 	spin_unlock(&inode_hash_lock);
1045 	destroy_inode(inode);
1046 	return NULL;
1047 }
1048 EXPORT_SYMBOL(iget5_locked);
1049 
1050 /**
1051  * iget_locked - obtain an inode from a mounted file system
1052  * @sb:		super block of file system
1053  * @ino:	inode number to get
1054  *
1055  * Search for the inode specified by @ino in the inode cache and if present
1056  * return it with an increased reference count. This is for file systems
1057  * where the inode number is sufficient for unique identification of an inode.
1058  *
1059  * If the inode is not in cache, allocate a new inode and return it locked,
1060  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1061  * before unlocking it via unlock_new_inode().
1062  */
1063 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1064 {
1065 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1066 	struct inode *inode;
1067 
1068 	spin_lock(&inode_hash_lock);
1069 	inode = find_inode_fast(sb, head, ino);
1070 	spin_unlock(&inode_hash_lock);
1071 	if (inode) {
1072 		wait_on_inode(inode);
1073 		return inode;
1074 	}
1075 
1076 	inode = alloc_inode(sb);
1077 	if (inode) {
1078 		struct inode *old;
1079 
1080 		spin_lock(&inode_hash_lock);
1081 		/* We released the lock, so.. */
1082 		old = find_inode_fast(sb, head, ino);
1083 		if (!old) {
1084 			inode->i_ino = ino;
1085 			spin_lock(&inode->i_lock);
1086 			inode->i_state = I_NEW;
1087 			hlist_add_head(&inode->i_hash, head);
1088 			spin_unlock(&inode->i_lock);
1089 			inode_sb_list_add(inode);
1090 			spin_unlock(&inode_hash_lock);
1091 
1092 			/* Return the locked inode with I_NEW set, the
1093 			 * caller is responsible for filling in the contents
1094 			 */
1095 			return inode;
1096 		}
1097 
1098 		/*
1099 		 * Uhhuh, somebody else created the same inode under
1100 		 * us. Use the old inode instead of the one we just
1101 		 * allocated.
1102 		 */
1103 		spin_unlock(&inode_hash_lock);
1104 		destroy_inode(inode);
1105 		inode = old;
1106 		wait_on_inode(inode);
1107 	}
1108 	return inode;
1109 }
1110 EXPORT_SYMBOL(iget_locked);
1111 
1112 /*
1113  * search the inode cache for a matching inode number.
1114  * If we find one, then the inode number we are trying to
1115  * allocate is not unique and so we should not use it.
1116  *
1117  * Returns 1 if the inode number is unique, 0 if it is not.
1118  */
1119 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1120 {
1121 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1122 	struct inode *inode;
1123 
1124 	spin_lock(&inode_hash_lock);
1125 	hlist_for_each_entry(inode, b, i_hash) {
1126 		if (inode->i_ino == ino && inode->i_sb == sb) {
1127 			spin_unlock(&inode_hash_lock);
1128 			return 0;
1129 		}
1130 	}
1131 	spin_unlock(&inode_hash_lock);
1132 
1133 	return 1;
1134 }
1135 
1136 /**
1137  *	iunique - get a unique inode number
1138  *	@sb: superblock
1139  *	@max_reserved: highest reserved inode number
1140  *
1141  *	Obtain an inode number that is unique on the system for a given
1142  *	superblock. This is used by file systems that have no natural
1143  *	permanent inode numbering system. An inode number is returned that
1144  *	is higher than the reserved limit but unique.
1145  *
1146  *	BUGS:
1147  *	With a large number of inodes live on the file system this function
1148  *	currently becomes quite slow.
1149  */
1150 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1151 {
1152 	/*
1153 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1154 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1155 	 * here to attempt to avoid that.
1156 	 */
1157 	static DEFINE_SPINLOCK(iunique_lock);
1158 	static unsigned int counter;
1159 	ino_t res;
1160 
1161 	spin_lock(&iunique_lock);
1162 	do {
1163 		if (counter <= max_reserved)
1164 			counter = max_reserved + 1;
1165 		res = counter++;
1166 	} while (!test_inode_iunique(sb, res));
1167 	spin_unlock(&iunique_lock);
1168 
1169 	return res;
1170 }
1171 EXPORT_SYMBOL(iunique);
1172 
1173 struct inode *igrab(struct inode *inode)
1174 {
1175 	spin_lock(&inode->i_lock);
1176 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1177 		__iget(inode);
1178 		spin_unlock(&inode->i_lock);
1179 	} else {
1180 		spin_unlock(&inode->i_lock);
1181 		/*
1182 		 * Handle the case where s_op->clear_inode is not been
1183 		 * called yet, and somebody is calling igrab
1184 		 * while the inode is getting freed.
1185 		 */
1186 		inode = NULL;
1187 	}
1188 	return inode;
1189 }
1190 EXPORT_SYMBOL(igrab);
1191 
1192 /**
1193  * ilookup5_nowait - search for an inode in the inode cache
1194  * @sb:		super block of file system to search
1195  * @hashval:	hash value (usually inode number) to search for
1196  * @test:	callback used for comparisons between inodes
1197  * @data:	opaque data pointer to pass to @test
1198  *
1199  * Search for the inode specified by @hashval and @data in the inode cache.
1200  * If the inode is in the cache, the inode is returned with an incremented
1201  * reference count.
1202  *
1203  * Note: I_NEW is not waited upon so you have to be very careful what you do
1204  * with the returned inode.  You probably should be using ilookup5() instead.
1205  *
1206  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1207  */
1208 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1209 		int (*test)(struct inode *, void *), void *data)
1210 {
1211 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1212 	struct inode *inode;
1213 
1214 	spin_lock(&inode_hash_lock);
1215 	inode = find_inode(sb, head, test, data);
1216 	spin_unlock(&inode_hash_lock);
1217 
1218 	return inode;
1219 }
1220 EXPORT_SYMBOL(ilookup5_nowait);
1221 
1222 /**
1223  * ilookup5 - search for an inode in the inode cache
1224  * @sb:		super block of file system to search
1225  * @hashval:	hash value (usually inode number) to search for
1226  * @test:	callback used for comparisons between inodes
1227  * @data:	opaque data pointer to pass to @test
1228  *
1229  * Search for the inode specified by @hashval and @data in the inode cache,
1230  * and if the inode is in the cache, return the inode with an incremented
1231  * reference count.  Waits on I_NEW before returning the inode.
1232  * returned with an incremented reference count.
1233  *
1234  * This is a generalized version of ilookup() for file systems where the
1235  * inode number is not sufficient for unique identification of an inode.
1236  *
1237  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1238  */
1239 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1240 		int (*test)(struct inode *, void *), void *data)
1241 {
1242 	struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1243 
1244 	if (inode)
1245 		wait_on_inode(inode);
1246 	return inode;
1247 }
1248 EXPORT_SYMBOL(ilookup5);
1249 
1250 /**
1251  * ilookup - search for an inode in the inode cache
1252  * @sb:		super block of file system to search
1253  * @ino:	inode number to search for
1254  *
1255  * Search for the inode @ino in the inode cache, and if the inode is in the
1256  * cache, the inode is returned with an incremented reference count.
1257  */
1258 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1259 {
1260 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1261 	struct inode *inode;
1262 
1263 	spin_lock(&inode_hash_lock);
1264 	inode = find_inode_fast(sb, head, ino);
1265 	spin_unlock(&inode_hash_lock);
1266 
1267 	if (inode)
1268 		wait_on_inode(inode);
1269 	return inode;
1270 }
1271 EXPORT_SYMBOL(ilookup);
1272 
1273 /**
1274  * find_inode_nowait - find an inode in the inode cache
1275  * @sb:		super block of file system to search
1276  * @hashval:	hash value (usually inode number) to search for
1277  * @match:	callback used for comparisons between inodes
1278  * @data:	opaque data pointer to pass to @match
1279  *
1280  * Search for the inode specified by @hashval and @data in the inode
1281  * cache, where the helper function @match will return 0 if the inode
1282  * does not match, 1 if the inode does match, and -1 if the search
1283  * should be stopped.  The @match function must be responsible for
1284  * taking the i_lock spin_lock and checking i_state for an inode being
1285  * freed or being initialized, and incrementing the reference count
1286  * before returning 1.  It also must not sleep, since it is called with
1287  * the inode_hash_lock spinlock held.
1288  *
1289  * This is a even more generalized version of ilookup5() when the
1290  * function must never block --- find_inode() can block in
1291  * __wait_on_freeing_inode() --- or when the caller can not increment
1292  * the reference count because the resulting iput() might cause an
1293  * inode eviction.  The tradeoff is that the @match funtion must be
1294  * very carefully implemented.
1295  */
1296 struct inode *find_inode_nowait(struct super_block *sb,
1297 				unsigned long hashval,
1298 				int (*match)(struct inode *, unsigned long,
1299 					     void *),
1300 				void *data)
1301 {
1302 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1303 	struct inode *inode, *ret_inode = NULL;
1304 	int mval;
1305 
1306 	spin_lock(&inode_hash_lock);
1307 	hlist_for_each_entry(inode, head, i_hash) {
1308 		if (inode->i_sb != sb)
1309 			continue;
1310 		mval = match(inode, hashval, data);
1311 		if (mval == 0)
1312 			continue;
1313 		if (mval == 1)
1314 			ret_inode = inode;
1315 		goto out;
1316 	}
1317 out:
1318 	spin_unlock(&inode_hash_lock);
1319 	return ret_inode;
1320 }
1321 EXPORT_SYMBOL(find_inode_nowait);
1322 
1323 int insert_inode_locked(struct inode *inode)
1324 {
1325 	struct super_block *sb = inode->i_sb;
1326 	ino_t ino = inode->i_ino;
1327 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1328 
1329 	while (1) {
1330 		struct inode *old = NULL;
1331 		spin_lock(&inode_hash_lock);
1332 		hlist_for_each_entry(old, head, i_hash) {
1333 			if (old->i_ino != ino)
1334 				continue;
1335 			if (old->i_sb != sb)
1336 				continue;
1337 			spin_lock(&old->i_lock);
1338 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1339 				spin_unlock(&old->i_lock);
1340 				continue;
1341 			}
1342 			break;
1343 		}
1344 		if (likely(!old)) {
1345 			spin_lock(&inode->i_lock);
1346 			inode->i_state |= I_NEW;
1347 			hlist_add_head(&inode->i_hash, head);
1348 			spin_unlock(&inode->i_lock);
1349 			spin_unlock(&inode_hash_lock);
1350 			return 0;
1351 		}
1352 		__iget(old);
1353 		spin_unlock(&old->i_lock);
1354 		spin_unlock(&inode_hash_lock);
1355 		wait_on_inode(old);
1356 		if (unlikely(!inode_unhashed(old))) {
1357 			iput(old);
1358 			return -EBUSY;
1359 		}
1360 		iput(old);
1361 	}
1362 }
1363 EXPORT_SYMBOL(insert_inode_locked);
1364 
1365 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1366 		int (*test)(struct inode *, void *), void *data)
1367 {
1368 	struct super_block *sb = inode->i_sb;
1369 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1370 
1371 	while (1) {
1372 		struct inode *old = NULL;
1373 
1374 		spin_lock(&inode_hash_lock);
1375 		hlist_for_each_entry(old, head, i_hash) {
1376 			if (old->i_sb != sb)
1377 				continue;
1378 			if (!test(old, data))
1379 				continue;
1380 			spin_lock(&old->i_lock);
1381 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1382 				spin_unlock(&old->i_lock);
1383 				continue;
1384 			}
1385 			break;
1386 		}
1387 		if (likely(!old)) {
1388 			spin_lock(&inode->i_lock);
1389 			inode->i_state |= I_NEW;
1390 			hlist_add_head(&inode->i_hash, head);
1391 			spin_unlock(&inode->i_lock);
1392 			spin_unlock(&inode_hash_lock);
1393 			return 0;
1394 		}
1395 		__iget(old);
1396 		spin_unlock(&old->i_lock);
1397 		spin_unlock(&inode_hash_lock);
1398 		wait_on_inode(old);
1399 		if (unlikely(!inode_unhashed(old))) {
1400 			iput(old);
1401 			return -EBUSY;
1402 		}
1403 		iput(old);
1404 	}
1405 }
1406 EXPORT_SYMBOL(insert_inode_locked4);
1407 
1408 
1409 int generic_delete_inode(struct inode *inode)
1410 {
1411 	return 1;
1412 }
1413 EXPORT_SYMBOL(generic_delete_inode);
1414 
1415 /*
1416  * Called when we're dropping the last reference
1417  * to an inode.
1418  *
1419  * Call the FS "drop_inode()" function, defaulting to
1420  * the legacy UNIX filesystem behaviour.  If it tells
1421  * us to evict inode, do so.  Otherwise, retain inode
1422  * in cache if fs is alive, sync and evict if fs is
1423  * shutting down.
1424  */
1425 static void iput_final(struct inode *inode)
1426 {
1427 	struct super_block *sb = inode->i_sb;
1428 	const struct super_operations *op = inode->i_sb->s_op;
1429 	int drop;
1430 
1431 	WARN_ON(inode->i_state & I_NEW);
1432 
1433 	if (op->drop_inode)
1434 		drop = op->drop_inode(inode);
1435 	else
1436 		drop = generic_drop_inode(inode);
1437 
1438 	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1439 		inode->i_state |= I_REFERENCED;
1440 		inode_add_lru(inode);
1441 		spin_unlock(&inode->i_lock);
1442 		return;
1443 	}
1444 
1445 	if (!drop) {
1446 		inode->i_state |= I_WILL_FREE;
1447 		spin_unlock(&inode->i_lock);
1448 		write_inode_now(inode, 1);
1449 		spin_lock(&inode->i_lock);
1450 		WARN_ON(inode->i_state & I_NEW);
1451 		inode->i_state &= ~I_WILL_FREE;
1452 	}
1453 
1454 	inode->i_state |= I_FREEING;
1455 	if (!list_empty(&inode->i_lru))
1456 		inode_lru_list_del(inode);
1457 	spin_unlock(&inode->i_lock);
1458 
1459 	evict(inode);
1460 }
1461 
1462 /**
1463  *	iput	- put an inode
1464  *	@inode: inode to put
1465  *
1466  *	Puts an inode, dropping its usage count. If the inode use count hits
1467  *	zero, the inode is then freed and may also be destroyed.
1468  *
1469  *	Consequently, iput() can sleep.
1470  */
1471 void iput(struct inode *inode)
1472 {
1473 	if (!inode)
1474 		return;
1475 	BUG_ON(inode->i_state & I_CLEAR);
1476 retry:
1477 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1478 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1479 			atomic_inc(&inode->i_count);
1480 			inode->i_state &= ~I_DIRTY_TIME;
1481 			spin_unlock(&inode->i_lock);
1482 			trace_writeback_lazytime_iput(inode);
1483 			mark_inode_dirty_sync(inode);
1484 			goto retry;
1485 		}
1486 		iput_final(inode);
1487 	}
1488 }
1489 EXPORT_SYMBOL(iput);
1490 
1491 /**
1492  *	bmap	- find a block number in a file
1493  *	@inode: inode of file
1494  *	@block: block to find
1495  *
1496  *	Returns the block number on the device holding the inode that
1497  *	is the disk block number for the block of the file requested.
1498  *	That is, asked for block 4 of inode 1 the function will return the
1499  *	disk block relative to the disk start that holds that block of the
1500  *	file.
1501  */
1502 sector_t bmap(struct inode *inode, sector_t block)
1503 {
1504 	sector_t res = 0;
1505 	if (inode->i_mapping->a_ops->bmap)
1506 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1507 	return res;
1508 }
1509 EXPORT_SYMBOL(bmap);
1510 
1511 /*
1512  * With relative atime, only update atime if the previous atime is
1513  * earlier than either the ctime or mtime or if at least a day has
1514  * passed since the last atime update.
1515  */
1516 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1517 			     struct timespec now)
1518 {
1519 
1520 	if (!(mnt->mnt_flags & MNT_RELATIME))
1521 		return 1;
1522 	/*
1523 	 * Is mtime younger than atime? If yes, update atime:
1524 	 */
1525 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1526 		return 1;
1527 	/*
1528 	 * Is ctime younger than atime? If yes, update atime:
1529 	 */
1530 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1531 		return 1;
1532 
1533 	/*
1534 	 * Is the previous atime value older than a day? If yes,
1535 	 * update atime:
1536 	 */
1537 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1538 		return 1;
1539 	/*
1540 	 * Good, we can skip the atime update:
1541 	 */
1542 	return 0;
1543 }
1544 
1545 int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1546 {
1547 	int iflags = I_DIRTY_TIME;
1548 
1549 	if (flags & S_ATIME)
1550 		inode->i_atime = *time;
1551 	if (flags & S_VERSION)
1552 		inode_inc_iversion(inode);
1553 	if (flags & S_CTIME)
1554 		inode->i_ctime = *time;
1555 	if (flags & S_MTIME)
1556 		inode->i_mtime = *time;
1557 
1558 	if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1559 		iflags |= I_DIRTY_SYNC;
1560 	__mark_inode_dirty(inode, iflags);
1561 	return 0;
1562 }
1563 EXPORT_SYMBOL(generic_update_time);
1564 
1565 /*
1566  * This does the actual work of updating an inodes time or version.  Must have
1567  * had called mnt_want_write() before calling this.
1568  */
1569 static int update_time(struct inode *inode, struct timespec *time, int flags)
1570 {
1571 	int (*update_time)(struct inode *, struct timespec *, int);
1572 
1573 	update_time = inode->i_op->update_time ? inode->i_op->update_time :
1574 		generic_update_time;
1575 
1576 	return update_time(inode, time, flags);
1577 }
1578 
1579 /**
1580  *	touch_atime	-	update the access time
1581  *	@path: the &struct path to update
1582  *
1583  *	Update the accessed time on an inode and mark it for writeback.
1584  *	This function automatically handles read only file systems and media,
1585  *	as well as the "noatime" flag and inode specific "noatime" markers.
1586  */
1587 void touch_atime(const struct path *path)
1588 {
1589 	struct vfsmount *mnt = path->mnt;
1590 	struct inode *inode = path->dentry->d_inode;
1591 	struct timespec now;
1592 
1593 	if (inode->i_flags & S_NOATIME)
1594 		return;
1595 	if (IS_NOATIME(inode))
1596 		return;
1597 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1598 		return;
1599 
1600 	if (mnt->mnt_flags & MNT_NOATIME)
1601 		return;
1602 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1603 		return;
1604 
1605 	now = current_fs_time(inode->i_sb);
1606 
1607 	if (!relatime_need_update(mnt, inode, now))
1608 		return;
1609 
1610 	if (timespec_equal(&inode->i_atime, &now))
1611 		return;
1612 
1613 	if (!sb_start_write_trylock(inode->i_sb))
1614 		return;
1615 
1616 	if (__mnt_want_write(mnt))
1617 		goto skip_update;
1618 	/*
1619 	 * File systems can error out when updating inodes if they need to
1620 	 * allocate new space to modify an inode (such is the case for
1621 	 * Btrfs), but since we touch atime while walking down the path we
1622 	 * really don't care if we failed to update the atime of the file,
1623 	 * so just ignore the return value.
1624 	 * We may also fail on filesystems that have the ability to make parts
1625 	 * of the fs read only, e.g. subvolumes in Btrfs.
1626 	 */
1627 	update_time(inode, &now, S_ATIME);
1628 	__mnt_drop_write(mnt);
1629 skip_update:
1630 	sb_end_write(inode->i_sb);
1631 }
1632 EXPORT_SYMBOL(touch_atime);
1633 
1634 /*
1635  * The logic we want is
1636  *
1637  *	if suid or (sgid and xgrp)
1638  *		remove privs
1639  */
1640 int should_remove_suid(struct dentry *dentry)
1641 {
1642 	umode_t mode = dentry->d_inode->i_mode;
1643 	int kill = 0;
1644 
1645 	/* suid always must be killed */
1646 	if (unlikely(mode & S_ISUID))
1647 		kill = ATTR_KILL_SUID;
1648 
1649 	/*
1650 	 * sgid without any exec bits is just a mandatory locking mark; leave
1651 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1652 	 */
1653 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1654 		kill |= ATTR_KILL_SGID;
1655 
1656 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1657 		return kill;
1658 
1659 	return 0;
1660 }
1661 EXPORT_SYMBOL(should_remove_suid);
1662 
1663 static int __remove_suid(struct dentry *dentry, int kill)
1664 {
1665 	struct iattr newattrs;
1666 
1667 	newattrs.ia_valid = ATTR_FORCE | kill;
1668 	/*
1669 	 * Note we call this on write, so notify_change will not
1670 	 * encounter any conflicting delegations:
1671 	 */
1672 	return notify_change(dentry, &newattrs, NULL);
1673 }
1674 
1675 int file_remove_suid(struct file *file)
1676 {
1677 	struct dentry *dentry = file->f_path.dentry;
1678 	struct inode *inode = dentry->d_inode;
1679 	int killsuid;
1680 	int killpriv;
1681 	int error = 0;
1682 
1683 	/* Fast path for nothing security related */
1684 	if (IS_NOSEC(inode))
1685 		return 0;
1686 
1687 	killsuid = should_remove_suid(dentry);
1688 	killpriv = security_inode_need_killpriv(dentry);
1689 
1690 	if (killpriv < 0)
1691 		return killpriv;
1692 	if (killpriv)
1693 		error = security_inode_killpriv(dentry);
1694 	if (!error && killsuid)
1695 		error = __remove_suid(dentry, killsuid);
1696 	if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1697 		inode->i_flags |= S_NOSEC;
1698 
1699 	return error;
1700 }
1701 EXPORT_SYMBOL(file_remove_suid);
1702 
1703 /**
1704  *	file_update_time	-	update mtime and ctime time
1705  *	@file: file accessed
1706  *
1707  *	Update the mtime and ctime members of an inode and mark the inode
1708  *	for writeback.  Note that this function is meant exclusively for
1709  *	usage in the file write path of filesystems, and filesystems may
1710  *	choose to explicitly ignore update via this function with the
1711  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1712  *	timestamps are handled by the server.  This can return an error for
1713  *	file systems who need to allocate space in order to update an inode.
1714  */
1715 
1716 int file_update_time(struct file *file)
1717 {
1718 	struct inode *inode = file_inode(file);
1719 	struct timespec now;
1720 	int sync_it = 0;
1721 	int ret;
1722 
1723 	/* First try to exhaust all avenues to not sync */
1724 	if (IS_NOCMTIME(inode))
1725 		return 0;
1726 
1727 	now = current_fs_time(inode->i_sb);
1728 	if (!timespec_equal(&inode->i_mtime, &now))
1729 		sync_it = S_MTIME;
1730 
1731 	if (!timespec_equal(&inode->i_ctime, &now))
1732 		sync_it |= S_CTIME;
1733 
1734 	if (IS_I_VERSION(inode))
1735 		sync_it |= S_VERSION;
1736 
1737 	if (!sync_it)
1738 		return 0;
1739 
1740 	/* Finally allowed to write? Takes lock. */
1741 	if (__mnt_want_write_file(file))
1742 		return 0;
1743 
1744 	ret = update_time(inode, &now, sync_it);
1745 	__mnt_drop_write_file(file);
1746 
1747 	return ret;
1748 }
1749 EXPORT_SYMBOL(file_update_time);
1750 
1751 int inode_needs_sync(struct inode *inode)
1752 {
1753 	if (IS_SYNC(inode))
1754 		return 1;
1755 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1756 		return 1;
1757 	return 0;
1758 }
1759 EXPORT_SYMBOL(inode_needs_sync);
1760 
1761 /*
1762  * If we try to find an inode in the inode hash while it is being
1763  * deleted, we have to wait until the filesystem completes its
1764  * deletion before reporting that it isn't found.  This function waits
1765  * until the deletion _might_ have completed.  Callers are responsible
1766  * to recheck inode state.
1767  *
1768  * It doesn't matter if I_NEW is not set initially, a call to
1769  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1770  * will DTRT.
1771  */
1772 static void __wait_on_freeing_inode(struct inode *inode)
1773 {
1774 	wait_queue_head_t *wq;
1775 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1776 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1777 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1778 	spin_unlock(&inode->i_lock);
1779 	spin_unlock(&inode_hash_lock);
1780 	schedule();
1781 	finish_wait(wq, &wait.wait);
1782 	spin_lock(&inode_hash_lock);
1783 }
1784 
1785 static __initdata unsigned long ihash_entries;
1786 static int __init set_ihash_entries(char *str)
1787 {
1788 	if (!str)
1789 		return 0;
1790 	ihash_entries = simple_strtoul(str, &str, 0);
1791 	return 1;
1792 }
1793 __setup("ihash_entries=", set_ihash_entries);
1794 
1795 /*
1796  * Initialize the waitqueues and inode hash table.
1797  */
1798 void __init inode_init_early(void)
1799 {
1800 	unsigned int loop;
1801 
1802 	/* If hashes are distributed across NUMA nodes, defer
1803 	 * hash allocation until vmalloc space is available.
1804 	 */
1805 	if (hashdist)
1806 		return;
1807 
1808 	inode_hashtable =
1809 		alloc_large_system_hash("Inode-cache",
1810 					sizeof(struct hlist_head),
1811 					ihash_entries,
1812 					14,
1813 					HASH_EARLY,
1814 					&i_hash_shift,
1815 					&i_hash_mask,
1816 					0,
1817 					0);
1818 
1819 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1820 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1821 }
1822 
1823 void __init inode_init(void)
1824 {
1825 	unsigned int loop;
1826 
1827 	/* inode slab cache */
1828 	inode_cachep = kmem_cache_create("inode_cache",
1829 					 sizeof(struct inode),
1830 					 0,
1831 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1832 					 SLAB_MEM_SPREAD),
1833 					 init_once);
1834 
1835 	/* Hash may have been set up in inode_init_early */
1836 	if (!hashdist)
1837 		return;
1838 
1839 	inode_hashtable =
1840 		alloc_large_system_hash("Inode-cache",
1841 					sizeof(struct hlist_head),
1842 					ihash_entries,
1843 					14,
1844 					0,
1845 					&i_hash_shift,
1846 					&i_hash_mask,
1847 					0,
1848 					0);
1849 
1850 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1851 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1852 }
1853 
1854 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1855 {
1856 	inode->i_mode = mode;
1857 	if (S_ISCHR(mode)) {
1858 		inode->i_fop = &def_chr_fops;
1859 		inode->i_rdev = rdev;
1860 	} else if (S_ISBLK(mode)) {
1861 		inode->i_fop = &def_blk_fops;
1862 		inode->i_rdev = rdev;
1863 	} else if (S_ISFIFO(mode))
1864 		inode->i_fop = &pipefifo_fops;
1865 	else if (S_ISSOCK(mode))
1866 		;	/* leave it no_open_fops */
1867 	else
1868 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1869 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1870 				  inode->i_ino);
1871 }
1872 EXPORT_SYMBOL(init_special_inode);
1873 
1874 /**
1875  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1876  * @inode: New inode
1877  * @dir: Directory inode
1878  * @mode: mode of the new inode
1879  */
1880 void inode_init_owner(struct inode *inode, const struct inode *dir,
1881 			umode_t mode)
1882 {
1883 	inode->i_uid = current_fsuid();
1884 	if (dir && dir->i_mode & S_ISGID) {
1885 		inode->i_gid = dir->i_gid;
1886 		if (S_ISDIR(mode))
1887 			mode |= S_ISGID;
1888 	} else
1889 		inode->i_gid = current_fsgid();
1890 	inode->i_mode = mode;
1891 }
1892 EXPORT_SYMBOL(inode_init_owner);
1893 
1894 /**
1895  * inode_owner_or_capable - check current task permissions to inode
1896  * @inode: inode being checked
1897  *
1898  * Return true if current either has CAP_FOWNER in a namespace with the
1899  * inode owner uid mapped, or owns the file.
1900  */
1901 bool inode_owner_or_capable(const struct inode *inode)
1902 {
1903 	struct user_namespace *ns;
1904 
1905 	if (uid_eq(current_fsuid(), inode->i_uid))
1906 		return true;
1907 
1908 	ns = current_user_ns();
1909 	if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
1910 		return true;
1911 	return false;
1912 }
1913 EXPORT_SYMBOL(inode_owner_or_capable);
1914 
1915 /*
1916  * Direct i/o helper functions
1917  */
1918 static void __inode_dio_wait(struct inode *inode)
1919 {
1920 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1921 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1922 
1923 	do {
1924 		prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1925 		if (atomic_read(&inode->i_dio_count))
1926 			schedule();
1927 	} while (atomic_read(&inode->i_dio_count));
1928 	finish_wait(wq, &q.wait);
1929 }
1930 
1931 /**
1932  * inode_dio_wait - wait for outstanding DIO requests to finish
1933  * @inode: inode to wait for
1934  *
1935  * Waits for all pending direct I/O requests to finish so that we can
1936  * proceed with a truncate or equivalent operation.
1937  *
1938  * Must be called under a lock that serializes taking new references
1939  * to i_dio_count, usually by inode->i_mutex.
1940  */
1941 void inode_dio_wait(struct inode *inode)
1942 {
1943 	if (atomic_read(&inode->i_dio_count))
1944 		__inode_dio_wait(inode);
1945 }
1946 EXPORT_SYMBOL(inode_dio_wait);
1947 
1948 /*
1949  * inode_dio_done - signal finish of a direct I/O requests
1950  * @inode: inode the direct I/O happens on
1951  *
1952  * This is called once we've finished processing a direct I/O request,
1953  * and is used to wake up callers waiting for direct I/O to be quiesced.
1954  */
1955 void inode_dio_done(struct inode *inode)
1956 {
1957 	if (atomic_dec_and_test(&inode->i_dio_count))
1958 		wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
1959 }
1960 EXPORT_SYMBOL(inode_dio_done);
1961 
1962 /*
1963  * inode_set_flags - atomically set some inode flags
1964  *
1965  * Note: the caller should be holding i_mutex, or else be sure that
1966  * they have exclusive access to the inode structure (i.e., while the
1967  * inode is being instantiated).  The reason for the cmpxchg() loop
1968  * --- which wouldn't be necessary if all code paths which modify
1969  * i_flags actually followed this rule, is that there is at least one
1970  * code path which doesn't today --- for example,
1971  * __generic_file_aio_write() calls file_remove_suid() without holding
1972  * i_mutex --- so we use cmpxchg() out of an abundance of caution.
1973  *
1974  * In the long run, i_mutex is overkill, and we should probably look
1975  * at using the i_lock spinlock to protect i_flags, and then make sure
1976  * it is so documented in include/linux/fs.h and that all code follows
1977  * the locking convention!!
1978  */
1979 void inode_set_flags(struct inode *inode, unsigned int flags,
1980 		     unsigned int mask)
1981 {
1982 	unsigned int old_flags, new_flags;
1983 
1984 	WARN_ON_ONCE(flags & ~mask);
1985 	do {
1986 		old_flags = ACCESS_ONCE(inode->i_flags);
1987 		new_flags = (old_flags & ~mask) | flags;
1988 	} while (unlikely(cmpxchg(&inode->i_flags, old_flags,
1989 				  new_flags) != old_flags));
1990 }
1991 EXPORT_SYMBOL(inode_set_flags);
1992