1 /* 2 * (C) 1997 Linus Torvalds 3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 4 */ 5 #include <linux/export.h> 6 #include <linux/fs.h> 7 #include <linux/mm.h> 8 #include <linux/backing-dev.h> 9 #include <linux/hash.h> 10 #include <linux/swap.h> 11 #include <linux/security.h> 12 #include <linux/cdev.h> 13 #include <linux/bootmem.h> 14 #include <linux/fsnotify.h> 15 #include <linux/mount.h> 16 #include <linux/posix_acl.h> 17 #include <linux/prefetch.h> 18 #include <linux/buffer_head.h> /* for inode_has_buffers */ 19 #include <linux/ratelimit.h> 20 #include "internal.h" 21 22 /* 23 * Inode locking rules: 24 * 25 * inode->i_lock protects: 26 * inode->i_state, inode->i_hash, __iget() 27 * inode->i_sb->s_inode_lru_lock protects: 28 * inode->i_sb->s_inode_lru, inode->i_lru 29 * inode_sb_list_lock protects: 30 * sb->s_inodes, inode->i_sb_list 31 * bdi->wb.list_lock protects: 32 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list 33 * inode_hash_lock protects: 34 * inode_hashtable, inode->i_hash 35 * 36 * Lock ordering: 37 * 38 * inode_sb_list_lock 39 * inode->i_lock 40 * inode->i_sb->s_inode_lru_lock 41 * 42 * bdi->wb.list_lock 43 * inode->i_lock 44 * 45 * inode_hash_lock 46 * inode_sb_list_lock 47 * inode->i_lock 48 * 49 * iunique_lock 50 * inode_hash_lock 51 */ 52 53 static unsigned int i_hash_mask __read_mostly; 54 static unsigned int i_hash_shift __read_mostly; 55 static struct hlist_head *inode_hashtable __read_mostly; 56 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 57 58 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock); 59 60 /* 61 * Empty aops. Can be used for the cases where the user does not 62 * define any of the address_space operations. 63 */ 64 const struct address_space_operations empty_aops = { 65 }; 66 EXPORT_SYMBOL(empty_aops); 67 68 /* 69 * Statistics gathering.. 70 */ 71 struct inodes_stat_t inodes_stat; 72 73 static DEFINE_PER_CPU(unsigned int, nr_inodes); 74 static DEFINE_PER_CPU(unsigned int, nr_unused); 75 76 static struct kmem_cache *inode_cachep __read_mostly; 77 78 static int get_nr_inodes(void) 79 { 80 int i; 81 int sum = 0; 82 for_each_possible_cpu(i) 83 sum += per_cpu(nr_inodes, i); 84 return sum < 0 ? 0 : sum; 85 } 86 87 static inline int get_nr_inodes_unused(void) 88 { 89 int i; 90 int sum = 0; 91 for_each_possible_cpu(i) 92 sum += per_cpu(nr_unused, i); 93 return sum < 0 ? 0 : sum; 94 } 95 96 int get_nr_dirty_inodes(void) 97 { 98 /* not actually dirty inodes, but a wild approximation */ 99 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 100 return nr_dirty > 0 ? nr_dirty : 0; 101 } 102 103 /* 104 * Handle nr_inode sysctl 105 */ 106 #ifdef CONFIG_SYSCTL 107 int proc_nr_inodes(ctl_table *table, int write, 108 void __user *buffer, size_t *lenp, loff_t *ppos) 109 { 110 inodes_stat.nr_inodes = get_nr_inodes(); 111 inodes_stat.nr_unused = get_nr_inodes_unused(); 112 return proc_dointvec(table, write, buffer, lenp, ppos); 113 } 114 #endif 115 116 /** 117 * inode_init_always - perform inode structure intialisation 118 * @sb: superblock inode belongs to 119 * @inode: inode to initialise 120 * 121 * These are initializations that need to be done on every inode 122 * allocation as the fields are not initialised by slab allocation. 123 */ 124 int inode_init_always(struct super_block *sb, struct inode *inode) 125 { 126 static const struct inode_operations empty_iops; 127 static const struct file_operations empty_fops; 128 struct address_space *const mapping = &inode->i_data; 129 130 inode->i_sb = sb; 131 inode->i_blkbits = sb->s_blocksize_bits; 132 inode->i_flags = 0; 133 atomic_set(&inode->i_count, 1); 134 inode->i_op = &empty_iops; 135 inode->i_fop = &empty_fops; 136 inode->__i_nlink = 1; 137 inode->i_opflags = 0; 138 i_uid_write(inode, 0); 139 i_gid_write(inode, 0); 140 atomic_set(&inode->i_writecount, 0); 141 inode->i_size = 0; 142 inode->i_blocks = 0; 143 inode->i_bytes = 0; 144 inode->i_generation = 0; 145 #ifdef CONFIG_QUOTA 146 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 147 #endif 148 inode->i_pipe = NULL; 149 inode->i_bdev = NULL; 150 inode->i_cdev = NULL; 151 inode->i_rdev = 0; 152 inode->dirtied_when = 0; 153 154 if (security_inode_alloc(inode)) 155 goto out; 156 spin_lock_init(&inode->i_lock); 157 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 158 159 mutex_init(&inode->i_mutex); 160 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 161 162 atomic_set(&inode->i_dio_count, 0); 163 164 mapping->a_ops = &empty_aops; 165 mapping->host = inode; 166 mapping->flags = 0; 167 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 168 mapping->assoc_mapping = NULL; 169 mapping->backing_dev_info = &default_backing_dev_info; 170 mapping->writeback_index = 0; 171 172 /* 173 * If the block_device provides a backing_dev_info for client 174 * inodes then use that. Otherwise the inode share the bdev's 175 * backing_dev_info. 176 */ 177 if (sb->s_bdev) { 178 struct backing_dev_info *bdi; 179 180 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 181 mapping->backing_dev_info = bdi; 182 } 183 inode->i_private = NULL; 184 inode->i_mapping = mapping; 185 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 186 #ifdef CONFIG_FS_POSIX_ACL 187 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 188 #endif 189 190 #ifdef CONFIG_FSNOTIFY 191 inode->i_fsnotify_mask = 0; 192 #endif 193 194 this_cpu_inc(nr_inodes); 195 196 return 0; 197 out: 198 return -ENOMEM; 199 } 200 EXPORT_SYMBOL(inode_init_always); 201 202 static struct inode *alloc_inode(struct super_block *sb) 203 { 204 struct inode *inode; 205 206 if (sb->s_op->alloc_inode) 207 inode = sb->s_op->alloc_inode(sb); 208 else 209 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 210 211 if (!inode) 212 return NULL; 213 214 if (unlikely(inode_init_always(sb, inode))) { 215 if (inode->i_sb->s_op->destroy_inode) 216 inode->i_sb->s_op->destroy_inode(inode); 217 else 218 kmem_cache_free(inode_cachep, inode); 219 return NULL; 220 } 221 222 return inode; 223 } 224 225 void free_inode_nonrcu(struct inode *inode) 226 { 227 kmem_cache_free(inode_cachep, inode); 228 } 229 EXPORT_SYMBOL(free_inode_nonrcu); 230 231 void __destroy_inode(struct inode *inode) 232 { 233 BUG_ON(inode_has_buffers(inode)); 234 security_inode_free(inode); 235 fsnotify_inode_delete(inode); 236 if (!inode->i_nlink) { 237 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 238 atomic_long_dec(&inode->i_sb->s_remove_count); 239 } 240 241 #ifdef CONFIG_FS_POSIX_ACL 242 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED) 243 posix_acl_release(inode->i_acl); 244 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED) 245 posix_acl_release(inode->i_default_acl); 246 #endif 247 this_cpu_dec(nr_inodes); 248 } 249 EXPORT_SYMBOL(__destroy_inode); 250 251 static void i_callback(struct rcu_head *head) 252 { 253 struct inode *inode = container_of(head, struct inode, i_rcu); 254 kmem_cache_free(inode_cachep, inode); 255 } 256 257 static void destroy_inode(struct inode *inode) 258 { 259 BUG_ON(!list_empty(&inode->i_lru)); 260 __destroy_inode(inode); 261 if (inode->i_sb->s_op->destroy_inode) 262 inode->i_sb->s_op->destroy_inode(inode); 263 else 264 call_rcu(&inode->i_rcu, i_callback); 265 } 266 267 /** 268 * drop_nlink - directly drop an inode's link count 269 * @inode: inode 270 * 271 * This is a low-level filesystem helper to replace any 272 * direct filesystem manipulation of i_nlink. In cases 273 * where we are attempting to track writes to the 274 * filesystem, a decrement to zero means an imminent 275 * write when the file is truncated and actually unlinked 276 * on the filesystem. 277 */ 278 void drop_nlink(struct inode *inode) 279 { 280 WARN_ON(inode->i_nlink == 0); 281 inode->__i_nlink--; 282 if (!inode->i_nlink) 283 atomic_long_inc(&inode->i_sb->s_remove_count); 284 } 285 EXPORT_SYMBOL(drop_nlink); 286 287 /** 288 * clear_nlink - directly zero an inode's link count 289 * @inode: inode 290 * 291 * This is a low-level filesystem helper to replace any 292 * direct filesystem manipulation of i_nlink. See 293 * drop_nlink() for why we care about i_nlink hitting zero. 294 */ 295 void clear_nlink(struct inode *inode) 296 { 297 if (inode->i_nlink) { 298 inode->__i_nlink = 0; 299 atomic_long_inc(&inode->i_sb->s_remove_count); 300 } 301 } 302 EXPORT_SYMBOL(clear_nlink); 303 304 /** 305 * set_nlink - directly set an inode's link count 306 * @inode: inode 307 * @nlink: new nlink (should be non-zero) 308 * 309 * This is a low-level filesystem helper to replace any 310 * direct filesystem manipulation of i_nlink. 311 */ 312 void set_nlink(struct inode *inode, unsigned int nlink) 313 { 314 if (!nlink) { 315 clear_nlink(inode); 316 } else { 317 /* Yes, some filesystems do change nlink from zero to one */ 318 if (inode->i_nlink == 0) 319 atomic_long_dec(&inode->i_sb->s_remove_count); 320 321 inode->__i_nlink = nlink; 322 } 323 } 324 EXPORT_SYMBOL(set_nlink); 325 326 /** 327 * inc_nlink - directly increment an inode's link count 328 * @inode: inode 329 * 330 * This is a low-level filesystem helper to replace any 331 * direct filesystem manipulation of i_nlink. Currently, 332 * it is only here for parity with dec_nlink(). 333 */ 334 void inc_nlink(struct inode *inode) 335 { 336 if (WARN_ON(inode->i_nlink == 0)) 337 atomic_long_dec(&inode->i_sb->s_remove_count); 338 339 inode->__i_nlink++; 340 } 341 EXPORT_SYMBOL(inc_nlink); 342 343 void address_space_init_once(struct address_space *mapping) 344 { 345 memset(mapping, 0, sizeof(*mapping)); 346 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC); 347 spin_lock_init(&mapping->tree_lock); 348 mutex_init(&mapping->i_mmap_mutex); 349 INIT_LIST_HEAD(&mapping->private_list); 350 spin_lock_init(&mapping->private_lock); 351 mapping->i_mmap = RB_ROOT; 352 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear); 353 } 354 EXPORT_SYMBOL(address_space_init_once); 355 356 /* 357 * These are initializations that only need to be done 358 * once, because the fields are idempotent across use 359 * of the inode, so let the slab aware of that. 360 */ 361 void inode_init_once(struct inode *inode) 362 { 363 memset(inode, 0, sizeof(*inode)); 364 INIT_HLIST_NODE(&inode->i_hash); 365 INIT_LIST_HEAD(&inode->i_devices); 366 INIT_LIST_HEAD(&inode->i_wb_list); 367 INIT_LIST_HEAD(&inode->i_lru); 368 address_space_init_once(&inode->i_data); 369 i_size_ordered_init(inode); 370 #ifdef CONFIG_FSNOTIFY 371 INIT_HLIST_HEAD(&inode->i_fsnotify_marks); 372 #endif 373 } 374 EXPORT_SYMBOL(inode_init_once); 375 376 static void init_once(void *foo) 377 { 378 struct inode *inode = (struct inode *) foo; 379 380 inode_init_once(inode); 381 } 382 383 /* 384 * inode->i_lock must be held 385 */ 386 void __iget(struct inode *inode) 387 { 388 atomic_inc(&inode->i_count); 389 } 390 391 /* 392 * get additional reference to inode; caller must already hold one. 393 */ 394 void ihold(struct inode *inode) 395 { 396 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 397 } 398 EXPORT_SYMBOL(ihold); 399 400 static void inode_lru_list_add(struct inode *inode) 401 { 402 spin_lock(&inode->i_sb->s_inode_lru_lock); 403 if (list_empty(&inode->i_lru)) { 404 list_add(&inode->i_lru, &inode->i_sb->s_inode_lru); 405 inode->i_sb->s_nr_inodes_unused++; 406 this_cpu_inc(nr_unused); 407 } 408 spin_unlock(&inode->i_sb->s_inode_lru_lock); 409 } 410 411 static void inode_lru_list_del(struct inode *inode) 412 { 413 spin_lock(&inode->i_sb->s_inode_lru_lock); 414 if (!list_empty(&inode->i_lru)) { 415 list_del_init(&inode->i_lru); 416 inode->i_sb->s_nr_inodes_unused--; 417 this_cpu_dec(nr_unused); 418 } 419 spin_unlock(&inode->i_sb->s_inode_lru_lock); 420 } 421 422 /** 423 * inode_sb_list_add - add inode to the superblock list of inodes 424 * @inode: inode to add 425 */ 426 void inode_sb_list_add(struct inode *inode) 427 { 428 spin_lock(&inode_sb_list_lock); 429 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 430 spin_unlock(&inode_sb_list_lock); 431 } 432 EXPORT_SYMBOL_GPL(inode_sb_list_add); 433 434 static inline void inode_sb_list_del(struct inode *inode) 435 { 436 if (!list_empty(&inode->i_sb_list)) { 437 spin_lock(&inode_sb_list_lock); 438 list_del_init(&inode->i_sb_list); 439 spin_unlock(&inode_sb_list_lock); 440 } 441 } 442 443 static unsigned long hash(struct super_block *sb, unsigned long hashval) 444 { 445 unsigned long tmp; 446 447 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 448 L1_CACHE_BYTES; 449 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 450 return tmp & i_hash_mask; 451 } 452 453 /** 454 * __insert_inode_hash - hash an inode 455 * @inode: unhashed inode 456 * @hashval: unsigned long value used to locate this object in the 457 * inode_hashtable. 458 * 459 * Add an inode to the inode hash for this superblock. 460 */ 461 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 462 { 463 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 464 465 spin_lock(&inode_hash_lock); 466 spin_lock(&inode->i_lock); 467 hlist_add_head(&inode->i_hash, b); 468 spin_unlock(&inode->i_lock); 469 spin_unlock(&inode_hash_lock); 470 } 471 EXPORT_SYMBOL(__insert_inode_hash); 472 473 /** 474 * __remove_inode_hash - remove an inode from the hash 475 * @inode: inode to unhash 476 * 477 * Remove an inode from the superblock. 478 */ 479 void __remove_inode_hash(struct inode *inode) 480 { 481 spin_lock(&inode_hash_lock); 482 spin_lock(&inode->i_lock); 483 hlist_del_init(&inode->i_hash); 484 spin_unlock(&inode->i_lock); 485 spin_unlock(&inode_hash_lock); 486 } 487 EXPORT_SYMBOL(__remove_inode_hash); 488 489 void clear_inode(struct inode *inode) 490 { 491 might_sleep(); 492 /* 493 * We have to cycle tree_lock here because reclaim can be still in the 494 * process of removing the last page (in __delete_from_page_cache()) 495 * and we must not free mapping under it. 496 */ 497 spin_lock_irq(&inode->i_data.tree_lock); 498 BUG_ON(inode->i_data.nrpages); 499 spin_unlock_irq(&inode->i_data.tree_lock); 500 BUG_ON(!list_empty(&inode->i_data.private_list)); 501 BUG_ON(!(inode->i_state & I_FREEING)); 502 BUG_ON(inode->i_state & I_CLEAR); 503 /* don't need i_lock here, no concurrent mods to i_state */ 504 inode->i_state = I_FREEING | I_CLEAR; 505 } 506 EXPORT_SYMBOL(clear_inode); 507 508 /* 509 * Free the inode passed in, removing it from the lists it is still connected 510 * to. We remove any pages still attached to the inode and wait for any IO that 511 * is still in progress before finally destroying the inode. 512 * 513 * An inode must already be marked I_FREEING so that we avoid the inode being 514 * moved back onto lists if we race with other code that manipulates the lists 515 * (e.g. writeback_single_inode). The caller is responsible for setting this. 516 * 517 * An inode must already be removed from the LRU list before being evicted from 518 * the cache. This should occur atomically with setting the I_FREEING state 519 * flag, so no inodes here should ever be on the LRU when being evicted. 520 */ 521 static void evict(struct inode *inode) 522 { 523 const struct super_operations *op = inode->i_sb->s_op; 524 525 BUG_ON(!(inode->i_state & I_FREEING)); 526 BUG_ON(!list_empty(&inode->i_lru)); 527 528 if (!list_empty(&inode->i_wb_list)) 529 inode_wb_list_del(inode); 530 531 inode_sb_list_del(inode); 532 533 /* 534 * Wait for flusher thread to be done with the inode so that filesystem 535 * does not start destroying it while writeback is still running. Since 536 * the inode has I_FREEING set, flusher thread won't start new work on 537 * the inode. We just have to wait for running writeback to finish. 538 */ 539 inode_wait_for_writeback(inode); 540 541 if (op->evict_inode) { 542 op->evict_inode(inode); 543 } else { 544 if (inode->i_data.nrpages) 545 truncate_inode_pages(&inode->i_data, 0); 546 clear_inode(inode); 547 } 548 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 549 bd_forget(inode); 550 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 551 cd_forget(inode); 552 553 remove_inode_hash(inode); 554 555 spin_lock(&inode->i_lock); 556 wake_up_bit(&inode->i_state, __I_NEW); 557 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 558 spin_unlock(&inode->i_lock); 559 560 destroy_inode(inode); 561 } 562 563 /* 564 * dispose_list - dispose of the contents of a local list 565 * @head: the head of the list to free 566 * 567 * Dispose-list gets a local list with local inodes in it, so it doesn't 568 * need to worry about list corruption and SMP locks. 569 */ 570 static void dispose_list(struct list_head *head) 571 { 572 while (!list_empty(head)) { 573 struct inode *inode; 574 575 inode = list_first_entry(head, struct inode, i_lru); 576 list_del_init(&inode->i_lru); 577 578 evict(inode); 579 } 580 } 581 582 /** 583 * evict_inodes - evict all evictable inodes for a superblock 584 * @sb: superblock to operate on 585 * 586 * Make sure that no inodes with zero refcount are retained. This is 587 * called by superblock shutdown after having MS_ACTIVE flag removed, 588 * so any inode reaching zero refcount during or after that call will 589 * be immediately evicted. 590 */ 591 void evict_inodes(struct super_block *sb) 592 { 593 struct inode *inode, *next; 594 LIST_HEAD(dispose); 595 596 spin_lock(&inode_sb_list_lock); 597 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 598 if (atomic_read(&inode->i_count)) 599 continue; 600 601 spin_lock(&inode->i_lock); 602 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 603 spin_unlock(&inode->i_lock); 604 continue; 605 } 606 607 inode->i_state |= I_FREEING; 608 inode_lru_list_del(inode); 609 spin_unlock(&inode->i_lock); 610 list_add(&inode->i_lru, &dispose); 611 } 612 spin_unlock(&inode_sb_list_lock); 613 614 dispose_list(&dispose); 615 } 616 617 /** 618 * invalidate_inodes - attempt to free all inodes on a superblock 619 * @sb: superblock to operate on 620 * @kill_dirty: flag to guide handling of dirty inodes 621 * 622 * Attempts to free all inodes for a given superblock. If there were any 623 * busy inodes return a non-zero value, else zero. 624 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 625 * them as busy. 626 */ 627 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 628 { 629 int busy = 0; 630 struct inode *inode, *next; 631 LIST_HEAD(dispose); 632 633 spin_lock(&inode_sb_list_lock); 634 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 635 spin_lock(&inode->i_lock); 636 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 637 spin_unlock(&inode->i_lock); 638 continue; 639 } 640 if (inode->i_state & I_DIRTY && !kill_dirty) { 641 spin_unlock(&inode->i_lock); 642 busy = 1; 643 continue; 644 } 645 if (atomic_read(&inode->i_count)) { 646 spin_unlock(&inode->i_lock); 647 busy = 1; 648 continue; 649 } 650 651 inode->i_state |= I_FREEING; 652 inode_lru_list_del(inode); 653 spin_unlock(&inode->i_lock); 654 list_add(&inode->i_lru, &dispose); 655 } 656 spin_unlock(&inode_sb_list_lock); 657 658 dispose_list(&dispose); 659 660 return busy; 661 } 662 663 static int can_unuse(struct inode *inode) 664 { 665 if (inode->i_state & ~I_REFERENCED) 666 return 0; 667 if (inode_has_buffers(inode)) 668 return 0; 669 if (atomic_read(&inode->i_count)) 670 return 0; 671 if (inode->i_data.nrpages) 672 return 0; 673 return 1; 674 } 675 676 /* 677 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 678 * This is called from the superblock shrinker function with a number of inodes 679 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 680 * then are freed outside inode_lock by dispose_list(). 681 * 682 * Any inodes which are pinned purely because of attached pagecache have their 683 * pagecache removed. If the inode has metadata buffers attached to 684 * mapping->private_list then try to remove them. 685 * 686 * If the inode has the I_REFERENCED flag set, then it means that it has been 687 * used recently - the flag is set in iput_final(). When we encounter such an 688 * inode, clear the flag and move it to the back of the LRU so it gets another 689 * pass through the LRU before it gets reclaimed. This is necessary because of 690 * the fact we are doing lazy LRU updates to minimise lock contention so the 691 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 692 * with this flag set because they are the inodes that are out of order. 693 */ 694 void prune_icache_sb(struct super_block *sb, int nr_to_scan) 695 { 696 LIST_HEAD(freeable); 697 int nr_scanned; 698 unsigned long reap = 0; 699 700 spin_lock(&sb->s_inode_lru_lock); 701 for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) { 702 struct inode *inode; 703 704 if (list_empty(&sb->s_inode_lru)) 705 break; 706 707 inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru); 708 709 /* 710 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here, 711 * so use a trylock. If we fail to get the lock, just move the 712 * inode to the back of the list so we don't spin on it. 713 */ 714 if (!spin_trylock(&inode->i_lock)) { 715 list_move_tail(&inode->i_lru, &sb->s_inode_lru); 716 continue; 717 } 718 719 /* 720 * Referenced or dirty inodes are still in use. Give them 721 * another pass through the LRU as we canot reclaim them now. 722 */ 723 if (atomic_read(&inode->i_count) || 724 (inode->i_state & ~I_REFERENCED)) { 725 list_del_init(&inode->i_lru); 726 spin_unlock(&inode->i_lock); 727 sb->s_nr_inodes_unused--; 728 this_cpu_dec(nr_unused); 729 continue; 730 } 731 732 /* recently referenced inodes get one more pass */ 733 if (inode->i_state & I_REFERENCED) { 734 inode->i_state &= ~I_REFERENCED; 735 list_move(&inode->i_lru, &sb->s_inode_lru); 736 spin_unlock(&inode->i_lock); 737 continue; 738 } 739 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 740 __iget(inode); 741 spin_unlock(&inode->i_lock); 742 spin_unlock(&sb->s_inode_lru_lock); 743 if (remove_inode_buffers(inode)) 744 reap += invalidate_mapping_pages(&inode->i_data, 745 0, -1); 746 iput(inode); 747 spin_lock(&sb->s_inode_lru_lock); 748 749 if (inode != list_entry(sb->s_inode_lru.next, 750 struct inode, i_lru)) 751 continue; /* wrong inode or list_empty */ 752 /* avoid lock inversions with trylock */ 753 if (!spin_trylock(&inode->i_lock)) 754 continue; 755 if (!can_unuse(inode)) { 756 spin_unlock(&inode->i_lock); 757 continue; 758 } 759 } 760 WARN_ON(inode->i_state & I_NEW); 761 inode->i_state |= I_FREEING; 762 spin_unlock(&inode->i_lock); 763 764 list_move(&inode->i_lru, &freeable); 765 sb->s_nr_inodes_unused--; 766 this_cpu_dec(nr_unused); 767 } 768 if (current_is_kswapd()) 769 __count_vm_events(KSWAPD_INODESTEAL, reap); 770 else 771 __count_vm_events(PGINODESTEAL, reap); 772 spin_unlock(&sb->s_inode_lru_lock); 773 if (current->reclaim_state) 774 current->reclaim_state->reclaimed_slab += reap; 775 776 dispose_list(&freeable); 777 } 778 779 static void __wait_on_freeing_inode(struct inode *inode); 780 /* 781 * Called with the inode lock held. 782 */ 783 static struct inode *find_inode(struct super_block *sb, 784 struct hlist_head *head, 785 int (*test)(struct inode *, void *), 786 void *data) 787 { 788 struct hlist_node *node; 789 struct inode *inode = NULL; 790 791 repeat: 792 hlist_for_each_entry(inode, node, head, i_hash) { 793 spin_lock(&inode->i_lock); 794 if (inode->i_sb != sb) { 795 spin_unlock(&inode->i_lock); 796 continue; 797 } 798 if (!test(inode, data)) { 799 spin_unlock(&inode->i_lock); 800 continue; 801 } 802 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 803 __wait_on_freeing_inode(inode); 804 goto repeat; 805 } 806 __iget(inode); 807 spin_unlock(&inode->i_lock); 808 return inode; 809 } 810 return NULL; 811 } 812 813 /* 814 * find_inode_fast is the fast path version of find_inode, see the comment at 815 * iget_locked for details. 816 */ 817 static struct inode *find_inode_fast(struct super_block *sb, 818 struct hlist_head *head, unsigned long ino) 819 { 820 struct hlist_node *node; 821 struct inode *inode = NULL; 822 823 repeat: 824 hlist_for_each_entry(inode, node, head, i_hash) { 825 spin_lock(&inode->i_lock); 826 if (inode->i_ino != ino) { 827 spin_unlock(&inode->i_lock); 828 continue; 829 } 830 if (inode->i_sb != sb) { 831 spin_unlock(&inode->i_lock); 832 continue; 833 } 834 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 835 __wait_on_freeing_inode(inode); 836 goto repeat; 837 } 838 __iget(inode); 839 spin_unlock(&inode->i_lock); 840 return inode; 841 } 842 return NULL; 843 } 844 845 /* 846 * Each cpu owns a range of LAST_INO_BATCH numbers. 847 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 848 * to renew the exhausted range. 849 * 850 * This does not significantly increase overflow rate because every CPU can 851 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 852 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 853 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 854 * overflow rate by 2x, which does not seem too significant. 855 * 856 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 857 * error if st_ino won't fit in target struct field. Use 32bit counter 858 * here to attempt to avoid that. 859 */ 860 #define LAST_INO_BATCH 1024 861 static DEFINE_PER_CPU(unsigned int, last_ino); 862 863 unsigned int get_next_ino(void) 864 { 865 unsigned int *p = &get_cpu_var(last_ino); 866 unsigned int res = *p; 867 868 #ifdef CONFIG_SMP 869 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 870 static atomic_t shared_last_ino; 871 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 872 873 res = next - LAST_INO_BATCH; 874 } 875 #endif 876 877 *p = ++res; 878 put_cpu_var(last_ino); 879 return res; 880 } 881 EXPORT_SYMBOL(get_next_ino); 882 883 /** 884 * new_inode_pseudo - obtain an inode 885 * @sb: superblock 886 * 887 * Allocates a new inode for given superblock. 888 * Inode wont be chained in superblock s_inodes list 889 * This means : 890 * - fs can't be unmount 891 * - quotas, fsnotify, writeback can't work 892 */ 893 struct inode *new_inode_pseudo(struct super_block *sb) 894 { 895 struct inode *inode = alloc_inode(sb); 896 897 if (inode) { 898 spin_lock(&inode->i_lock); 899 inode->i_state = 0; 900 spin_unlock(&inode->i_lock); 901 INIT_LIST_HEAD(&inode->i_sb_list); 902 } 903 return inode; 904 } 905 906 /** 907 * new_inode - obtain an inode 908 * @sb: superblock 909 * 910 * Allocates a new inode for given superblock. The default gfp_mask 911 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 912 * If HIGHMEM pages are unsuitable or it is known that pages allocated 913 * for the page cache are not reclaimable or migratable, 914 * mapping_set_gfp_mask() must be called with suitable flags on the 915 * newly created inode's mapping 916 * 917 */ 918 struct inode *new_inode(struct super_block *sb) 919 { 920 struct inode *inode; 921 922 spin_lock_prefetch(&inode_sb_list_lock); 923 924 inode = new_inode_pseudo(sb); 925 if (inode) 926 inode_sb_list_add(inode); 927 return inode; 928 } 929 EXPORT_SYMBOL(new_inode); 930 931 #ifdef CONFIG_DEBUG_LOCK_ALLOC 932 void lockdep_annotate_inode_mutex_key(struct inode *inode) 933 { 934 if (S_ISDIR(inode->i_mode)) { 935 struct file_system_type *type = inode->i_sb->s_type; 936 937 /* Set new key only if filesystem hasn't already changed it */ 938 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) { 939 /* 940 * ensure nobody is actually holding i_mutex 941 */ 942 mutex_destroy(&inode->i_mutex); 943 mutex_init(&inode->i_mutex); 944 lockdep_set_class(&inode->i_mutex, 945 &type->i_mutex_dir_key); 946 } 947 } 948 } 949 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 950 #endif 951 952 /** 953 * unlock_new_inode - clear the I_NEW state and wake up any waiters 954 * @inode: new inode to unlock 955 * 956 * Called when the inode is fully initialised to clear the new state of the 957 * inode and wake up anyone waiting for the inode to finish initialisation. 958 */ 959 void unlock_new_inode(struct inode *inode) 960 { 961 lockdep_annotate_inode_mutex_key(inode); 962 spin_lock(&inode->i_lock); 963 WARN_ON(!(inode->i_state & I_NEW)); 964 inode->i_state &= ~I_NEW; 965 smp_mb(); 966 wake_up_bit(&inode->i_state, __I_NEW); 967 spin_unlock(&inode->i_lock); 968 } 969 EXPORT_SYMBOL(unlock_new_inode); 970 971 /** 972 * iget5_locked - obtain an inode from a mounted file system 973 * @sb: super block of file system 974 * @hashval: hash value (usually inode number) to get 975 * @test: callback used for comparisons between inodes 976 * @set: callback used to initialize a new struct inode 977 * @data: opaque data pointer to pass to @test and @set 978 * 979 * Search for the inode specified by @hashval and @data in the inode cache, 980 * and if present it is return it with an increased reference count. This is 981 * a generalized version of iget_locked() for file systems where the inode 982 * number is not sufficient for unique identification of an inode. 983 * 984 * If the inode is not in cache, allocate a new inode and return it locked, 985 * hashed, and with the I_NEW flag set. The file system gets to fill it in 986 * before unlocking it via unlock_new_inode(). 987 * 988 * Note both @test and @set are called with the inode_hash_lock held, so can't 989 * sleep. 990 */ 991 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 992 int (*test)(struct inode *, void *), 993 int (*set)(struct inode *, void *), void *data) 994 { 995 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 996 struct inode *inode; 997 998 spin_lock(&inode_hash_lock); 999 inode = find_inode(sb, head, test, data); 1000 spin_unlock(&inode_hash_lock); 1001 1002 if (inode) { 1003 wait_on_inode(inode); 1004 return inode; 1005 } 1006 1007 inode = alloc_inode(sb); 1008 if (inode) { 1009 struct inode *old; 1010 1011 spin_lock(&inode_hash_lock); 1012 /* We released the lock, so.. */ 1013 old = find_inode(sb, head, test, data); 1014 if (!old) { 1015 if (set(inode, data)) 1016 goto set_failed; 1017 1018 spin_lock(&inode->i_lock); 1019 inode->i_state = I_NEW; 1020 hlist_add_head(&inode->i_hash, head); 1021 spin_unlock(&inode->i_lock); 1022 inode_sb_list_add(inode); 1023 spin_unlock(&inode_hash_lock); 1024 1025 /* Return the locked inode with I_NEW set, the 1026 * caller is responsible for filling in the contents 1027 */ 1028 return inode; 1029 } 1030 1031 /* 1032 * Uhhuh, somebody else created the same inode under 1033 * us. Use the old inode instead of the one we just 1034 * allocated. 1035 */ 1036 spin_unlock(&inode_hash_lock); 1037 destroy_inode(inode); 1038 inode = old; 1039 wait_on_inode(inode); 1040 } 1041 return inode; 1042 1043 set_failed: 1044 spin_unlock(&inode_hash_lock); 1045 destroy_inode(inode); 1046 return NULL; 1047 } 1048 EXPORT_SYMBOL(iget5_locked); 1049 1050 /** 1051 * iget_locked - obtain an inode from a mounted file system 1052 * @sb: super block of file system 1053 * @ino: inode number to get 1054 * 1055 * Search for the inode specified by @ino in the inode cache and if present 1056 * return it with an increased reference count. This is for file systems 1057 * where the inode number is sufficient for unique identification of an inode. 1058 * 1059 * If the inode is not in cache, allocate a new inode and return it locked, 1060 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1061 * before unlocking it via unlock_new_inode(). 1062 */ 1063 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1064 { 1065 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1066 struct inode *inode; 1067 1068 spin_lock(&inode_hash_lock); 1069 inode = find_inode_fast(sb, head, ino); 1070 spin_unlock(&inode_hash_lock); 1071 if (inode) { 1072 wait_on_inode(inode); 1073 return inode; 1074 } 1075 1076 inode = alloc_inode(sb); 1077 if (inode) { 1078 struct inode *old; 1079 1080 spin_lock(&inode_hash_lock); 1081 /* We released the lock, so.. */ 1082 old = find_inode_fast(sb, head, ino); 1083 if (!old) { 1084 inode->i_ino = ino; 1085 spin_lock(&inode->i_lock); 1086 inode->i_state = I_NEW; 1087 hlist_add_head(&inode->i_hash, head); 1088 spin_unlock(&inode->i_lock); 1089 inode_sb_list_add(inode); 1090 spin_unlock(&inode_hash_lock); 1091 1092 /* Return the locked inode with I_NEW set, the 1093 * caller is responsible for filling in the contents 1094 */ 1095 return inode; 1096 } 1097 1098 /* 1099 * Uhhuh, somebody else created the same inode under 1100 * us. Use the old inode instead of the one we just 1101 * allocated. 1102 */ 1103 spin_unlock(&inode_hash_lock); 1104 destroy_inode(inode); 1105 inode = old; 1106 wait_on_inode(inode); 1107 } 1108 return inode; 1109 } 1110 EXPORT_SYMBOL(iget_locked); 1111 1112 /* 1113 * search the inode cache for a matching inode number. 1114 * If we find one, then the inode number we are trying to 1115 * allocate is not unique and so we should not use it. 1116 * 1117 * Returns 1 if the inode number is unique, 0 if it is not. 1118 */ 1119 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1120 { 1121 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1122 struct hlist_node *node; 1123 struct inode *inode; 1124 1125 spin_lock(&inode_hash_lock); 1126 hlist_for_each_entry(inode, node, b, i_hash) { 1127 if (inode->i_ino == ino && inode->i_sb == sb) { 1128 spin_unlock(&inode_hash_lock); 1129 return 0; 1130 } 1131 } 1132 spin_unlock(&inode_hash_lock); 1133 1134 return 1; 1135 } 1136 1137 /** 1138 * iunique - get a unique inode number 1139 * @sb: superblock 1140 * @max_reserved: highest reserved inode number 1141 * 1142 * Obtain an inode number that is unique on the system for a given 1143 * superblock. This is used by file systems that have no natural 1144 * permanent inode numbering system. An inode number is returned that 1145 * is higher than the reserved limit but unique. 1146 * 1147 * BUGS: 1148 * With a large number of inodes live on the file system this function 1149 * currently becomes quite slow. 1150 */ 1151 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1152 { 1153 /* 1154 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1155 * error if st_ino won't fit in target struct field. Use 32bit counter 1156 * here to attempt to avoid that. 1157 */ 1158 static DEFINE_SPINLOCK(iunique_lock); 1159 static unsigned int counter; 1160 ino_t res; 1161 1162 spin_lock(&iunique_lock); 1163 do { 1164 if (counter <= max_reserved) 1165 counter = max_reserved + 1; 1166 res = counter++; 1167 } while (!test_inode_iunique(sb, res)); 1168 spin_unlock(&iunique_lock); 1169 1170 return res; 1171 } 1172 EXPORT_SYMBOL(iunique); 1173 1174 struct inode *igrab(struct inode *inode) 1175 { 1176 spin_lock(&inode->i_lock); 1177 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1178 __iget(inode); 1179 spin_unlock(&inode->i_lock); 1180 } else { 1181 spin_unlock(&inode->i_lock); 1182 /* 1183 * Handle the case where s_op->clear_inode is not been 1184 * called yet, and somebody is calling igrab 1185 * while the inode is getting freed. 1186 */ 1187 inode = NULL; 1188 } 1189 return inode; 1190 } 1191 EXPORT_SYMBOL(igrab); 1192 1193 /** 1194 * ilookup5_nowait - search for an inode in the inode cache 1195 * @sb: super block of file system to search 1196 * @hashval: hash value (usually inode number) to search for 1197 * @test: callback used for comparisons between inodes 1198 * @data: opaque data pointer to pass to @test 1199 * 1200 * Search for the inode specified by @hashval and @data in the inode cache. 1201 * If the inode is in the cache, the inode is returned with an incremented 1202 * reference count. 1203 * 1204 * Note: I_NEW is not waited upon so you have to be very careful what you do 1205 * with the returned inode. You probably should be using ilookup5() instead. 1206 * 1207 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1208 */ 1209 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1210 int (*test)(struct inode *, void *), void *data) 1211 { 1212 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1213 struct inode *inode; 1214 1215 spin_lock(&inode_hash_lock); 1216 inode = find_inode(sb, head, test, data); 1217 spin_unlock(&inode_hash_lock); 1218 1219 return inode; 1220 } 1221 EXPORT_SYMBOL(ilookup5_nowait); 1222 1223 /** 1224 * ilookup5 - search for an inode in the inode cache 1225 * @sb: super block of file system to search 1226 * @hashval: hash value (usually inode number) to search for 1227 * @test: callback used for comparisons between inodes 1228 * @data: opaque data pointer to pass to @test 1229 * 1230 * Search for the inode specified by @hashval and @data in the inode cache, 1231 * and if the inode is in the cache, return the inode with an incremented 1232 * reference count. Waits on I_NEW before returning the inode. 1233 * returned with an incremented reference count. 1234 * 1235 * This is a generalized version of ilookup() for file systems where the 1236 * inode number is not sufficient for unique identification of an inode. 1237 * 1238 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1239 */ 1240 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1241 int (*test)(struct inode *, void *), void *data) 1242 { 1243 struct inode *inode = ilookup5_nowait(sb, hashval, test, data); 1244 1245 if (inode) 1246 wait_on_inode(inode); 1247 return inode; 1248 } 1249 EXPORT_SYMBOL(ilookup5); 1250 1251 /** 1252 * ilookup - search for an inode in the inode cache 1253 * @sb: super block of file system to search 1254 * @ino: inode number to search for 1255 * 1256 * Search for the inode @ino in the inode cache, and if the inode is in the 1257 * cache, the inode is returned with an incremented reference count. 1258 */ 1259 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1260 { 1261 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1262 struct inode *inode; 1263 1264 spin_lock(&inode_hash_lock); 1265 inode = find_inode_fast(sb, head, ino); 1266 spin_unlock(&inode_hash_lock); 1267 1268 if (inode) 1269 wait_on_inode(inode); 1270 return inode; 1271 } 1272 EXPORT_SYMBOL(ilookup); 1273 1274 int insert_inode_locked(struct inode *inode) 1275 { 1276 struct super_block *sb = inode->i_sb; 1277 ino_t ino = inode->i_ino; 1278 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1279 1280 while (1) { 1281 struct hlist_node *node; 1282 struct inode *old = NULL; 1283 spin_lock(&inode_hash_lock); 1284 hlist_for_each_entry(old, node, head, i_hash) { 1285 if (old->i_ino != ino) 1286 continue; 1287 if (old->i_sb != sb) 1288 continue; 1289 spin_lock(&old->i_lock); 1290 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1291 spin_unlock(&old->i_lock); 1292 continue; 1293 } 1294 break; 1295 } 1296 if (likely(!node)) { 1297 spin_lock(&inode->i_lock); 1298 inode->i_state |= I_NEW; 1299 hlist_add_head(&inode->i_hash, head); 1300 spin_unlock(&inode->i_lock); 1301 spin_unlock(&inode_hash_lock); 1302 return 0; 1303 } 1304 __iget(old); 1305 spin_unlock(&old->i_lock); 1306 spin_unlock(&inode_hash_lock); 1307 wait_on_inode(old); 1308 if (unlikely(!inode_unhashed(old))) { 1309 iput(old); 1310 return -EBUSY; 1311 } 1312 iput(old); 1313 } 1314 } 1315 EXPORT_SYMBOL(insert_inode_locked); 1316 1317 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1318 int (*test)(struct inode *, void *), void *data) 1319 { 1320 struct super_block *sb = inode->i_sb; 1321 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1322 1323 while (1) { 1324 struct hlist_node *node; 1325 struct inode *old = NULL; 1326 1327 spin_lock(&inode_hash_lock); 1328 hlist_for_each_entry(old, node, head, i_hash) { 1329 if (old->i_sb != sb) 1330 continue; 1331 if (!test(old, data)) 1332 continue; 1333 spin_lock(&old->i_lock); 1334 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1335 spin_unlock(&old->i_lock); 1336 continue; 1337 } 1338 break; 1339 } 1340 if (likely(!node)) { 1341 spin_lock(&inode->i_lock); 1342 inode->i_state |= I_NEW; 1343 hlist_add_head(&inode->i_hash, head); 1344 spin_unlock(&inode->i_lock); 1345 spin_unlock(&inode_hash_lock); 1346 return 0; 1347 } 1348 __iget(old); 1349 spin_unlock(&old->i_lock); 1350 spin_unlock(&inode_hash_lock); 1351 wait_on_inode(old); 1352 if (unlikely(!inode_unhashed(old))) { 1353 iput(old); 1354 return -EBUSY; 1355 } 1356 iput(old); 1357 } 1358 } 1359 EXPORT_SYMBOL(insert_inode_locked4); 1360 1361 1362 int generic_delete_inode(struct inode *inode) 1363 { 1364 return 1; 1365 } 1366 EXPORT_SYMBOL(generic_delete_inode); 1367 1368 /* 1369 * Called when we're dropping the last reference 1370 * to an inode. 1371 * 1372 * Call the FS "drop_inode()" function, defaulting to 1373 * the legacy UNIX filesystem behaviour. If it tells 1374 * us to evict inode, do so. Otherwise, retain inode 1375 * in cache if fs is alive, sync and evict if fs is 1376 * shutting down. 1377 */ 1378 static void iput_final(struct inode *inode) 1379 { 1380 struct super_block *sb = inode->i_sb; 1381 const struct super_operations *op = inode->i_sb->s_op; 1382 int drop; 1383 1384 WARN_ON(inode->i_state & I_NEW); 1385 1386 if (op->drop_inode) 1387 drop = op->drop_inode(inode); 1388 else 1389 drop = generic_drop_inode(inode); 1390 1391 if (!drop && (sb->s_flags & MS_ACTIVE)) { 1392 inode->i_state |= I_REFERENCED; 1393 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 1394 inode_lru_list_add(inode); 1395 spin_unlock(&inode->i_lock); 1396 return; 1397 } 1398 1399 if (!drop) { 1400 inode->i_state |= I_WILL_FREE; 1401 spin_unlock(&inode->i_lock); 1402 write_inode_now(inode, 1); 1403 spin_lock(&inode->i_lock); 1404 WARN_ON(inode->i_state & I_NEW); 1405 inode->i_state &= ~I_WILL_FREE; 1406 } 1407 1408 inode->i_state |= I_FREEING; 1409 if (!list_empty(&inode->i_lru)) 1410 inode_lru_list_del(inode); 1411 spin_unlock(&inode->i_lock); 1412 1413 evict(inode); 1414 } 1415 1416 /** 1417 * iput - put an inode 1418 * @inode: inode to put 1419 * 1420 * Puts an inode, dropping its usage count. If the inode use count hits 1421 * zero, the inode is then freed and may also be destroyed. 1422 * 1423 * Consequently, iput() can sleep. 1424 */ 1425 void iput(struct inode *inode) 1426 { 1427 if (inode) { 1428 BUG_ON(inode->i_state & I_CLEAR); 1429 1430 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) 1431 iput_final(inode); 1432 } 1433 } 1434 EXPORT_SYMBOL(iput); 1435 1436 /** 1437 * bmap - find a block number in a file 1438 * @inode: inode of file 1439 * @block: block to find 1440 * 1441 * Returns the block number on the device holding the inode that 1442 * is the disk block number for the block of the file requested. 1443 * That is, asked for block 4 of inode 1 the function will return the 1444 * disk block relative to the disk start that holds that block of the 1445 * file. 1446 */ 1447 sector_t bmap(struct inode *inode, sector_t block) 1448 { 1449 sector_t res = 0; 1450 if (inode->i_mapping->a_ops->bmap) 1451 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1452 return res; 1453 } 1454 EXPORT_SYMBOL(bmap); 1455 1456 /* 1457 * With relative atime, only update atime if the previous atime is 1458 * earlier than either the ctime or mtime or if at least a day has 1459 * passed since the last atime update. 1460 */ 1461 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1462 struct timespec now) 1463 { 1464 1465 if (!(mnt->mnt_flags & MNT_RELATIME)) 1466 return 1; 1467 /* 1468 * Is mtime younger than atime? If yes, update atime: 1469 */ 1470 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1471 return 1; 1472 /* 1473 * Is ctime younger than atime? If yes, update atime: 1474 */ 1475 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1476 return 1; 1477 1478 /* 1479 * Is the previous atime value older than a day? If yes, 1480 * update atime: 1481 */ 1482 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1483 return 1; 1484 /* 1485 * Good, we can skip the atime update: 1486 */ 1487 return 0; 1488 } 1489 1490 /* 1491 * This does the actual work of updating an inodes time or version. Must have 1492 * had called mnt_want_write() before calling this. 1493 */ 1494 static int update_time(struct inode *inode, struct timespec *time, int flags) 1495 { 1496 if (inode->i_op->update_time) 1497 return inode->i_op->update_time(inode, time, flags); 1498 1499 if (flags & S_ATIME) 1500 inode->i_atime = *time; 1501 if (flags & S_VERSION) 1502 inode_inc_iversion(inode); 1503 if (flags & S_CTIME) 1504 inode->i_ctime = *time; 1505 if (flags & S_MTIME) 1506 inode->i_mtime = *time; 1507 mark_inode_dirty_sync(inode); 1508 return 0; 1509 } 1510 1511 /** 1512 * touch_atime - update the access time 1513 * @path: the &struct path to update 1514 * 1515 * Update the accessed time on an inode and mark it for writeback. 1516 * This function automatically handles read only file systems and media, 1517 * as well as the "noatime" flag and inode specific "noatime" markers. 1518 */ 1519 void touch_atime(struct path *path) 1520 { 1521 struct vfsmount *mnt = path->mnt; 1522 struct inode *inode = path->dentry->d_inode; 1523 struct timespec now; 1524 1525 if (inode->i_flags & S_NOATIME) 1526 return; 1527 if (IS_NOATIME(inode)) 1528 return; 1529 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1530 return; 1531 1532 if (mnt->mnt_flags & MNT_NOATIME) 1533 return; 1534 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1535 return; 1536 1537 now = current_fs_time(inode->i_sb); 1538 1539 if (!relatime_need_update(mnt, inode, now)) 1540 return; 1541 1542 if (timespec_equal(&inode->i_atime, &now)) 1543 return; 1544 1545 if (!sb_start_write_trylock(inode->i_sb)) 1546 return; 1547 1548 if (__mnt_want_write(mnt)) 1549 goto skip_update; 1550 /* 1551 * File systems can error out when updating inodes if they need to 1552 * allocate new space to modify an inode (such is the case for 1553 * Btrfs), but since we touch atime while walking down the path we 1554 * really don't care if we failed to update the atime of the file, 1555 * so just ignore the return value. 1556 * We may also fail on filesystems that have the ability to make parts 1557 * of the fs read only, e.g. subvolumes in Btrfs. 1558 */ 1559 update_time(inode, &now, S_ATIME); 1560 __mnt_drop_write(mnt); 1561 skip_update: 1562 sb_end_write(inode->i_sb); 1563 } 1564 EXPORT_SYMBOL(touch_atime); 1565 1566 /* 1567 * The logic we want is 1568 * 1569 * if suid or (sgid and xgrp) 1570 * remove privs 1571 */ 1572 int should_remove_suid(struct dentry *dentry) 1573 { 1574 umode_t mode = dentry->d_inode->i_mode; 1575 int kill = 0; 1576 1577 /* suid always must be killed */ 1578 if (unlikely(mode & S_ISUID)) 1579 kill = ATTR_KILL_SUID; 1580 1581 /* 1582 * sgid without any exec bits is just a mandatory locking mark; leave 1583 * it alone. If some exec bits are set, it's a real sgid; kill it. 1584 */ 1585 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1586 kill |= ATTR_KILL_SGID; 1587 1588 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1589 return kill; 1590 1591 return 0; 1592 } 1593 EXPORT_SYMBOL(should_remove_suid); 1594 1595 static int __remove_suid(struct dentry *dentry, int kill) 1596 { 1597 struct iattr newattrs; 1598 1599 newattrs.ia_valid = ATTR_FORCE | kill; 1600 return notify_change(dentry, &newattrs); 1601 } 1602 1603 int file_remove_suid(struct file *file) 1604 { 1605 struct dentry *dentry = file->f_path.dentry; 1606 struct inode *inode = dentry->d_inode; 1607 int killsuid; 1608 int killpriv; 1609 int error = 0; 1610 1611 /* Fast path for nothing security related */ 1612 if (IS_NOSEC(inode)) 1613 return 0; 1614 1615 killsuid = should_remove_suid(dentry); 1616 killpriv = security_inode_need_killpriv(dentry); 1617 1618 if (killpriv < 0) 1619 return killpriv; 1620 if (killpriv) 1621 error = security_inode_killpriv(dentry); 1622 if (!error && killsuid) 1623 error = __remove_suid(dentry, killsuid); 1624 if (!error && (inode->i_sb->s_flags & MS_NOSEC)) 1625 inode->i_flags |= S_NOSEC; 1626 1627 return error; 1628 } 1629 EXPORT_SYMBOL(file_remove_suid); 1630 1631 /** 1632 * file_update_time - update mtime and ctime time 1633 * @file: file accessed 1634 * 1635 * Update the mtime and ctime members of an inode and mark the inode 1636 * for writeback. Note that this function is meant exclusively for 1637 * usage in the file write path of filesystems, and filesystems may 1638 * choose to explicitly ignore update via this function with the 1639 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1640 * timestamps are handled by the server. This can return an error for 1641 * file systems who need to allocate space in order to update an inode. 1642 */ 1643 1644 int file_update_time(struct file *file) 1645 { 1646 struct inode *inode = file->f_path.dentry->d_inode; 1647 struct timespec now; 1648 int sync_it = 0; 1649 int ret; 1650 1651 /* First try to exhaust all avenues to not sync */ 1652 if (IS_NOCMTIME(inode)) 1653 return 0; 1654 1655 now = current_fs_time(inode->i_sb); 1656 if (!timespec_equal(&inode->i_mtime, &now)) 1657 sync_it = S_MTIME; 1658 1659 if (!timespec_equal(&inode->i_ctime, &now)) 1660 sync_it |= S_CTIME; 1661 1662 if (IS_I_VERSION(inode)) 1663 sync_it |= S_VERSION; 1664 1665 if (!sync_it) 1666 return 0; 1667 1668 /* Finally allowed to write? Takes lock. */ 1669 if (__mnt_want_write_file(file)) 1670 return 0; 1671 1672 ret = update_time(inode, &now, sync_it); 1673 __mnt_drop_write_file(file); 1674 1675 return ret; 1676 } 1677 EXPORT_SYMBOL(file_update_time); 1678 1679 int inode_needs_sync(struct inode *inode) 1680 { 1681 if (IS_SYNC(inode)) 1682 return 1; 1683 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1684 return 1; 1685 return 0; 1686 } 1687 EXPORT_SYMBOL(inode_needs_sync); 1688 1689 int inode_wait(void *word) 1690 { 1691 schedule(); 1692 return 0; 1693 } 1694 EXPORT_SYMBOL(inode_wait); 1695 1696 /* 1697 * If we try to find an inode in the inode hash while it is being 1698 * deleted, we have to wait until the filesystem completes its 1699 * deletion before reporting that it isn't found. This function waits 1700 * until the deletion _might_ have completed. Callers are responsible 1701 * to recheck inode state. 1702 * 1703 * It doesn't matter if I_NEW is not set initially, a call to 1704 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 1705 * will DTRT. 1706 */ 1707 static void __wait_on_freeing_inode(struct inode *inode) 1708 { 1709 wait_queue_head_t *wq; 1710 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 1711 wq = bit_waitqueue(&inode->i_state, __I_NEW); 1712 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1713 spin_unlock(&inode->i_lock); 1714 spin_unlock(&inode_hash_lock); 1715 schedule(); 1716 finish_wait(wq, &wait.wait); 1717 spin_lock(&inode_hash_lock); 1718 } 1719 1720 static __initdata unsigned long ihash_entries; 1721 static int __init set_ihash_entries(char *str) 1722 { 1723 if (!str) 1724 return 0; 1725 ihash_entries = simple_strtoul(str, &str, 0); 1726 return 1; 1727 } 1728 __setup("ihash_entries=", set_ihash_entries); 1729 1730 /* 1731 * Initialize the waitqueues and inode hash table. 1732 */ 1733 void __init inode_init_early(void) 1734 { 1735 unsigned int loop; 1736 1737 /* If hashes are distributed across NUMA nodes, defer 1738 * hash allocation until vmalloc space is available. 1739 */ 1740 if (hashdist) 1741 return; 1742 1743 inode_hashtable = 1744 alloc_large_system_hash("Inode-cache", 1745 sizeof(struct hlist_head), 1746 ihash_entries, 1747 14, 1748 HASH_EARLY, 1749 &i_hash_shift, 1750 &i_hash_mask, 1751 0, 1752 0); 1753 1754 for (loop = 0; loop < (1U << i_hash_shift); loop++) 1755 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1756 } 1757 1758 void __init inode_init(void) 1759 { 1760 unsigned int loop; 1761 1762 /* inode slab cache */ 1763 inode_cachep = kmem_cache_create("inode_cache", 1764 sizeof(struct inode), 1765 0, 1766 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1767 SLAB_MEM_SPREAD), 1768 init_once); 1769 1770 /* Hash may have been set up in inode_init_early */ 1771 if (!hashdist) 1772 return; 1773 1774 inode_hashtable = 1775 alloc_large_system_hash("Inode-cache", 1776 sizeof(struct hlist_head), 1777 ihash_entries, 1778 14, 1779 0, 1780 &i_hash_shift, 1781 &i_hash_mask, 1782 0, 1783 0); 1784 1785 for (loop = 0; loop < (1U << i_hash_shift); loop++) 1786 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1787 } 1788 1789 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1790 { 1791 inode->i_mode = mode; 1792 if (S_ISCHR(mode)) { 1793 inode->i_fop = &def_chr_fops; 1794 inode->i_rdev = rdev; 1795 } else if (S_ISBLK(mode)) { 1796 inode->i_fop = &def_blk_fops; 1797 inode->i_rdev = rdev; 1798 } else if (S_ISFIFO(mode)) 1799 inode->i_fop = &def_fifo_fops; 1800 else if (S_ISSOCK(mode)) 1801 inode->i_fop = &bad_sock_fops; 1802 else 1803 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 1804 " inode %s:%lu\n", mode, inode->i_sb->s_id, 1805 inode->i_ino); 1806 } 1807 EXPORT_SYMBOL(init_special_inode); 1808 1809 /** 1810 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 1811 * @inode: New inode 1812 * @dir: Directory inode 1813 * @mode: mode of the new inode 1814 */ 1815 void inode_init_owner(struct inode *inode, const struct inode *dir, 1816 umode_t mode) 1817 { 1818 inode->i_uid = current_fsuid(); 1819 if (dir && dir->i_mode & S_ISGID) { 1820 inode->i_gid = dir->i_gid; 1821 if (S_ISDIR(mode)) 1822 mode |= S_ISGID; 1823 } else 1824 inode->i_gid = current_fsgid(); 1825 inode->i_mode = mode; 1826 } 1827 EXPORT_SYMBOL(inode_init_owner); 1828 1829 /** 1830 * inode_owner_or_capable - check current task permissions to inode 1831 * @inode: inode being checked 1832 * 1833 * Return true if current either has CAP_FOWNER to the inode, or 1834 * owns the file. 1835 */ 1836 bool inode_owner_or_capable(const struct inode *inode) 1837 { 1838 if (uid_eq(current_fsuid(), inode->i_uid)) 1839 return true; 1840 if (inode_capable(inode, CAP_FOWNER)) 1841 return true; 1842 return false; 1843 } 1844 EXPORT_SYMBOL(inode_owner_or_capable); 1845 1846 /* 1847 * Direct i/o helper functions 1848 */ 1849 static void __inode_dio_wait(struct inode *inode) 1850 { 1851 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 1852 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 1853 1854 do { 1855 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE); 1856 if (atomic_read(&inode->i_dio_count)) 1857 schedule(); 1858 } while (atomic_read(&inode->i_dio_count)); 1859 finish_wait(wq, &q.wait); 1860 } 1861 1862 /** 1863 * inode_dio_wait - wait for outstanding DIO requests to finish 1864 * @inode: inode to wait for 1865 * 1866 * Waits for all pending direct I/O requests to finish so that we can 1867 * proceed with a truncate or equivalent operation. 1868 * 1869 * Must be called under a lock that serializes taking new references 1870 * to i_dio_count, usually by inode->i_mutex. 1871 */ 1872 void inode_dio_wait(struct inode *inode) 1873 { 1874 if (atomic_read(&inode->i_dio_count)) 1875 __inode_dio_wait(inode); 1876 } 1877 EXPORT_SYMBOL(inode_dio_wait); 1878 1879 /* 1880 * inode_dio_done - signal finish of a direct I/O requests 1881 * @inode: inode the direct I/O happens on 1882 * 1883 * This is called once we've finished processing a direct I/O request, 1884 * and is used to wake up callers waiting for direct I/O to be quiesced. 1885 */ 1886 void inode_dio_done(struct inode *inode) 1887 { 1888 if (atomic_dec_and_test(&inode->i_dio_count)) 1889 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP); 1890 } 1891 EXPORT_SYMBOL(inode_dio_done); 1892