xref: /openbmc/linux/fs/inode.c (revision 81d67439)
1 /*
2  * (C) 1997 Linus Torvalds
3  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4  */
5 #include <linux/fs.h>
6 #include <linux/mm.h>
7 #include <linux/dcache.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/writeback.h>
11 #include <linux/module.h>
12 #include <linux/backing-dev.h>
13 #include <linux/wait.h>
14 #include <linux/rwsem.h>
15 #include <linux/hash.h>
16 #include <linux/swap.h>
17 #include <linux/security.h>
18 #include <linux/pagemap.h>
19 #include <linux/cdev.h>
20 #include <linux/bootmem.h>
21 #include <linux/fsnotify.h>
22 #include <linux/mount.h>
23 #include <linux/async.h>
24 #include <linux/posix_acl.h>
25 #include <linux/prefetch.h>
26 #include <linux/ima.h>
27 #include <linux/cred.h>
28 #include <linux/buffer_head.h> /* for inode_has_buffers */
29 #include "internal.h"
30 
31 /*
32  * Inode locking rules:
33  *
34  * inode->i_lock protects:
35  *   inode->i_state, inode->i_hash, __iget()
36  * inode->i_sb->s_inode_lru_lock protects:
37  *   inode->i_sb->s_inode_lru, inode->i_lru
38  * inode_sb_list_lock protects:
39  *   sb->s_inodes, inode->i_sb_list
40  * inode_wb_list_lock protects:
41  *   bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
42  * inode_hash_lock protects:
43  *   inode_hashtable, inode->i_hash
44  *
45  * Lock ordering:
46  *
47  * inode_sb_list_lock
48  *   inode->i_lock
49  *     inode->i_sb->s_inode_lru_lock
50  *
51  * inode_wb_list_lock
52  *   inode->i_lock
53  *
54  * inode_hash_lock
55  *   inode_sb_list_lock
56  *   inode->i_lock
57  *
58  * iunique_lock
59  *   inode_hash_lock
60  */
61 
62 static unsigned int i_hash_mask __read_mostly;
63 static unsigned int i_hash_shift __read_mostly;
64 static struct hlist_head *inode_hashtable __read_mostly;
65 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
66 
67 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
68 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_wb_list_lock);
69 
70 /*
71  * Empty aops. Can be used for the cases where the user does not
72  * define any of the address_space operations.
73  */
74 const struct address_space_operations empty_aops = {
75 };
76 EXPORT_SYMBOL(empty_aops);
77 
78 /*
79  * Statistics gathering..
80  */
81 struct inodes_stat_t inodes_stat;
82 
83 static DEFINE_PER_CPU(unsigned int, nr_inodes);
84 static DEFINE_PER_CPU(unsigned int, nr_unused);
85 
86 static struct kmem_cache *inode_cachep __read_mostly;
87 
88 static int get_nr_inodes(void)
89 {
90 	int i;
91 	int sum = 0;
92 	for_each_possible_cpu(i)
93 		sum += per_cpu(nr_inodes, i);
94 	return sum < 0 ? 0 : sum;
95 }
96 
97 static inline int get_nr_inodes_unused(void)
98 {
99 	int i;
100 	int sum = 0;
101 	for_each_possible_cpu(i)
102 		sum += per_cpu(nr_unused, i);
103 	return sum < 0 ? 0 : sum;
104 }
105 
106 int get_nr_dirty_inodes(void)
107 {
108 	/* not actually dirty inodes, but a wild approximation */
109 	int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
110 	return nr_dirty > 0 ? nr_dirty : 0;
111 }
112 
113 /*
114  * Handle nr_inode sysctl
115  */
116 #ifdef CONFIG_SYSCTL
117 int proc_nr_inodes(ctl_table *table, int write,
118 		   void __user *buffer, size_t *lenp, loff_t *ppos)
119 {
120 	inodes_stat.nr_inodes = get_nr_inodes();
121 	inodes_stat.nr_unused = get_nr_inodes_unused();
122 	return proc_dointvec(table, write, buffer, lenp, ppos);
123 }
124 #endif
125 
126 /**
127  * inode_init_always - perform inode structure intialisation
128  * @sb: superblock inode belongs to
129  * @inode: inode to initialise
130  *
131  * These are initializations that need to be done on every inode
132  * allocation as the fields are not initialised by slab allocation.
133  */
134 int inode_init_always(struct super_block *sb, struct inode *inode)
135 {
136 	static const struct inode_operations empty_iops;
137 	static const struct file_operations empty_fops;
138 	struct address_space *const mapping = &inode->i_data;
139 
140 	inode->i_sb = sb;
141 	inode->i_blkbits = sb->s_blocksize_bits;
142 	inode->i_flags = 0;
143 	atomic_set(&inode->i_count, 1);
144 	inode->i_op = &empty_iops;
145 	inode->i_fop = &empty_fops;
146 	inode->i_nlink = 1;
147 	inode->i_uid = 0;
148 	inode->i_gid = 0;
149 	atomic_set(&inode->i_writecount, 0);
150 	inode->i_size = 0;
151 	inode->i_blocks = 0;
152 	inode->i_bytes = 0;
153 	inode->i_generation = 0;
154 #ifdef CONFIG_QUOTA
155 	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
156 #endif
157 	inode->i_pipe = NULL;
158 	inode->i_bdev = NULL;
159 	inode->i_cdev = NULL;
160 	inode->i_rdev = 0;
161 	inode->dirtied_when = 0;
162 
163 	if (security_inode_alloc(inode))
164 		goto out;
165 	spin_lock_init(&inode->i_lock);
166 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
167 
168 	mutex_init(&inode->i_mutex);
169 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
170 
171 	atomic_set(&inode->i_dio_count, 0);
172 
173 	mapping->a_ops = &empty_aops;
174 	mapping->host = inode;
175 	mapping->flags = 0;
176 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
177 	mapping->assoc_mapping = NULL;
178 	mapping->backing_dev_info = &default_backing_dev_info;
179 	mapping->writeback_index = 0;
180 
181 	/*
182 	 * If the block_device provides a backing_dev_info for client
183 	 * inodes then use that.  Otherwise the inode share the bdev's
184 	 * backing_dev_info.
185 	 */
186 	if (sb->s_bdev) {
187 		struct backing_dev_info *bdi;
188 
189 		bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
190 		mapping->backing_dev_info = bdi;
191 	}
192 	inode->i_private = NULL;
193 	inode->i_mapping = mapping;
194 #ifdef CONFIG_FS_POSIX_ACL
195 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
196 #endif
197 
198 #ifdef CONFIG_FSNOTIFY
199 	inode->i_fsnotify_mask = 0;
200 #endif
201 
202 	this_cpu_inc(nr_inodes);
203 
204 	return 0;
205 out:
206 	return -ENOMEM;
207 }
208 EXPORT_SYMBOL(inode_init_always);
209 
210 static struct inode *alloc_inode(struct super_block *sb)
211 {
212 	struct inode *inode;
213 
214 	if (sb->s_op->alloc_inode)
215 		inode = sb->s_op->alloc_inode(sb);
216 	else
217 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
218 
219 	if (!inode)
220 		return NULL;
221 
222 	if (unlikely(inode_init_always(sb, inode))) {
223 		if (inode->i_sb->s_op->destroy_inode)
224 			inode->i_sb->s_op->destroy_inode(inode);
225 		else
226 			kmem_cache_free(inode_cachep, inode);
227 		return NULL;
228 	}
229 
230 	return inode;
231 }
232 
233 void free_inode_nonrcu(struct inode *inode)
234 {
235 	kmem_cache_free(inode_cachep, inode);
236 }
237 EXPORT_SYMBOL(free_inode_nonrcu);
238 
239 void __destroy_inode(struct inode *inode)
240 {
241 	BUG_ON(inode_has_buffers(inode));
242 	security_inode_free(inode);
243 	fsnotify_inode_delete(inode);
244 #ifdef CONFIG_FS_POSIX_ACL
245 	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
246 		posix_acl_release(inode->i_acl);
247 	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
248 		posix_acl_release(inode->i_default_acl);
249 #endif
250 	this_cpu_dec(nr_inodes);
251 }
252 EXPORT_SYMBOL(__destroy_inode);
253 
254 static void i_callback(struct rcu_head *head)
255 {
256 	struct inode *inode = container_of(head, struct inode, i_rcu);
257 	INIT_LIST_HEAD(&inode->i_dentry);
258 	kmem_cache_free(inode_cachep, inode);
259 }
260 
261 static void destroy_inode(struct inode *inode)
262 {
263 	BUG_ON(!list_empty(&inode->i_lru));
264 	__destroy_inode(inode);
265 	if (inode->i_sb->s_op->destroy_inode)
266 		inode->i_sb->s_op->destroy_inode(inode);
267 	else
268 		call_rcu(&inode->i_rcu, i_callback);
269 }
270 
271 void address_space_init_once(struct address_space *mapping)
272 {
273 	memset(mapping, 0, sizeof(*mapping));
274 	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
275 	spin_lock_init(&mapping->tree_lock);
276 	mutex_init(&mapping->i_mmap_mutex);
277 	INIT_LIST_HEAD(&mapping->private_list);
278 	spin_lock_init(&mapping->private_lock);
279 	INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap);
280 	INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
281 }
282 EXPORT_SYMBOL(address_space_init_once);
283 
284 /*
285  * These are initializations that only need to be done
286  * once, because the fields are idempotent across use
287  * of the inode, so let the slab aware of that.
288  */
289 void inode_init_once(struct inode *inode)
290 {
291 	memset(inode, 0, sizeof(*inode));
292 	INIT_HLIST_NODE(&inode->i_hash);
293 	INIT_LIST_HEAD(&inode->i_dentry);
294 	INIT_LIST_HEAD(&inode->i_devices);
295 	INIT_LIST_HEAD(&inode->i_wb_list);
296 	INIT_LIST_HEAD(&inode->i_lru);
297 	address_space_init_once(&inode->i_data);
298 	i_size_ordered_init(inode);
299 #ifdef CONFIG_FSNOTIFY
300 	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
301 #endif
302 }
303 EXPORT_SYMBOL(inode_init_once);
304 
305 static void init_once(void *foo)
306 {
307 	struct inode *inode = (struct inode *) foo;
308 
309 	inode_init_once(inode);
310 }
311 
312 /*
313  * inode->i_lock must be held
314  */
315 void __iget(struct inode *inode)
316 {
317 	atomic_inc(&inode->i_count);
318 }
319 
320 /*
321  * get additional reference to inode; caller must already hold one.
322  */
323 void ihold(struct inode *inode)
324 {
325 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
326 }
327 EXPORT_SYMBOL(ihold);
328 
329 static void inode_lru_list_add(struct inode *inode)
330 {
331 	spin_lock(&inode->i_sb->s_inode_lru_lock);
332 	if (list_empty(&inode->i_lru)) {
333 		list_add(&inode->i_lru, &inode->i_sb->s_inode_lru);
334 		inode->i_sb->s_nr_inodes_unused++;
335 		this_cpu_inc(nr_unused);
336 	}
337 	spin_unlock(&inode->i_sb->s_inode_lru_lock);
338 }
339 
340 static void inode_lru_list_del(struct inode *inode)
341 {
342 	spin_lock(&inode->i_sb->s_inode_lru_lock);
343 	if (!list_empty(&inode->i_lru)) {
344 		list_del_init(&inode->i_lru);
345 		inode->i_sb->s_nr_inodes_unused--;
346 		this_cpu_dec(nr_unused);
347 	}
348 	spin_unlock(&inode->i_sb->s_inode_lru_lock);
349 }
350 
351 /**
352  * inode_sb_list_add - add inode to the superblock list of inodes
353  * @inode: inode to add
354  */
355 void inode_sb_list_add(struct inode *inode)
356 {
357 	spin_lock(&inode_sb_list_lock);
358 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
359 	spin_unlock(&inode_sb_list_lock);
360 }
361 EXPORT_SYMBOL_GPL(inode_sb_list_add);
362 
363 static inline void inode_sb_list_del(struct inode *inode)
364 {
365 	spin_lock(&inode_sb_list_lock);
366 	list_del_init(&inode->i_sb_list);
367 	spin_unlock(&inode_sb_list_lock);
368 }
369 
370 static unsigned long hash(struct super_block *sb, unsigned long hashval)
371 {
372 	unsigned long tmp;
373 
374 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
375 			L1_CACHE_BYTES;
376 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
377 	return tmp & i_hash_mask;
378 }
379 
380 /**
381  *	__insert_inode_hash - hash an inode
382  *	@inode: unhashed inode
383  *	@hashval: unsigned long value used to locate this object in the
384  *		inode_hashtable.
385  *
386  *	Add an inode to the inode hash for this superblock.
387  */
388 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
389 {
390 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
391 
392 	spin_lock(&inode_hash_lock);
393 	spin_lock(&inode->i_lock);
394 	hlist_add_head(&inode->i_hash, b);
395 	spin_unlock(&inode->i_lock);
396 	spin_unlock(&inode_hash_lock);
397 }
398 EXPORT_SYMBOL(__insert_inode_hash);
399 
400 /**
401  *	remove_inode_hash - remove an inode from the hash
402  *	@inode: inode to unhash
403  *
404  *	Remove an inode from the superblock.
405  */
406 void remove_inode_hash(struct inode *inode)
407 {
408 	spin_lock(&inode_hash_lock);
409 	spin_lock(&inode->i_lock);
410 	hlist_del_init(&inode->i_hash);
411 	spin_unlock(&inode->i_lock);
412 	spin_unlock(&inode_hash_lock);
413 }
414 EXPORT_SYMBOL(remove_inode_hash);
415 
416 void end_writeback(struct inode *inode)
417 {
418 	might_sleep();
419 	/*
420 	 * We have to cycle tree_lock here because reclaim can be still in the
421 	 * process of removing the last page (in __delete_from_page_cache())
422 	 * and we must not free mapping under it.
423 	 */
424 	spin_lock_irq(&inode->i_data.tree_lock);
425 	BUG_ON(inode->i_data.nrpages);
426 	spin_unlock_irq(&inode->i_data.tree_lock);
427 	BUG_ON(!list_empty(&inode->i_data.private_list));
428 	BUG_ON(!(inode->i_state & I_FREEING));
429 	BUG_ON(inode->i_state & I_CLEAR);
430 	inode_sync_wait(inode);
431 	/* don't need i_lock here, no concurrent mods to i_state */
432 	inode->i_state = I_FREEING | I_CLEAR;
433 }
434 EXPORT_SYMBOL(end_writeback);
435 
436 /*
437  * Free the inode passed in, removing it from the lists it is still connected
438  * to. We remove any pages still attached to the inode and wait for any IO that
439  * is still in progress before finally destroying the inode.
440  *
441  * An inode must already be marked I_FREEING so that we avoid the inode being
442  * moved back onto lists if we race with other code that manipulates the lists
443  * (e.g. writeback_single_inode). The caller is responsible for setting this.
444  *
445  * An inode must already be removed from the LRU list before being evicted from
446  * the cache. This should occur atomically with setting the I_FREEING state
447  * flag, so no inodes here should ever be on the LRU when being evicted.
448  */
449 static void evict(struct inode *inode)
450 {
451 	const struct super_operations *op = inode->i_sb->s_op;
452 
453 	BUG_ON(!(inode->i_state & I_FREEING));
454 	BUG_ON(!list_empty(&inode->i_lru));
455 
456 	inode_wb_list_del(inode);
457 	inode_sb_list_del(inode);
458 
459 	if (op->evict_inode) {
460 		op->evict_inode(inode);
461 	} else {
462 		if (inode->i_data.nrpages)
463 			truncate_inode_pages(&inode->i_data, 0);
464 		end_writeback(inode);
465 	}
466 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
467 		bd_forget(inode);
468 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
469 		cd_forget(inode);
470 
471 	remove_inode_hash(inode);
472 
473 	spin_lock(&inode->i_lock);
474 	wake_up_bit(&inode->i_state, __I_NEW);
475 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
476 	spin_unlock(&inode->i_lock);
477 
478 	destroy_inode(inode);
479 }
480 
481 /*
482  * dispose_list - dispose of the contents of a local list
483  * @head: the head of the list to free
484  *
485  * Dispose-list gets a local list with local inodes in it, so it doesn't
486  * need to worry about list corruption and SMP locks.
487  */
488 static void dispose_list(struct list_head *head)
489 {
490 	while (!list_empty(head)) {
491 		struct inode *inode;
492 
493 		inode = list_first_entry(head, struct inode, i_lru);
494 		list_del_init(&inode->i_lru);
495 
496 		evict(inode);
497 	}
498 }
499 
500 /**
501  * evict_inodes	- evict all evictable inodes for a superblock
502  * @sb:		superblock to operate on
503  *
504  * Make sure that no inodes with zero refcount are retained.  This is
505  * called by superblock shutdown after having MS_ACTIVE flag removed,
506  * so any inode reaching zero refcount during or after that call will
507  * be immediately evicted.
508  */
509 void evict_inodes(struct super_block *sb)
510 {
511 	struct inode *inode, *next;
512 	LIST_HEAD(dispose);
513 
514 	spin_lock(&inode_sb_list_lock);
515 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
516 		if (atomic_read(&inode->i_count))
517 			continue;
518 
519 		spin_lock(&inode->i_lock);
520 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
521 			spin_unlock(&inode->i_lock);
522 			continue;
523 		}
524 
525 		inode->i_state |= I_FREEING;
526 		inode_lru_list_del(inode);
527 		spin_unlock(&inode->i_lock);
528 		list_add(&inode->i_lru, &dispose);
529 	}
530 	spin_unlock(&inode_sb_list_lock);
531 
532 	dispose_list(&dispose);
533 }
534 
535 /**
536  * invalidate_inodes	- attempt to free all inodes on a superblock
537  * @sb:		superblock to operate on
538  * @kill_dirty: flag to guide handling of dirty inodes
539  *
540  * Attempts to free all inodes for a given superblock.  If there were any
541  * busy inodes return a non-zero value, else zero.
542  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
543  * them as busy.
544  */
545 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
546 {
547 	int busy = 0;
548 	struct inode *inode, *next;
549 	LIST_HEAD(dispose);
550 
551 	spin_lock(&inode_sb_list_lock);
552 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
553 		spin_lock(&inode->i_lock);
554 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
555 			spin_unlock(&inode->i_lock);
556 			continue;
557 		}
558 		if (inode->i_state & I_DIRTY && !kill_dirty) {
559 			spin_unlock(&inode->i_lock);
560 			busy = 1;
561 			continue;
562 		}
563 		if (atomic_read(&inode->i_count)) {
564 			spin_unlock(&inode->i_lock);
565 			busy = 1;
566 			continue;
567 		}
568 
569 		inode->i_state |= I_FREEING;
570 		inode_lru_list_del(inode);
571 		spin_unlock(&inode->i_lock);
572 		list_add(&inode->i_lru, &dispose);
573 	}
574 	spin_unlock(&inode_sb_list_lock);
575 
576 	dispose_list(&dispose);
577 
578 	return busy;
579 }
580 
581 static int can_unuse(struct inode *inode)
582 {
583 	if (inode->i_state & ~I_REFERENCED)
584 		return 0;
585 	if (inode_has_buffers(inode))
586 		return 0;
587 	if (atomic_read(&inode->i_count))
588 		return 0;
589 	if (inode->i_data.nrpages)
590 		return 0;
591 	return 1;
592 }
593 
594 /*
595  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
596  * This is called from the superblock shrinker function with a number of inodes
597  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
598  * then are freed outside inode_lock by dispose_list().
599  *
600  * Any inodes which are pinned purely because of attached pagecache have their
601  * pagecache removed.  If the inode has metadata buffers attached to
602  * mapping->private_list then try to remove them.
603  *
604  * If the inode has the I_REFERENCED flag set, then it means that it has been
605  * used recently - the flag is set in iput_final(). When we encounter such an
606  * inode, clear the flag and move it to the back of the LRU so it gets another
607  * pass through the LRU before it gets reclaimed. This is necessary because of
608  * the fact we are doing lazy LRU updates to minimise lock contention so the
609  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
610  * with this flag set because they are the inodes that are out of order.
611  */
612 void prune_icache_sb(struct super_block *sb, int nr_to_scan)
613 {
614 	LIST_HEAD(freeable);
615 	int nr_scanned;
616 	unsigned long reap = 0;
617 
618 	spin_lock(&sb->s_inode_lru_lock);
619 	for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) {
620 		struct inode *inode;
621 
622 		if (list_empty(&sb->s_inode_lru))
623 			break;
624 
625 		inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru);
626 
627 		/*
628 		 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here,
629 		 * so use a trylock. If we fail to get the lock, just move the
630 		 * inode to the back of the list so we don't spin on it.
631 		 */
632 		if (!spin_trylock(&inode->i_lock)) {
633 			list_move(&inode->i_lru, &sb->s_inode_lru);
634 			continue;
635 		}
636 
637 		/*
638 		 * Referenced or dirty inodes are still in use. Give them
639 		 * another pass through the LRU as we canot reclaim them now.
640 		 */
641 		if (atomic_read(&inode->i_count) ||
642 		    (inode->i_state & ~I_REFERENCED)) {
643 			list_del_init(&inode->i_lru);
644 			spin_unlock(&inode->i_lock);
645 			sb->s_nr_inodes_unused--;
646 			this_cpu_dec(nr_unused);
647 			continue;
648 		}
649 
650 		/* recently referenced inodes get one more pass */
651 		if (inode->i_state & I_REFERENCED) {
652 			inode->i_state &= ~I_REFERENCED;
653 			list_move(&inode->i_lru, &sb->s_inode_lru);
654 			spin_unlock(&inode->i_lock);
655 			continue;
656 		}
657 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
658 			__iget(inode);
659 			spin_unlock(&inode->i_lock);
660 			spin_unlock(&sb->s_inode_lru_lock);
661 			if (remove_inode_buffers(inode))
662 				reap += invalidate_mapping_pages(&inode->i_data,
663 								0, -1);
664 			iput(inode);
665 			spin_lock(&sb->s_inode_lru_lock);
666 
667 			if (inode != list_entry(sb->s_inode_lru.next,
668 						struct inode, i_lru))
669 				continue;	/* wrong inode or list_empty */
670 			/* avoid lock inversions with trylock */
671 			if (!spin_trylock(&inode->i_lock))
672 				continue;
673 			if (!can_unuse(inode)) {
674 				spin_unlock(&inode->i_lock);
675 				continue;
676 			}
677 		}
678 		WARN_ON(inode->i_state & I_NEW);
679 		inode->i_state |= I_FREEING;
680 		spin_unlock(&inode->i_lock);
681 
682 		list_move(&inode->i_lru, &freeable);
683 		sb->s_nr_inodes_unused--;
684 		this_cpu_dec(nr_unused);
685 	}
686 	if (current_is_kswapd())
687 		__count_vm_events(KSWAPD_INODESTEAL, reap);
688 	else
689 		__count_vm_events(PGINODESTEAL, reap);
690 	spin_unlock(&sb->s_inode_lru_lock);
691 
692 	dispose_list(&freeable);
693 }
694 
695 static void __wait_on_freeing_inode(struct inode *inode);
696 /*
697  * Called with the inode lock held.
698  */
699 static struct inode *find_inode(struct super_block *sb,
700 				struct hlist_head *head,
701 				int (*test)(struct inode *, void *),
702 				void *data)
703 {
704 	struct hlist_node *node;
705 	struct inode *inode = NULL;
706 
707 repeat:
708 	hlist_for_each_entry(inode, node, head, i_hash) {
709 		spin_lock(&inode->i_lock);
710 		if (inode->i_sb != sb) {
711 			spin_unlock(&inode->i_lock);
712 			continue;
713 		}
714 		if (!test(inode, data)) {
715 			spin_unlock(&inode->i_lock);
716 			continue;
717 		}
718 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
719 			__wait_on_freeing_inode(inode);
720 			goto repeat;
721 		}
722 		__iget(inode);
723 		spin_unlock(&inode->i_lock);
724 		return inode;
725 	}
726 	return NULL;
727 }
728 
729 /*
730  * find_inode_fast is the fast path version of find_inode, see the comment at
731  * iget_locked for details.
732  */
733 static struct inode *find_inode_fast(struct super_block *sb,
734 				struct hlist_head *head, unsigned long ino)
735 {
736 	struct hlist_node *node;
737 	struct inode *inode = NULL;
738 
739 repeat:
740 	hlist_for_each_entry(inode, node, head, i_hash) {
741 		spin_lock(&inode->i_lock);
742 		if (inode->i_ino != ino) {
743 			spin_unlock(&inode->i_lock);
744 			continue;
745 		}
746 		if (inode->i_sb != sb) {
747 			spin_unlock(&inode->i_lock);
748 			continue;
749 		}
750 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
751 			__wait_on_freeing_inode(inode);
752 			goto repeat;
753 		}
754 		__iget(inode);
755 		spin_unlock(&inode->i_lock);
756 		return inode;
757 	}
758 	return NULL;
759 }
760 
761 /*
762  * Each cpu owns a range of LAST_INO_BATCH numbers.
763  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
764  * to renew the exhausted range.
765  *
766  * This does not significantly increase overflow rate because every CPU can
767  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
768  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
769  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
770  * overflow rate by 2x, which does not seem too significant.
771  *
772  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
773  * error if st_ino won't fit in target struct field. Use 32bit counter
774  * here to attempt to avoid that.
775  */
776 #define LAST_INO_BATCH 1024
777 static DEFINE_PER_CPU(unsigned int, last_ino);
778 
779 unsigned int get_next_ino(void)
780 {
781 	unsigned int *p = &get_cpu_var(last_ino);
782 	unsigned int res = *p;
783 
784 #ifdef CONFIG_SMP
785 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
786 		static atomic_t shared_last_ino;
787 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
788 
789 		res = next - LAST_INO_BATCH;
790 	}
791 #endif
792 
793 	*p = ++res;
794 	put_cpu_var(last_ino);
795 	return res;
796 }
797 EXPORT_SYMBOL(get_next_ino);
798 
799 /**
800  *	new_inode 	- obtain an inode
801  *	@sb: superblock
802  *
803  *	Allocates a new inode for given superblock. The default gfp_mask
804  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
805  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
806  *	for the page cache are not reclaimable or migratable,
807  *	mapping_set_gfp_mask() must be called with suitable flags on the
808  *	newly created inode's mapping
809  *
810  */
811 struct inode *new_inode(struct super_block *sb)
812 {
813 	struct inode *inode;
814 
815 	spin_lock_prefetch(&inode_sb_list_lock);
816 
817 	inode = alloc_inode(sb);
818 	if (inode) {
819 		spin_lock(&inode->i_lock);
820 		inode->i_state = 0;
821 		spin_unlock(&inode->i_lock);
822 		inode_sb_list_add(inode);
823 	}
824 	return inode;
825 }
826 EXPORT_SYMBOL(new_inode);
827 
828 /**
829  * unlock_new_inode - clear the I_NEW state and wake up any waiters
830  * @inode:	new inode to unlock
831  *
832  * Called when the inode is fully initialised to clear the new state of the
833  * inode and wake up anyone waiting for the inode to finish initialisation.
834  */
835 void unlock_new_inode(struct inode *inode)
836 {
837 #ifdef CONFIG_DEBUG_LOCK_ALLOC
838 	if (S_ISDIR(inode->i_mode)) {
839 		struct file_system_type *type = inode->i_sb->s_type;
840 
841 		/* Set new key only if filesystem hasn't already changed it */
842 		if (!lockdep_match_class(&inode->i_mutex,
843 		    &type->i_mutex_key)) {
844 			/*
845 			 * ensure nobody is actually holding i_mutex
846 			 */
847 			mutex_destroy(&inode->i_mutex);
848 			mutex_init(&inode->i_mutex);
849 			lockdep_set_class(&inode->i_mutex,
850 					  &type->i_mutex_dir_key);
851 		}
852 	}
853 #endif
854 	spin_lock(&inode->i_lock);
855 	WARN_ON(!(inode->i_state & I_NEW));
856 	inode->i_state &= ~I_NEW;
857 	wake_up_bit(&inode->i_state, __I_NEW);
858 	spin_unlock(&inode->i_lock);
859 }
860 EXPORT_SYMBOL(unlock_new_inode);
861 
862 /**
863  * iget5_locked - obtain an inode from a mounted file system
864  * @sb:		super block of file system
865  * @hashval:	hash value (usually inode number) to get
866  * @test:	callback used for comparisons between inodes
867  * @set:	callback used to initialize a new struct inode
868  * @data:	opaque data pointer to pass to @test and @set
869  *
870  * Search for the inode specified by @hashval and @data in the inode cache,
871  * and if present it is return it with an increased reference count. This is
872  * a generalized version of iget_locked() for file systems where the inode
873  * number is not sufficient for unique identification of an inode.
874  *
875  * If the inode is not in cache, allocate a new inode and return it locked,
876  * hashed, and with the I_NEW flag set. The file system gets to fill it in
877  * before unlocking it via unlock_new_inode().
878  *
879  * Note both @test and @set are called with the inode_hash_lock held, so can't
880  * sleep.
881  */
882 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
883 		int (*test)(struct inode *, void *),
884 		int (*set)(struct inode *, void *), void *data)
885 {
886 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
887 	struct inode *inode;
888 
889 	spin_lock(&inode_hash_lock);
890 	inode = find_inode(sb, head, test, data);
891 	spin_unlock(&inode_hash_lock);
892 
893 	if (inode) {
894 		wait_on_inode(inode);
895 		return inode;
896 	}
897 
898 	inode = alloc_inode(sb);
899 	if (inode) {
900 		struct inode *old;
901 
902 		spin_lock(&inode_hash_lock);
903 		/* We released the lock, so.. */
904 		old = find_inode(sb, head, test, data);
905 		if (!old) {
906 			if (set(inode, data))
907 				goto set_failed;
908 
909 			spin_lock(&inode->i_lock);
910 			inode->i_state = I_NEW;
911 			hlist_add_head(&inode->i_hash, head);
912 			spin_unlock(&inode->i_lock);
913 			inode_sb_list_add(inode);
914 			spin_unlock(&inode_hash_lock);
915 
916 			/* Return the locked inode with I_NEW set, the
917 			 * caller is responsible for filling in the contents
918 			 */
919 			return inode;
920 		}
921 
922 		/*
923 		 * Uhhuh, somebody else created the same inode under
924 		 * us. Use the old inode instead of the one we just
925 		 * allocated.
926 		 */
927 		spin_unlock(&inode_hash_lock);
928 		destroy_inode(inode);
929 		inode = old;
930 		wait_on_inode(inode);
931 	}
932 	return inode;
933 
934 set_failed:
935 	spin_unlock(&inode_hash_lock);
936 	destroy_inode(inode);
937 	return NULL;
938 }
939 EXPORT_SYMBOL(iget5_locked);
940 
941 /**
942  * iget_locked - obtain an inode from a mounted file system
943  * @sb:		super block of file system
944  * @ino:	inode number to get
945  *
946  * Search for the inode specified by @ino in the inode cache and if present
947  * return it with an increased reference count. This is for file systems
948  * where the inode number is sufficient for unique identification of an inode.
949  *
950  * If the inode is not in cache, allocate a new inode and return it locked,
951  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
952  * before unlocking it via unlock_new_inode().
953  */
954 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
955 {
956 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
957 	struct inode *inode;
958 
959 	spin_lock(&inode_hash_lock);
960 	inode = find_inode_fast(sb, head, ino);
961 	spin_unlock(&inode_hash_lock);
962 	if (inode) {
963 		wait_on_inode(inode);
964 		return inode;
965 	}
966 
967 	inode = alloc_inode(sb);
968 	if (inode) {
969 		struct inode *old;
970 
971 		spin_lock(&inode_hash_lock);
972 		/* We released the lock, so.. */
973 		old = find_inode_fast(sb, head, ino);
974 		if (!old) {
975 			inode->i_ino = ino;
976 			spin_lock(&inode->i_lock);
977 			inode->i_state = I_NEW;
978 			hlist_add_head(&inode->i_hash, head);
979 			spin_unlock(&inode->i_lock);
980 			inode_sb_list_add(inode);
981 			spin_unlock(&inode_hash_lock);
982 
983 			/* Return the locked inode with I_NEW set, the
984 			 * caller is responsible for filling in the contents
985 			 */
986 			return inode;
987 		}
988 
989 		/*
990 		 * Uhhuh, somebody else created the same inode under
991 		 * us. Use the old inode instead of the one we just
992 		 * allocated.
993 		 */
994 		spin_unlock(&inode_hash_lock);
995 		destroy_inode(inode);
996 		inode = old;
997 		wait_on_inode(inode);
998 	}
999 	return inode;
1000 }
1001 EXPORT_SYMBOL(iget_locked);
1002 
1003 /*
1004  * search the inode cache for a matching inode number.
1005  * If we find one, then the inode number we are trying to
1006  * allocate is not unique and so we should not use it.
1007  *
1008  * Returns 1 if the inode number is unique, 0 if it is not.
1009  */
1010 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1011 {
1012 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1013 	struct hlist_node *node;
1014 	struct inode *inode;
1015 
1016 	spin_lock(&inode_hash_lock);
1017 	hlist_for_each_entry(inode, node, b, i_hash) {
1018 		if (inode->i_ino == ino && inode->i_sb == sb) {
1019 			spin_unlock(&inode_hash_lock);
1020 			return 0;
1021 		}
1022 	}
1023 	spin_unlock(&inode_hash_lock);
1024 
1025 	return 1;
1026 }
1027 
1028 /**
1029  *	iunique - get a unique inode number
1030  *	@sb: superblock
1031  *	@max_reserved: highest reserved inode number
1032  *
1033  *	Obtain an inode number that is unique on the system for a given
1034  *	superblock. This is used by file systems that have no natural
1035  *	permanent inode numbering system. An inode number is returned that
1036  *	is higher than the reserved limit but unique.
1037  *
1038  *	BUGS:
1039  *	With a large number of inodes live on the file system this function
1040  *	currently becomes quite slow.
1041  */
1042 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1043 {
1044 	/*
1045 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1046 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1047 	 * here to attempt to avoid that.
1048 	 */
1049 	static DEFINE_SPINLOCK(iunique_lock);
1050 	static unsigned int counter;
1051 	ino_t res;
1052 
1053 	spin_lock(&iunique_lock);
1054 	do {
1055 		if (counter <= max_reserved)
1056 			counter = max_reserved + 1;
1057 		res = counter++;
1058 	} while (!test_inode_iunique(sb, res));
1059 	spin_unlock(&iunique_lock);
1060 
1061 	return res;
1062 }
1063 EXPORT_SYMBOL(iunique);
1064 
1065 struct inode *igrab(struct inode *inode)
1066 {
1067 	spin_lock(&inode->i_lock);
1068 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1069 		__iget(inode);
1070 		spin_unlock(&inode->i_lock);
1071 	} else {
1072 		spin_unlock(&inode->i_lock);
1073 		/*
1074 		 * Handle the case where s_op->clear_inode is not been
1075 		 * called yet, and somebody is calling igrab
1076 		 * while the inode is getting freed.
1077 		 */
1078 		inode = NULL;
1079 	}
1080 	return inode;
1081 }
1082 EXPORT_SYMBOL(igrab);
1083 
1084 /**
1085  * ilookup5_nowait - search for an inode in the inode cache
1086  * @sb:		super block of file system to search
1087  * @hashval:	hash value (usually inode number) to search for
1088  * @test:	callback used for comparisons between inodes
1089  * @data:	opaque data pointer to pass to @test
1090  *
1091  * Search for the inode specified by @hashval and @data in the inode cache.
1092  * If the inode is in the cache, the inode is returned with an incremented
1093  * reference count.
1094  *
1095  * Note: I_NEW is not waited upon so you have to be very careful what you do
1096  * with the returned inode.  You probably should be using ilookup5() instead.
1097  *
1098  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1099  */
1100 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1101 		int (*test)(struct inode *, void *), void *data)
1102 {
1103 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1104 	struct inode *inode;
1105 
1106 	spin_lock(&inode_hash_lock);
1107 	inode = find_inode(sb, head, test, data);
1108 	spin_unlock(&inode_hash_lock);
1109 
1110 	return inode;
1111 }
1112 EXPORT_SYMBOL(ilookup5_nowait);
1113 
1114 /**
1115  * ilookup5 - search for an inode in the inode cache
1116  * @sb:		super block of file system to search
1117  * @hashval:	hash value (usually inode number) to search for
1118  * @test:	callback used for comparisons between inodes
1119  * @data:	opaque data pointer to pass to @test
1120  *
1121  * Search for the inode specified by @hashval and @data in the inode cache,
1122  * and if the inode is in the cache, return the inode with an incremented
1123  * reference count.  Waits on I_NEW before returning the inode.
1124  * returned with an incremented reference count.
1125  *
1126  * This is a generalized version of ilookup() for file systems where the
1127  * inode number is not sufficient for unique identification of an inode.
1128  *
1129  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1130  */
1131 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1132 		int (*test)(struct inode *, void *), void *data)
1133 {
1134 	struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1135 
1136 	if (inode)
1137 		wait_on_inode(inode);
1138 	return inode;
1139 }
1140 EXPORT_SYMBOL(ilookup5);
1141 
1142 /**
1143  * ilookup - search for an inode in the inode cache
1144  * @sb:		super block of file system to search
1145  * @ino:	inode number to search for
1146  *
1147  * Search for the inode @ino in the inode cache, and if the inode is in the
1148  * cache, the inode is returned with an incremented reference count.
1149  */
1150 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1151 {
1152 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1153 	struct inode *inode;
1154 
1155 	spin_lock(&inode_hash_lock);
1156 	inode = find_inode_fast(sb, head, ino);
1157 	spin_unlock(&inode_hash_lock);
1158 
1159 	if (inode)
1160 		wait_on_inode(inode);
1161 	return inode;
1162 }
1163 EXPORT_SYMBOL(ilookup);
1164 
1165 int insert_inode_locked(struct inode *inode)
1166 {
1167 	struct super_block *sb = inode->i_sb;
1168 	ino_t ino = inode->i_ino;
1169 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1170 
1171 	while (1) {
1172 		struct hlist_node *node;
1173 		struct inode *old = NULL;
1174 		spin_lock(&inode_hash_lock);
1175 		hlist_for_each_entry(old, node, head, i_hash) {
1176 			if (old->i_ino != ino)
1177 				continue;
1178 			if (old->i_sb != sb)
1179 				continue;
1180 			spin_lock(&old->i_lock);
1181 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1182 				spin_unlock(&old->i_lock);
1183 				continue;
1184 			}
1185 			break;
1186 		}
1187 		if (likely(!node)) {
1188 			spin_lock(&inode->i_lock);
1189 			inode->i_state |= I_NEW;
1190 			hlist_add_head(&inode->i_hash, head);
1191 			spin_unlock(&inode->i_lock);
1192 			spin_unlock(&inode_hash_lock);
1193 			return 0;
1194 		}
1195 		__iget(old);
1196 		spin_unlock(&old->i_lock);
1197 		spin_unlock(&inode_hash_lock);
1198 		wait_on_inode(old);
1199 		if (unlikely(!inode_unhashed(old))) {
1200 			iput(old);
1201 			return -EBUSY;
1202 		}
1203 		iput(old);
1204 	}
1205 }
1206 EXPORT_SYMBOL(insert_inode_locked);
1207 
1208 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1209 		int (*test)(struct inode *, void *), void *data)
1210 {
1211 	struct super_block *sb = inode->i_sb;
1212 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1213 
1214 	while (1) {
1215 		struct hlist_node *node;
1216 		struct inode *old = NULL;
1217 
1218 		spin_lock(&inode_hash_lock);
1219 		hlist_for_each_entry(old, node, head, i_hash) {
1220 			if (old->i_sb != sb)
1221 				continue;
1222 			if (!test(old, data))
1223 				continue;
1224 			spin_lock(&old->i_lock);
1225 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1226 				spin_unlock(&old->i_lock);
1227 				continue;
1228 			}
1229 			break;
1230 		}
1231 		if (likely(!node)) {
1232 			spin_lock(&inode->i_lock);
1233 			inode->i_state |= I_NEW;
1234 			hlist_add_head(&inode->i_hash, head);
1235 			spin_unlock(&inode->i_lock);
1236 			spin_unlock(&inode_hash_lock);
1237 			return 0;
1238 		}
1239 		__iget(old);
1240 		spin_unlock(&old->i_lock);
1241 		spin_unlock(&inode_hash_lock);
1242 		wait_on_inode(old);
1243 		if (unlikely(!inode_unhashed(old))) {
1244 			iput(old);
1245 			return -EBUSY;
1246 		}
1247 		iput(old);
1248 	}
1249 }
1250 EXPORT_SYMBOL(insert_inode_locked4);
1251 
1252 
1253 int generic_delete_inode(struct inode *inode)
1254 {
1255 	return 1;
1256 }
1257 EXPORT_SYMBOL(generic_delete_inode);
1258 
1259 /*
1260  * Normal UNIX filesystem behaviour: delete the
1261  * inode when the usage count drops to zero, and
1262  * i_nlink is zero.
1263  */
1264 int generic_drop_inode(struct inode *inode)
1265 {
1266 	return !inode->i_nlink || inode_unhashed(inode);
1267 }
1268 EXPORT_SYMBOL_GPL(generic_drop_inode);
1269 
1270 /*
1271  * Called when we're dropping the last reference
1272  * to an inode.
1273  *
1274  * Call the FS "drop_inode()" function, defaulting to
1275  * the legacy UNIX filesystem behaviour.  If it tells
1276  * us to evict inode, do so.  Otherwise, retain inode
1277  * in cache if fs is alive, sync and evict if fs is
1278  * shutting down.
1279  */
1280 static void iput_final(struct inode *inode)
1281 {
1282 	struct super_block *sb = inode->i_sb;
1283 	const struct super_operations *op = inode->i_sb->s_op;
1284 	int drop;
1285 
1286 	WARN_ON(inode->i_state & I_NEW);
1287 
1288 	if (op->drop_inode)
1289 		drop = op->drop_inode(inode);
1290 	else
1291 		drop = generic_drop_inode(inode);
1292 
1293 	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1294 		inode->i_state |= I_REFERENCED;
1295 		if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1296 			inode_lru_list_add(inode);
1297 		spin_unlock(&inode->i_lock);
1298 		return;
1299 	}
1300 
1301 	if (!drop) {
1302 		inode->i_state |= I_WILL_FREE;
1303 		spin_unlock(&inode->i_lock);
1304 		write_inode_now(inode, 1);
1305 		spin_lock(&inode->i_lock);
1306 		WARN_ON(inode->i_state & I_NEW);
1307 		inode->i_state &= ~I_WILL_FREE;
1308 	}
1309 
1310 	inode->i_state |= I_FREEING;
1311 	inode_lru_list_del(inode);
1312 	spin_unlock(&inode->i_lock);
1313 
1314 	evict(inode);
1315 }
1316 
1317 /**
1318  *	iput	- put an inode
1319  *	@inode: inode to put
1320  *
1321  *	Puts an inode, dropping its usage count. If the inode use count hits
1322  *	zero, the inode is then freed and may also be destroyed.
1323  *
1324  *	Consequently, iput() can sleep.
1325  */
1326 void iput(struct inode *inode)
1327 {
1328 	if (inode) {
1329 		BUG_ON(inode->i_state & I_CLEAR);
1330 
1331 		if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1332 			iput_final(inode);
1333 	}
1334 }
1335 EXPORT_SYMBOL(iput);
1336 
1337 /**
1338  *	bmap	- find a block number in a file
1339  *	@inode: inode of file
1340  *	@block: block to find
1341  *
1342  *	Returns the block number on the device holding the inode that
1343  *	is the disk block number for the block of the file requested.
1344  *	That is, asked for block 4 of inode 1 the function will return the
1345  *	disk block relative to the disk start that holds that block of the
1346  *	file.
1347  */
1348 sector_t bmap(struct inode *inode, sector_t block)
1349 {
1350 	sector_t res = 0;
1351 	if (inode->i_mapping->a_ops->bmap)
1352 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1353 	return res;
1354 }
1355 EXPORT_SYMBOL(bmap);
1356 
1357 /*
1358  * With relative atime, only update atime if the previous atime is
1359  * earlier than either the ctime or mtime or if at least a day has
1360  * passed since the last atime update.
1361  */
1362 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1363 			     struct timespec now)
1364 {
1365 
1366 	if (!(mnt->mnt_flags & MNT_RELATIME))
1367 		return 1;
1368 	/*
1369 	 * Is mtime younger than atime? If yes, update atime:
1370 	 */
1371 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1372 		return 1;
1373 	/*
1374 	 * Is ctime younger than atime? If yes, update atime:
1375 	 */
1376 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1377 		return 1;
1378 
1379 	/*
1380 	 * Is the previous atime value older than a day? If yes,
1381 	 * update atime:
1382 	 */
1383 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1384 		return 1;
1385 	/*
1386 	 * Good, we can skip the atime update:
1387 	 */
1388 	return 0;
1389 }
1390 
1391 /**
1392  *	touch_atime	-	update the access time
1393  *	@mnt: mount the inode is accessed on
1394  *	@dentry: dentry accessed
1395  *
1396  *	Update the accessed time on an inode and mark it for writeback.
1397  *	This function automatically handles read only file systems and media,
1398  *	as well as the "noatime" flag and inode specific "noatime" markers.
1399  */
1400 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1401 {
1402 	struct inode *inode = dentry->d_inode;
1403 	struct timespec now;
1404 
1405 	if (inode->i_flags & S_NOATIME)
1406 		return;
1407 	if (IS_NOATIME(inode))
1408 		return;
1409 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1410 		return;
1411 
1412 	if (mnt->mnt_flags & MNT_NOATIME)
1413 		return;
1414 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1415 		return;
1416 
1417 	now = current_fs_time(inode->i_sb);
1418 
1419 	if (!relatime_need_update(mnt, inode, now))
1420 		return;
1421 
1422 	if (timespec_equal(&inode->i_atime, &now))
1423 		return;
1424 
1425 	if (mnt_want_write(mnt))
1426 		return;
1427 
1428 	inode->i_atime = now;
1429 	mark_inode_dirty_sync(inode);
1430 	mnt_drop_write(mnt);
1431 }
1432 EXPORT_SYMBOL(touch_atime);
1433 
1434 /**
1435  *	file_update_time	-	update mtime and ctime time
1436  *	@file: file accessed
1437  *
1438  *	Update the mtime and ctime members of an inode and mark the inode
1439  *	for writeback.  Note that this function is meant exclusively for
1440  *	usage in the file write path of filesystems, and filesystems may
1441  *	choose to explicitly ignore update via this function with the
1442  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1443  *	timestamps are handled by the server.
1444  */
1445 
1446 void file_update_time(struct file *file)
1447 {
1448 	struct inode *inode = file->f_path.dentry->d_inode;
1449 	struct timespec now;
1450 	enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1451 
1452 	/* First try to exhaust all avenues to not sync */
1453 	if (IS_NOCMTIME(inode))
1454 		return;
1455 
1456 	now = current_fs_time(inode->i_sb);
1457 	if (!timespec_equal(&inode->i_mtime, &now))
1458 		sync_it = S_MTIME;
1459 
1460 	if (!timespec_equal(&inode->i_ctime, &now))
1461 		sync_it |= S_CTIME;
1462 
1463 	if (IS_I_VERSION(inode))
1464 		sync_it |= S_VERSION;
1465 
1466 	if (!sync_it)
1467 		return;
1468 
1469 	/* Finally allowed to write? Takes lock. */
1470 	if (mnt_want_write_file(file))
1471 		return;
1472 
1473 	/* Only change inode inside the lock region */
1474 	if (sync_it & S_VERSION)
1475 		inode_inc_iversion(inode);
1476 	if (sync_it & S_CTIME)
1477 		inode->i_ctime = now;
1478 	if (sync_it & S_MTIME)
1479 		inode->i_mtime = now;
1480 	mark_inode_dirty_sync(inode);
1481 	mnt_drop_write(file->f_path.mnt);
1482 }
1483 EXPORT_SYMBOL(file_update_time);
1484 
1485 int inode_needs_sync(struct inode *inode)
1486 {
1487 	if (IS_SYNC(inode))
1488 		return 1;
1489 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1490 		return 1;
1491 	return 0;
1492 }
1493 EXPORT_SYMBOL(inode_needs_sync);
1494 
1495 int inode_wait(void *word)
1496 {
1497 	schedule();
1498 	return 0;
1499 }
1500 EXPORT_SYMBOL(inode_wait);
1501 
1502 /*
1503  * If we try to find an inode in the inode hash while it is being
1504  * deleted, we have to wait until the filesystem completes its
1505  * deletion before reporting that it isn't found.  This function waits
1506  * until the deletion _might_ have completed.  Callers are responsible
1507  * to recheck inode state.
1508  *
1509  * It doesn't matter if I_NEW is not set initially, a call to
1510  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1511  * will DTRT.
1512  */
1513 static void __wait_on_freeing_inode(struct inode *inode)
1514 {
1515 	wait_queue_head_t *wq;
1516 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1517 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1518 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1519 	spin_unlock(&inode->i_lock);
1520 	spin_unlock(&inode_hash_lock);
1521 	schedule();
1522 	finish_wait(wq, &wait.wait);
1523 	spin_lock(&inode_hash_lock);
1524 }
1525 
1526 static __initdata unsigned long ihash_entries;
1527 static int __init set_ihash_entries(char *str)
1528 {
1529 	if (!str)
1530 		return 0;
1531 	ihash_entries = simple_strtoul(str, &str, 0);
1532 	return 1;
1533 }
1534 __setup("ihash_entries=", set_ihash_entries);
1535 
1536 /*
1537  * Initialize the waitqueues and inode hash table.
1538  */
1539 void __init inode_init_early(void)
1540 {
1541 	int loop;
1542 
1543 	/* If hashes are distributed across NUMA nodes, defer
1544 	 * hash allocation until vmalloc space is available.
1545 	 */
1546 	if (hashdist)
1547 		return;
1548 
1549 	inode_hashtable =
1550 		alloc_large_system_hash("Inode-cache",
1551 					sizeof(struct hlist_head),
1552 					ihash_entries,
1553 					14,
1554 					HASH_EARLY,
1555 					&i_hash_shift,
1556 					&i_hash_mask,
1557 					0);
1558 
1559 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1560 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1561 }
1562 
1563 void __init inode_init(void)
1564 {
1565 	int loop;
1566 
1567 	/* inode slab cache */
1568 	inode_cachep = kmem_cache_create("inode_cache",
1569 					 sizeof(struct inode),
1570 					 0,
1571 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1572 					 SLAB_MEM_SPREAD),
1573 					 init_once);
1574 
1575 	/* Hash may have been set up in inode_init_early */
1576 	if (!hashdist)
1577 		return;
1578 
1579 	inode_hashtable =
1580 		alloc_large_system_hash("Inode-cache",
1581 					sizeof(struct hlist_head),
1582 					ihash_entries,
1583 					14,
1584 					0,
1585 					&i_hash_shift,
1586 					&i_hash_mask,
1587 					0);
1588 
1589 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1590 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1591 }
1592 
1593 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1594 {
1595 	inode->i_mode = mode;
1596 	if (S_ISCHR(mode)) {
1597 		inode->i_fop = &def_chr_fops;
1598 		inode->i_rdev = rdev;
1599 	} else if (S_ISBLK(mode)) {
1600 		inode->i_fop = &def_blk_fops;
1601 		inode->i_rdev = rdev;
1602 	} else if (S_ISFIFO(mode))
1603 		inode->i_fop = &def_fifo_fops;
1604 	else if (S_ISSOCK(mode))
1605 		inode->i_fop = &bad_sock_fops;
1606 	else
1607 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1608 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1609 				  inode->i_ino);
1610 }
1611 EXPORT_SYMBOL(init_special_inode);
1612 
1613 /**
1614  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1615  * @inode: New inode
1616  * @dir: Directory inode
1617  * @mode: mode of the new inode
1618  */
1619 void inode_init_owner(struct inode *inode, const struct inode *dir,
1620 			mode_t mode)
1621 {
1622 	inode->i_uid = current_fsuid();
1623 	if (dir && dir->i_mode & S_ISGID) {
1624 		inode->i_gid = dir->i_gid;
1625 		if (S_ISDIR(mode))
1626 			mode |= S_ISGID;
1627 	} else
1628 		inode->i_gid = current_fsgid();
1629 	inode->i_mode = mode;
1630 }
1631 EXPORT_SYMBOL(inode_init_owner);
1632 
1633 /**
1634  * inode_owner_or_capable - check current task permissions to inode
1635  * @inode: inode being checked
1636  *
1637  * Return true if current either has CAP_FOWNER to the inode, or
1638  * owns the file.
1639  */
1640 bool inode_owner_or_capable(const struct inode *inode)
1641 {
1642 	struct user_namespace *ns = inode_userns(inode);
1643 
1644 	if (current_user_ns() == ns && current_fsuid() == inode->i_uid)
1645 		return true;
1646 	if (ns_capable(ns, CAP_FOWNER))
1647 		return true;
1648 	return false;
1649 }
1650 EXPORT_SYMBOL(inode_owner_or_capable);
1651