xref: /openbmc/linux/fs/inode.c (revision 7fe2f639)
1 /*
2  * (C) 1997 Linus Torvalds
3  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4  */
5 #include <linux/fs.h>
6 #include <linux/mm.h>
7 #include <linux/dcache.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/writeback.h>
11 #include <linux/module.h>
12 #include <linux/backing-dev.h>
13 #include <linux/wait.h>
14 #include <linux/rwsem.h>
15 #include <linux/hash.h>
16 #include <linux/swap.h>
17 #include <linux/security.h>
18 #include <linux/pagemap.h>
19 #include <linux/cdev.h>
20 #include <linux/bootmem.h>
21 #include <linux/fsnotify.h>
22 #include <linux/mount.h>
23 #include <linux/async.h>
24 #include <linux/posix_acl.h>
25 #include <linux/prefetch.h>
26 #include <linux/ima.h>
27 #include <linux/cred.h>
28 #include <linux/buffer_head.h> /* for inode_has_buffers */
29 #include "internal.h"
30 
31 /*
32  * Inode locking rules:
33  *
34  * inode->i_lock protects:
35  *   inode->i_state, inode->i_hash, __iget()
36  * inode_lru_lock protects:
37  *   inode_lru, inode->i_lru
38  * inode_sb_list_lock protects:
39  *   sb->s_inodes, inode->i_sb_list
40  * inode_wb_list_lock protects:
41  *   bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
42  * inode_hash_lock protects:
43  *   inode_hashtable, inode->i_hash
44  *
45  * Lock ordering:
46  *
47  * inode_sb_list_lock
48  *   inode->i_lock
49  *     inode_lru_lock
50  *
51  * inode_wb_list_lock
52  *   inode->i_lock
53  *
54  * inode_hash_lock
55  *   inode_sb_list_lock
56  *   inode->i_lock
57  *
58  * iunique_lock
59  *   inode_hash_lock
60  */
61 
62 static unsigned int i_hash_mask __read_mostly;
63 static unsigned int i_hash_shift __read_mostly;
64 static struct hlist_head *inode_hashtable __read_mostly;
65 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
66 
67 static LIST_HEAD(inode_lru);
68 static DEFINE_SPINLOCK(inode_lru_lock);
69 
70 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
71 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_wb_list_lock);
72 
73 /*
74  * iprune_sem provides exclusion between the icache shrinking and the
75  * umount path.
76  *
77  * We don't actually need it to protect anything in the umount path,
78  * but only need to cycle through it to make sure any inode that
79  * prune_icache took off the LRU list has been fully torn down by the
80  * time we are past evict_inodes.
81  */
82 static DECLARE_RWSEM(iprune_sem);
83 
84 /*
85  * Empty aops. Can be used for the cases where the user does not
86  * define any of the address_space operations.
87  */
88 const struct address_space_operations empty_aops = {
89 };
90 EXPORT_SYMBOL(empty_aops);
91 
92 /*
93  * Statistics gathering..
94  */
95 struct inodes_stat_t inodes_stat;
96 
97 static DEFINE_PER_CPU(unsigned int, nr_inodes);
98 
99 static struct kmem_cache *inode_cachep __read_mostly;
100 
101 static int get_nr_inodes(void)
102 {
103 	int i;
104 	int sum = 0;
105 	for_each_possible_cpu(i)
106 		sum += per_cpu(nr_inodes, i);
107 	return sum < 0 ? 0 : sum;
108 }
109 
110 static inline int get_nr_inodes_unused(void)
111 {
112 	return inodes_stat.nr_unused;
113 }
114 
115 int get_nr_dirty_inodes(void)
116 {
117 	/* not actually dirty inodes, but a wild approximation */
118 	int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
119 	return nr_dirty > 0 ? nr_dirty : 0;
120 }
121 
122 /*
123  * Handle nr_inode sysctl
124  */
125 #ifdef CONFIG_SYSCTL
126 int proc_nr_inodes(ctl_table *table, int write,
127 		   void __user *buffer, size_t *lenp, loff_t *ppos)
128 {
129 	inodes_stat.nr_inodes = get_nr_inodes();
130 	return proc_dointvec(table, write, buffer, lenp, ppos);
131 }
132 #endif
133 
134 /**
135  * inode_init_always - perform inode structure intialisation
136  * @sb: superblock inode belongs to
137  * @inode: inode to initialise
138  *
139  * These are initializations that need to be done on every inode
140  * allocation as the fields are not initialised by slab allocation.
141  */
142 int inode_init_always(struct super_block *sb, struct inode *inode)
143 {
144 	static const struct inode_operations empty_iops;
145 	static const struct file_operations empty_fops;
146 	struct address_space *const mapping = &inode->i_data;
147 
148 	inode->i_sb = sb;
149 	inode->i_blkbits = sb->s_blocksize_bits;
150 	inode->i_flags = 0;
151 	atomic_set(&inode->i_count, 1);
152 	inode->i_op = &empty_iops;
153 	inode->i_fop = &empty_fops;
154 	inode->i_nlink = 1;
155 	inode->i_uid = 0;
156 	inode->i_gid = 0;
157 	atomic_set(&inode->i_writecount, 0);
158 	inode->i_size = 0;
159 	inode->i_blocks = 0;
160 	inode->i_bytes = 0;
161 	inode->i_generation = 0;
162 #ifdef CONFIG_QUOTA
163 	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
164 #endif
165 	inode->i_pipe = NULL;
166 	inode->i_bdev = NULL;
167 	inode->i_cdev = NULL;
168 	inode->i_rdev = 0;
169 	inode->dirtied_when = 0;
170 
171 	if (security_inode_alloc(inode))
172 		goto out;
173 	spin_lock_init(&inode->i_lock);
174 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
175 
176 	mutex_init(&inode->i_mutex);
177 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
178 
179 	init_rwsem(&inode->i_alloc_sem);
180 	lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
181 
182 	mapping->a_ops = &empty_aops;
183 	mapping->host = inode;
184 	mapping->flags = 0;
185 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
186 	mapping->assoc_mapping = NULL;
187 	mapping->backing_dev_info = &default_backing_dev_info;
188 	mapping->writeback_index = 0;
189 
190 	/*
191 	 * If the block_device provides a backing_dev_info for client
192 	 * inodes then use that.  Otherwise the inode share the bdev's
193 	 * backing_dev_info.
194 	 */
195 	if (sb->s_bdev) {
196 		struct backing_dev_info *bdi;
197 
198 		bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
199 		mapping->backing_dev_info = bdi;
200 	}
201 	inode->i_private = NULL;
202 	inode->i_mapping = mapping;
203 #ifdef CONFIG_FS_POSIX_ACL
204 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
205 #endif
206 
207 #ifdef CONFIG_FSNOTIFY
208 	inode->i_fsnotify_mask = 0;
209 #endif
210 
211 	this_cpu_inc(nr_inodes);
212 
213 	return 0;
214 out:
215 	return -ENOMEM;
216 }
217 EXPORT_SYMBOL(inode_init_always);
218 
219 static struct inode *alloc_inode(struct super_block *sb)
220 {
221 	struct inode *inode;
222 
223 	if (sb->s_op->alloc_inode)
224 		inode = sb->s_op->alloc_inode(sb);
225 	else
226 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
227 
228 	if (!inode)
229 		return NULL;
230 
231 	if (unlikely(inode_init_always(sb, inode))) {
232 		if (inode->i_sb->s_op->destroy_inode)
233 			inode->i_sb->s_op->destroy_inode(inode);
234 		else
235 			kmem_cache_free(inode_cachep, inode);
236 		return NULL;
237 	}
238 
239 	return inode;
240 }
241 
242 void free_inode_nonrcu(struct inode *inode)
243 {
244 	kmem_cache_free(inode_cachep, inode);
245 }
246 EXPORT_SYMBOL(free_inode_nonrcu);
247 
248 void __destroy_inode(struct inode *inode)
249 {
250 	BUG_ON(inode_has_buffers(inode));
251 	security_inode_free(inode);
252 	fsnotify_inode_delete(inode);
253 #ifdef CONFIG_FS_POSIX_ACL
254 	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
255 		posix_acl_release(inode->i_acl);
256 	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
257 		posix_acl_release(inode->i_default_acl);
258 #endif
259 	this_cpu_dec(nr_inodes);
260 }
261 EXPORT_SYMBOL(__destroy_inode);
262 
263 static void i_callback(struct rcu_head *head)
264 {
265 	struct inode *inode = container_of(head, struct inode, i_rcu);
266 	INIT_LIST_HEAD(&inode->i_dentry);
267 	kmem_cache_free(inode_cachep, inode);
268 }
269 
270 static void destroy_inode(struct inode *inode)
271 {
272 	BUG_ON(!list_empty(&inode->i_lru));
273 	__destroy_inode(inode);
274 	if (inode->i_sb->s_op->destroy_inode)
275 		inode->i_sb->s_op->destroy_inode(inode);
276 	else
277 		call_rcu(&inode->i_rcu, i_callback);
278 }
279 
280 void address_space_init_once(struct address_space *mapping)
281 {
282 	memset(mapping, 0, sizeof(*mapping));
283 	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
284 	spin_lock_init(&mapping->tree_lock);
285 	mutex_init(&mapping->i_mmap_mutex);
286 	INIT_LIST_HEAD(&mapping->private_list);
287 	spin_lock_init(&mapping->private_lock);
288 	INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap);
289 	INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
290 }
291 EXPORT_SYMBOL(address_space_init_once);
292 
293 /*
294  * These are initializations that only need to be done
295  * once, because the fields are idempotent across use
296  * of the inode, so let the slab aware of that.
297  */
298 void inode_init_once(struct inode *inode)
299 {
300 	memset(inode, 0, sizeof(*inode));
301 	INIT_HLIST_NODE(&inode->i_hash);
302 	INIT_LIST_HEAD(&inode->i_dentry);
303 	INIT_LIST_HEAD(&inode->i_devices);
304 	INIT_LIST_HEAD(&inode->i_wb_list);
305 	INIT_LIST_HEAD(&inode->i_lru);
306 	address_space_init_once(&inode->i_data);
307 	i_size_ordered_init(inode);
308 #ifdef CONFIG_FSNOTIFY
309 	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
310 #endif
311 }
312 EXPORT_SYMBOL(inode_init_once);
313 
314 static void init_once(void *foo)
315 {
316 	struct inode *inode = (struct inode *) foo;
317 
318 	inode_init_once(inode);
319 }
320 
321 /*
322  * inode->i_lock must be held
323  */
324 void __iget(struct inode *inode)
325 {
326 	atomic_inc(&inode->i_count);
327 }
328 
329 /*
330  * get additional reference to inode; caller must already hold one.
331  */
332 void ihold(struct inode *inode)
333 {
334 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
335 }
336 EXPORT_SYMBOL(ihold);
337 
338 static void inode_lru_list_add(struct inode *inode)
339 {
340 	spin_lock(&inode_lru_lock);
341 	if (list_empty(&inode->i_lru)) {
342 		list_add(&inode->i_lru, &inode_lru);
343 		inodes_stat.nr_unused++;
344 	}
345 	spin_unlock(&inode_lru_lock);
346 }
347 
348 static void inode_lru_list_del(struct inode *inode)
349 {
350 	spin_lock(&inode_lru_lock);
351 	if (!list_empty(&inode->i_lru)) {
352 		list_del_init(&inode->i_lru);
353 		inodes_stat.nr_unused--;
354 	}
355 	spin_unlock(&inode_lru_lock);
356 }
357 
358 /**
359  * inode_sb_list_add - add inode to the superblock list of inodes
360  * @inode: inode to add
361  */
362 void inode_sb_list_add(struct inode *inode)
363 {
364 	spin_lock(&inode_sb_list_lock);
365 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
366 	spin_unlock(&inode_sb_list_lock);
367 }
368 EXPORT_SYMBOL_GPL(inode_sb_list_add);
369 
370 static inline void inode_sb_list_del(struct inode *inode)
371 {
372 	spin_lock(&inode_sb_list_lock);
373 	list_del_init(&inode->i_sb_list);
374 	spin_unlock(&inode_sb_list_lock);
375 }
376 
377 static unsigned long hash(struct super_block *sb, unsigned long hashval)
378 {
379 	unsigned long tmp;
380 
381 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
382 			L1_CACHE_BYTES;
383 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
384 	return tmp & i_hash_mask;
385 }
386 
387 /**
388  *	__insert_inode_hash - hash an inode
389  *	@inode: unhashed inode
390  *	@hashval: unsigned long value used to locate this object in the
391  *		inode_hashtable.
392  *
393  *	Add an inode to the inode hash for this superblock.
394  */
395 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
396 {
397 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
398 
399 	spin_lock(&inode_hash_lock);
400 	spin_lock(&inode->i_lock);
401 	hlist_add_head(&inode->i_hash, b);
402 	spin_unlock(&inode->i_lock);
403 	spin_unlock(&inode_hash_lock);
404 }
405 EXPORT_SYMBOL(__insert_inode_hash);
406 
407 /**
408  *	remove_inode_hash - remove an inode from the hash
409  *	@inode: inode to unhash
410  *
411  *	Remove an inode from the superblock.
412  */
413 void remove_inode_hash(struct inode *inode)
414 {
415 	spin_lock(&inode_hash_lock);
416 	spin_lock(&inode->i_lock);
417 	hlist_del_init(&inode->i_hash);
418 	spin_unlock(&inode->i_lock);
419 	spin_unlock(&inode_hash_lock);
420 }
421 EXPORT_SYMBOL(remove_inode_hash);
422 
423 void end_writeback(struct inode *inode)
424 {
425 	might_sleep();
426 	/*
427 	 * We have to cycle tree_lock here because reclaim can be still in the
428 	 * process of removing the last page (in __delete_from_page_cache())
429 	 * and we must not free mapping under it.
430 	 */
431 	spin_lock_irq(&inode->i_data.tree_lock);
432 	BUG_ON(inode->i_data.nrpages);
433 	spin_unlock_irq(&inode->i_data.tree_lock);
434 	BUG_ON(!list_empty(&inode->i_data.private_list));
435 	BUG_ON(!(inode->i_state & I_FREEING));
436 	BUG_ON(inode->i_state & I_CLEAR);
437 	inode_sync_wait(inode);
438 	/* don't need i_lock here, no concurrent mods to i_state */
439 	inode->i_state = I_FREEING | I_CLEAR;
440 }
441 EXPORT_SYMBOL(end_writeback);
442 
443 /*
444  * Free the inode passed in, removing it from the lists it is still connected
445  * to. We remove any pages still attached to the inode and wait for any IO that
446  * is still in progress before finally destroying the inode.
447  *
448  * An inode must already be marked I_FREEING so that we avoid the inode being
449  * moved back onto lists if we race with other code that manipulates the lists
450  * (e.g. writeback_single_inode). The caller is responsible for setting this.
451  *
452  * An inode must already be removed from the LRU list before being evicted from
453  * the cache. This should occur atomically with setting the I_FREEING state
454  * flag, so no inodes here should ever be on the LRU when being evicted.
455  */
456 static void evict(struct inode *inode)
457 {
458 	const struct super_operations *op = inode->i_sb->s_op;
459 
460 	BUG_ON(!(inode->i_state & I_FREEING));
461 	BUG_ON(!list_empty(&inode->i_lru));
462 
463 	inode_wb_list_del(inode);
464 	inode_sb_list_del(inode);
465 
466 	if (op->evict_inode) {
467 		op->evict_inode(inode);
468 	} else {
469 		if (inode->i_data.nrpages)
470 			truncate_inode_pages(&inode->i_data, 0);
471 		end_writeback(inode);
472 	}
473 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
474 		bd_forget(inode);
475 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
476 		cd_forget(inode);
477 
478 	remove_inode_hash(inode);
479 
480 	spin_lock(&inode->i_lock);
481 	wake_up_bit(&inode->i_state, __I_NEW);
482 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
483 	spin_unlock(&inode->i_lock);
484 
485 	destroy_inode(inode);
486 }
487 
488 /*
489  * dispose_list - dispose of the contents of a local list
490  * @head: the head of the list to free
491  *
492  * Dispose-list gets a local list with local inodes in it, so it doesn't
493  * need to worry about list corruption and SMP locks.
494  */
495 static void dispose_list(struct list_head *head)
496 {
497 	while (!list_empty(head)) {
498 		struct inode *inode;
499 
500 		inode = list_first_entry(head, struct inode, i_lru);
501 		list_del_init(&inode->i_lru);
502 
503 		evict(inode);
504 	}
505 }
506 
507 /**
508  * evict_inodes	- evict all evictable inodes for a superblock
509  * @sb:		superblock to operate on
510  *
511  * Make sure that no inodes with zero refcount are retained.  This is
512  * called by superblock shutdown after having MS_ACTIVE flag removed,
513  * so any inode reaching zero refcount during or after that call will
514  * be immediately evicted.
515  */
516 void evict_inodes(struct super_block *sb)
517 {
518 	struct inode *inode, *next;
519 	LIST_HEAD(dispose);
520 
521 	spin_lock(&inode_sb_list_lock);
522 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
523 		if (atomic_read(&inode->i_count))
524 			continue;
525 
526 		spin_lock(&inode->i_lock);
527 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
528 			spin_unlock(&inode->i_lock);
529 			continue;
530 		}
531 
532 		inode->i_state |= I_FREEING;
533 		inode_lru_list_del(inode);
534 		spin_unlock(&inode->i_lock);
535 		list_add(&inode->i_lru, &dispose);
536 	}
537 	spin_unlock(&inode_sb_list_lock);
538 
539 	dispose_list(&dispose);
540 
541 	/*
542 	 * Cycle through iprune_sem to make sure any inode that prune_icache
543 	 * moved off the list before we took the lock has been fully torn
544 	 * down.
545 	 */
546 	down_write(&iprune_sem);
547 	up_write(&iprune_sem);
548 }
549 
550 /**
551  * invalidate_inodes	- attempt to free all inodes on a superblock
552  * @sb:		superblock to operate on
553  * @kill_dirty: flag to guide handling of dirty inodes
554  *
555  * Attempts to free all inodes for a given superblock.  If there were any
556  * busy inodes return a non-zero value, else zero.
557  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
558  * them as busy.
559  */
560 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
561 {
562 	int busy = 0;
563 	struct inode *inode, *next;
564 	LIST_HEAD(dispose);
565 
566 	spin_lock(&inode_sb_list_lock);
567 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
568 		spin_lock(&inode->i_lock);
569 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
570 			spin_unlock(&inode->i_lock);
571 			continue;
572 		}
573 		if (inode->i_state & I_DIRTY && !kill_dirty) {
574 			spin_unlock(&inode->i_lock);
575 			busy = 1;
576 			continue;
577 		}
578 		if (atomic_read(&inode->i_count)) {
579 			spin_unlock(&inode->i_lock);
580 			busy = 1;
581 			continue;
582 		}
583 
584 		inode->i_state |= I_FREEING;
585 		inode_lru_list_del(inode);
586 		spin_unlock(&inode->i_lock);
587 		list_add(&inode->i_lru, &dispose);
588 	}
589 	spin_unlock(&inode_sb_list_lock);
590 
591 	dispose_list(&dispose);
592 
593 	return busy;
594 }
595 
596 static int can_unuse(struct inode *inode)
597 {
598 	if (inode->i_state & ~I_REFERENCED)
599 		return 0;
600 	if (inode_has_buffers(inode))
601 		return 0;
602 	if (atomic_read(&inode->i_count))
603 		return 0;
604 	if (inode->i_data.nrpages)
605 		return 0;
606 	return 1;
607 }
608 
609 /*
610  * Scan `goal' inodes on the unused list for freeable ones. They are moved to a
611  * temporary list and then are freed outside inode_lru_lock by dispose_list().
612  *
613  * Any inodes which are pinned purely because of attached pagecache have their
614  * pagecache removed.  If the inode has metadata buffers attached to
615  * mapping->private_list then try to remove them.
616  *
617  * If the inode has the I_REFERENCED flag set, then it means that it has been
618  * used recently - the flag is set in iput_final(). When we encounter such an
619  * inode, clear the flag and move it to the back of the LRU so it gets another
620  * pass through the LRU before it gets reclaimed. This is necessary because of
621  * the fact we are doing lazy LRU updates to minimise lock contention so the
622  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
623  * with this flag set because they are the inodes that are out of order.
624  */
625 static void prune_icache(int nr_to_scan)
626 {
627 	LIST_HEAD(freeable);
628 	int nr_scanned;
629 	unsigned long reap = 0;
630 
631 	down_read(&iprune_sem);
632 	spin_lock(&inode_lru_lock);
633 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
634 		struct inode *inode;
635 
636 		if (list_empty(&inode_lru))
637 			break;
638 
639 		inode = list_entry(inode_lru.prev, struct inode, i_lru);
640 
641 		/*
642 		 * we are inverting the inode_lru_lock/inode->i_lock here,
643 		 * so use a trylock. If we fail to get the lock, just move the
644 		 * inode to the back of the list so we don't spin on it.
645 		 */
646 		if (!spin_trylock(&inode->i_lock)) {
647 			list_move(&inode->i_lru, &inode_lru);
648 			continue;
649 		}
650 
651 		/*
652 		 * Referenced or dirty inodes are still in use. Give them
653 		 * another pass through the LRU as we canot reclaim them now.
654 		 */
655 		if (atomic_read(&inode->i_count) ||
656 		    (inode->i_state & ~I_REFERENCED)) {
657 			list_del_init(&inode->i_lru);
658 			spin_unlock(&inode->i_lock);
659 			inodes_stat.nr_unused--;
660 			continue;
661 		}
662 
663 		/* recently referenced inodes get one more pass */
664 		if (inode->i_state & I_REFERENCED) {
665 			inode->i_state &= ~I_REFERENCED;
666 			list_move(&inode->i_lru, &inode_lru);
667 			spin_unlock(&inode->i_lock);
668 			continue;
669 		}
670 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
671 			__iget(inode);
672 			spin_unlock(&inode->i_lock);
673 			spin_unlock(&inode_lru_lock);
674 			if (remove_inode_buffers(inode))
675 				reap += invalidate_mapping_pages(&inode->i_data,
676 								0, -1);
677 			iput(inode);
678 			spin_lock(&inode_lru_lock);
679 
680 			if (inode != list_entry(inode_lru.next,
681 						struct inode, i_lru))
682 				continue;	/* wrong inode or list_empty */
683 			/* avoid lock inversions with trylock */
684 			if (!spin_trylock(&inode->i_lock))
685 				continue;
686 			if (!can_unuse(inode)) {
687 				spin_unlock(&inode->i_lock);
688 				continue;
689 			}
690 		}
691 		WARN_ON(inode->i_state & I_NEW);
692 		inode->i_state |= I_FREEING;
693 		spin_unlock(&inode->i_lock);
694 
695 		list_move(&inode->i_lru, &freeable);
696 		inodes_stat.nr_unused--;
697 	}
698 	if (current_is_kswapd())
699 		__count_vm_events(KSWAPD_INODESTEAL, reap);
700 	else
701 		__count_vm_events(PGINODESTEAL, reap);
702 	spin_unlock(&inode_lru_lock);
703 
704 	dispose_list(&freeable);
705 	up_read(&iprune_sem);
706 }
707 
708 /*
709  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
710  * "unused" means that no dentries are referring to the inodes: the files are
711  * not open and the dcache references to those inodes have already been
712  * reclaimed.
713  *
714  * This function is passed the number of inodes to scan, and it returns the
715  * total number of remaining possibly-reclaimable inodes.
716  */
717 static int shrink_icache_memory(struct shrinker *shrink,
718 				struct shrink_control *sc)
719 {
720 	int nr = sc->nr_to_scan;
721 	gfp_t gfp_mask = sc->gfp_mask;
722 
723 	if (nr) {
724 		/*
725 		 * Nasty deadlock avoidance.  We may hold various FS locks,
726 		 * and we don't want to recurse into the FS that called us
727 		 * in clear_inode() and friends..
728 		 */
729 		if (!(gfp_mask & __GFP_FS))
730 			return -1;
731 		prune_icache(nr);
732 	}
733 	return (get_nr_inodes_unused() / 100) * sysctl_vfs_cache_pressure;
734 }
735 
736 static struct shrinker icache_shrinker = {
737 	.shrink = shrink_icache_memory,
738 	.seeks = DEFAULT_SEEKS,
739 };
740 
741 static void __wait_on_freeing_inode(struct inode *inode);
742 /*
743  * Called with the inode lock held.
744  */
745 static struct inode *find_inode(struct super_block *sb,
746 				struct hlist_head *head,
747 				int (*test)(struct inode *, void *),
748 				void *data)
749 {
750 	struct hlist_node *node;
751 	struct inode *inode = NULL;
752 
753 repeat:
754 	hlist_for_each_entry(inode, node, head, i_hash) {
755 		spin_lock(&inode->i_lock);
756 		if (inode->i_sb != sb) {
757 			spin_unlock(&inode->i_lock);
758 			continue;
759 		}
760 		if (!test(inode, data)) {
761 			spin_unlock(&inode->i_lock);
762 			continue;
763 		}
764 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
765 			__wait_on_freeing_inode(inode);
766 			goto repeat;
767 		}
768 		__iget(inode);
769 		spin_unlock(&inode->i_lock);
770 		return inode;
771 	}
772 	return NULL;
773 }
774 
775 /*
776  * find_inode_fast is the fast path version of find_inode, see the comment at
777  * iget_locked for details.
778  */
779 static struct inode *find_inode_fast(struct super_block *sb,
780 				struct hlist_head *head, unsigned long ino)
781 {
782 	struct hlist_node *node;
783 	struct inode *inode = NULL;
784 
785 repeat:
786 	hlist_for_each_entry(inode, node, head, i_hash) {
787 		spin_lock(&inode->i_lock);
788 		if (inode->i_ino != ino) {
789 			spin_unlock(&inode->i_lock);
790 			continue;
791 		}
792 		if (inode->i_sb != sb) {
793 			spin_unlock(&inode->i_lock);
794 			continue;
795 		}
796 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
797 			__wait_on_freeing_inode(inode);
798 			goto repeat;
799 		}
800 		__iget(inode);
801 		spin_unlock(&inode->i_lock);
802 		return inode;
803 	}
804 	return NULL;
805 }
806 
807 /*
808  * Each cpu owns a range of LAST_INO_BATCH numbers.
809  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
810  * to renew the exhausted range.
811  *
812  * This does not significantly increase overflow rate because every CPU can
813  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
814  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
815  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
816  * overflow rate by 2x, which does not seem too significant.
817  *
818  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
819  * error if st_ino won't fit in target struct field. Use 32bit counter
820  * here to attempt to avoid that.
821  */
822 #define LAST_INO_BATCH 1024
823 static DEFINE_PER_CPU(unsigned int, last_ino);
824 
825 unsigned int get_next_ino(void)
826 {
827 	unsigned int *p = &get_cpu_var(last_ino);
828 	unsigned int res = *p;
829 
830 #ifdef CONFIG_SMP
831 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
832 		static atomic_t shared_last_ino;
833 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
834 
835 		res = next - LAST_INO_BATCH;
836 	}
837 #endif
838 
839 	*p = ++res;
840 	put_cpu_var(last_ino);
841 	return res;
842 }
843 EXPORT_SYMBOL(get_next_ino);
844 
845 /**
846  *	new_inode 	- obtain an inode
847  *	@sb: superblock
848  *
849  *	Allocates a new inode for given superblock. The default gfp_mask
850  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
851  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
852  *	for the page cache are not reclaimable or migratable,
853  *	mapping_set_gfp_mask() must be called with suitable flags on the
854  *	newly created inode's mapping
855  *
856  */
857 struct inode *new_inode(struct super_block *sb)
858 {
859 	struct inode *inode;
860 
861 	spin_lock_prefetch(&inode_sb_list_lock);
862 
863 	inode = alloc_inode(sb);
864 	if (inode) {
865 		spin_lock(&inode->i_lock);
866 		inode->i_state = 0;
867 		spin_unlock(&inode->i_lock);
868 		inode_sb_list_add(inode);
869 	}
870 	return inode;
871 }
872 EXPORT_SYMBOL(new_inode);
873 
874 /**
875  * unlock_new_inode - clear the I_NEW state and wake up any waiters
876  * @inode:	new inode to unlock
877  *
878  * Called when the inode is fully initialised to clear the new state of the
879  * inode and wake up anyone waiting for the inode to finish initialisation.
880  */
881 void unlock_new_inode(struct inode *inode)
882 {
883 #ifdef CONFIG_DEBUG_LOCK_ALLOC
884 	if (S_ISDIR(inode->i_mode)) {
885 		struct file_system_type *type = inode->i_sb->s_type;
886 
887 		/* Set new key only if filesystem hasn't already changed it */
888 		if (!lockdep_match_class(&inode->i_mutex,
889 		    &type->i_mutex_key)) {
890 			/*
891 			 * ensure nobody is actually holding i_mutex
892 			 */
893 			mutex_destroy(&inode->i_mutex);
894 			mutex_init(&inode->i_mutex);
895 			lockdep_set_class(&inode->i_mutex,
896 					  &type->i_mutex_dir_key);
897 		}
898 	}
899 #endif
900 	spin_lock(&inode->i_lock);
901 	WARN_ON(!(inode->i_state & I_NEW));
902 	inode->i_state &= ~I_NEW;
903 	wake_up_bit(&inode->i_state, __I_NEW);
904 	spin_unlock(&inode->i_lock);
905 }
906 EXPORT_SYMBOL(unlock_new_inode);
907 
908 /**
909  * iget5_locked - obtain an inode from a mounted file system
910  * @sb:		super block of file system
911  * @hashval:	hash value (usually inode number) to get
912  * @test:	callback used for comparisons between inodes
913  * @set:	callback used to initialize a new struct inode
914  * @data:	opaque data pointer to pass to @test and @set
915  *
916  * Search for the inode specified by @hashval and @data in the inode cache,
917  * and if present it is return it with an increased reference count. This is
918  * a generalized version of iget_locked() for file systems where the inode
919  * number is not sufficient for unique identification of an inode.
920  *
921  * If the inode is not in cache, allocate a new inode and return it locked,
922  * hashed, and with the I_NEW flag set. The file system gets to fill it in
923  * before unlocking it via unlock_new_inode().
924  *
925  * Note both @test and @set are called with the inode_hash_lock held, so can't
926  * sleep.
927  */
928 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
929 		int (*test)(struct inode *, void *),
930 		int (*set)(struct inode *, void *), void *data)
931 {
932 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
933 	struct inode *inode;
934 
935 	spin_lock(&inode_hash_lock);
936 	inode = find_inode(sb, head, test, data);
937 	spin_unlock(&inode_hash_lock);
938 
939 	if (inode) {
940 		wait_on_inode(inode);
941 		return inode;
942 	}
943 
944 	inode = alloc_inode(sb);
945 	if (inode) {
946 		struct inode *old;
947 
948 		spin_lock(&inode_hash_lock);
949 		/* We released the lock, so.. */
950 		old = find_inode(sb, head, test, data);
951 		if (!old) {
952 			if (set(inode, data))
953 				goto set_failed;
954 
955 			spin_lock(&inode->i_lock);
956 			inode->i_state = I_NEW;
957 			hlist_add_head(&inode->i_hash, head);
958 			spin_unlock(&inode->i_lock);
959 			inode_sb_list_add(inode);
960 			spin_unlock(&inode_hash_lock);
961 
962 			/* Return the locked inode with I_NEW set, the
963 			 * caller is responsible for filling in the contents
964 			 */
965 			return inode;
966 		}
967 
968 		/*
969 		 * Uhhuh, somebody else created the same inode under
970 		 * us. Use the old inode instead of the one we just
971 		 * allocated.
972 		 */
973 		spin_unlock(&inode_hash_lock);
974 		destroy_inode(inode);
975 		inode = old;
976 		wait_on_inode(inode);
977 	}
978 	return inode;
979 
980 set_failed:
981 	spin_unlock(&inode_hash_lock);
982 	destroy_inode(inode);
983 	return NULL;
984 }
985 EXPORT_SYMBOL(iget5_locked);
986 
987 /**
988  * iget_locked - obtain an inode from a mounted file system
989  * @sb:		super block of file system
990  * @ino:	inode number to get
991  *
992  * Search for the inode specified by @ino in the inode cache and if present
993  * return it with an increased reference count. This is for file systems
994  * where the inode number is sufficient for unique identification of an inode.
995  *
996  * If the inode is not in cache, allocate a new inode and return it locked,
997  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
998  * before unlocking it via unlock_new_inode().
999  */
1000 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1001 {
1002 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1003 	struct inode *inode;
1004 
1005 	spin_lock(&inode_hash_lock);
1006 	inode = find_inode_fast(sb, head, ino);
1007 	spin_unlock(&inode_hash_lock);
1008 	if (inode) {
1009 		wait_on_inode(inode);
1010 		return inode;
1011 	}
1012 
1013 	inode = alloc_inode(sb);
1014 	if (inode) {
1015 		struct inode *old;
1016 
1017 		spin_lock(&inode_hash_lock);
1018 		/* We released the lock, so.. */
1019 		old = find_inode_fast(sb, head, ino);
1020 		if (!old) {
1021 			inode->i_ino = ino;
1022 			spin_lock(&inode->i_lock);
1023 			inode->i_state = I_NEW;
1024 			hlist_add_head(&inode->i_hash, head);
1025 			spin_unlock(&inode->i_lock);
1026 			inode_sb_list_add(inode);
1027 			spin_unlock(&inode_hash_lock);
1028 
1029 			/* Return the locked inode with I_NEW set, the
1030 			 * caller is responsible for filling in the contents
1031 			 */
1032 			return inode;
1033 		}
1034 
1035 		/*
1036 		 * Uhhuh, somebody else created the same inode under
1037 		 * us. Use the old inode instead of the one we just
1038 		 * allocated.
1039 		 */
1040 		spin_unlock(&inode_hash_lock);
1041 		destroy_inode(inode);
1042 		inode = old;
1043 		wait_on_inode(inode);
1044 	}
1045 	return inode;
1046 }
1047 EXPORT_SYMBOL(iget_locked);
1048 
1049 /*
1050  * search the inode cache for a matching inode number.
1051  * If we find one, then the inode number we are trying to
1052  * allocate is not unique and so we should not use it.
1053  *
1054  * Returns 1 if the inode number is unique, 0 if it is not.
1055  */
1056 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1057 {
1058 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1059 	struct hlist_node *node;
1060 	struct inode *inode;
1061 
1062 	spin_lock(&inode_hash_lock);
1063 	hlist_for_each_entry(inode, node, b, i_hash) {
1064 		if (inode->i_ino == ino && inode->i_sb == sb) {
1065 			spin_unlock(&inode_hash_lock);
1066 			return 0;
1067 		}
1068 	}
1069 	spin_unlock(&inode_hash_lock);
1070 
1071 	return 1;
1072 }
1073 
1074 /**
1075  *	iunique - get a unique inode number
1076  *	@sb: superblock
1077  *	@max_reserved: highest reserved inode number
1078  *
1079  *	Obtain an inode number that is unique on the system for a given
1080  *	superblock. This is used by file systems that have no natural
1081  *	permanent inode numbering system. An inode number is returned that
1082  *	is higher than the reserved limit but unique.
1083  *
1084  *	BUGS:
1085  *	With a large number of inodes live on the file system this function
1086  *	currently becomes quite slow.
1087  */
1088 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1089 {
1090 	/*
1091 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1092 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1093 	 * here to attempt to avoid that.
1094 	 */
1095 	static DEFINE_SPINLOCK(iunique_lock);
1096 	static unsigned int counter;
1097 	ino_t res;
1098 
1099 	spin_lock(&iunique_lock);
1100 	do {
1101 		if (counter <= max_reserved)
1102 			counter = max_reserved + 1;
1103 		res = counter++;
1104 	} while (!test_inode_iunique(sb, res));
1105 	spin_unlock(&iunique_lock);
1106 
1107 	return res;
1108 }
1109 EXPORT_SYMBOL(iunique);
1110 
1111 struct inode *igrab(struct inode *inode)
1112 {
1113 	spin_lock(&inode->i_lock);
1114 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1115 		__iget(inode);
1116 		spin_unlock(&inode->i_lock);
1117 	} else {
1118 		spin_unlock(&inode->i_lock);
1119 		/*
1120 		 * Handle the case where s_op->clear_inode is not been
1121 		 * called yet, and somebody is calling igrab
1122 		 * while the inode is getting freed.
1123 		 */
1124 		inode = NULL;
1125 	}
1126 	return inode;
1127 }
1128 EXPORT_SYMBOL(igrab);
1129 
1130 /**
1131  * ilookup5_nowait - search for an inode in the inode cache
1132  * @sb:		super block of file system to search
1133  * @hashval:	hash value (usually inode number) to search for
1134  * @test:	callback used for comparisons between inodes
1135  * @data:	opaque data pointer to pass to @test
1136  *
1137  * Search for the inode specified by @hashval and @data in the inode cache.
1138  * If the inode is in the cache, the inode is returned with an incremented
1139  * reference count.
1140  *
1141  * Note: I_NEW is not waited upon so you have to be very careful what you do
1142  * with the returned inode.  You probably should be using ilookup5() instead.
1143  *
1144  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1145  */
1146 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1147 		int (*test)(struct inode *, void *), void *data)
1148 {
1149 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1150 	struct inode *inode;
1151 
1152 	spin_lock(&inode_hash_lock);
1153 	inode = find_inode(sb, head, test, data);
1154 	spin_unlock(&inode_hash_lock);
1155 
1156 	return inode;
1157 }
1158 EXPORT_SYMBOL(ilookup5_nowait);
1159 
1160 /**
1161  * ilookup5 - search for an inode in the inode cache
1162  * @sb:		super block of file system to search
1163  * @hashval:	hash value (usually inode number) to search for
1164  * @test:	callback used for comparisons between inodes
1165  * @data:	opaque data pointer to pass to @test
1166  *
1167  * Search for the inode specified by @hashval and @data in the inode cache,
1168  * and if the inode is in the cache, return the inode with an incremented
1169  * reference count.  Waits on I_NEW before returning the inode.
1170  * returned with an incremented reference count.
1171  *
1172  * This is a generalized version of ilookup() for file systems where the
1173  * inode number is not sufficient for unique identification of an inode.
1174  *
1175  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1176  */
1177 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1178 		int (*test)(struct inode *, void *), void *data)
1179 {
1180 	struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1181 
1182 	if (inode)
1183 		wait_on_inode(inode);
1184 	return inode;
1185 }
1186 EXPORT_SYMBOL(ilookup5);
1187 
1188 /**
1189  * ilookup - search for an inode in the inode cache
1190  * @sb:		super block of file system to search
1191  * @ino:	inode number to search for
1192  *
1193  * Search for the inode @ino in the inode cache, and if the inode is in the
1194  * cache, the inode is returned with an incremented reference count.
1195  */
1196 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1197 {
1198 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1199 	struct inode *inode;
1200 
1201 	spin_lock(&inode_hash_lock);
1202 	inode = find_inode_fast(sb, head, ino);
1203 	spin_unlock(&inode_hash_lock);
1204 
1205 	if (inode)
1206 		wait_on_inode(inode);
1207 	return inode;
1208 }
1209 EXPORT_SYMBOL(ilookup);
1210 
1211 int insert_inode_locked(struct inode *inode)
1212 {
1213 	struct super_block *sb = inode->i_sb;
1214 	ino_t ino = inode->i_ino;
1215 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1216 
1217 	while (1) {
1218 		struct hlist_node *node;
1219 		struct inode *old = NULL;
1220 		spin_lock(&inode_hash_lock);
1221 		hlist_for_each_entry(old, node, head, i_hash) {
1222 			if (old->i_ino != ino)
1223 				continue;
1224 			if (old->i_sb != sb)
1225 				continue;
1226 			spin_lock(&old->i_lock);
1227 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1228 				spin_unlock(&old->i_lock);
1229 				continue;
1230 			}
1231 			break;
1232 		}
1233 		if (likely(!node)) {
1234 			spin_lock(&inode->i_lock);
1235 			inode->i_state |= I_NEW;
1236 			hlist_add_head(&inode->i_hash, head);
1237 			spin_unlock(&inode->i_lock);
1238 			spin_unlock(&inode_hash_lock);
1239 			return 0;
1240 		}
1241 		__iget(old);
1242 		spin_unlock(&old->i_lock);
1243 		spin_unlock(&inode_hash_lock);
1244 		wait_on_inode(old);
1245 		if (unlikely(!inode_unhashed(old))) {
1246 			iput(old);
1247 			return -EBUSY;
1248 		}
1249 		iput(old);
1250 	}
1251 }
1252 EXPORT_SYMBOL(insert_inode_locked);
1253 
1254 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1255 		int (*test)(struct inode *, void *), void *data)
1256 {
1257 	struct super_block *sb = inode->i_sb;
1258 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1259 
1260 	while (1) {
1261 		struct hlist_node *node;
1262 		struct inode *old = NULL;
1263 
1264 		spin_lock(&inode_hash_lock);
1265 		hlist_for_each_entry(old, node, head, i_hash) {
1266 			if (old->i_sb != sb)
1267 				continue;
1268 			if (!test(old, data))
1269 				continue;
1270 			spin_lock(&old->i_lock);
1271 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1272 				spin_unlock(&old->i_lock);
1273 				continue;
1274 			}
1275 			break;
1276 		}
1277 		if (likely(!node)) {
1278 			spin_lock(&inode->i_lock);
1279 			inode->i_state |= I_NEW;
1280 			hlist_add_head(&inode->i_hash, head);
1281 			spin_unlock(&inode->i_lock);
1282 			spin_unlock(&inode_hash_lock);
1283 			return 0;
1284 		}
1285 		__iget(old);
1286 		spin_unlock(&old->i_lock);
1287 		spin_unlock(&inode_hash_lock);
1288 		wait_on_inode(old);
1289 		if (unlikely(!inode_unhashed(old))) {
1290 			iput(old);
1291 			return -EBUSY;
1292 		}
1293 		iput(old);
1294 	}
1295 }
1296 EXPORT_SYMBOL(insert_inode_locked4);
1297 
1298 
1299 int generic_delete_inode(struct inode *inode)
1300 {
1301 	return 1;
1302 }
1303 EXPORT_SYMBOL(generic_delete_inode);
1304 
1305 /*
1306  * Normal UNIX filesystem behaviour: delete the
1307  * inode when the usage count drops to zero, and
1308  * i_nlink is zero.
1309  */
1310 int generic_drop_inode(struct inode *inode)
1311 {
1312 	return !inode->i_nlink || inode_unhashed(inode);
1313 }
1314 EXPORT_SYMBOL_GPL(generic_drop_inode);
1315 
1316 /*
1317  * Called when we're dropping the last reference
1318  * to an inode.
1319  *
1320  * Call the FS "drop_inode()" function, defaulting to
1321  * the legacy UNIX filesystem behaviour.  If it tells
1322  * us to evict inode, do so.  Otherwise, retain inode
1323  * in cache if fs is alive, sync and evict if fs is
1324  * shutting down.
1325  */
1326 static void iput_final(struct inode *inode)
1327 {
1328 	struct super_block *sb = inode->i_sb;
1329 	const struct super_operations *op = inode->i_sb->s_op;
1330 	int drop;
1331 
1332 	WARN_ON(inode->i_state & I_NEW);
1333 
1334 	if (op && op->drop_inode)
1335 		drop = op->drop_inode(inode);
1336 	else
1337 		drop = generic_drop_inode(inode);
1338 
1339 	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1340 		inode->i_state |= I_REFERENCED;
1341 		if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1342 			inode_lru_list_add(inode);
1343 		spin_unlock(&inode->i_lock);
1344 		return;
1345 	}
1346 
1347 	if (!drop) {
1348 		inode->i_state |= I_WILL_FREE;
1349 		spin_unlock(&inode->i_lock);
1350 		write_inode_now(inode, 1);
1351 		spin_lock(&inode->i_lock);
1352 		WARN_ON(inode->i_state & I_NEW);
1353 		inode->i_state &= ~I_WILL_FREE;
1354 	}
1355 
1356 	inode->i_state |= I_FREEING;
1357 	inode_lru_list_del(inode);
1358 	spin_unlock(&inode->i_lock);
1359 
1360 	evict(inode);
1361 }
1362 
1363 /**
1364  *	iput	- put an inode
1365  *	@inode: inode to put
1366  *
1367  *	Puts an inode, dropping its usage count. If the inode use count hits
1368  *	zero, the inode is then freed and may also be destroyed.
1369  *
1370  *	Consequently, iput() can sleep.
1371  */
1372 void iput(struct inode *inode)
1373 {
1374 	if (inode) {
1375 		BUG_ON(inode->i_state & I_CLEAR);
1376 
1377 		if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1378 			iput_final(inode);
1379 	}
1380 }
1381 EXPORT_SYMBOL(iput);
1382 
1383 /**
1384  *	bmap	- find a block number in a file
1385  *	@inode: inode of file
1386  *	@block: block to find
1387  *
1388  *	Returns the block number on the device holding the inode that
1389  *	is the disk block number for the block of the file requested.
1390  *	That is, asked for block 4 of inode 1 the function will return the
1391  *	disk block relative to the disk start that holds that block of the
1392  *	file.
1393  */
1394 sector_t bmap(struct inode *inode, sector_t block)
1395 {
1396 	sector_t res = 0;
1397 	if (inode->i_mapping->a_ops->bmap)
1398 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1399 	return res;
1400 }
1401 EXPORT_SYMBOL(bmap);
1402 
1403 /*
1404  * With relative atime, only update atime if the previous atime is
1405  * earlier than either the ctime or mtime or if at least a day has
1406  * passed since the last atime update.
1407  */
1408 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1409 			     struct timespec now)
1410 {
1411 
1412 	if (!(mnt->mnt_flags & MNT_RELATIME))
1413 		return 1;
1414 	/*
1415 	 * Is mtime younger than atime? If yes, update atime:
1416 	 */
1417 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1418 		return 1;
1419 	/*
1420 	 * Is ctime younger than atime? If yes, update atime:
1421 	 */
1422 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1423 		return 1;
1424 
1425 	/*
1426 	 * Is the previous atime value older than a day? If yes,
1427 	 * update atime:
1428 	 */
1429 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1430 		return 1;
1431 	/*
1432 	 * Good, we can skip the atime update:
1433 	 */
1434 	return 0;
1435 }
1436 
1437 /**
1438  *	touch_atime	-	update the access time
1439  *	@mnt: mount the inode is accessed on
1440  *	@dentry: dentry accessed
1441  *
1442  *	Update the accessed time on an inode and mark it for writeback.
1443  *	This function automatically handles read only file systems and media,
1444  *	as well as the "noatime" flag and inode specific "noatime" markers.
1445  */
1446 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1447 {
1448 	struct inode *inode = dentry->d_inode;
1449 	struct timespec now;
1450 
1451 	if (inode->i_flags & S_NOATIME)
1452 		return;
1453 	if (IS_NOATIME(inode))
1454 		return;
1455 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1456 		return;
1457 
1458 	if (mnt->mnt_flags & MNT_NOATIME)
1459 		return;
1460 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1461 		return;
1462 
1463 	now = current_fs_time(inode->i_sb);
1464 
1465 	if (!relatime_need_update(mnt, inode, now))
1466 		return;
1467 
1468 	if (timespec_equal(&inode->i_atime, &now))
1469 		return;
1470 
1471 	if (mnt_want_write(mnt))
1472 		return;
1473 
1474 	inode->i_atime = now;
1475 	mark_inode_dirty_sync(inode);
1476 	mnt_drop_write(mnt);
1477 }
1478 EXPORT_SYMBOL(touch_atime);
1479 
1480 /**
1481  *	file_update_time	-	update mtime and ctime time
1482  *	@file: file accessed
1483  *
1484  *	Update the mtime and ctime members of an inode and mark the inode
1485  *	for writeback.  Note that this function is meant exclusively for
1486  *	usage in the file write path of filesystems, and filesystems may
1487  *	choose to explicitly ignore update via this function with the
1488  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1489  *	timestamps are handled by the server.
1490  */
1491 
1492 void file_update_time(struct file *file)
1493 {
1494 	struct inode *inode = file->f_path.dentry->d_inode;
1495 	struct timespec now;
1496 	enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1497 
1498 	/* First try to exhaust all avenues to not sync */
1499 	if (IS_NOCMTIME(inode))
1500 		return;
1501 
1502 	now = current_fs_time(inode->i_sb);
1503 	if (!timespec_equal(&inode->i_mtime, &now))
1504 		sync_it = S_MTIME;
1505 
1506 	if (!timespec_equal(&inode->i_ctime, &now))
1507 		sync_it |= S_CTIME;
1508 
1509 	if (IS_I_VERSION(inode))
1510 		sync_it |= S_VERSION;
1511 
1512 	if (!sync_it)
1513 		return;
1514 
1515 	/* Finally allowed to write? Takes lock. */
1516 	if (mnt_want_write_file(file))
1517 		return;
1518 
1519 	/* Only change inode inside the lock region */
1520 	if (sync_it & S_VERSION)
1521 		inode_inc_iversion(inode);
1522 	if (sync_it & S_CTIME)
1523 		inode->i_ctime = now;
1524 	if (sync_it & S_MTIME)
1525 		inode->i_mtime = now;
1526 	mark_inode_dirty_sync(inode);
1527 	mnt_drop_write(file->f_path.mnt);
1528 }
1529 EXPORT_SYMBOL(file_update_time);
1530 
1531 int inode_needs_sync(struct inode *inode)
1532 {
1533 	if (IS_SYNC(inode))
1534 		return 1;
1535 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1536 		return 1;
1537 	return 0;
1538 }
1539 EXPORT_SYMBOL(inode_needs_sync);
1540 
1541 int inode_wait(void *word)
1542 {
1543 	schedule();
1544 	return 0;
1545 }
1546 EXPORT_SYMBOL(inode_wait);
1547 
1548 /*
1549  * If we try to find an inode in the inode hash while it is being
1550  * deleted, we have to wait until the filesystem completes its
1551  * deletion before reporting that it isn't found.  This function waits
1552  * until the deletion _might_ have completed.  Callers are responsible
1553  * to recheck inode state.
1554  *
1555  * It doesn't matter if I_NEW is not set initially, a call to
1556  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1557  * will DTRT.
1558  */
1559 static void __wait_on_freeing_inode(struct inode *inode)
1560 {
1561 	wait_queue_head_t *wq;
1562 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1563 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1564 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1565 	spin_unlock(&inode->i_lock);
1566 	spin_unlock(&inode_hash_lock);
1567 	schedule();
1568 	finish_wait(wq, &wait.wait);
1569 	spin_lock(&inode_hash_lock);
1570 }
1571 
1572 static __initdata unsigned long ihash_entries;
1573 static int __init set_ihash_entries(char *str)
1574 {
1575 	if (!str)
1576 		return 0;
1577 	ihash_entries = simple_strtoul(str, &str, 0);
1578 	return 1;
1579 }
1580 __setup("ihash_entries=", set_ihash_entries);
1581 
1582 /*
1583  * Initialize the waitqueues and inode hash table.
1584  */
1585 void __init inode_init_early(void)
1586 {
1587 	int loop;
1588 
1589 	/* If hashes are distributed across NUMA nodes, defer
1590 	 * hash allocation until vmalloc space is available.
1591 	 */
1592 	if (hashdist)
1593 		return;
1594 
1595 	inode_hashtable =
1596 		alloc_large_system_hash("Inode-cache",
1597 					sizeof(struct hlist_head),
1598 					ihash_entries,
1599 					14,
1600 					HASH_EARLY,
1601 					&i_hash_shift,
1602 					&i_hash_mask,
1603 					0);
1604 
1605 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1606 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1607 }
1608 
1609 void __init inode_init(void)
1610 {
1611 	int loop;
1612 
1613 	/* inode slab cache */
1614 	inode_cachep = kmem_cache_create("inode_cache",
1615 					 sizeof(struct inode),
1616 					 0,
1617 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1618 					 SLAB_MEM_SPREAD),
1619 					 init_once);
1620 	register_shrinker(&icache_shrinker);
1621 
1622 	/* Hash may have been set up in inode_init_early */
1623 	if (!hashdist)
1624 		return;
1625 
1626 	inode_hashtable =
1627 		alloc_large_system_hash("Inode-cache",
1628 					sizeof(struct hlist_head),
1629 					ihash_entries,
1630 					14,
1631 					0,
1632 					&i_hash_shift,
1633 					&i_hash_mask,
1634 					0);
1635 
1636 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1637 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1638 }
1639 
1640 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1641 {
1642 	inode->i_mode = mode;
1643 	if (S_ISCHR(mode)) {
1644 		inode->i_fop = &def_chr_fops;
1645 		inode->i_rdev = rdev;
1646 	} else if (S_ISBLK(mode)) {
1647 		inode->i_fop = &def_blk_fops;
1648 		inode->i_rdev = rdev;
1649 	} else if (S_ISFIFO(mode))
1650 		inode->i_fop = &def_fifo_fops;
1651 	else if (S_ISSOCK(mode))
1652 		inode->i_fop = &bad_sock_fops;
1653 	else
1654 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1655 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1656 				  inode->i_ino);
1657 }
1658 EXPORT_SYMBOL(init_special_inode);
1659 
1660 /**
1661  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1662  * @inode: New inode
1663  * @dir: Directory inode
1664  * @mode: mode of the new inode
1665  */
1666 void inode_init_owner(struct inode *inode, const struct inode *dir,
1667 			mode_t mode)
1668 {
1669 	inode->i_uid = current_fsuid();
1670 	if (dir && dir->i_mode & S_ISGID) {
1671 		inode->i_gid = dir->i_gid;
1672 		if (S_ISDIR(mode))
1673 			mode |= S_ISGID;
1674 	} else
1675 		inode->i_gid = current_fsgid();
1676 	inode->i_mode = mode;
1677 }
1678 EXPORT_SYMBOL(inode_init_owner);
1679 
1680 /**
1681  * inode_owner_or_capable - check current task permissions to inode
1682  * @inode: inode being checked
1683  *
1684  * Return true if current either has CAP_FOWNER to the inode, or
1685  * owns the file.
1686  */
1687 bool inode_owner_or_capable(const struct inode *inode)
1688 {
1689 	struct user_namespace *ns = inode_userns(inode);
1690 
1691 	if (current_user_ns() == ns && current_fsuid() == inode->i_uid)
1692 		return true;
1693 	if (ns_capable(ns, CAP_FOWNER))
1694 		return true;
1695 	return false;
1696 }
1697 EXPORT_SYMBOL(inode_owner_or_capable);
1698