1 /* 2 * (C) 1997 Linus Torvalds 3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 4 */ 5 #include <linux/export.h> 6 #include <linux/fs.h> 7 #include <linux/mm.h> 8 #include <linux/backing-dev.h> 9 #include <linux/hash.h> 10 #include <linux/swap.h> 11 #include <linux/security.h> 12 #include <linux/cdev.h> 13 #include <linux/bootmem.h> 14 #include <linux/fsnotify.h> 15 #include <linux/mount.h> 16 #include <linux/posix_acl.h> 17 #include <linux/prefetch.h> 18 #include <linux/buffer_head.h> /* for inode_has_buffers */ 19 #include <linux/ratelimit.h> 20 #include "internal.h" 21 22 /* 23 * Inode locking rules: 24 * 25 * inode->i_lock protects: 26 * inode->i_state, inode->i_hash, __iget() 27 * inode->i_sb->s_inode_lru_lock protects: 28 * inode->i_sb->s_inode_lru, inode->i_lru 29 * inode_sb_list_lock protects: 30 * sb->s_inodes, inode->i_sb_list 31 * bdi->wb.list_lock protects: 32 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list 33 * inode_hash_lock protects: 34 * inode_hashtable, inode->i_hash 35 * 36 * Lock ordering: 37 * 38 * inode_sb_list_lock 39 * inode->i_lock 40 * inode->i_sb->s_inode_lru_lock 41 * 42 * bdi->wb.list_lock 43 * inode->i_lock 44 * 45 * inode_hash_lock 46 * inode_sb_list_lock 47 * inode->i_lock 48 * 49 * iunique_lock 50 * inode_hash_lock 51 */ 52 53 static unsigned int i_hash_mask __read_mostly; 54 static unsigned int i_hash_shift __read_mostly; 55 static struct hlist_head *inode_hashtable __read_mostly; 56 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 57 58 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock); 59 60 /* 61 * Empty aops. Can be used for the cases where the user does not 62 * define any of the address_space operations. 63 */ 64 const struct address_space_operations empty_aops = { 65 }; 66 EXPORT_SYMBOL(empty_aops); 67 68 /* 69 * Statistics gathering.. 70 */ 71 struct inodes_stat_t inodes_stat; 72 73 static DEFINE_PER_CPU(unsigned int, nr_inodes); 74 static DEFINE_PER_CPU(unsigned int, nr_unused); 75 76 static struct kmem_cache *inode_cachep __read_mostly; 77 78 static int get_nr_inodes(void) 79 { 80 int i; 81 int sum = 0; 82 for_each_possible_cpu(i) 83 sum += per_cpu(nr_inodes, i); 84 return sum < 0 ? 0 : sum; 85 } 86 87 static inline int get_nr_inodes_unused(void) 88 { 89 int i; 90 int sum = 0; 91 for_each_possible_cpu(i) 92 sum += per_cpu(nr_unused, i); 93 return sum < 0 ? 0 : sum; 94 } 95 96 int get_nr_dirty_inodes(void) 97 { 98 /* not actually dirty inodes, but a wild approximation */ 99 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 100 return nr_dirty > 0 ? nr_dirty : 0; 101 } 102 103 /* 104 * Handle nr_inode sysctl 105 */ 106 #ifdef CONFIG_SYSCTL 107 int proc_nr_inodes(ctl_table *table, int write, 108 void __user *buffer, size_t *lenp, loff_t *ppos) 109 { 110 inodes_stat.nr_inodes = get_nr_inodes(); 111 inodes_stat.nr_unused = get_nr_inodes_unused(); 112 return proc_dointvec(table, write, buffer, lenp, ppos); 113 } 114 #endif 115 116 /** 117 * inode_init_always - perform inode structure intialisation 118 * @sb: superblock inode belongs to 119 * @inode: inode to initialise 120 * 121 * These are initializations that need to be done on every inode 122 * allocation as the fields are not initialised by slab allocation. 123 */ 124 int inode_init_always(struct super_block *sb, struct inode *inode) 125 { 126 static const struct inode_operations empty_iops; 127 static const struct file_operations empty_fops; 128 struct address_space *const mapping = &inode->i_data; 129 130 inode->i_sb = sb; 131 inode->i_blkbits = sb->s_blocksize_bits; 132 inode->i_flags = 0; 133 atomic_set(&inode->i_count, 1); 134 inode->i_op = &empty_iops; 135 inode->i_fop = &empty_fops; 136 inode->__i_nlink = 1; 137 inode->i_opflags = 0; 138 i_uid_write(inode, 0); 139 i_gid_write(inode, 0); 140 atomic_set(&inode->i_writecount, 0); 141 inode->i_size = 0; 142 inode->i_blocks = 0; 143 inode->i_bytes = 0; 144 inode->i_generation = 0; 145 #ifdef CONFIG_QUOTA 146 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 147 #endif 148 inode->i_pipe = NULL; 149 inode->i_bdev = NULL; 150 inode->i_cdev = NULL; 151 inode->i_rdev = 0; 152 inode->dirtied_when = 0; 153 154 if (security_inode_alloc(inode)) 155 goto out; 156 spin_lock_init(&inode->i_lock); 157 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 158 159 mutex_init(&inode->i_mutex); 160 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 161 162 atomic_set(&inode->i_dio_count, 0); 163 164 mapping->a_ops = &empty_aops; 165 mapping->host = inode; 166 mapping->flags = 0; 167 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 168 mapping->private_data = NULL; 169 mapping->backing_dev_info = &default_backing_dev_info; 170 mapping->writeback_index = 0; 171 172 /* 173 * If the block_device provides a backing_dev_info for client 174 * inodes then use that. Otherwise the inode share the bdev's 175 * backing_dev_info. 176 */ 177 if (sb->s_bdev) { 178 struct backing_dev_info *bdi; 179 180 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 181 mapping->backing_dev_info = bdi; 182 } 183 inode->i_private = NULL; 184 inode->i_mapping = mapping; 185 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 186 #ifdef CONFIG_FS_POSIX_ACL 187 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 188 #endif 189 190 #ifdef CONFIG_FSNOTIFY 191 inode->i_fsnotify_mask = 0; 192 #endif 193 194 this_cpu_inc(nr_inodes); 195 196 return 0; 197 out: 198 return -ENOMEM; 199 } 200 EXPORT_SYMBOL(inode_init_always); 201 202 static struct inode *alloc_inode(struct super_block *sb) 203 { 204 struct inode *inode; 205 206 if (sb->s_op->alloc_inode) 207 inode = sb->s_op->alloc_inode(sb); 208 else 209 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 210 211 if (!inode) 212 return NULL; 213 214 if (unlikely(inode_init_always(sb, inode))) { 215 if (inode->i_sb->s_op->destroy_inode) 216 inode->i_sb->s_op->destroy_inode(inode); 217 else 218 kmem_cache_free(inode_cachep, inode); 219 return NULL; 220 } 221 222 return inode; 223 } 224 225 void free_inode_nonrcu(struct inode *inode) 226 { 227 kmem_cache_free(inode_cachep, inode); 228 } 229 EXPORT_SYMBOL(free_inode_nonrcu); 230 231 void __destroy_inode(struct inode *inode) 232 { 233 BUG_ON(inode_has_buffers(inode)); 234 security_inode_free(inode); 235 fsnotify_inode_delete(inode); 236 if (!inode->i_nlink) { 237 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 238 atomic_long_dec(&inode->i_sb->s_remove_count); 239 } 240 241 #ifdef CONFIG_FS_POSIX_ACL 242 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED) 243 posix_acl_release(inode->i_acl); 244 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED) 245 posix_acl_release(inode->i_default_acl); 246 #endif 247 this_cpu_dec(nr_inodes); 248 } 249 EXPORT_SYMBOL(__destroy_inode); 250 251 static void i_callback(struct rcu_head *head) 252 { 253 struct inode *inode = container_of(head, struct inode, i_rcu); 254 kmem_cache_free(inode_cachep, inode); 255 } 256 257 static void destroy_inode(struct inode *inode) 258 { 259 BUG_ON(!list_empty(&inode->i_lru)); 260 __destroy_inode(inode); 261 if (inode->i_sb->s_op->destroy_inode) 262 inode->i_sb->s_op->destroy_inode(inode); 263 else 264 call_rcu(&inode->i_rcu, i_callback); 265 } 266 267 /** 268 * drop_nlink - directly drop an inode's link count 269 * @inode: inode 270 * 271 * This is a low-level filesystem helper to replace any 272 * direct filesystem manipulation of i_nlink. In cases 273 * where we are attempting to track writes to the 274 * filesystem, a decrement to zero means an imminent 275 * write when the file is truncated and actually unlinked 276 * on the filesystem. 277 */ 278 void drop_nlink(struct inode *inode) 279 { 280 WARN_ON(inode->i_nlink == 0); 281 inode->__i_nlink--; 282 if (!inode->i_nlink) 283 atomic_long_inc(&inode->i_sb->s_remove_count); 284 } 285 EXPORT_SYMBOL(drop_nlink); 286 287 /** 288 * clear_nlink - directly zero an inode's link count 289 * @inode: inode 290 * 291 * This is a low-level filesystem helper to replace any 292 * direct filesystem manipulation of i_nlink. See 293 * drop_nlink() for why we care about i_nlink hitting zero. 294 */ 295 void clear_nlink(struct inode *inode) 296 { 297 if (inode->i_nlink) { 298 inode->__i_nlink = 0; 299 atomic_long_inc(&inode->i_sb->s_remove_count); 300 } 301 } 302 EXPORT_SYMBOL(clear_nlink); 303 304 /** 305 * set_nlink - directly set an inode's link count 306 * @inode: inode 307 * @nlink: new nlink (should be non-zero) 308 * 309 * This is a low-level filesystem helper to replace any 310 * direct filesystem manipulation of i_nlink. 311 */ 312 void set_nlink(struct inode *inode, unsigned int nlink) 313 { 314 if (!nlink) { 315 clear_nlink(inode); 316 } else { 317 /* Yes, some filesystems do change nlink from zero to one */ 318 if (inode->i_nlink == 0) 319 atomic_long_dec(&inode->i_sb->s_remove_count); 320 321 inode->__i_nlink = nlink; 322 } 323 } 324 EXPORT_SYMBOL(set_nlink); 325 326 /** 327 * inc_nlink - directly increment an inode's link count 328 * @inode: inode 329 * 330 * This is a low-level filesystem helper to replace any 331 * direct filesystem manipulation of i_nlink. Currently, 332 * it is only here for parity with dec_nlink(). 333 */ 334 void inc_nlink(struct inode *inode) 335 { 336 if (unlikely(inode->i_nlink == 0)) { 337 WARN_ON(!(inode->i_state & I_LINKABLE)); 338 atomic_long_dec(&inode->i_sb->s_remove_count); 339 } 340 341 inode->__i_nlink++; 342 } 343 EXPORT_SYMBOL(inc_nlink); 344 345 void address_space_init_once(struct address_space *mapping) 346 { 347 memset(mapping, 0, sizeof(*mapping)); 348 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC); 349 spin_lock_init(&mapping->tree_lock); 350 mutex_init(&mapping->i_mmap_mutex); 351 INIT_LIST_HEAD(&mapping->private_list); 352 spin_lock_init(&mapping->private_lock); 353 mapping->i_mmap = RB_ROOT; 354 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear); 355 } 356 EXPORT_SYMBOL(address_space_init_once); 357 358 /* 359 * These are initializations that only need to be done 360 * once, because the fields are idempotent across use 361 * of the inode, so let the slab aware of that. 362 */ 363 void inode_init_once(struct inode *inode) 364 { 365 memset(inode, 0, sizeof(*inode)); 366 INIT_HLIST_NODE(&inode->i_hash); 367 INIT_LIST_HEAD(&inode->i_devices); 368 INIT_LIST_HEAD(&inode->i_wb_list); 369 INIT_LIST_HEAD(&inode->i_lru); 370 address_space_init_once(&inode->i_data); 371 i_size_ordered_init(inode); 372 #ifdef CONFIG_FSNOTIFY 373 INIT_HLIST_HEAD(&inode->i_fsnotify_marks); 374 #endif 375 } 376 EXPORT_SYMBOL(inode_init_once); 377 378 static void init_once(void *foo) 379 { 380 struct inode *inode = (struct inode *) foo; 381 382 inode_init_once(inode); 383 } 384 385 /* 386 * inode->i_lock must be held 387 */ 388 void __iget(struct inode *inode) 389 { 390 atomic_inc(&inode->i_count); 391 } 392 393 /* 394 * get additional reference to inode; caller must already hold one. 395 */ 396 void ihold(struct inode *inode) 397 { 398 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 399 } 400 EXPORT_SYMBOL(ihold); 401 402 static void inode_lru_list_add(struct inode *inode) 403 { 404 spin_lock(&inode->i_sb->s_inode_lru_lock); 405 if (list_empty(&inode->i_lru)) { 406 list_add(&inode->i_lru, &inode->i_sb->s_inode_lru); 407 inode->i_sb->s_nr_inodes_unused++; 408 this_cpu_inc(nr_unused); 409 } 410 spin_unlock(&inode->i_sb->s_inode_lru_lock); 411 } 412 413 /* 414 * Add inode to LRU if needed (inode is unused and clean). 415 * 416 * Needs inode->i_lock held. 417 */ 418 void inode_add_lru(struct inode *inode) 419 { 420 if (!(inode->i_state & (I_DIRTY | I_SYNC | I_FREEING | I_WILL_FREE)) && 421 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE) 422 inode_lru_list_add(inode); 423 } 424 425 426 static void inode_lru_list_del(struct inode *inode) 427 { 428 spin_lock(&inode->i_sb->s_inode_lru_lock); 429 if (!list_empty(&inode->i_lru)) { 430 list_del_init(&inode->i_lru); 431 inode->i_sb->s_nr_inodes_unused--; 432 this_cpu_dec(nr_unused); 433 } 434 spin_unlock(&inode->i_sb->s_inode_lru_lock); 435 } 436 437 /** 438 * inode_sb_list_add - add inode to the superblock list of inodes 439 * @inode: inode to add 440 */ 441 void inode_sb_list_add(struct inode *inode) 442 { 443 spin_lock(&inode_sb_list_lock); 444 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 445 spin_unlock(&inode_sb_list_lock); 446 } 447 EXPORT_SYMBOL_GPL(inode_sb_list_add); 448 449 static inline void inode_sb_list_del(struct inode *inode) 450 { 451 if (!list_empty(&inode->i_sb_list)) { 452 spin_lock(&inode_sb_list_lock); 453 list_del_init(&inode->i_sb_list); 454 spin_unlock(&inode_sb_list_lock); 455 } 456 } 457 458 static unsigned long hash(struct super_block *sb, unsigned long hashval) 459 { 460 unsigned long tmp; 461 462 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 463 L1_CACHE_BYTES; 464 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 465 return tmp & i_hash_mask; 466 } 467 468 /** 469 * __insert_inode_hash - hash an inode 470 * @inode: unhashed inode 471 * @hashval: unsigned long value used to locate this object in the 472 * inode_hashtable. 473 * 474 * Add an inode to the inode hash for this superblock. 475 */ 476 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 477 { 478 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 479 480 spin_lock(&inode_hash_lock); 481 spin_lock(&inode->i_lock); 482 hlist_add_head(&inode->i_hash, b); 483 spin_unlock(&inode->i_lock); 484 spin_unlock(&inode_hash_lock); 485 } 486 EXPORT_SYMBOL(__insert_inode_hash); 487 488 /** 489 * __remove_inode_hash - remove an inode from the hash 490 * @inode: inode to unhash 491 * 492 * Remove an inode from the superblock. 493 */ 494 void __remove_inode_hash(struct inode *inode) 495 { 496 spin_lock(&inode_hash_lock); 497 spin_lock(&inode->i_lock); 498 hlist_del_init(&inode->i_hash); 499 spin_unlock(&inode->i_lock); 500 spin_unlock(&inode_hash_lock); 501 } 502 EXPORT_SYMBOL(__remove_inode_hash); 503 504 void clear_inode(struct inode *inode) 505 { 506 might_sleep(); 507 /* 508 * We have to cycle tree_lock here because reclaim can be still in the 509 * process of removing the last page (in __delete_from_page_cache()) 510 * and we must not free mapping under it. 511 */ 512 spin_lock_irq(&inode->i_data.tree_lock); 513 BUG_ON(inode->i_data.nrpages); 514 spin_unlock_irq(&inode->i_data.tree_lock); 515 BUG_ON(!list_empty(&inode->i_data.private_list)); 516 BUG_ON(!(inode->i_state & I_FREEING)); 517 BUG_ON(inode->i_state & I_CLEAR); 518 /* don't need i_lock here, no concurrent mods to i_state */ 519 inode->i_state = I_FREEING | I_CLEAR; 520 } 521 EXPORT_SYMBOL(clear_inode); 522 523 /* 524 * Free the inode passed in, removing it from the lists it is still connected 525 * to. We remove any pages still attached to the inode and wait for any IO that 526 * is still in progress before finally destroying the inode. 527 * 528 * An inode must already be marked I_FREEING so that we avoid the inode being 529 * moved back onto lists if we race with other code that manipulates the lists 530 * (e.g. writeback_single_inode). The caller is responsible for setting this. 531 * 532 * An inode must already be removed from the LRU list before being evicted from 533 * the cache. This should occur atomically with setting the I_FREEING state 534 * flag, so no inodes here should ever be on the LRU when being evicted. 535 */ 536 static void evict(struct inode *inode) 537 { 538 const struct super_operations *op = inode->i_sb->s_op; 539 540 BUG_ON(!(inode->i_state & I_FREEING)); 541 BUG_ON(!list_empty(&inode->i_lru)); 542 543 if (!list_empty(&inode->i_wb_list)) 544 inode_wb_list_del(inode); 545 546 inode_sb_list_del(inode); 547 548 /* 549 * Wait for flusher thread to be done with the inode so that filesystem 550 * does not start destroying it while writeback is still running. Since 551 * the inode has I_FREEING set, flusher thread won't start new work on 552 * the inode. We just have to wait for running writeback to finish. 553 */ 554 inode_wait_for_writeback(inode); 555 556 if (op->evict_inode) { 557 op->evict_inode(inode); 558 } else { 559 if (inode->i_data.nrpages) 560 truncate_inode_pages(&inode->i_data, 0); 561 clear_inode(inode); 562 } 563 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 564 bd_forget(inode); 565 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 566 cd_forget(inode); 567 568 remove_inode_hash(inode); 569 570 spin_lock(&inode->i_lock); 571 wake_up_bit(&inode->i_state, __I_NEW); 572 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 573 spin_unlock(&inode->i_lock); 574 575 destroy_inode(inode); 576 } 577 578 /* 579 * dispose_list - dispose of the contents of a local list 580 * @head: the head of the list to free 581 * 582 * Dispose-list gets a local list with local inodes in it, so it doesn't 583 * need to worry about list corruption and SMP locks. 584 */ 585 static void dispose_list(struct list_head *head) 586 { 587 while (!list_empty(head)) { 588 struct inode *inode; 589 590 inode = list_first_entry(head, struct inode, i_lru); 591 list_del_init(&inode->i_lru); 592 593 evict(inode); 594 } 595 } 596 597 /** 598 * evict_inodes - evict all evictable inodes for a superblock 599 * @sb: superblock to operate on 600 * 601 * Make sure that no inodes with zero refcount are retained. This is 602 * called by superblock shutdown after having MS_ACTIVE flag removed, 603 * so any inode reaching zero refcount during or after that call will 604 * be immediately evicted. 605 */ 606 void evict_inodes(struct super_block *sb) 607 { 608 struct inode *inode, *next; 609 LIST_HEAD(dispose); 610 611 spin_lock(&inode_sb_list_lock); 612 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 613 if (atomic_read(&inode->i_count)) 614 continue; 615 616 spin_lock(&inode->i_lock); 617 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 618 spin_unlock(&inode->i_lock); 619 continue; 620 } 621 622 inode->i_state |= I_FREEING; 623 inode_lru_list_del(inode); 624 spin_unlock(&inode->i_lock); 625 list_add(&inode->i_lru, &dispose); 626 } 627 spin_unlock(&inode_sb_list_lock); 628 629 dispose_list(&dispose); 630 } 631 632 /** 633 * invalidate_inodes - attempt to free all inodes on a superblock 634 * @sb: superblock to operate on 635 * @kill_dirty: flag to guide handling of dirty inodes 636 * 637 * Attempts to free all inodes for a given superblock. If there were any 638 * busy inodes return a non-zero value, else zero. 639 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 640 * them as busy. 641 */ 642 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 643 { 644 int busy = 0; 645 struct inode *inode, *next; 646 LIST_HEAD(dispose); 647 648 spin_lock(&inode_sb_list_lock); 649 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 650 spin_lock(&inode->i_lock); 651 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 652 spin_unlock(&inode->i_lock); 653 continue; 654 } 655 if (inode->i_state & I_DIRTY && !kill_dirty) { 656 spin_unlock(&inode->i_lock); 657 busy = 1; 658 continue; 659 } 660 if (atomic_read(&inode->i_count)) { 661 spin_unlock(&inode->i_lock); 662 busy = 1; 663 continue; 664 } 665 666 inode->i_state |= I_FREEING; 667 inode_lru_list_del(inode); 668 spin_unlock(&inode->i_lock); 669 list_add(&inode->i_lru, &dispose); 670 } 671 spin_unlock(&inode_sb_list_lock); 672 673 dispose_list(&dispose); 674 675 return busy; 676 } 677 678 static int can_unuse(struct inode *inode) 679 { 680 if (inode->i_state & ~I_REFERENCED) 681 return 0; 682 if (inode_has_buffers(inode)) 683 return 0; 684 if (atomic_read(&inode->i_count)) 685 return 0; 686 if (inode->i_data.nrpages) 687 return 0; 688 return 1; 689 } 690 691 /* 692 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 693 * This is called from the superblock shrinker function with a number of inodes 694 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 695 * then are freed outside inode_lock by dispose_list(). 696 * 697 * Any inodes which are pinned purely because of attached pagecache have their 698 * pagecache removed. If the inode has metadata buffers attached to 699 * mapping->private_list then try to remove them. 700 * 701 * If the inode has the I_REFERENCED flag set, then it means that it has been 702 * used recently - the flag is set in iput_final(). When we encounter such an 703 * inode, clear the flag and move it to the back of the LRU so it gets another 704 * pass through the LRU before it gets reclaimed. This is necessary because of 705 * the fact we are doing lazy LRU updates to minimise lock contention so the 706 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 707 * with this flag set because they are the inodes that are out of order. 708 */ 709 void prune_icache_sb(struct super_block *sb, int nr_to_scan) 710 { 711 LIST_HEAD(freeable); 712 int nr_scanned; 713 unsigned long reap = 0; 714 715 spin_lock(&sb->s_inode_lru_lock); 716 for (nr_scanned = nr_to_scan; nr_scanned >= 0; nr_scanned--) { 717 struct inode *inode; 718 719 if (list_empty(&sb->s_inode_lru)) 720 break; 721 722 inode = list_entry(sb->s_inode_lru.prev, struct inode, i_lru); 723 724 /* 725 * we are inverting the sb->s_inode_lru_lock/inode->i_lock here, 726 * so use a trylock. If we fail to get the lock, just move the 727 * inode to the back of the list so we don't spin on it. 728 */ 729 if (!spin_trylock(&inode->i_lock)) { 730 list_move(&inode->i_lru, &sb->s_inode_lru); 731 continue; 732 } 733 734 /* 735 * Referenced or dirty inodes are still in use. Give them 736 * another pass through the LRU as we canot reclaim them now. 737 */ 738 if (atomic_read(&inode->i_count) || 739 (inode->i_state & ~I_REFERENCED)) { 740 list_del_init(&inode->i_lru); 741 spin_unlock(&inode->i_lock); 742 sb->s_nr_inodes_unused--; 743 this_cpu_dec(nr_unused); 744 continue; 745 } 746 747 /* recently referenced inodes get one more pass */ 748 if (inode->i_state & I_REFERENCED) { 749 inode->i_state &= ~I_REFERENCED; 750 list_move(&inode->i_lru, &sb->s_inode_lru); 751 spin_unlock(&inode->i_lock); 752 continue; 753 } 754 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 755 __iget(inode); 756 spin_unlock(&inode->i_lock); 757 spin_unlock(&sb->s_inode_lru_lock); 758 if (remove_inode_buffers(inode)) 759 reap += invalidate_mapping_pages(&inode->i_data, 760 0, -1); 761 iput(inode); 762 spin_lock(&sb->s_inode_lru_lock); 763 764 if (inode != list_entry(sb->s_inode_lru.next, 765 struct inode, i_lru)) 766 continue; /* wrong inode or list_empty */ 767 /* avoid lock inversions with trylock */ 768 if (!spin_trylock(&inode->i_lock)) 769 continue; 770 if (!can_unuse(inode)) { 771 spin_unlock(&inode->i_lock); 772 continue; 773 } 774 } 775 WARN_ON(inode->i_state & I_NEW); 776 inode->i_state |= I_FREEING; 777 spin_unlock(&inode->i_lock); 778 779 list_move(&inode->i_lru, &freeable); 780 sb->s_nr_inodes_unused--; 781 this_cpu_dec(nr_unused); 782 } 783 if (current_is_kswapd()) 784 __count_vm_events(KSWAPD_INODESTEAL, reap); 785 else 786 __count_vm_events(PGINODESTEAL, reap); 787 spin_unlock(&sb->s_inode_lru_lock); 788 if (current->reclaim_state) 789 current->reclaim_state->reclaimed_slab += reap; 790 791 dispose_list(&freeable); 792 } 793 794 static void __wait_on_freeing_inode(struct inode *inode); 795 /* 796 * Called with the inode lock held. 797 */ 798 static struct inode *find_inode(struct super_block *sb, 799 struct hlist_head *head, 800 int (*test)(struct inode *, void *), 801 void *data) 802 { 803 struct inode *inode = NULL; 804 805 repeat: 806 hlist_for_each_entry(inode, head, i_hash) { 807 spin_lock(&inode->i_lock); 808 if (inode->i_sb != sb) { 809 spin_unlock(&inode->i_lock); 810 continue; 811 } 812 if (!test(inode, data)) { 813 spin_unlock(&inode->i_lock); 814 continue; 815 } 816 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 817 __wait_on_freeing_inode(inode); 818 goto repeat; 819 } 820 __iget(inode); 821 spin_unlock(&inode->i_lock); 822 return inode; 823 } 824 return NULL; 825 } 826 827 /* 828 * find_inode_fast is the fast path version of find_inode, see the comment at 829 * iget_locked for details. 830 */ 831 static struct inode *find_inode_fast(struct super_block *sb, 832 struct hlist_head *head, unsigned long ino) 833 { 834 struct inode *inode = NULL; 835 836 repeat: 837 hlist_for_each_entry(inode, head, i_hash) { 838 spin_lock(&inode->i_lock); 839 if (inode->i_ino != ino) { 840 spin_unlock(&inode->i_lock); 841 continue; 842 } 843 if (inode->i_sb != sb) { 844 spin_unlock(&inode->i_lock); 845 continue; 846 } 847 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 848 __wait_on_freeing_inode(inode); 849 goto repeat; 850 } 851 __iget(inode); 852 spin_unlock(&inode->i_lock); 853 return inode; 854 } 855 return NULL; 856 } 857 858 /* 859 * Each cpu owns a range of LAST_INO_BATCH numbers. 860 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 861 * to renew the exhausted range. 862 * 863 * This does not significantly increase overflow rate because every CPU can 864 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 865 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 866 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 867 * overflow rate by 2x, which does not seem too significant. 868 * 869 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 870 * error if st_ino won't fit in target struct field. Use 32bit counter 871 * here to attempt to avoid that. 872 */ 873 #define LAST_INO_BATCH 1024 874 static DEFINE_PER_CPU(unsigned int, last_ino); 875 876 unsigned int get_next_ino(void) 877 { 878 unsigned int *p = &get_cpu_var(last_ino); 879 unsigned int res = *p; 880 881 #ifdef CONFIG_SMP 882 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 883 static atomic_t shared_last_ino; 884 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 885 886 res = next - LAST_INO_BATCH; 887 } 888 #endif 889 890 *p = ++res; 891 put_cpu_var(last_ino); 892 return res; 893 } 894 EXPORT_SYMBOL(get_next_ino); 895 896 /** 897 * new_inode_pseudo - obtain an inode 898 * @sb: superblock 899 * 900 * Allocates a new inode for given superblock. 901 * Inode wont be chained in superblock s_inodes list 902 * This means : 903 * - fs can't be unmount 904 * - quotas, fsnotify, writeback can't work 905 */ 906 struct inode *new_inode_pseudo(struct super_block *sb) 907 { 908 struct inode *inode = alloc_inode(sb); 909 910 if (inode) { 911 spin_lock(&inode->i_lock); 912 inode->i_state = 0; 913 spin_unlock(&inode->i_lock); 914 INIT_LIST_HEAD(&inode->i_sb_list); 915 } 916 return inode; 917 } 918 919 /** 920 * new_inode - obtain an inode 921 * @sb: superblock 922 * 923 * Allocates a new inode for given superblock. The default gfp_mask 924 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 925 * If HIGHMEM pages are unsuitable or it is known that pages allocated 926 * for the page cache are not reclaimable or migratable, 927 * mapping_set_gfp_mask() must be called with suitable flags on the 928 * newly created inode's mapping 929 * 930 */ 931 struct inode *new_inode(struct super_block *sb) 932 { 933 struct inode *inode; 934 935 spin_lock_prefetch(&inode_sb_list_lock); 936 937 inode = new_inode_pseudo(sb); 938 if (inode) 939 inode_sb_list_add(inode); 940 return inode; 941 } 942 EXPORT_SYMBOL(new_inode); 943 944 #ifdef CONFIG_DEBUG_LOCK_ALLOC 945 void lockdep_annotate_inode_mutex_key(struct inode *inode) 946 { 947 if (S_ISDIR(inode->i_mode)) { 948 struct file_system_type *type = inode->i_sb->s_type; 949 950 /* Set new key only if filesystem hasn't already changed it */ 951 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) { 952 /* 953 * ensure nobody is actually holding i_mutex 954 */ 955 mutex_destroy(&inode->i_mutex); 956 mutex_init(&inode->i_mutex); 957 lockdep_set_class(&inode->i_mutex, 958 &type->i_mutex_dir_key); 959 } 960 } 961 } 962 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 963 #endif 964 965 /** 966 * unlock_new_inode - clear the I_NEW state and wake up any waiters 967 * @inode: new inode to unlock 968 * 969 * Called when the inode is fully initialised to clear the new state of the 970 * inode and wake up anyone waiting for the inode to finish initialisation. 971 */ 972 void unlock_new_inode(struct inode *inode) 973 { 974 lockdep_annotate_inode_mutex_key(inode); 975 spin_lock(&inode->i_lock); 976 WARN_ON(!(inode->i_state & I_NEW)); 977 inode->i_state &= ~I_NEW; 978 smp_mb(); 979 wake_up_bit(&inode->i_state, __I_NEW); 980 spin_unlock(&inode->i_lock); 981 } 982 EXPORT_SYMBOL(unlock_new_inode); 983 984 /** 985 * iget5_locked - obtain an inode from a mounted file system 986 * @sb: super block of file system 987 * @hashval: hash value (usually inode number) to get 988 * @test: callback used for comparisons between inodes 989 * @set: callback used to initialize a new struct inode 990 * @data: opaque data pointer to pass to @test and @set 991 * 992 * Search for the inode specified by @hashval and @data in the inode cache, 993 * and if present it is return it with an increased reference count. This is 994 * a generalized version of iget_locked() for file systems where the inode 995 * number is not sufficient for unique identification of an inode. 996 * 997 * If the inode is not in cache, allocate a new inode and return it locked, 998 * hashed, and with the I_NEW flag set. The file system gets to fill it in 999 * before unlocking it via unlock_new_inode(). 1000 * 1001 * Note both @test and @set are called with the inode_hash_lock held, so can't 1002 * sleep. 1003 */ 1004 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1005 int (*test)(struct inode *, void *), 1006 int (*set)(struct inode *, void *), void *data) 1007 { 1008 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1009 struct inode *inode; 1010 1011 spin_lock(&inode_hash_lock); 1012 inode = find_inode(sb, head, test, data); 1013 spin_unlock(&inode_hash_lock); 1014 1015 if (inode) { 1016 wait_on_inode(inode); 1017 return inode; 1018 } 1019 1020 inode = alloc_inode(sb); 1021 if (inode) { 1022 struct inode *old; 1023 1024 spin_lock(&inode_hash_lock); 1025 /* We released the lock, so.. */ 1026 old = find_inode(sb, head, test, data); 1027 if (!old) { 1028 if (set(inode, data)) 1029 goto set_failed; 1030 1031 spin_lock(&inode->i_lock); 1032 inode->i_state = I_NEW; 1033 hlist_add_head(&inode->i_hash, head); 1034 spin_unlock(&inode->i_lock); 1035 inode_sb_list_add(inode); 1036 spin_unlock(&inode_hash_lock); 1037 1038 /* Return the locked inode with I_NEW set, the 1039 * caller is responsible for filling in the contents 1040 */ 1041 return inode; 1042 } 1043 1044 /* 1045 * Uhhuh, somebody else created the same inode under 1046 * us. Use the old inode instead of the one we just 1047 * allocated. 1048 */ 1049 spin_unlock(&inode_hash_lock); 1050 destroy_inode(inode); 1051 inode = old; 1052 wait_on_inode(inode); 1053 } 1054 return inode; 1055 1056 set_failed: 1057 spin_unlock(&inode_hash_lock); 1058 destroy_inode(inode); 1059 return NULL; 1060 } 1061 EXPORT_SYMBOL(iget5_locked); 1062 1063 /** 1064 * iget_locked - obtain an inode from a mounted file system 1065 * @sb: super block of file system 1066 * @ino: inode number to get 1067 * 1068 * Search for the inode specified by @ino in the inode cache and if present 1069 * return it with an increased reference count. This is for file systems 1070 * where the inode number is sufficient for unique identification of an inode. 1071 * 1072 * If the inode is not in cache, allocate a new inode and return it locked, 1073 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1074 * before unlocking it via unlock_new_inode(). 1075 */ 1076 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1077 { 1078 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1079 struct inode *inode; 1080 1081 spin_lock(&inode_hash_lock); 1082 inode = find_inode_fast(sb, head, ino); 1083 spin_unlock(&inode_hash_lock); 1084 if (inode) { 1085 wait_on_inode(inode); 1086 return inode; 1087 } 1088 1089 inode = alloc_inode(sb); 1090 if (inode) { 1091 struct inode *old; 1092 1093 spin_lock(&inode_hash_lock); 1094 /* We released the lock, so.. */ 1095 old = find_inode_fast(sb, head, ino); 1096 if (!old) { 1097 inode->i_ino = ino; 1098 spin_lock(&inode->i_lock); 1099 inode->i_state = I_NEW; 1100 hlist_add_head(&inode->i_hash, head); 1101 spin_unlock(&inode->i_lock); 1102 inode_sb_list_add(inode); 1103 spin_unlock(&inode_hash_lock); 1104 1105 /* Return the locked inode with I_NEW set, the 1106 * caller is responsible for filling in the contents 1107 */ 1108 return inode; 1109 } 1110 1111 /* 1112 * Uhhuh, somebody else created the same inode under 1113 * us. Use the old inode instead of the one we just 1114 * allocated. 1115 */ 1116 spin_unlock(&inode_hash_lock); 1117 destroy_inode(inode); 1118 inode = old; 1119 wait_on_inode(inode); 1120 } 1121 return inode; 1122 } 1123 EXPORT_SYMBOL(iget_locked); 1124 1125 /* 1126 * search the inode cache for a matching inode number. 1127 * If we find one, then the inode number we are trying to 1128 * allocate is not unique and so we should not use it. 1129 * 1130 * Returns 1 if the inode number is unique, 0 if it is not. 1131 */ 1132 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1133 { 1134 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1135 struct inode *inode; 1136 1137 spin_lock(&inode_hash_lock); 1138 hlist_for_each_entry(inode, b, i_hash) { 1139 if (inode->i_ino == ino && inode->i_sb == sb) { 1140 spin_unlock(&inode_hash_lock); 1141 return 0; 1142 } 1143 } 1144 spin_unlock(&inode_hash_lock); 1145 1146 return 1; 1147 } 1148 1149 /** 1150 * iunique - get a unique inode number 1151 * @sb: superblock 1152 * @max_reserved: highest reserved inode number 1153 * 1154 * Obtain an inode number that is unique on the system for a given 1155 * superblock. This is used by file systems that have no natural 1156 * permanent inode numbering system. An inode number is returned that 1157 * is higher than the reserved limit but unique. 1158 * 1159 * BUGS: 1160 * With a large number of inodes live on the file system this function 1161 * currently becomes quite slow. 1162 */ 1163 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1164 { 1165 /* 1166 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1167 * error if st_ino won't fit in target struct field. Use 32bit counter 1168 * here to attempt to avoid that. 1169 */ 1170 static DEFINE_SPINLOCK(iunique_lock); 1171 static unsigned int counter; 1172 ino_t res; 1173 1174 spin_lock(&iunique_lock); 1175 do { 1176 if (counter <= max_reserved) 1177 counter = max_reserved + 1; 1178 res = counter++; 1179 } while (!test_inode_iunique(sb, res)); 1180 spin_unlock(&iunique_lock); 1181 1182 return res; 1183 } 1184 EXPORT_SYMBOL(iunique); 1185 1186 struct inode *igrab(struct inode *inode) 1187 { 1188 spin_lock(&inode->i_lock); 1189 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1190 __iget(inode); 1191 spin_unlock(&inode->i_lock); 1192 } else { 1193 spin_unlock(&inode->i_lock); 1194 /* 1195 * Handle the case where s_op->clear_inode is not been 1196 * called yet, and somebody is calling igrab 1197 * while the inode is getting freed. 1198 */ 1199 inode = NULL; 1200 } 1201 return inode; 1202 } 1203 EXPORT_SYMBOL(igrab); 1204 1205 /** 1206 * ilookup5_nowait - search for an inode in the inode cache 1207 * @sb: super block of file system to search 1208 * @hashval: hash value (usually inode number) to search for 1209 * @test: callback used for comparisons between inodes 1210 * @data: opaque data pointer to pass to @test 1211 * 1212 * Search for the inode specified by @hashval and @data in the inode cache. 1213 * If the inode is in the cache, the inode is returned with an incremented 1214 * reference count. 1215 * 1216 * Note: I_NEW is not waited upon so you have to be very careful what you do 1217 * with the returned inode. You probably should be using ilookup5() instead. 1218 * 1219 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1220 */ 1221 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1222 int (*test)(struct inode *, void *), void *data) 1223 { 1224 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1225 struct inode *inode; 1226 1227 spin_lock(&inode_hash_lock); 1228 inode = find_inode(sb, head, test, data); 1229 spin_unlock(&inode_hash_lock); 1230 1231 return inode; 1232 } 1233 EXPORT_SYMBOL(ilookup5_nowait); 1234 1235 /** 1236 * ilookup5 - search for an inode in the inode cache 1237 * @sb: super block of file system to search 1238 * @hashval: hash value (usually inode number) to search for 1239 * @test: callback used for comparisons between inodes 1240 * @data: opaque data pointer to pass to @test 1241 * 1242 * Search for the inode specified by @hashval and @data in the inode cache, 1243 * and if the inode is in the cache, return the inode with an incremented 1244 * reference count. Waits on I_NEW before returning the inode. 1245 * returned with an incremented reference count. 1246 * 1247 * This is a generalized version of ilookup() for file systems where the 1248 * inode number is not sufficient for unique identification of an inode. 1249 * 1250 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1251 */ 1252 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1253 int (*test)(struct inode *, void *), void *data) 1254 { 1255 struct inode *inode = ilookup5_nowait(sb, hashval, test, data); 1256 1257 if (inode) 1258 wait_on_inode(inode); 1259 return inode; 1260 } 1261 EXPORT_SYMBOL(ilookup5); 1262 1263 /** 1264 * ilookup - search for an inode in the inode cache 1265 * @sb: super block of file system to search 1266 * @ino: inode number to search for 1267 * 1268 * Search for the inode @ino in the inode cache, and if the inode is in the 1269 * cache, the inode is returned with an incremented reference count. 1270 */ 1271 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1272 { 1273 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1274 struct inode *inode; 1275 1276 spin_lock(&inode_hash_lock); 1277 inode = find_inode_fast(sb, head, ino); 1278 spin_unlock(&inode_hash_lock); 1279 1280 if (inode) 1281 wait_on_inode(inode); 1282 return inode; 1283 } 1284 EXPORT_SYMBOL(ilookup); 1285 1286 int insert_inode_locked(struct inode *inode) 1287 { 1288 struct super_block *sb = inode->i_sb; 1289 ino_t ino = inode->i_ino; 1290 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1291 1292 while (1) { 1293 struct inode *old = NULL; 1294 spin_lock(&inode_hash_lock); 1295 hlist_for_each_entry(old, head, i_hash) { 1296 if (old->i_ino != ino) 1297 continue; 1298 if (old->i_sb != sb) 1299 continue; 1300 spin_lock(&old->i_lock); 1301 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1302 spin_unlock(&old->i_lock); 1303 continue; 1304 } 1305 break; 1306 } 1307 if (likely(!old)) { 1308 spin_lock(&inode->i_lock); 1309 inode->i_state |= I_NEW; 1310 hlist_add_head(&inode->i_hash, head); 1311 spin_unlock(&inode->i_lock); 1312 spin_unlock(&inode_hash_lock); 1313 return 0; 1314 } 1315 __iget(old); 1316 spin_unlock(&old->i_lock); 1317 spin_unlock(&inode_hash_lock); 1318 wait_on_inode(old); 1319 if (unlikely(!inode_unhashed(old))) { 1320 iput(old); 1321 return -EBUSY; 1322 } 1323 iput(old); 1324 } 1325 } 1326 EXPORT_SYMBOL(insert_inode_locked); 1327 1328 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1329 int (*test)(struct inode *, void *), void *data) 1330 { 1331 struct super_block *sb = inode->i_sb; 1332 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1333 1334 while (1) { 1335 struct inode *old = NULL; 1336 1337 spin_lock(&inode_hash_lock); 1338 hlist_for_each_entry(old, head, i_hash) { 1339 if (old->i_sb != sb) 1340 continue; 1341 if (!test(old, data)) 1342 continue; 1343 spin_lock(&old->i_lock); 1344 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1345 spin_unlock(&old->i_lock); 1346 continue; 1347 } 1348 break; 1349 } 1350 if (likely(!old)) { 1351 spin_lock(&inode->i_lock); 1352 inode->i_state |= I_NEW; 1353 hlist_add_head(&inode->i_hash, head); 1354 spin_unlock(&inode->i_lock); 1355 spin_unlock(&inode_hash_lock); 1356 return 0; 1357 } 1358 __iget(old); 1359 spin_unlock(&old->i_lock); 1360 spin_unlock(&inode_hash_lock); 1361 wait_on_inode(old); 1362 if (unlikely(!inode_unhashed(old))) { 1363 iput(old); 1364 return -EBUSY; 1365 } 1366 iput(old); 1367 } 1368 } 1369 EXPORT_SYMBOL(insert_inode_locked4); 1370 1371 1372 int generic_delete_inode(struct inode *inode) 1373 { 1374 return 1; 1375 } 1376 EXPORT_SYMBOL(generic_delete_inode); 1377 1378 /* 1379 * Called when we're dropping the last reference 1380 * to an inode. 1381 * 1382 * Call the FS "drop_inode()" function, defaulting to 1383 * the legacy UNIX filesystem behaviour. If it tells 1384 * us to evict inode, do so. Otherwise, retain inode 1385 * in cache if fs is alive, sync and evict if fs is 1386 * shutting down. 1387 */ 1388 static void iput_final(struct inode *inode) 1389 { 1390 struct super_block *sb = inode->i_sb; 1391 const struct super_operations *op = inode->i_sb->s_op; 1392 int drop; 1393 1394 WARN_ON(inode->i_state & I_NEW); 1395 1396 if (op->drop_inode) 1397 drop = op->drop_inode(inode); 1398 else 1399 drop = generic_drop_inode(inode); 1400 1401 if (!drop && (sb->s_flags & MS_ACTIVE)) { 1402 inode->i_state |= I_REFERENCED; 1403 inode_add_lru(inode); 1404 spin_unlock(&inode->i_lock); 1405 return; 1406 } 1407 1408 if (!drop) { 1409 inode->i_state |= I_WILL_FREE; 1410 spin_unlock(&inode->i_lock); 1411 write_inode_now(inode, 1); 1412 spin_lock(&inode->i_lock); 1413 WARN_ON(inode->i_state & I_NEW); 1414 inode->i_state &= ~I_WILL_FREE; 1415 } 1416 1417 inode->i_state |= I_FREEING; 1418 if (!list_empty(&inode->i_lru)) 1419 inode_lru_list_del(inode); 1420 spin_unlock(&inode->i_lock); 1421 1422 evict(inode); 1423 } 1424 1425 /** 1426 * iput - put an inode 1427 * @inode: inode to put 1428 * 1429 * Puts an inode, dropping its usage count. If the inode use count hits 1430 * zero, the inode is then freed and may also be destroyed. 1431 * 1432 * Consequently, iput() can sleep. 1433 */ 1434 void iput(struct inode *inode) 1435 { 1436 if (inode) { 1437 BUG_ON(inode->i_state & I_CLEAR); 1438 1439 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) 1440 iput_final(inode); 1441 } 1442 } 1443 EXPORT_SYMBOL(iput); 1444 1445 /** 1446 * bmap - find a block number in a file 1447 * @inode: inode of file 1448 * @block: block to find 1449 * 1450 * Returns the block number on the device holding the inode that 1451 * is the disk block number for the block of the file requested. 1452 * That is, asked for block 4 of inode 1 the function will return the 1453 * disk block relative to the disk start that holds that block of the 1454 * file. 1455 */ 1456 sector_t bmap(struct inode *inode, sector_t block) 1457 { 1458 sector_t res = 0; 1459 if (inode->i_mapping->a_ops->bmap) 1460 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1461 return res; 1462 } 1463 EXPORT_SYMBOL(bmap); 1464 1465 /* 1466 * With relative atime, only update atime if the previous atime is 1467 * earlier than either the ctime or mtime or if at least a day has 1468 * passed since the last atime update. 1469 */ 1470 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1471 struct timespec now) 1472 { 1473 1474 if (!(mnt->mnt_flags & MNT_RELATIME)) 1475 return 1; 1476 /* 1477 * Is mtime younger than atime? If yes, update atime: 1478 */ 1479 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1480 return 1; 1481 /* 1482 * Is ctime younger than atime? If yes, update atime: 1483 */ 1484 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1485 return 1; 1486 1487 /* 1488 * Is the previous atime value older than a day? If yes, 1489 * update atime: 1490 */ 1491 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1492 return 1; 1493 /* 1494 * Good, we can skip the atime update: 1495 */ 1496 return 0; 1497 } 1498 1499 /* 1500 * This does the actual work of updating an inodes time or version. Must have 1501 * had called mnt_want_write() before calling this. 1502 */ 1503 static int update_time(struct inode *inode, struct timespec *time, int flags) 1504 { 1505 if (inode->i_op->update_time) 1506 return inode->i_op->update_time(inode, time, flags); 1507 1508 if (flags & S_ATIME) 1509 inode->i_atime = *time; 1510 if (flags & S_VERSION) 1511 inode_inc_iversion(inode); 1512 if (flags & S_CTIME) 1513 inode->i_ctime = *time; 1514 if (flags & S_MTIME) 1515 inode->i_mtime = *time; 1516 mark_inode_dirty_sync(inode); 1517 return 0; 1518 } 1519 1520 /** 1521 * touch_atime - update the access time 1522 * @path: the &struct path to update 1523 * 1524 * Update the accessed time on an inode and mark it for writeback. 1525 * This function automatically handles read only file systems and media, 1526 * as well as the "noatime" flag and inode specific "noatime" markers. 1527 */ 1528 void touch_atime(struct path *path) 1529 { 1530 struct vfsmount *mnt = path->mnt; 1531 struct inode *inode = path->dentry->d_inode; 1532 struct timespec now; 1533 1534 if (inode->i_flags & S_NOATIME) 1535 return; 1536 if (IS_NOATIME(inode)) 1537 return; 1538 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1539 return; 1540 1541 if (mnt->mnt_flags & MNT_NOATIME) 1542 return; 1543 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1544 return; 1545 1546 now = current_fs_time(inode->i_sb); 1547 1548 if (!relatime_need_update(mnt, inode, now)) 1549 return; 1550 1551 if (timespec_equal(&inode->i_atime, &now)) 1552 return; 1553 1554 if (!sb_start_write_trylock(inode->i_sb)) 1555 return; 1556 1557 if (__mnt_want_write(mnt)) 1558 goto skip_update; 1559 /* 1560 * File systems can error out when updating inodes if they need to 1561 * allocate new space to modify an inode (such is the case for 1562 * Btrfs), but since we touch atime while walking down the path we 1563 * really don't care if we failed to update the atime of the file, 1564 * so just ignore the return value. 1565 * We may also fail on filesystems that have the ability to make parts 1566 * of the fs read only, e.g. subvolumes in Btrfs. 1567 */ 1568 update_time(inode, &now, S_ATIME); 1569 __mnt_drop_write(mnt); 1570 skip_update: 1571 sb_end_write(inode->i_sb); 1572 } 1573 EXPORT_SYMBOL(touch_atime); 1574 1575 /* 1576 * The logic we want is 1577 * 1578 * if suid or (sgid and xgrp) 1579 * remove privs 1580 */ 1581 int should_remove_suid(struct dentry *dentry) 1582 { 1583 umode_t mode = dentry->d_inode->i_mode; 1584 int kill = 0; 1585 1586 /* suid always must be killed */ 1587 if (unlikely(mode & S_ISUID)) 1588 kill = ATTR_KILL_SUID; 1589 1590 /* 1591 * sgid without any exec bits is just a mandatory locking mark; leave 1592 * it alone. If some exec bits are set, it's a real sgid; kill it. 1593 */ 1594 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1595 kill |= ATTR_KILL_SGID; 1596 1597 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1598 return kill; 1599 1600 return 0; 1601 } 1602 EXPORT_SYMBOL(should_remove_suid); 1603 1604 static int __remove_suid(struct dentry *dentry, int kill) 1605 { 1606 struct iattr newattrs; 1607 1608 newattrs.ia_valid = ATTR_FORCE | kill; 1609 return notify_change(dentry, &newattrs); 1610 } 1611 1612 int file_remove_suid(struct file *file) 1613 { 1614 struct dentry *dentry = file->f_path.dentry; 1615 struct inode *inode = dentry->d_inode; 1616 int killsuid; 1617 int killpriv; 1618 int error = 0; 1619 1620 /* Fast path for nothing security related */ 1621 if (IS_NOSEC(inode)) 1622 return 0; 1623 1624 killsuid = should_remove_suid(dentry); 1625 killpriv = security_inode_need_killpriv(dentry); 1626 1627 if (killpriv < 0) 1628 return killpriv; 1629 if (killpriv) 1630 error = security_inode_killpriv(dentry); 1631 if (!error && killsuid) 1632 error = __remove_suid(dentry, killsuid); 1633 if (!error && (inode->i_sb->s_flags & MS_NOSEC)) 1634 inode->i_flags |= S_NOSEC; 1635 1636 return error; 1637 } 1638 EXPORT_SYMBOL(file_remove_suid); 1639 1640 /** 1641 * file_update_time - update mtime and ctime time 1642 * @file: file accessed 1643 * 1644 * Update the mtime and ctime members of an inode and mark the inode 1645 * for writeback. Note that this function is meant exclusively for 1646 * usage in the file write path of filesystems, and filesystems may 1647 * choose to explicitly ignore update via this function with the 1648 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1649 * timestamps are handled by the server. This can return an error for 1650 * file systems who need to allocate space in order to update an inode. 1651 */ 1652 1653 int file_update_time(struct file *file) 1654 { 1655 struct inode *inode = file_inode(file); 1656 struct timespec now; 1657 int sync_it = 0; 1658 int ret; 1659 1660 /* First try to exhaust all avenues to not sync */ 1661 if (IS_NOCMTIME(inode)) 1662 return 0; 1663 1664 now = current_fs_time(inode->i_sb); 1665 if (!timespec_equal(&inode->i_mtime, &now)) 1666 sync_it = S_MTIME; 1667 1668 if (!timespec_equal(&inode->i_ctime, &now)) 1669 sync_it |= S_CTIME; 1670 1671 if (IS_I_VERSION(inode)) 1672 sync_it |= S_VERSION; 1673 1674 if (!sync_it) 1675 return 0; 1676 1677 /* Finally allowed to write? Takes lock. */ 1678 if (__mnt_want_write_file(file)) 1679 return 0; 1680 1681 ret = update_time(inode, &now, sync_it); 1682 __mnt_drop_write_file(file); 1683 1684 return ret; 1685 } 1686 EXPORT_SYMBOL(file_update_time); 1687 1688 int inode_needs_sync(struct inode *inode) 1689 { 1690 if (IS_SYNC(inode)) 1691 return 1; 1692 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1693 return 1; 1694 return 0; 1695 } 1696 EXPORT_SYMBOL(inode_needs_sync); 1697 1698 int inode_wait(void *word) 1699 { 1700 schedule(); 1701 return 0; 1702 } 1703 EXPORT_SYMBOL(inode_wait); 1704 1705 /* 1706 * If we try to find an inode in the inode hash while it is being 1707 * deleted, we have to wait until the filesystem completes its 1708 * deletion before reporting that it isn't found. This function waits 1709 * until the deletion _might_ have completed. Callers are responsible 1710 * to recheck inode state. 1711 * 1712 * It doesn't matter if I_NEW is not set initially, a call to 1713 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 1714 * will DTRT. 1715 */ 1716 static void __wait_on_freeing_inode(struct inode *inode) 1717 { 1718 wait_queue_head_t *wq; 1719 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 1720 wq = bit_waitqueue(&inode->i_state, __I_NEW); 1721 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1722 spin_unlock(&inode->i_lock); 1723 spin_unlock(&inode_hash_lock); 1724 schedule(); 1725 finish_wait(wq, &wait.wait); 1726 spin_lock(&inode_hash_lock); 1727 } 1728 1729 static __initdata unsigned long ihash_entries; 1730 static int __init set_ihash_entries(char *str) 1731 { 1732 if (!str) 1733 return 0; 1734 ihash_entries = simple_strtoul(str, &str, 0); 1735 return 1; 1736 } 1737 __setup("ihash_entries=", set_ihash_entries); 1738 1739 /* 1740 * Initialize the waitqueues and inode hash table. 1741 */ 1742 void __init inode_init_early(void) 1743 { 1744 unsigned int loop; 1745 1746 /* If hashes are distributed across NUMA nodes, defer 1747 * hash allocation until vmalloc space is available. 1748 */ 1749 if (hashdist) 1750 return; 1751 1752 inode_hashtable = 1753 alloc_large_system_hash("Inode-cache", 1754 sizeof(struct hlist_head), 1755 ihash_entries, 1756 14, 1757 HASH_EARLY, 1758 &i_hash_shift, 1759 &i_hash_mask, 1760 0, 1761 0); 1762 1763 for (loop = 0; loop < (1U << i_hash_shift); loop++) 1764 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1765 } 1766 1767 void __init inode_init(void) 1768 { 1769 unsigned int loop; 1770 1771 /* inode slab cache */ 1772 inode_cachep = kmem_cache_create("inode_cache", 1773 sizeof(struct inode), 1774 0, 1775 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1776 SLAB_MEM_SPREAD), 1777 init_once); 1778 1779 /* Hash may have been set up in inode_init_early */ 1780 if (!hashdist) 1781 return; 1782 1783 inode_hashtable = 1784 alloc_large_system_hash("Inode-cache", 1785 sizeof(struct hlist_head), 1786 ihash_entries, 1787 14, 1788 0, 1789 &i_hash_shift, 1790 &i_hash_mask, 1791 0, 1792 0); 1793 1794 for (loop = 0; loop < (1U << i_hash_shift); loop++) 1795 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1796 } 1797 1798 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1799 { 1800 inode->i_mode = mode; 1801 if (S_ISCHR(mode)) { 1802 inode->i_fop = &def_chr_fops; 1803 inode->i_rdev = rdev; 1804 } else if (S_ISBLK(mode)) { 1805 inode->i_fop = &def_blk_fops; 1806 inode->i_rdev = rdev; 1807 } else if (S_ISFIFO(mode)) 1808 inode->i_fop = &pipefifo_fops; 1809 else if (S_ISSOCK(mode)) 1810 inode->i_fop = &bad_sock_fops; 1811 else 1812 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 1813 " inode %s:%lu\n", mode, inode->i_sb->s_id, 1814 inode->i_ino); 1815 } 1816 EXPORT_SYMBOL(init_special_inode); 1817 1818 /** 1819 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 1820 * @inode: New inode 1821 * @dir: Directory inode 1822 * @mode: mode of the new inode 1823 */ 1824 void inode_init_owner(struct inode *inode, const struct inode *dir, 1825 umode_t mode) 1826 { 1827 inode->i_uid = current_fsuid(); 1828 if (dir && dir->i_mode & S_ISGID) { 1829 inode->i_gid = dir->i_gid; 1830 if (S_ISDIR(mode)) 1831 mode |= S_ISGID; 1832 } else 1833 inode->i_gid = current_fsgid(); 1834 inode->i_mode = mode; 1835 } 1836 EXPORT_SYMBOL(inode_init_owner); 1837 1838 /** 1839 * inode_owner_or_capable - check current task permissions to inode 1840 * @inode: inode being checked 1841 * 1842 * Return true if current either has CAP_FOWNER to the inode, or 1843 * owns the file. 1844 */ 1845 bool inode_owner_or_capable(const struct inode *inode) 1846 { 1847 if (uid_eq(current_fsuid(), inode->i_uid)) 1848 return true; 1849 if (inode_capable(inode, CAP_FOWNER)) 1850 return true; 1851 return false; 1852 } 1853 EXPORT_SYMBOL(inode_owner_or_capable); 1854 1855 /* 1856 * Direct i/o helper functions 1857 */ 1858 static void __inode_dio_wait(struct inode *inode) 1859 { 1860 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 1861 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 1862 1863 do { 1864 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE); 1865 if (atomic_read(&inode->i_dio_count)) 1866 schedule(); 1867 } while (atomic_read(&inode->i_dio_count)); 1868 finish_wait(wq, &q.wait); 1869 } 1870 1871 /** 1872 * inode_dio_wait - wait for outstanding DIO requests to finish 1873 * @inode: inode to wait for 1874 * 1875 * Waits for all pending direct I/O requests to finish so that we can 1876 * proceed with a truncate or equivalent operation. 1877 * 1878 * Must be called under a lock that serializes taking new references 1879 * to i_dio_count, usually by inode->i_mutex. 1880 */ 1881 void inode_dio_wait(struct inode *inode) 1882 { 1883 if (atomic_read(&inode->i_dio_count)) 1884 __inode_dio_wait(inode); 1885 } 1886 EXPORT_SYMBOL(inode_dio_wait); 1887 1888 /* 1889 * inode_dio_done - signal finish of a direct I/O requests 1890 * @inode: inode the direct I/O happens on 1891 * 1892 * This is called once we've finished processing a direct I/O request, 1893 * and is used to wake up callers waiting for direct I/O to be quiesced. 1894 */ 1895 void inode_dio_done(struct inode *inode) 1896 { 1897 if (atomic_dec_and_test(&inode->i_dio_count)) 1898 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP); 1899 } 1900 EXPORT_SYMBOL(inode_dio_done); 1901