xref: /openbmc/linux/fs/inode.c (revision 78c99ba1)
1 /*
2  * linux/fs/inode.c
3  *
4  * (C) 1997 Linus Torvalds
5  */
6 
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/quotaops.h>
12 #include <linux/slab.h>
13 #include <linux/writeback.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/wait.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/ima.h>
21 #include <linux/pagemap.h>
22 #include <linux/cdev.h>
23 #include <linux/bootmem.h>
24 #include <linux/inotify.h>
25 #include <linux/mount.h>
26 #include <linux/async.h>
27 
28 /*
29  * This is needed for the following functions:
30  *  - inode_has_buffers
31  *  - invalidate_inode_buffers
32  *  - invalidate_bdev
33  *
34  * FIXME: remove all knowledge of the buffer layer from this file
35  */
36 #include <linux/buffer_head.h>
37 
38 /*
39  * New inode.c implementation.
40  *
41  * This implementation has the basic premise of trying
42  * to be extremely low-overhead and SMP-safe, yet be
43  * simple enough to be "obviously correct".
44  *
45  * Famous last words.
46  */
47 
48 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
49 
50 /* #define INODE_PARANOIA 1 */
51 /* #define INODE_DEBUG 1 */
52 
53 /*
54  * Inode lookup is no longer as critical as it used to be:
55  * most of the lookups are going to be through the dcache.
56  */
57 #define I_HASHBITS	i_hash_shift
58 #define I_HASHMASK	i_hash_mask
59 
60 static unsigned int i_hash_mask __read_mostly;
61 static unsigned int i_hash_shift __read_mostly;
62 
63 /*
64  * Each inode can be on two separate lists. One is
65  * the hash list of the inode, used for lookups. The
66  * other linked list is the "type" list:
67  *  "in_use" - valid inode, i_count > 0, i_nlink > 0
68  *  "dirty"  - as "in_use" but also dirty
69  *  "unused" - valid inode, i_count = 0
70  *
71  * A "dirty" list is maintained for each super block,
72  * allowing for low-overhead inode sync() operations.
73  */
74 
75 LIST_HEAD(inode_in_use);
76 LIST_HEAD(inode_unused);
77 static struct hlist_head *inode_hashtable __read_mostly;
78 
79 /*
80  * A simple spinlock to protect the list manipulations.
81  *
82  * NOTE! You also have to own the lock if you change
83  * the i_state of an inode while it is in use..
84  */
85 DEFINE_SPINLOCK(inode_lock);
86 
87 /*
88  * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
89  * icache shrinking path, and the umount path.  Without this exclusion,
90  * by the time prune_icache calls iput for the inode whose pages it has
91  * been invalidating, or by the time it calls clear_inode & destroy_inode
92  * from its final dispose_list, the struct super_block they refer to
93  * (for inode->i_sb->s_op) may already have been freed and reused.
94  */
95 static DEFINE_MUTEX(iprune_mutex);
96 
97 /*
98  * Statistics gathering..
99  */
100 struct inodes_stat_t inodes_stat;
101 
102 static struct kmem_cache *inode_cachep __read_mostly;
103 
104 static void wake_up_inode(struct inode *inode)
105 {
106 	/*
107 	 * Prevent speculative execution through spin_unlock(&inode_lock);
108 	 */
109 	smp_mb();
110 	wake_up_bit(&inode->i_state, __I_LOCK);
111 }
112 
113 /**
114  * inode_init_always - perform inode structure intialisation
115  * @sb: superblock inode belongs to
116  * @inode: inode to initialise
117  *
118  * These are initializations that need to be done on every inode
119  * allocation as the fields are not initialised by slab allocation.
120  */
121 struct inode *inode_init_always(struct super_block *sb, struct inode *inode)
122 {
123 	static const struct address_space_operations empty_aops;
124 	static struct inode_operations empty_iops;
125 	static const struct file_operations empty_fops;
126 
127 	struct address_space *const mapping = &inode->i_data;
128 
129 	inode->i_sb = sb;
130 	inode->i_blkbits = sb->s_blocksize_bits;
131 	inode->i_flags = 0;
132 	atomic_set(&inode->i_count, 1);
133 	inode->i_op = &empty_iops;
134 	inode->i_fop = &empty_fops;
135 	inode->i_nlink = 1;
136 	inode->i_uid = 0;
137 	inode->i_gid = 0;
138 	atomic_set(&inode->i_writecount, 0);
139 	inode->i_size = 0;
140 	inode->i_blocks = 0;
141 	inode->i_bytes = 0;
142 	inode->i_generation = 0;
143 #ifdef CONFIG_QUOTA
144 	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
145 #endif
146 	inode->i_pipe = NULL;
147 	inode->i_bdev = NULL;
148 	inode->i_cdev = NULL;
149 	inode->i_rdev = 0;
150 	inode->dirtied_when = 0;
151 
152 	if (security_inode_alloc(inode))
153 		goto out_free_inode;
154 
155 	/* allocate and initialize an i_integrity */
156 	if (ima_inode_alloc(inode))
157 		goto out_free_security;
158 
159 	spin_lock_init(&inode->i_lock);
160 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
161 
162 	mutex_init(&inode->i_mutex);
163 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
164 
165 	init_rwsem(&inode->i_alloc_sem);
166 	lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
167 
168 	mapping->a_ops = &empty_aops;
169 	mapping->host = inode;
170 	mapping->flags = 0;
171 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
172 	mapping->assoc_mapping = NULL;
173 	mapping->backing_dev_info = &default_backing_dev_info;
174 	mapping->writeback_index = 0;
175 
176 	/*
177 	 * If the block_device provides a backing_dev_info for client
178 	 * inodes then use that.  Otherwise the inode share the bdev's
179 	 * backing_dev_info.
180 	 */
181 	if (sb->s_bdev) {
182 		struct backing_dev_info *bdi;
183 
184 		bdi = sb->s_bdev->bd_inode_backing_dev_info;
185 		if (!bdi)
186 			bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
187 		mapping->backing_dev_info = bdi;
188 	}
189 	inode->i_private = NULL;
190 	inode->i_mapping = mapping;
191 
192 	return inode;
193 
194 out_free_security:
195 	security_inode_free(inode);
196 out_free_inode:
197 	if (inode->i_sb->s_op->destroy_inode)
198 		inode->i_sb->s_op->destroy_inode(inode);
199 	else
200 		kmem_cache_free(inode_cachep, (inode));
201 	return NULL;
202 }
203 EXPORT_SYMBOL(inode_init_always);
204 
205 static struct inode *alloc_inode(struct super_block *sb)
206 {
207 	struct inode *inode;
208 
209 	if (sb->s_op->alloc_inode)
210 		inode = sb->s_op->alloc_inode(sb);
211 	else
212 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
213 
214 	if (inode)
215 		return inode_init_always(sb, inode);
216 	return NULL;
217 }
218 
219 void destroy_inode(struct inode *inode)
220 {
221 	BUG_ON(inode_has_buffers(inode));
222 	ima_inode_free(inode);
223 	security_inode_free(inode);
224 	if (inode->i_sb->s_op->destroy_inode)
225 		inode->i_sb->s_op->destroy_inode(inode);
226 	else
227 		kmem_cache_free(inode_cachep, (inode));
228 }
229 EXPORT_SYMBOL(destroy_inode);
230 
231 
232 /*
233  * These are initializations that only need to be done
234  * once, because the fields are idempotent across use
235  * of the inode, so let the slab aware of that.
236  */
237 void inode_init_once(struct inode *inode)
238 {
239 	memset(inode, 0, sizeof(*inode));
240 	INIT_HLIST_NODE(&inode->i_hash);
241 	INIT_LIST_HEAD(&inode->i_dentry);
242 	INIT_LIST_HEAD(&inode->i_devices);
243 	INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
244 	spin_lock_init(&inode->i_data.tree_lock);
245 	spin_lock_init(&inode->i_data.i_mmap_lock);
246 	INIT_LIST_HEAD(&inode->i_data.private_list);
247 	spin_lock_init(&inode->i_data.private_lock);
248 	INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
249 	INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
250 	i_size_ordered_init(inode);
251 #ifdef CONFIG_INOTIFY
252 	INIT_LIST_HEAD(&inode->inotify_watches);
253 	mutex_init(&inode->inotify_mutex);
254 #endif
255 }
256 EXPORT_SYMBOL(inode_init_once);
257 
258 static void init_once(void *foo)
259 {
260 	struct inode *inode = (struct inode *) foo;
261 
262 	inode_init_once(inode);
263 }
264 
265 /*
266  * inode_lock must be held
267  */
268 void __iget(struct inode *inode)
269 {
270 	if (atomic_read(&inode->i_count)) {
271 		atomic_inc(&inode->i_count);
272 		return;
273 	}
274 	atomic_inc(&inode->i_count);
275 	if (!(inode->i_state & (I_DIRTY|I_SYNC)))
276 		list_move(&inode->i_list, &inode_in_use);
277 	inodes_stat.nr_unused--;
278 }
279 
280 /**
281  * clear_inode - clear an inode
282  * @inode: inode to clear
283  *
284  * This is called by the filesystem to tell us
285  * that the inode is no longer useful. We just
286  * terminate it with extreme prejudice.
287  */
288 void clear_inode(struct inode *inode)
289 {
290 	might_sleep();
291 	invalidate_inode_buffers(inode);
292 
293 	BUG_ON(inode->i_data.nrpages);
294 	BUG_ON(!(inode->i_state & I_FREEING));
295 	BUG_ON(inode->i_state & I_CLEAR);
296 	inode_sync_wait(inode);
297 	vfs_dq_drop(inode);
298 	if (inode->i_sb->s_op->clear_inode)
299 		inode->i_sb->s_op->clear_inode(inode);
300 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
301 		bd_forget(inode);
302 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
303 		cd_forget(inode);
304 	inode->i_state = I_CLEAR;
305 }
306 EXPORT_SYMBOL(clear_inode);
307 
308 /*
309  * dispose_list - dispose of the contents of a local list
310  * @head: the head of the list to free
311  *
312  * Dispose-list gets a local list with local inodes in it, so it doesn't
313  * need to worry about list corruption and SMP locks.
314  */
315 static void dispose_list(struct list_head *head)
316 {
317 	int nr_disposed = 0;
318 
319 	while (!list_empty(head)) {
320 		struct inode *inode;
321 
322 		inode = list_first_entry(head, struct inode, i_list);
323 		list_del(&inode->i_list);
324 
325 		if (inode->i_data.nrpages)
326 			truncate_inode_pages(&inode->i_data, 0);
327 		clear_inode(inode);
328 
329 		spin_lock(&inode_lock);
330 		hlist_del_init(&inode->i_hash);
331 		list_del_init(&inode->i_sb_list);
332 		spin_unlock(&inode_lock);
333 
334 		wake_up_inode(inode);
335 		destroy_inode(inode);
336 		nr_disposed++;
337 	}
338 	spin_lock(&inode_lock);
339 	inodes_stat.nr_inodes -= nr_disposed;
340 	spin_unlock(&inode_lock);
341 }
342 
343 /*
344  * Invalidate all inodes for a device.
345  */
346 static int invalidate_list(struct list_head *head, struct list_head *dispose)
347 {
348 	struct list_head *next;
349 	int busy = 0, count = 0;
350 
351 	next = head->next;
352 	for (;;) {
353 		struct list_head *tmp = next;
354 		struct inode *inode;
355 
356 		/*
357 		 * We can reschedule here without worrying about the list's
358 		 * consistency because the per-sb list of inodes must not
359 		 * change during umount anymore, and because iprune_mutex keeps
360 		 * shrink_icache_memory() away.
361 		 */
362 		cond_resched_lock(&inode_lock);
363 
364 		next = next->next;
365 		if (tmp == head)
366 			break;
367 		inode = list_entry(tmp, struct inode, i_sb_list);
368 		if (inode->i_state & I_NEW)
369 			continue;
370 		invalidate_inode_buffers(inode);
371 		if (!atomic_read(&inode->i_count)) {
372 			list_move(&inode->i_list, dispose);
373 			WARN_ON(inode->i_state & I_NEW);
374 			inode->i_state |= I_FREEING;
375 			count++;
376 			continue;
377 		}
378 		busy = 1;
379 	}
380 	/* only unused inodes may be cached with i_count zero */
381 	inodes_stat.nr_unused -= count;
382 	return busy;
383 }
384 
385 /**
386  *	invalidate_inodes	- discard the inodes on a device
387  *	@sb: superblock
388  *
389  *	Discard all of the inodes for a given superblock. If the discard
390  *	fails because there are busy inodes then a non zero value is returned.
391  *	If the discard is successful all the inodes have been discarded.
392  */
393 int invalidate_inodes(struct super_block *sb)
394 {
395 	int busy;
396 	LIST_HEAD(throw_away);
397 
398 	mutex_lock(&iprune_mutex);
399 	spin_lock(&inode_lock);
400 	inotify_unmount_inodes(&sb->s_inodes);
401 	busy = invalidate_list(&sb->s_inodes, &throw_away);
402 	spin_unlock(&inode_lock);
403 
404 	dispose_list(&throw_away);
405 	mutex_unlock(&iprune_mutex);
406 
407 	return busy;
408 }
409 EXPORT_SYMBOL(invalidate_inodes);
410 
411 static int can_unuse(struct inode *inode)
412 {
413 	if (inode->i_state)
414 		return 0;
415 	if (inode_has_buffers(inode))
416 		return 0;
417 	if (atomic_read(&inode->i_count))
418 		return 0;
419 	if (inode->i_data.nrpages)
420 		return 0;
421 	return 1;
422 }
423 
424 /*
425  * Scan `goal' inodes on the unused list for freeable ones. They are moved to
426  * a temporary list and then are freed outside inode_lock by dispose_list().
427  *
428  * Any inodes which are pinned purely because of attached pagecache have their
429  * pagecache removed.  We expect the final iput() on that inode to add it to
430  * the front of the inode_unused list.  So look for it there and if the
431  * inode is still freeable, proceed.  The right inode is found 99.9% of the
432  * time in testing on a 4-way.
433  *
434  * If the inode has metadata buffers attached to mapping->private_list then
435  * try to remove them.
436  */
437 static void prune_icache(int nr_to_scan)
438 {
439 	LIST_HEAD(freeable);
440 	int nr_pruned = 0;
441 	int nr_scanned;
442 	unsigned long reap = 0;
443 
444 	mutex_lock(&iprune_mutex);
445 	spin_lock(&inode_lock);
446 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
447 		struct inode *inode;
448 
449 		if (list_empty(&inode_unused))
450 			break;
451 
452 		inode = list_entry(inode_unused.prev, struct inode, i_list);
453 
454 		if (inode->i_state || atomic_read(&inode->i_count)) {
455 			list_move(&inode->i_list, &inode_unused);
456 			continue;
457 		}
458 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
459 			__iget(inode);
460 			spin_unlock(&inode_lock);
461 			if (remove_inode_buffers(inode))
462 				reap += invalidate_mapping_pages(&inode->i_data,
463 								0, -1);
464 			iput(inode);
465 			spin_lock(&inode_lock);
466 
467 			if (inode != list_entry(inode_unused.next,
468 						struct inode, i_list))
469 				continue;	/* wrong inode or list_empty */
470 			if (!can_unuse(inode))
471 				continue;
472 		}
473 		list_move(&inode->i_list, &freeable);
474 		WARN_ON(inode->i_state & I_NEW);
475 		inode->i_state |= I_FREEING;
476 		nr_pruned++;
477 	}
478 	inodes_stat.nr_unused -= nr_pruned;
479 	if (current_is_kswapd())
480 		__count_vm_events(KSWAPD_INODESTEAL, reap);
481 	else
482 		__count_vm_events(PGINODESTEAL, reap);
483 	spin_unlock(&inode_lock);
484 
485 	dispose_list(&freeable);
486 	mutex_unlock(&iprune_mutex);
487 }
488 
489 /*
490  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
491  * "unused" means that no dentries are referring to the inodes: the files are
492  * not open and the dcache references to those inodes have already been
493  * reclaimed.
494  *
495  * This function is passed the number of inodes to scan, and it returns the
496  * total number of remaining possibly-reclaimable inodes.
497  */
498 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
499 {
500 	if (nr) {
501 		/*
502 		 * Nasty deadlock avoidance.  We may hold various FS locks,
503 		 * and we don't want to recurse into the FS that called us
504 		 * in clear_inode() and friends..
505 		 */
506 		if (!(gfp_mask & __GFP_FS))
507 			return -1;
508 		prune_icache(nr);
509 	}
510 	return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
511 }
512 
513 static struct shrinker icache_shrinker = {
514 	.shrink = shrink_icache_memory,
515 	.seeks = DEFAULT_SEEKS,
516 };
517 
518 static void __wait_on_freeing_inode(struct inode *inode);
519 /*
520  * Called with the inode lock held.
521  * NOTE: we are not increasing the inode-refcount, you must call __iget()
522  * by hand after calling find_inode now! This simplifies iunique and won't
523  * add any additional branch in the common code.
524  */
525 static struct inode *find_inode(struct super_block *sb,
526 				struct hlist_head *head,
527 				int (*test)(struct inode *, void *),
528 				void *data)
529 {
530 	struct hlist_node *node;
531 	struct inode *inode = NULL;
532 
533 repeat:
534 	hlist_for_each_entry(inode, node, head, i_hash) {
535 		if (inode->i_sb != sb)
536 			continue;
537 		if (!test(inode, data))
538 			continue;
539 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
540 			__wait_on_freeing_inode(inode);
541 			goto repeat;
542 		}
543 		break;
544 	}
545 	return node ? inode : NULL;
546 }
547 
548 /*
549  * find_inode_fast is the fast path version of find_inode, see the comment at
550  * iget_locked for details.
551  */
552 static struct inode *find_inode_fast(struct super_block *sb,
553 				struct hlist_head *head, unsigned long ino)
554 {
555 	struct hlist_node *node;
556 	struct inode *inode = NULL;
557 
558 repeat:
559 	hlist_for_each_entry(inode, node, head, i_hash) {
560 		if (inode->i_ino != ino)
561 			continue;
562 		if (inode->i_sb != sb)
563 			continue;
564 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
565 			__wait_on_freeing_inode(inode);
566 			goto repeat;
567 		}
568 		break;
569 	}
570 	return node ? inode : NULL;
571 }
572 
573 static unsigned long hash(struct super_block *sb, unsigned long hashval)
574 {
575 	unsigned long tmp;
576 
577 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
578 			L1_CACHE_BYTES;
579 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
580 	return tmp & I_HASHMASK;
581 }
582 
583 static inline void
584 __inode_add_to_lists(struct super_block *sb, struct hlist_head *head,
585 			struct inode *inode)
586 {
587 	inodes_stat.nr_inodes++;
588 	list_add(&inode->i_list, &inode_in_use);
589 	list_add(&inode->i_sb_list, &sb->s_inodes);
590 	if (head)
591 		hlist_add_head(&inode->i_hash, head);
592 }
593 
594 /**
595  * inode_add_to_lists - add a new inode to relevant lists
596  * @sb: superblock inode belongs to
597  * @inode: inode to mark in use
598  *
599  * When an inode is allocated it needs to be accounted for, added to the in use
600  * list, the owning superblock and the inode hash. This needs to be done under
601  * the inode_lock, so export a function to do this rather than the inode lock
602  * itself. We calculate the hash list to add to here so it is all internal
603  * which requires the caller to have already set up the inode number in the
604  * inode to add.
605  */
606 void inode_add_to_lists(struct super_block *sb, struct inode *inode)
607 {
608 	struct hlist_head *head = inode_hashtable + hash(sb, inode->i_ino);
609 
610 	spin_lock(&inode_lock);
611 	__inode_add_to_lists(sb, head, inode);
612 	spin_unlock(&inode_lock);
613 }
614 EXPORT_SYMBOL_GPL(inode_add_to_lists);
615 
616 /**
617  *	new_inode 	- obtain an inode
618  *	@sb: superblock
619  *
620  *	Allocates a new inode for given superblock. The default gfp_mask
621  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
622  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
623  *	for the page cache are not reclaimable or migratable,
624  *	mapping_set_gfp_mask() must be called with suitable flags on the
625  *	newly created inode's mapping
626  *
627  */
628 struct inode *new_inode(struct super_block *sb)
629 {
630 	/*
631 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
632 	 * error if st_ino won't fit in target struct field. Use 32bit counter
633 	 * here to attempt to avoid that.
634 	 */
635 	static unsigned int last_ino;
636 	struct inode *inode;
637 
638 	spin_lock_prefetch(&inode_lock);
639 
640 	inode = alloc_inode(sb);
641 	if (inode) {
642 		spin_lock(&inode_lock);
643 		__inode_add_to_lists(sb, NULL, inode);
644 		inode->i_ino = ++last_ino;
645 		inode->i_state = 0;
646 		spin_unlock(&inode_lock);
647 	}
648 	return inode;
649 }
650 EXPORT_SYMBOL(new_inode);
651 
652 void unlock_new_inode(struct inode *inode)
653 {
654 #ifdef CONFIG_DEBUG_LOCK_ALLOC
655 	if (inode->i_mode & S_IFDIR) {
656 		struct file_system_type *type = inode->i_sb->s_type;
657 
658 		/*
659 		 * ensure nobody is actually holding i_mutex
660 		 */
661 		mutex_destroy(&inode->i_mutex);
662 		mutex_init(&inode->i_mutex);
663 		lockdep_set_class(&inode->i_mutex, &type->i_mutex_dir_key);
664 	}
665 #endif
666 	/*
667 	 * This is special!  We do not need the spinlock
668 	 * when clearing I_LOCK, because we're guaranteed
669 	 * that nobody else tries to do anything about the
670 	 * state of the inode when it is locked, as we
671 	 * just created it (so there can be no old holders
672 	 * that haven't tested I_LOCK).
673 	 */
674 	WARN_ON((inode->i_state & (I_LOCK|I_NEW)) != (I_LOCK|I_NEW));
675 	inode->i_state &= ~(I_LOCK|I_NEW);
676 	wake_up_inode(inode);
677 }
678 EXPORT_SYMBOL(unlock_new_inode);
679 
680 /*
681  * This is called without the inode lock held.. Be careful.
682  *
683  * We no longer cache the sb_flags in i_flags - see fs.h
684  *	-- rmk@arm.uk.linux.org
685  */
686 static struct inode *get_new_inode(struct super_block *sb,
687 				struct hlist_head *head,
688 				int (*test)(struct inode *, void *),
689 				int (*set)(struct inode *, void *),
690 				void *data)
691 {
692 	struct inode *inode;
693 
694 	inode = alloc_inode(sb);
695 	if (inode) {
696 		struct inode *old;
697 
698 		spin_lock(&inode_lock);
699 		/* We released the lock, so.. */
700 		old = find_inode(sb, head, test, data);
701 		if (!old) {
702 			if (set(inode, data))
703 				goto set_failed;
704 
705 			__inode_add_to_lists(sb, head, inode);
706 			inode->i_state = I_LOCK|I_NEW;
707 			spin_unlock(&inode_lock);
708 
709 			/* Return the locked inode with I_NEW set, the
710 			 * caller is responsible for filling in the contents
711 			 */
712 			return inode;
713 		}
714 
715 		/*
716 		 * Uhhuh, somebody else created the same inode under
717 		 * us. Use the old inode instead of the one we just
718 		 * allocated.
719 		 */
720 		__iget(old);
721 		spin_unlock(&inode_lock);
722 		destroy_inode(inode);
723 		inode = old;
724 		wait_on_inode(inode);
725 	}
726 	return inode;
727 
728 set_failed:
729 	spin_unlock(&inode_lock);
730 	destroy_inode(inode);
731 	return NULL;
732 }
733 
734 /*
735  * get_new_inode_fast is the fast path version of get_new_inode, see the
736  * comment at iget_locked for details.
737  */
738 static struct inode *get_new_inode_fast(struct super_block *sb,
739 				struct hlist_head *head, unsigned long ino)
740 {
741 	struct inode *inode;
742 
743 	inode = alloc_inode(sb);
744 	if (inode) {
745 		struct inode *old;
746 
747 		spin_lock(&inode_lock);
748 		/* We released the lock, so.. */
749 		old = find_inode_fast(sb, head, ino);
750 		if (!old) {
751 			inode->i_ino = ino;
752 			__inode_add_to_lists(sb, head, inode);
753 			inode->i_state = I_LOCK|I_NEW;
754 			spin_unlock(&inode_lock);
755 
756 			/* Return the locked inode with I_NEW set, the
757 			 * caller is responsible for filling in the contents
758 			 */
759 			return inode;
760 		}
761 
762 		/*
763 		 * Uhhuh, somebody else created the same inode under
764 		 * us. Use the old inode instead of the one we just
765 		 * allocated.
766 		 */
767 		__iget(old);
768 		spin_unlock(&inode_lock);
769 		destroy_inode(inode);
770 		inode = old;
771 		wait_on_inode(inode);
772 	}
773 	return inode;
774 }
775 
776 /**
777  *	iunique - get a unique inode number
778  *	@sb: superblock
779  *	@max_reserved: highest reserved inode number
780  *
781  *	Obtain an inode number that is unique on the system for a given
782  *	superblock. This is used by file systems that have no natural
783  *	permanent inode numbering system. An inode number is returned that
784  *	is higher than the reserved limit but unique.
785  *
786  *	BUGS:
787  *	With a large number of inodes live on the file system this function
788  *	currently becomes quite slow.
789  */
790 ino_t iunique(struct super_block *sb, ino_t max_reserved)
791 {
792 	/*
793 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
794 	 * error if st_ino won't fit in target struct field. Use 32bit counter
795 	 * here to attempt to avoid that.
796 	 */
797 	static unsigned int counter;
798 	struct inode *inode;
799 	struct hlist_head *head;
800 	ino_t res;
801 
802 	spin_lock(&inode_lock);
803 	do {
804 		if (counter <= max_reserved)
805 			counter = max_reserved + 1;
806 		res = counter++;
807 		head = inode_hashtable + hash(sb, res);
808 		inode = find_inode_fast(sb, head, res);
809 	} while (inode != NULL);
810 	spin_unlock(&inode_lock);
811 
812 	return res;
813 }
814 EXPORT_SYMBOL(iunique);
815 
816 struct inode *igrab(struct inode *inode)
817 {
818 	spin_lock(&inode_lock);
819 	if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)))
820 		__iget(inode);
821 	else
822 		/*
823 		 * Handle the case where s_op->clear_inode is not been
824 		 * called yet, and somebody is calling igrab
825 		 * while the inode is getting freed.
826 		 */
827 		inode = NULL;
828 	spin_unlock(&inode_lock);
829 	return inode;
830 }
831 EXPORT_SYMBOL(igrab);
832 
833 /**
834  * ifind - internal function, you want ilookup5() or iget5().
835  * @sb:		super block of file system to search
836  * @head:       the head of the list to search
837  * @test:	callback used for comparisons between inodes
838  * @data:	opaque data pointer to pass to @test
839  * @wait:	if true wait for the inode to be unlocked, if false do not
840  *
841  * ifind() searches for the inode specified by @data in the inode
842  * cache. This is a generalized version of ifind_fast() for file systems where
843  * the inode number is not sufficient for unique identification of an inode.
844  *
845  * If the inode is in the cache, the inode is returned with an incremented
846  * reference count.
847  *
848  * Otherwise NULL is returned.
849  *
850  * Note, @test is called with the inode_lock held, so can't sleep.
851  */
852 static struct inode *ifind(struct super_block *sb,
853 		struct hlist_head *head, int (*test)(struct inode *, void *),
854 		void *data, const int wait)
855 {
856 	struct inode *inode;
857 
858 	spin_lock(&inode_lock);
859 	inode = find_inode(sb, head, test, data);
860 	if (inode) {
861 		__iget(inode);
862 		spin_unlock(&inode_lock);
863 		if (likely(wait))
864 			wait_on_inode(inode);
865 		return inode;
866 	}
867 	spin_unlock(&inode_lock);
868 	return NULL;
869 }
870 
871 /**
872  * ifind_fast - internal function, you want ilookup() or iget().
873  * @sb:		super block of file system to search
874  * @head:       head of the list to search
875  * @ino:	inode number to search for
876  *
877  * ifind_fast() searches for the inode @ino in the inode cache. This is for
878  * file systems where the inode number is sufficient for unique identification
879  * of an inode.
880  *
881  * If the inode is in the cache, the inode is returned with an incremented
882  * reference count.
883  *
884  * Otherwise NULL is returned.
885  */
886 static struct inode *ifind_fast(struct super_block *sb,
887 		struct hlist_head *head, unsigned long ino)
888 {
889 	struct inode *inode;
890 
891 	spin_lock(&inode_lock);
892 	inode = find_inode_fast(sb, head, ino);
893 	if (inode) {
894 		__iget(inode);
895 		spin_unlock(&inode_lock);
896 		wait_on_inode(inode);
897 		return inode;
898 	}
899 	spin_unlock(&inode_lock);
900 	return NULL;
901 }
902 
903 /**
904  * ilookup5_nowait - search for an inode in the inode cache
905  * @sb:		super block of file system to search
906  * @hashval:	hash value (usually inode number) to search for
907  * @test:	callback used for comparisons between inodes
908  * @data:	opaque data pointer to pass to @test
909  *
910  * ilookup5() uses ifind() to search for the inode specified by @hashval and
911  * @data in the inode cache. This is a generalized version of ilookup() for
912  * file systems where the inode number is not sufficient for unique
913  * identification of an inode.
914  *
915  * If the inode is in the cache, the inode is returned with an incremented
916  * reference count.  Note, the inode lock is not waited upon so you have to be
917  * very careful what you do with the returned inode.  You probably should be
918  * using ilookup5() instead.
919  *
920  * Otherwise NULL is returned.
921  *
922  * Note, @test is called with the inode_lock held, so can't sleep.
923  */
924 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
925 		int (*test)(struct inode *, void *), void *data)
926 {
927 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
928 
929 	return ifind(sb, head, test, data, 0);
930 }
931 EXPORT_SYMBOL(ilookup5_nowait);
932 
933 /**
934  * ilookup5 - search for an inode in the inode cache
935  * @sb:		super block of file system to search
936  * @hashval:	hash value (usually inode number) to search for
937  * @test:	callback used for comparisons between inodes
938  * @data:	opaque data pointer to pass to @test
939  *
940  * ilookup5() uses ifind() to search for the inode specified by @hashval and
941  * @data in the inode cache. This is a generalized version of ilookup() for
942  * file systems where the inode number is not sufficient for unique
943  * identification of an inode.
944  *
945  * If the inode is in the cache, the inode lock is waited upon and the inode is
946  * returned with an incremented reference count.
947  *
948  * Otherwise NULL is returned.
949  *
950  * Note, @test is called with the inode_lock held, so can't sleep.
951  */
952 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
953 		int (*test)(struct inode *, void *), void *data)
954 {
955 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
956 
957 	return ifind(sb, head, test, data, 1);
958 }
959 EXPORT_SYMBOL(ilookup5);
960 
961 /**
962  * ilookup - search for an inode in the inode cache
963  * @sb:		super block of file system to search
964  * @ino:	inode number to search for
965  *
966  * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
967  * This is for file systems where the inode number is sufficient for unique
968  * identification of an inode.
969  *
970  * If the inode is in the cache, the inode is returned with an incremented
971  * reference count.
972  *
973  * Otherwise NULL is returned.
974  */
975 struct inode *ilookup(struct super_block *sb, unsigned long ino)
976 {
977 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
978 
979 	return ifind_fast(sb, head, ino);
980 }
981 EXPORT_SYMBOL(ilookup);
982 
983 /**
984  * iget5_locked - obtain an inode from a mounted file system
985  * @sb:		super block of file system
986  * @hashval:	hash value (usually inode number) to get
987  * @test:	callback used for comparisons between inodes
988  * @set:	callback used to initialize a new struct inode
989  * @data:	opaque data pointer to pass to @test and @set
990  *
991  * iget5_locked() uses ifind() to search for the inode specified by @hashval
992  * and @data in the inode cache and if present it is returned with an increased
993  * reference count. This is a generalized version of iget_locked() for file
994  * systems where the inode number is not sufficient for unique identification
995  * of an inode.
996  *
997  * If the inode is not in cache, get_new_inode() is called to allocate a new
998  * inode and this is returned locked, hashed, and with the I_NEW flag set. The
999  * file system gets to fill it in before unlocking it via unlock_new_inode().
1000  *
1001  * Note both @test and @set are called with the inode_lock held, so can't sleep.
1002  */
1003 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1004 		int (*test)(struct inode *, void *),
1005 		int (*set)(struct inode *, void *), void *data)
1006 {
1007 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1008 	struct inode *inode;
1009 
1010 	inode = ifind(sb, head, test, data, 1);
1011 	if (inode)
1012 		return inode;
1013 	/*
1014 	 * get_new_inode() will do the right thing, re-trying the search
1015 	 * in case it had to block at any point.
1016 	 */
1017 	return get_new_inode(sb, head, test, set, data);
1018 }
1019 EXPORT_SYMBOL(iget5_locked);
1020 
1021 /**
1022  * iget_locked - obtain an inode from a mounted file system
1023  * @sb:		super block of file system
1024  * @ino:	inode number to get
1025  *
1026  * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1027  * the inode cache and if present it is returned with an increased reference
1028  * count. This is for file systems where the inode number is sufficient for
1029  * unique identification of an inode.
1030  *
1031  * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1032  * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1033  * The file system gets to fill it in before unlocking it via
1034  * unlock_new_inode().
1035  */
1036 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1037 {
1038 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1039 	struct inode *inode;
1040 
1041 	inode = ifind_fast(sb, head, ino);
1042 	if (inode)
1043 		return inode;
1044 	/*
1045 	 * get_new_inode_fast() will do the right thing, re-trying the search
1046 	 * in case it had to block at any point.
1047 	 */
1048 	return get_new_inode_fast(sb, head, ino);
1049 }
1050 EXPORT_SYMBOL(iget_locked);
1051 
1052 int insert_inode_locked(struct inode *inode)
1053 {
1054 	struct super_block *sb = inode->i_sb;
1055 	ino_t ino = inode->i_ino;
1056 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1057 
1058 	inode->i_state |= I_LOCK|I_NEW;
1059 	while (1) {
1060 		struct hlist_node *node;
1061 		struct inode *old = NULL;
1062 		spin_lock(&inode_lock);
1063 		hlist_for_each_entry(old, node, head, i_hash) {
1064 			if (old->i_ino != ino)
1065 				continue;
1066 			if (old->i_sb != sb)
1067 				continue;
1068 			if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))
1069 				continue;
1070 			break;
1071 		}
1072 		if (likely(!node)) {
1073 			hlist_add_head(&inode->i_hash, head);
1074 			spin_unlock(&inode_lock);
1075 			return 0;
1076 		}
1077 		__iget(old);
1078 		spin_unlock(&inode_lock);
1079 		wait_on_inode(old);
1080 		if (unlikely(!hlist_unhashed(&old->i_hash))) {
1081 			iput(old);
1082 			return -EBUSY;
1083 		}
1084 		iput(old);
1085 	}
1086 }
1087 EXPORT_SYMBOL(insert_inode_locked);
1088 
1089 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1090 		int (*test)(struct inode *, void *), void *data)
1091 {
1092 	struct super_block *sb = inode->i_sb;
1093 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1094 
1095 	inode->i_state |= I_LOCK|I_NEW;
1096 
1097 	while (1) {
1098 		struct hlist_node *node;
1099 		struct inode *old = NULL;
1100 
1101 		spin_lock(&inode_lock);
1102 		hlist_for_each_entry(old, node, head, i_hash) {
1103 			if (old->i_sb != sb)
1104 				continue;
1105 			if (!test(old, data))
1106 				continue;
1107 			if (old->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))
1108 				continue;
1109 			break;
1110 		}
1111 		if (likely(!node)) {
1112 			hlist_add_head(&inode->i_hash, head);
1113 			spin_unlock(&inode_lock);
1114 			return 0;
1115 		}
1116 		__iget(old);
1117 		spin_unlock(&inode_lock);
1118 		wait_on_inode(old);
1119 		if (unlikely(!hlist_unhashed(&old->i_hash))) {
1120 			iput(old);
1121 			return -EBUSY;
1122 		}
1123 		iput(old);
1124 	}
1125 }
1126 EXPORT_SYMBOL(insert_inode_locked4);
1127 
1128 /**
1129  *	__insert_inode_hash - hash an inode
1130  *	@inode: unhashed inode
1131  *	@hashval: unsigned long value used to locate this object in the
1132  *		inode_hashtable.
1133  *
1134  *	Add an inode to the inode hash for this superblock.
1135  */
1136 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
1137 {
1138 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1139 	spin_lock(&inode_lock);
1140 	hlist_add_head(&inode->i_hash, head);
1141 	spin_unlock(&inode_lock);
1142 }
1143 EXPORT_SYMBOL(__insert_inode_hash);
1144 
1145 /**
1146  *	remove_inode_hash - remove an inode from the hash
1147  *	@inode: inode to unhash
1148  *
1149  *	Remove an inode from the superblock.
1150  */
1151 void remove_inode_hash(struct inode *inode)
1152 {
1153 	spin_lock(&inode_lock);
1154 	hlist_del_init(&inode->i_hash);
1155 	spin_unlock(&inode_lock);
1156 }
1157 EXPORT_SYMBOL(remove_inode_hash);
1158 
1159 /*
1160  * Tell the filesystem that this inode is no longer of any interest and should
1161  * be completely destroyed.
1162  *
1163  * We leave the inode in the inode hash table until *after* the filesystem's
1164  * ->delete_inode completes.  This ensures that an iget (such as nfsd might
1165  * instigate) will always find up-to-date information either in the hash or on
1166  * disk.
1167  *
1168  * I_FREEING is set so that no-one will take a new reference to the inode while
1169  * it is being deleted.
1170  */
1171 void generic_delete_inode(struct inode *inode)
1172 {
1173 	const struct super_operations *op = inode->i_sb->s_op;
1174 
1175 	list_del_init(&inode->i_list);
1176 	list_del_init(&inode->i_sb_list);
1177 	WARN_ON(inode->i_state & I_NEW);
1178 	inode->i_state |= I_FREEING;
1179 	inodes_stat.nr_inodes--;
1180 	spin_unlock(&inode_lock);
1181 
1182 	security_inode_delete(inode);
1183 
1184 	if (op->delete_inode) {
1185 		void (*delete)(struct inode *) = op->delete_inode;
1186 		if (!is_bad_inode(inode))
1187 			vfs_dq_init(inode);
1188 		/* Filesystems implementing their own
1189 		 * s_op->delete_inode are required to call
1190 		 * truncate_inode_pages and clear_inode()
1191 		 * internally */
1192 		delete(inode);
1193 	} else {
1194 		truncate_inode_pages(&inode->i_data, 0);
1195 		clear_inode(inode);
1196 	}
1197 	spin_lock(&inode_lock);
1198 	hlist_del_init(&inode->i_hash);
1199 	spin_unlock(&inode_lock);
1200 	wake_up_inode(inode);
1201 	BUG_ON(inode->i_state != I_CLEAR);
1202 	destroy_inode(inode);
1203 }
1204 EXPORT_SYMBOL(generic_delete_inode);
1205 
1206 static void generic_forget_inode(struct inode *inode)
1207 {
1208 	struct super_block *sb = inode->i_sb;
1209 
1210 	if (!hlist_unhashed(&inode->i_hash)) {
1211 		if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1212 			list_move(&inode->i_list, &inode_unused);
1213 		inodes_stat.nr_unused++;
1214 		if (sb->s_flags & MS_ACTIVE) {
1215 			spin_unlock(&inode_lock);
1216 			return;
1217 		}
1218 		WARN_ON(inode->i_state & I_NEW);
1219 		inode->i_state |= I_WILL_FREE;
1220 		spin_unlock(&inode_lock);
1221 		write_inode_now(inode, 1);
1222 		spin_lock(&inode_lock);
1223 		WARN_ON(inode->i_state & I_NEW);
1224 		inode->i_state &= ~I_WILL_FREE;
1225 		inodes_stat.nr_unused--;
1226 		hlist_del_init(&inode->i_hash);
1227 	}
1228 	list_del_init(&inode->i_list);
1229 	list_del_init(&inode->i_sb_list);
1230 	WARN_ON(inode->i_state & I_NEW);
1231 	inode->i_state |= I_FREEING;
1232 	inodes_stat.nr_inodes--;
1233 	spin_unlock(&inode_lock);
1234 	if (inode->i_data.nrpages)
1235 		truncate_inode_pages(&inode->i_data, 0);
1236 	clear_inode(inode);
1237 	wake_up_inode(inode);
1238 	destroy_inode(inode);
1239 }
1240 
1241 /*
1242  * Normal UNIX filesystem behaviour: delete the
1243  * inode when the usage count drops to zero, and
1244  * i_nlink is zero.
1245  */
1246 void generic_drop_inode(struct inode *inode)
1247 {
1248 	if (!inode->i_nlink)
1249 		generic_delete_inode(inode);
1250 	else
1251 		generic_forget_inode(inode);
1252 }
1253 EXPORT_SYMBOL_GPL(generic_drop_inode);
1254 
1255 /*
1256  * Called when we're dropping the last reference
1257  * to an inode.
1258  *
1259  * Call the FS "drop()" function, defaulting to
1260  * the legacy UNIX filesystem behaviour..
1261  *
1262  * NOTE! NOTE! NOTE! We're called with the inode lock
1263  * held, and the drop function is supposed to release
1264  * the lock!
1265  */
1266 static inline void iput_final(struct inode *inode)
1267 {
1268 	const struct super_operations *op = inode->i_sb->s_op;
1269 	void (*drop)(struct inode *) = generic_drop_inode;
1270 
1271 	if (op && op->drop_inode)
1272 		drop = op->drop_inode;
1273 	drop(inode);
1274 }
1275 
1276 /**
1277  *	iput	- put an inode
1278  *	@inode: inode to put
1279  *
1280  *	Puts an inode, dropping its usage count. If the inode use count hits
1281  *	zero, the inode is then freed and may also be destroyed.
1282  *
1283  *	Consequently, iput() can sleep.
1284  */
1285 void iput(struct inode *inode)
1286 {
1287 	if (inode) {
1288 		BUG_ON(inode->i_state == I_CLEAR);
1289 
1290 		if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1291 			iput_final(inode);
1292 	}
1293 }
1294 EXPORT_SYMBOL(iput);
1295 
1296 /**
1297  *	bmap	- find a block number in a file
1298  *	@inode: inode of file
1299  *	@block: block to find
1300  *
1301  *	Returns the block number on the device holding the inode that
1302  *	is the disk block number for the block of the file requested.
1303  *	That is, asked for block 4 of inode 1 the function will return the
1304  *	disk block relative to the disk start that holds that block of the
1305  *	file.
1306  */
1307 sector_t bmap(struct inode *inode, sector_t block)
1308 {
1309 	sector_t res = 0;
1310 	if (inode->i_mapping->a_ops->bmap)
1311 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1312 	return res;
1313 }
1314 EXPORT_SYMBOL(bmap);
1315 
1316 /*
1317  * With relative atime, only update atime if the previous atime is
1318  * earlier than either the ctime or mtime or if at least a day has
1319  * passed since the last atime update.
1320  */
1321 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1322 			     struct timespec now)
1323 {
1324 
1325 	if (!(mnt->mnt_flags & MNT_RELATIME))
1326 		return 1;
1327 	/*
1328 	 * Is mtime younger than atime? If yes, update atime:
1329 	 */
1330 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1331 		return 1;
1332 	/*
1333 	 * Is ctime younger than atime? If yes, update atime:
1334 	 */
1335 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1336 		return 1;
1337 
1338 	/*
1339 	 * Is the previous atime value older than a day? If yes,
1340 	 * update atime:
1341 	 */
1342 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1343 		return 1;
1344 	/*
1345 	 * Good, we can skip the atime update:
1346 	 */
1347 	return 0;
1348 }
1349 
1350 /**
1351  *	touch_atime	-	update the access time
1352  *	@mnt: mount the inode is accessed on
1353  *	@dentry: dentry accessed
1354  *
1355  *	Update the accessed time on an inode and mark it for writeback.
1356  *	This function automatically handles read only file systems and media,
1357  *	as well as the "noatime" flag and inode specific "noatime" markers.
1358  */
1359 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1360 {
1361 	struct inode *inode = dentry->d_inode;
1362 	struct timespec now;
1363 
1364 	if (mnt_want_write(mnt))
1365 		return;
1366 	if (inode->i_flags & S_NOATIME)
1367 		goto out;
1368 	if (IS_NOATIME(inode))
1369 		goto out;
1370 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1371 		goto out;
1372 
1373 	if (mnt->mnt_flags & MNT_NOATIME)
1374 		goto out;
1375 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1376 		goto out;
1377 
1378 	now = current_fs_time(inode->i_sb);
1379 
1380 	if (!relatime_need_update(mnt, inode, now))
1381 		goto out;
1382 
1383 	if (timespec_equal(&inode->i_atime, &now))
1384 		goto out;
1385 
1386 	inode->i_atime = now;
1387 	mark_inode_dirty_sync(inode);
1388 out:
1389 	mnt_drop_write(mnt);
1390 }
1391 EXPORT_SYMBOL(touch_atime);
1392 
1393 /**
1394  *	file_update_time	-	update mtime and ctime time
1395  *	@file: file accessed
1396  *
1397  *	Update the mtime and ctime members of an inode and mark the inode
1398  *	for writeback.  Note that this function is meant exclusively for
1399  *	usage in the file write path of filesystems, and filesystems may
1400  *	choose to explicitly ignore update via this function with the
1401  *	S_NOCTIME inode flag, e.g. for network filesystem where these
1402  *	timestamps are handled by the server.
1403  */
1404 
1405 void file_update_time(struct file *file)
1406 {
1407 	struct inode *inode = file->f_path.dentry->d_inode;
1408 	struct timespec now;
1409 	int sync_it = 0;
1410 	int err;
1411 
1412 	if (IS_NOCMTIME(inode))
1413 		return;
1414 
1415 	err = mnt_want_write(file->f_path.mnt);
1416 	if (err)
1417 		return;
1418 
1419 	now = current_fs_time(inode->i_sb);
1420 	if (!timespec_equal(&inode->i_mtime, &now)) {
1421 		inode->i_mtime = now;
1422 		sync_it = 1;
1423 	}
1424 
1425 	if (!timespec_equal(&inode->i_ctime, &now)) {
1426 		inode->i_ctime = now;
1427 		sync_it = 1;
1428 	}
1429 
1430 	if (IS_I_VERSION(inode)) {
1431 		inode_inc_iversion(inode);
1432 		sync_it = 1;
1433 	}
1434 
1435 	if (sync_it)
1436 		mark_inode_dirty_sync(inode);
1437 	mnt_drop_write(file->f_path.mnt);
1438 }
1439 EXPORT_SYMBOL(file_update_time);
1440 
1441 int inode_needs_sync(struct inode *inode)
1442 {
1443 	if (IS_SYNC(inode))
1444 		return 1;
1445 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1446 		return 1;
1447 	return 0;
1448 }
1449 EXPORT_SYMBOL(inode_needs_sync);
1450 
1451 int inode_wait(void *word)
1452 {
1453 	schedule();
1454 	return 0;
1455 }
1456 EXPORT_SYMBOL(inode_wait);
1457 
1458 /*
1459  * If we try to find an inode in the inode hash while it is being
1460  * deleted, we have to wait until the filesystem completes its
1461  * deletion before reporting that it isn't found.  This function waits
1462  * until the deletion _might_ have completed.  Callers are responsible
1463  * to recheck inode state.
1464  *
1465  * It doesn't matter if I_LOCK is not set initially, a call to
1466  * wake_up_inode() after removing from the hash list will DTRT.
1467  *
1468  * This is called with inode_lock held.
1469  */
1470 static void __wait_on_freeing_inode(struct inode *inode)
1471 {
1472 	wait_queue_head_t *wq;
1473 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1474 	wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1475 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1476 	spin_unlock(&inode_lock);
1477 	schedule();
1478 	finish_wait(wq, &wait.wait);
1479 	spin_lock(&inode_lock);
1480 }
1481 
1482 static __initdata unsigned long ihash_entries;
1483 static int __init set_ihash_entries(char *str)
1484 {
1485 	if (!str)
1486 		return 0;
1487 	ihash_entries = simple_strtoul(str, &str, 0);
1488 	return 1;
1489 }
1490 __setup("ihash_entries=", set_ihash_entries);
1491 
1492 /*
1493  * Initialize the waitqueues and inode hash table.
1494  */
1495 void __init inode_init_early(void)
1496 {
1497 	int loop;
1498 
1499 	/* If hashes are distributed across NUMA nodes, defer
1500 	 * hash allocation until vmalloc space is available.
1501 	 */
1502 	if (hashdist)
1503 		return;
1504 
1505 	inode_hashtable =
1506 		alloc_large_system_hash("Inode-cache",
1507 					sizeof(struct hlist_head),
1508 					ihash_entries,
1509 					14,
1510 					HASH_EARLY,
1511 					&i_hash_shift,
1512 					&i_hash_mask,
1513 					0);
1514 
1515 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1516 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1517 }
1518 
1519 void __init inode_init(void)
1520 {
1521 	int loop;
1522 
1523 	/* inode slab cache */
1524 	inode_cachep = kmem_cache_create("inode_cache",
1525 					 sizeof(struct inode),
1526 					 0,
1527 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1528 					 SLAB_MEM_SPREAD),
1529 					 init_once);
1530 	register_shrinker(&icache_shrinker);
1531 
1532 	/* Hash may have been set up in inode_init_early */
1533 	if (!hashdist)
1534 		return;
1535 
1536 	inode_hashtable =
1537 		alloc_large_system_hash("Inode-cache",
1538 					sizeof(struct hlist_head),
1539 					ihash_entries,
1540 					14,
1541 					0,
1542 					&i_hash_shift,
1543 					&i_hash_mask,
1544 					0);
1545 
1546 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1547 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1548 }
1549 
1550 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1551 {
1552 	inode->i_mode = mode;
1553 	if (S_ISCHR(mode)) {
1554 		inode->i_fop = &def_chr_fops;
1555 		inode->i_rdev = rdev;
1556 	} else if (S_ISBLK(mode)) {
1557 		inode->i_fop = &def_blk_fops;
1558 		inode->i_rdev = rdev;
1559 	} else if (S_ISFIFO(mode))
1560 		inode->i_fop = &def_fifo_fops;
1561 	else if (S_ISSOCK(mode))
1562 		inode->i_fop = &bad_sock_fops;
1563 	else
1564 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1565 		       mode);
1566 }
1567 EXPORT_SYMBOL(init_special_inode);
1568