1 /* 2 * (C) 1997 Linus Torvalds 3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 4 */ 5 #include <linux/export.h> 6 #include <linux/fs.h> 7 #include <linux/mm.h> 8 #include <linux/backing-dev.h> 9 #include <linux/hash.h> 10 #include <linux/swap.h> 11 #include <linux/security.h> 12 #include <linux/cdev.h> 13 #include <linux/bootmem.h> 14 #include <linux/fsnotify.h> 15 #include <linux/mount.h> 16 #include <linux/posix_acl.h> 17 #include <linux/prefetch.h> 18 #include <linux/buffer_head.h> /* for inode_has_buffers */ 19 #include <linux/ratelimit.h> 20 #include <linux/list_lru.h> 21 #include "internal.h" 22 23 /* 24 * Inode locking rules: 25 * 26 * inode->i_lock protects: 27 * inode->i_state, inode->i_hash, __iget() 28 * Inode LRU list locks protect: 29 * inode->i_sb->s_inode_lru, inode->i_lru 30 * inode_sb_list_lock protects: 31 * sb->s_inodes, inode->i_sb_list 32 * bdi->wb.list_lock protects: 33 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list 34 * inode_hash_lock protects: 35 * inode_hashtable, inode->i_hash 36 * 37 * Lock ordering: 38 * 39 * inode_sb_list_lock 40 * inode->i_lock 41 * Inode LRU list locks 42 * 43 * bdi->wb.list_lock 44 * inode->i_lock 45 * 46 * inode_hash_lock 47 * inode_sb_list_lock 48 * inode->i_lock 49 * 50 * iunique_lock 51 * inode_hash_lock 52 */ 53 54 static unsigned int i_hash_mask __read_mostly; 55 static unsigned int i_hash_shift __read_mostly; 56 static struct hlist_head *inode_hashtable __read_mostly; 57 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 58 59 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock); 60 61 /* 62 * Empty aops. Can be used for the cases where the user does not 63 * define any of the address_space operations. 64 */ 65 const struct address_space_operations empty_aops = { 66 }; 67 EXPORT_SYMBOL(empty_aops); 68 69 /* 70 * Statistics gathering.. 71 */ 72 struct inodes_stat_t inodes_stat; 73 74 static DEFINE_PER_CPU(unsigned long, nr_inodes); 75 static DEFINE_PER_CPU(unsigned long, nr_unused); 76 77 static struct kmem_cache *inode_cachep __read_mostly; 78 79 static long get_nr_inodes(void) 80 { 81 int i; 82 long sum = 0; 83 for_each_possible_cpu(i) 84 sum += per_cpu(nr_inodes, i); 85 return sum < 0 ? 0 : sum; 86 } 87 88 static inline long get_nr_inodes_unused(void) 89 { 90 int i; 91 long sum = 0; 92 for_each_possible_cpu(i) 93 sum += per_cpu(nr_unused, i); 94 return sum < 0 ? 0 : sum; 95 } 96 97 long get_nr_dirty_inodes(void) 98 { 99 /* not actually dirty inodes, but a wild approximation */ 100 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 101 return nr_dirty > 0 ? nr_dirty : 0; 102 } 103 104 /* 105 * Handle nr_inode sysctl 106 */ 107 #ifdef CONFIG_SYSCTL 108 int proc_nr_inodes(ctl_table *table, int write, 109 void __user *buffer, size_t *lenp, loff_t *ppos) 110 { 111 inodes_stat.nr_inodes = get_nr_inodes(); 112 inodes_stat.nr_unused = get_nr_inodes_unused(); 113 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 114 } 115 #endif 116 117 /** 118 * inode_init_always - perform inode structure intialisation 119 * @sb: superblock inode belongs to 120 * @inode: inode to initialise 121 * 122 * These are initializations that need to be done on every inode 123 * allocation as the fields are not initialised by slab allocation. 124 */ 125 int inode_init_always(struct super_block *sb, struct inode *inode) 126 { 127 static const struct inode_operations empty_iops; 128 static const struct file_operations empty_fops; 129 struct address_space *const mapping = &inode->i_data; 130 131 inode->i_sb = sb; 132 inode->i_blkbits = sb->s_blocksize_bits; 133 inode->i_flags = 0; 134 atomic_set(&inode->i_count, 1); 135 inode->i_op = &empty_iops; 136 inode->i_fop = &empty_fops; 137 inode->__i_nlink = 1; 138 inode->i_opflags = 0; 139 i_uid_write(inode, 0); 140 i_gid_write(inode, 0); 141 atomic_set(&inode->i_writecount, 0); 142 inode->i_size = 0; 143 inode->i_blocks = 0; 144 inode->i_bytes = 0; 145 inode->i_generation = 0; 146 #ifdef CONFIG_QUOTA 147 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 148 #endif 149 inode->i_pipe = NULL; 150 inode->i_bdev = NULL; 151 inode->i_cdev = NULL; 152 inode->i_rdev = 0; 153 inode->dirtied_when = 0; 154 155 if (security_inode_alloc(inode)) 156 goto out; 157 spin_lock_init(&inode->i_lock); 158 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 159 160 mutex_init(&inode->i_mutex); 161 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 162 163 atomic_set(&inode->i_dio_count, 0); 164 165 mapping->a_ops = &empty_aops; 166 mapping->host = inode; 167 mapping->flags = 0; 168 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 169 mapping->private_data = NULL; 170 mapping->backing_dev_info = &default_backing_dev_info; 171 mapping->writeback_index = 0; 172 173 /* 174 * If the block_device provides a backing_dev_info for client 175 * inodes then use that. Otherwise the inode share the bdev's 176 * backing_dev_info. 177 */ 178 if (sb->s_bdev) { 179 struct backing_dev_info *bdi; 180 181 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 182 mapping->backing_dev_info = bdi; 183 } 184 inode->i_private = NULL; 185 inode->i_mapping = mapping; 186 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 187 #ifdef CONFIG_FS_POSIX_ACL 188 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 189 #endif 190 191 #ifdef CONFIG_FSNOTIFY 192 inode->i_fsnotify_mask = 0; 193 #endif 194 195 this_cpu_inc(nr_inodes); 196 197 return 0; 198 out: 199 return -ENOMEM; 200 } 201 EXPORT_SYMBOL(inode_init_always); 202 203 static struct inode *alloc_inode(struct super_block *sb) 204 { 205 struct inode *inode; 206 207 if (sb->s_op->alloc_inode) 208 inode = sb->s_op->alloc_inode(sb); 209 else 210 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 211 212 if (!inode) 213 return NULL; 214 215 if (unlikely(inode_init_always(sb, inode))) { 216 if (inode->i_sb->s_op->destroy_inode) 217 inode->i_sb->s_op->destroy_inode(inode); 218 else 219 kmem_cache_free(inode_cachep, inode); 220 return NULL; 221 } 222 223 return inode; 224 } 225 226 void free_inode_nonrcu(struct inode *inode) 227 { 228 kmem_cache_free(inode_cachep, inode); 229 } 230 EXPORT_SYMBOL(free_inode_nonrcu); 231 232 void __destroy_inode(struct inode *inode) 233 { 234 BUG_ON(inode_has_buffers(inode)); 235 security_inode_free(inode); 236 fsnotify_inode_delete(inode); 237 if (!inode->i_nlink) { 238 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 239 atomic_long_dec(&inode->i_sb->s_remove_count); 240 } 241 242 #ifdef CONFIG_FS_POSIX_ACL 243 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED) 244 posix_acl_release(inode->i_acl); 245 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED) 246 posix_acl_release(inode->i_default_acl); 247 #endif 248 this_cpu_dec(nr_inodes); 249 } 250 EXPORT_SYMBOL(__destroy_inode); 251 252 static void i_callback(struct rcu_head *head) 253 { 254 struct inode *inode = container_of(head, struct inode, i_rcu); 255 kmem_cache_free(inode_cachep, inode); 256 } 257 258 static void destroy_inode(struct inode *inode) 259 { 260 BUG_ON(!list_empty(&inode->i_lru)); 261 __destroy_inode(inode); 262 if (inode->i_sb->s_op->destroy_inode) 263 inode->i_sb->s_op->destroy_inode(inode); 264 else 265 call_rcu(&inode->i_rcu, i_callback); 266 } 267 268 /** 269 * drop_nlink - directly drop an inode's link count 270 * @inode: inode 271 * 272 * This is a low-level filesystem helper to replace any 273 * direct filesystem manipulation of i_nlink. In cases 274 * where we are attempting to track writes to the 275 * filesystem, a decrement to zero means an imminent 276 * write when the file is truncated and actually unlinked 277 * on the filesystem. 278 */ 279 void drop_nlink(struct inode *inode) 280 { 281 WARN_ON(inode->i_nlink == 0); 282 inode->__i_nlink--; 283 if (!inode->i_nlink) 284 atomic_long_inc(&inode->i_sb->s_remove_count); 285 } 286 EXPORT_SYMBOL(drop_nlink); 287 288 /** 289 * clear_nlink - directly zero an inode's link count 290 * @inode: inode 291 * 292 * This is a low-level filesystem helper to replace any 293 * direct filesystem manipulation of i_nlink. See 294 * drop_nlink() for why we care about i_nlink hitting zero. 295 */ 296 void clear_nlink(struct inode *inode) 297 { 298 if (inode->i_nlink) { 299 inode->__i_nlink = 0; 300 atomic_long_inc(&inode->i_sb->s_remove_count); 301 } 302 } 303 EXPORT_SYMBOL(clear_nlink); 304 305 /** 306 * set_nlink - directly set an inode's link count 307 * @inode: inode 308 * @nlink: new nlink (should be non-zero) 309 * 310 * This is a low-level filesystem helper to replace any 311 * direct filesystem manipulation of i_nlink. 312 */ 313 void set_nlink(struct inode *inode, unsigned int nlink) 314 { 315 if (!nlink) { 316 clear_nlink(inode); 317 } else { 318 /* Yes, some filesystems do change nlink from zero to one */ 319 if (inode->i_nlink == 0) 320 atomic_long_dec(&inode->i_sb->s_remove_count); 321 322 inode->__i_nlink = nlink; 323 } 324 } 325 EXPORT_SYMBOL(set_nlink); 326 327 /** 328 * inc_nlink - directly increment an inode's link count 329 * @inode: inode 330 * 331 * This is a low-level filesystem helper to replace any 332 * direct filesystem manipulation of i_nlink. Currently, 333 * it is only here for parity with dec_nlink(). 334 */ 335 void inc_nlink(struct inode *inode) 336 { 337 if (unlikely(inode->i_nlink == 0)) { 338 WARN_ON(!(inode->i_state & I_LINKABLE)); 339 atomic_long_dec(&inode->i_sb->s_remove_count); 340 } 341 342 inode->__i_nlink++; 343 } 344 EXPORT_SYMBOL(inc_nlink); 345 346 void address_space_init_once(struct address_space *mapping) 347 { 348 memset(mapping, 0, sizeof(*mapping)); 349 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC); 350 spin_lock_init(&mapping->tree_lock); 351 mutex_init(&mapping->i_mmap_mutex); 352 INIT_LIST_HEAD(&mapping->private_list); 353 spin_lock_init(&mapping->private_lock); 354 mapping->i_mmap = RB_ROOT; 355 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear); 356 } 357 EXPORT_SYMBOL(address_space_init_once); 358 359 /* 360 * These are initializations that only need to be done 361 * once, because the fields are idempotent across use 362 * of the inode, so let the slab aware of that. 363 */ 364 void inode_init_once(struct inode *inode) 365 { 366 memset(inode, 0, sizeof(*inode)); 367 INIT_HLIST_NODE(&inode->i_hash); 368 INIT_LIST_HEAD(&inode->i_devices); 369 INIT_LIST_HEAD(&inode->i_wb_list); 370 INIT_LIST_HEAD(&inode->i_lru); 371 address_space_init_once(&inode->i_data); 372 i_size_ordered_init(inode); 373 #ifdef CONFIG_FSNOTIFY 374 INIT_HLIST_HEAD(&inode->i_fsnotify_marks); 375 #endif 376 } 377 EXPORT_SYMBOL(inode_init_once); 378 379 static void init_once(void *foo) 380 { 381 struct inode *inode = (struct inode *) foo; 382 383 inode_init_once(inode); 384 } 385 386 /* 387 * inode->i_lock must be held 388 */ 389 void __iget(struct inode *inode) 390 { 391 atomic_inc(&inode->i_count); 392 } 393 394 /* 395 * get additional reference to inode; caller must already hold one. 396 */ 397 void ihold(struct inode *inode) 398 { 399 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 400 } 401 EXPORT_SYMBOL(ihold); 402 403 static void inode_lru_list_add(struct inode *inode) 404 { 405 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) 406 this_cpu_inc(nr_unused); 407 } 408 409 /* 410 * Add inode to LRU if needed (inode is unused and clean). 411 * 412 * Needs inode->i_lock held. 413 */ 414 void inode_add_lru(struct inode *inode) 415 { 416 if (!(inode->i_state & (I_DIRTY | I_SYNC | I_FREEING | I_WILL_FREE)) && 417 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE) 418 inode_lru_list_add(inode); 419 } 420 421 422 static void inode_lru_list_del(struct inode *inode) 423 { 424 425 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) 426 this_cpu_dec(nr_unused); 427 } 428 429 /** 430 * inode_sb_list_add - add inode to the superblock list of inodes 431 * @inode: inode to add 432 */ 433 void inode_sb_list_add(struct inode *inode) 434 { 435 spin_lock(&inode_sb_list_lock); 436 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 437 spin_unlock(&inode_sb_list_lock); 438 } 439 EXPORT_SYMBOL_GPL(inode_sb_list_add); 440 441 static inline void inode_sb_list_del(struct inode *inode) 442 { 443 if (!list_empty(&inode->i_sb_list)) { 444 spin_lock(&inode_sb_list_lock); 445 list_del_init(&inode->i_sb_list); 446 spin_unlock(&inode_sb_list_lock); 447 } 448 } 449 450 static unsigned long hash(struct super_block *sb, unsigned long hashval) 451 { 452 unsigned long tmp; 453 454 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 455 L1_CACHE_BYTES; 456 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 457 return tmp & i_hash_mask; 458 } 459 460 /** 461 * __insert_inode_hash - hash an inode 462 * @inode: unhashed inode 463 * @hashval: unsigned long value used to locate this object in the 464 * inode_hashtable. 465 * 466 * Add an inode to the inode hash for this superblock. 467 */ 468 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 469 { 470 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 471 472 spin_lock(&inode_hash_lock); 473 spin_lock(&inode->i_lock); 474 hlist_add_head(&inode->i_hash, b); 475 spin_unlock(&inode->i_lock); 476 spin_unlock(&inode_hash_lock); 477 } 478 EXPORT_SYMBOL(__insert_inode_hash); 479 480 /** 481 * __remove_inode_hash - remove an inode from the hash 482 * @inode: inode to unhash 483 * 484 * Remove an inode from the superblock. 485 */ 486 void __remove_inode_hash(struct inode *inode) 487 { 488 spin_lock(&inode_hash_lock); 489 spin_lock(&inode->i_lock); 490 hlist_del_init(&inode->i_hash); 491 spin_unlock(&inode->i_lock); 492 spin_unlock(&inode_hash_lock); 493 } 494 EXPORT_SYMBOL(__remove_inode_hash); 495 496 void clear_inode(struct inode *inode) 497 { 498 might_sleep(); 499 /* 500 * We have to cycle tree_lock here because reclaim can be still in the 501 * process of removing the last page (in __delete_from_page_cache()) 502 * and we must not free mapping under it. 503 */ 504 spin_lock_irq(&inode->i_data.tree_lock); 505 BUG_ON(inode->i_data.nrpages); 506 spin_unlock_irq(&inode->i_data.tree_lock); 507 BUG_ON(!list_empty(&inode->i_data.private_list)); 508 BUG_ON(!(inode->i_state & I_FREEING)); 509 BUG_ON(inode->i_state & I_CLEAR); 510 /* don't need i_lock here, no concurrent mods to i_state */ 511 inode->i_state = I_FREEING | I_CLEAR; 512 } 513 EXPORT_SYMBOL(clear_inode); 514 515 /* 516 * Free the inode passed in, removing it from the lists it is still connected 517 * to. We remove any pages still attached to the inode and wait for any IO that 518 * is still in progress before finally destroying the inode. 519 * 520 * An inode must already be marked I_FREEING so that we avoid the inode being 521 * moved back onto lists if we race with other code that manipulates the lists 522 * (e.g. writeback_single_inode). The caller is responsible for setting this. 523 * 524 * An inode must already be removed from the LRU list before being evicted from 525 * the cache. This should occur atomically with setting the I_FREEING state 526 * flag, so no inodes here should ever be on the LRU when being evicted. 527 */ 528 static void evict(struct inode *inode) 529 { 530 const struct super_operations *op = inode->i_sb->s_op; 531 532 BUG_ON(!(inode->i_state & I_FREEING)); 533 BUG_ON(!list_empty(&inode->i_lru)); 534 535 if (!list_empty(&inode->i_wb_list)) 536 inode_wb_list_del(inode); 537 538 inode_sb_list_del(inode); 539 540 /* 541 * Wait for flusher thread to be done with the inode so that filesystem 542 * does not start destroying it while writeback is still running. Since 543 * the inode has I_FREEING set, flusher thread won't start new work on 544 * the inode. We just have to wait for running writeback to finish. 545 */ 546 inode_wait_for_writeback(inode); 547 548 if (op->evict_inode) { 549 op->evict_inode(inode); 550 } else { 551 if (inode->i_data.nrpages) 552 truncate_inode_pages(&inode->i_data, 0); 553 clear_inode(inode); 554 } 555 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 556 bd_forget(inode); 557 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 558 cd_forget(inode); 559 560 remove_inode_hash(inode); 561 562 spin_lock(&inode->i_lock); 563 wake_up_bit(&inode->i_state, __I_NEW); 564 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 565 spin_unlock(&inode->i_lock); 566 567 destroy_inode(inode); 568 } 569 570 /* 571 * dispose_list - dispose of the contents of a local list 572 * @head: the head of the list to free 573 * 574 * Dispose-list gets a local list with local inodes in it, so it doesn't 575 * need to worry about list corruption and SMP locks. 576 */ 577 static void dispose_list(struct list_head *head) 578 { 579 while (!list_empty(head)) { 580 struct inode *inode; 581 582 inode = list_first_entry(head, struct inode, i_lru); 583 list_del_init(&inode->i_lru); 584 585 evict(inode); 586 } 587 } 588 589 /** 590 * evict_inodes - evict all evictable inodes for a superblock 591 * @sb: superblock to operate on 592 * 593 * Make sure that no inodes with zero refcount are retained. This is 594 * called by superblock shutdown after having MS_ACTIVE flag removed, 595 * so any inode reaching zero refcount during or after that call will 596 * be immediately evicted. 597 */ 598 void evict_inodes(struct super_block *sb) 599 { 600 struct inode *inode, *next; 601 LIST_HEAD(dispose); 602 603 spin_lock(&inode_sb_list_lock); 604 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 605 if (atomic_read(&inode->i_count)) 606 continue; 607 608 spin_lock(&inode->i_lock); 609 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 610 spin_unlock(&inode->i_lock); 611 continue; 612 } 613 614 inode->i_state |= I_FREEING; 615 inode_lru_list_del(inode); 616 spin_unlock(&inode->i_lock); 617 list_add(&inode->i_lru, &dispose); 618 } 619 spin_unlock(&inode_sb_list_lock); 620 621 dispose_list(&dispose); 622 } 623 624 /** 625 * invalidate_inodes - attempt to free all inodes on a superblock 626 * @sb: superblock to operate on 627 * @kill_dirty: flag to guide handling of dirty inodes 628 * 629 * Attempts to free all inodes for a given superblock. If there were any 630 * busy inodes return a non-zero value, else zero. 631 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 632 * them as busy. 633 */ 634 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 635 { 636 int busy = 0; 637 struct inode *inode, *next; 638 LIST_HEAD(dispose); 639 640 spin_lock(&inode_sb_list_lock); 641 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 642 spin_lock(&inode->i_lock); 643 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 644 spin_unlock(&inode->i_lock); 645 continue; 646 } 647 if (inode->i_state & I_DIRTY && !kill_dirty) { 648 spin_unlock(&inode->i_lock); 649 busy = 1; 650 continue; 651 } 652 if (atomic_read(&inode->i_count)) { 653 spin_unlock(&inode->i_lock); 654 busy = 1; 655 continue; 656 } 657 658 inode->i_state |= I_FREEING; 659 inode_lru_list_del(inode); 660 spin_unlock(&inode->i_lock); 661 list_add(&inode->i_lru, &dispose); 662 } 663 spin_unlock(&inode_sb_list_lock); 664 665 dispose_list(&dispose); 666 667 return busy; 668 } 669 670 /* 671 * Isolate the inode from the LRU in preparation for freeing it. 672 * 673 * Any inodes which are pinned purely because of attached pagecache have their 674 * pagecache removed. If the inode has metadata buffers attached to 675 * mapping->private_list then try to remove them. 676 * 677 * If the inode has the I_REFERENCED flag set, then it means that it has been 678 * used recently - the flag is set in iput_final(). When we encounter such an 679 * inode, clear the flag and move it to the back of the LRU so it gets another 680 * pass through the LRU before it gets reclaimed. This is necessary because of 681 * the fact we are doing lazy LRU updates to minimise lock contention so the 682 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 683 * with this flag set because they are the inodes that are out of order. 684 */ 685 static enum lru_status 686 inode_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg) 687 { 688 struct list_head *freeable = arg; 689 struct inode *inode = container_of(item, struct inode, i_lru); 690 691 /* 692 * we are inverting the lru lock/inode->i_lock here, so use a trylock. 693 * If we fail to get the lock, just skip it. 694 */ 695 if (!spin_trylock(&inode->i_lock)) 696 return LRU_SKIP; 697 698 /* 699 * Referenced or dirty inodes are still in use. Give them another pass 700 * through the LRU as we canot reclaim them now. 701 */ 702 if (atomic_read(&inode->i_count) || 703 (inode->i_state & ~I_REFERENCED)) { 704 list_del_init(&inode->i_lru); 705 spin_unlock(&inode->i_lock); 706 this_cpu_dec(nr_unused); 707 return LRU_REMOVED; 708 } 709 710 /* recently referenced inodes get one more pass */ 711 if (inode->i_state & I_REFERENCED) { 712 inode->i_state &= ~I_REFERENCED; 713 spin_unlock(&inode->i_lock); 714 return LRU_ROTATE; 715 } 716 717 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 718 __iget(inode); 719 spin_unlock(&inode->i_lock); 720 spin_unlock(lru_lock); 721 if (remove_inode_buffers(inode)) { 722 unsigned long reap; 723 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 724 if (current_is_kswapd()) 725 __count_vm_events(KSWAPD_INODESTEAL, reap); 726 else 727 __count_vm_events(PGINODESTEAL, reap); 728 if (current->reclaim_state) 729 current->reclaim_state->reclaimed_slab += reap; 730 } 731 iput(inode); 732 spin_lock(lru_lock); 733 return LRU_RETRY; 734 } 735 736 WARN_ON(inode->i_state & I_NEW); 737 inode->i_state |= I_FREEING; 738 list_move(&inode->i_lru, freeable); 739 spin_unlock(&inode->i_lock); 740 741 this_cpu_dec(nr_unused); 742 return LRU_REMOVED; 743 } 744 745 /* 746 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 747 * This is called from the superblock shrinker function with a number of inodes 748 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 749 * then are freed outside inode_lock by dispose_list(). 750 */ 751 long prune_icache_sb(struct super_block *sb, unsigned long nr_to_scan, 752 int nid) 753 { 754 LIST_HEAD(freeable); 755 long freed; 756 757 freed = list_lru_walk_node(&sb->s_inode_lru, nid, inode_lru_isolate, 758 &freeable, &nr_to_scan); 759 dispose_list(&freeable); 760 return freed; 761 } 762 763 static void __wait_on_freeing_inode(struct inode *inode); 764 /* 765 * Called with the inode lock held. 766 */ 767 static struct inode *find_inode(struct super_block *sb, 768 struct hlist_head *head, 769 int (*test)(struct inode *, void *), 770 void *data) 771 { 772 struct inode *inode = NULL; 773 774 repeat: 775 hlist_for_each_entry(inode, head, i_hash) { 776 if (inode->i_sb != sb) 777 continue; 778 if (!test(inode, data)) 779 continue; 780 spin_lock(&inode->i_lock); 781 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 782 __wait_on_freeing_inode(inode); 783 goto repeat; 784 } 785 __iget(inode); 786 spin_unlock(&inode->i_lock); 787 return inode; 788 } 789 return NULL; 790 } 791 792 /* 793 * find_inode_fast is the fast path version of find_inode, see the comment at 794 * iget_locked for details. 795 */ 796 static struct inode *find_inode_fast(struct super_block *sb, 797 struct hlist_head *head, unsigned long ino) 798 { 799 struct inode *inode = NULL; 800 801 repeat: 802 hlist_for_each_entry(inode, head, i_hash) { 803 if (inode->i_ino != ino) 804 continue; 805 if (inode->i_sb != sb) 806 continue; 807 spin_lock(&inode->i_lock); 808 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 809 __wait_on_freeing_inode(inode); 810 goto repeat; 811 } 812 __iget(inode); 813 spin_unlock(&inode->i_lock); 814 return inode; 815 } 816 return NULL; 817 } 818 819 /* 820 * Each cpu owns a range of LAST_INO_BATCH numbers. 821 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 822 * to renew the exhausted range. 823 * 824 * This does not significantly increase overflow rate because every CPU can 825 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 826 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 827 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 828 * overflow rate by 2x, which does not seem too significant. 829 * 830 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 831 * error if st_ino won't fit in target struct field. Use 32bit counter 832 * here to attempt to avoid that. 833 */ 834 #define LAST_INO_BATCH 1024 835 static DEFINE_PER_CPU(unsigned int, last_ino); 836 837 unsigned int get_next_ino(void) 838 { 839 unsigned int *p = &get_cpu_var(last_ino); 840 unsigned int res = *p; 841 842 #ifdef CONFIG_SMP 843 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 844 static atomic_t shared_last_ino; 845 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 846 847 res = next - LAST_INO_BATCH; 848 } 849 #endif 850 851 *p = ++res; 852 put_cpu_var(last_ino); 853 return res; 854 } 855 EXPORT_SYMBOL(get_next_ino); 856 857 /** 858 * new_inode_pseudo - obtain an inode 859 * @sb: superblock 860 * 861 * Allocates a new inode for given superblock. 862 * Inode wont be chained in superblock s_inodes list 863 * This means : 864 * - fs can't be unmount 865 * - quotas, fsnotify, writeback can't work 866 */ 867 struct inode *new_inode_pseudo(struct super_block *sb) 868 { 869 struct inode *inode = alloc_inode(sb); 870 871 if (inode) { 872 spin_lock(&inode->i_lock); 873 inode->i_state = 0; 874 spin_unlock(&inode->i_lock); 875 INIT_LIST_HEAD(&inode->i_sb_list); 876 } 877 return inode; 878 } 879 880 /** 881 * new_inode - obtain an inode 882 * @sb: superblock 883 * 884 * Allocates a new inode for given superblock. The default gfp_mask 885 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 886 * If HIGHMEM pages are unsuitable or it is known that pages allocated 887 * for the page cache are not reclaimable or migratable, 888 * mapping_set_gfp_mask() must be called with suitable flags on the 889 * newly created inode's mapping 890 * 891 */ 892 struct inode *new_inode(struct super_block *sb) 893 { 894 struct inode *inode; 895 896 spin_lock_prefetch(&inode_sb_list_lock); 897 898 inode = new_inode_pseudo(sb); 899 if (inode) 900 inode_sb_list_add(inode); 901 return inode; 902 } 903 EXPORT_SYMBOL(new_inode); 904 905 #ifdef CONFIG_DEBUG_LOCK_ALLOC 906 void lockdep_annotate_inode_mutex_key(struct inode *inode) 907 { 908 if (S_ISDIR(inode->i_mode)) { 909 struct file_system_type *type = inode->i_sb->s_type; 910 911 /* Set new key only if filesystem hasn't already changed it */ 912 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) { 913 /* 914 * ensure nobody is actually holding i_mutex 915 */ 916 mutex_destroy(&inode->i_mutex); 917 mutex_init(&inode->i_mutex); 918 lockdep_set_class(&inode->i_mutex, 919 &type->i_mutex_dir_key); 920 } 921 } 922 } 923 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 924 #endif 925 926 /** 927 * unlock_new_inode - clear the I_NEW state and wake up any waiters 928 * @inode: new inode to unlock 929 * 930 * Called when the inode is fully initialised to clear the new state of the 931 * inode and wake up anyone waiting for the inode to finish initialisation. 932 */ 933 void unlock_new_inode(struct inode *inode) 934 { 935 lockdep_annotate_inode_mutex_key(inode); 936 spin_lock(&inode->i_lock); 937 WARN_ON(!(inode->i_state & I_NEW)); 938 inode->i_state &= ~I_NEW; 939 smp_mb(); 940 wake_up_bit(&inode->i_state, __I_NEW); 941 spin_unlock(&inode->i_lock); 942 } 943 EXPORT_SYMBOL(unlock_new_inode); 944 945 /** 946 * lock_two_nondirectories - take two i_mutexes on non-directory objects 947 * @inode1: first inode to lock 948 * @inode2: second inode to lock 949 */ 950 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 951 { 952 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 953 if (inode1 == inode2 || !inode2) { 954 mutex_lock(&inode1->i_mutex); 955 return; 956 } 957 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 958 if (inode1 < inode2) { 959 mutex_lock(&inode1->i_mutex); 960 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_NONDIR2); 961 } else { 962 mutex_lock(&inode2->i_mutex); 963 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_NONDIR2); 964 } 965 } 966 EXPORT_SYMBOL(lock_two_nondirectories); 967 968 /** 969 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 970 * @inode1: first inode to unlock 971 * @inode2: second inode to unlock 972 */ 973 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 974 { 975 mutex_unlock(&inode1->i_mutex); 976 if (inode2 && inode2 != inode1) 977 mutex_unlock(&inode2->i_mutex); 978 } 979 EXPORT_SYMBOL(unlock_two_nondirectories); 980 981 /** 982 * iget5_locked - obtain an inode from a mounted file system 983 * @sb: super block of file system 984 * @hashval: hash value (usually inode number) to get 985 * @test: callback used for comparisons between inodes 986 * @set: callback used to initialize a new struct inode 987 * @data: opaque data pointer to pass to @test and @set 988 * 989 * Search for the inode specified by @hashval and @data in the inode cache, 990 * and if present it is return it with an increased reference count. This is 991 * a generalized version of iget_locked() for file systems where the inode 992 * number is not sufficient for unique identification of an inode. 993 * 994 * If the inode is not in cache, allocate a new inode and return it locked, 995 * hashed, and with the I_NEW flag set. The file system gets to fill it in 996 * before unlocking it via unlock_new_inode(). 997 * 998 * Note both @test and @set are called with the inode_hash_lock held, so can't 999 * sleep. 1000 */ 1001 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1002 int (*test)(struct inode *, void *), 1003 int (*set)(struct inode *, void *), void *data) 1004 { 1005 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1006 struct inode *inode; 1007 1008 spin_lock(&inode_hash_lock); 1009 inode = find_inode(sb, head, test, data); 1010 spin_unlock(&inode_hash_lock); 1011 1012 if (inode) { 1013 wait_on_inode(inode); 1014 return inode; 1015 } 1016 1017 inode = alloc_inode(sb); 1018 if (inode) { 1019 struct inode *old; 1020 1021 spin_lock(&inode_hash_lock); 1022 /* We released the lock, so.. */ 1023 old = find_inode(sb, head, test, data); 1024 if (!old) { 1025 if (set(inode, data)) 1026 goto set_failed; 1027 1028 spin_lock(&inode->i_lock); 1029 inode->i_state = I_NEW; 1030 hlist_add_head(&inode->i_hash, head); 1031 spin_unlock(&inode->i_lock); 1032 inode_sb_list_add(inode); 1033 spin_unlock(&inode_hash_lock); 1034 1035 /* Return the locked inode with I_NEW set, the 1036 * caller is responsible for filling in the contents 1037 */ 1038 return inode; 1039 } 1040 1041 /* 1042 * Uhhuh, somebody else created the same inode under 1043 * us. Use the old inode instead of the one we just 1044 * allocated. 1045 */ 1046 spin_unlock(&inode_hash_lock); 1047 destroy_inode(inode); 1048 inode = old; 1049 wait_on_inode(inode); 1050 } 1051 return inode; 1052 1053 set_failed: 1054 spin_unlock(&inode_hash_lock); 1055 destroy_inode(inode); 1056 return NULL; 1057 } 1058 EXPORT_SYMBOL(iget5_locked); 1059 1060 /** 1061 * iget_locked - obtain an inode from a mounted file system 1062 * @sb: super block of file system 1063 * @ino: inode number to get 1064 * 1065 * Search for the inode specified by @ino in the inode cache and if present 1066 * return it with an increased reference count. This is for file systems 1067 * where the inode number is sufficient for unique identification of an inode. 1068 * 1069 * If the inode is not in cache, allocate a new inode and return it locked, 1070 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1071 * before unlocking it via unlock_new_inode(). 1072 */ 1073 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1074 { 1075 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1076 struct inode *inode; 1077 1078 spin_lock(&inode_hash_lock); 1079 inode = find_inode_fast(sb, head, ino); 1080 spin_unlock(&inode_hash_lock); 1081 if (inode) { 1082 wait_on_inode(inode); 1083 return inode; 1084 } 1085 1086 inode = alloc_inode(sb); 1087 if (inode) { 1088 struct inode *old; 1089 1090 spin_lock(&inode_hash_lock); 1091 /* We released the lock, so.. */ 1092 old = find_inode_fast(sb, head, ino); 1093 if (!old) { 1094 inode->i_ino = ino; 1095 spin_lock(&inode->i_lock); 1096 inode->i_state = I_NEW; 1097 hlist_add_head(&inode->i_hash, head); 1098 spin_unlock(&inode->i_lock); 1099 inode_sb_list_add(inode); 1100 spin_unlock(&inode_hash_lock); 1101 1102 /* Return the locked inode with I_NEW set, the 1103 * caller is responsible for filling in the contents 1104 */ 1105 return inode; 1106 } 1107 1108 /* 1109 * Uhhuh, somebody else created the same inode under 1110 * us. Use the old inode instead of the one we just 1111 * allocated. 1112 */ 1113 spin_unlock(&inode_hash_lock); 1114 destroy_inode(inode); 1115 inode = old; 1116 wait_on_inode(inode); 1117 } 1118 return inode; 1119 } 1120 EXPORT_SYMBOL(iget_locked); 1121 1122 /* 1123 * search the inode cache for a matching inode number. 1124 * If we find one, then the inode number we are trying to 1125 * allocate is not unique and so we should not use it. 1126 * 1127 * Returns 1 if the inode number is unique, 0 if it is not. 1128 */ 1129 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1130 { 1131 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1132 struct inode *inode; 1133 1134 spin_lock(&inode_hash_lock); 1135 hlist_for_each_entry(inode, b, i_hash) { 1136 if (inode->i_ino == ino && inode->i_sb == sb) { 1137 spin_unlock(&inode_hash_lock); 1138 return 0; 1139 } 1140 } 1141 spin_unlock(&inode_hash_lock); 1142 1143 return 1; 1144 } 1145 1146 /** 1147 * iunique - get a unique inode number 1148 * @sb: superblock 1149 * @max_reserved: highest reserved inode number 1150 * 1151 * Obtain an inode number that is unique on the system for a given 1152 * superblock. This is used by file systems that have no natural 1153 * permanent inode numbering system. An inode number is returned that 1154 * is higher than the reserved limit but unique. 1155 * 1156 * BUGS: 1157 * With a large number of inodes live on the file system this function 1158 * currently becomes quite slow. 1159 */ 1160 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1161 { 1162 /* 1163 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1164 * error if st_ino won't fit in target struct field. Use 32bit counter 1165 * here to attempt to avoid that. 1166 */ 1167 static DEFINE_SPINLOCK(iunique_lock); 1168 static unsigned int counter; 1169 ino_t res; 1170 1171 spin_lock(&iunique_lock); 1172 do { 1173 if (counter <= max_reserved) 1174 counter = max_reserved + 1; 1175 res = counter++; 1176 } while (!test_inode_iunique(sb, res)); 1177 spin_unlock(&iunique_lock); 1178 1179 return res; 1180 } 1181 EXPORT_SYMBOL(iunique); 1182 1183 struct inode *igrab(struct inode *inode) 1184 { 1185 spin_lock(&inode->i_lock); 1186 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1187 __iget(inode); 1188 spin_unlock(&inode->i_lock); 1189 } else { 1190 spin_unlock(&inode->i_lock); 1191 /* 1192 * Handle the case where s_op->clear_inode is not been 1193 * called yet, and somebody is calling igrab 1194 * while the inode is getting freed. 1195 */ 1196 inode = NULL; 1197 } 1198 return inode; 1199 } 1200 EXPORT_SYMBOL(igrab); 1201 1202 /** 1203 * ilookup5_nowait - search for an inode in the inode cache 1204 * @sb: super block of file system to search 1205 * @hashval: hash value (usually inode number) to search for 1206 * @test: callback used for comparisons between inodes 1207 * @data: opaque data pointer to pass to @test 1208 * 1209 * Search for the inode specified by @hashval and @data in the inode cache. 1210 * If the inode is in the cache, the inode is returned with an incremented 1211 * reference count. 1212 * 1213 * Note: I_NEW is not waited upon so you have to be very careful what you do 1214 * with the returned inode. You probably should be using ilookup5() instead. 1215 * 1216 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1217 */ 1218 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1219 int (*test)(struct inode *, void *), void *data) 1220 { 1221 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1222 struct inode *inode; 1223 1224 spin_lock(&inode_hash_lock); 1225 inode = find_inode(sb, head, test, data); 1226 spin_unlock(&inode_hash_lock); 1227 1228 return inode; 1229 } 1230 EXPORT_SYMBOL(ilookup5_nowait); 1231 1232 /** 1233 * ilookup5 - search for an inode in the inode cache 1234 * @sb: super block of file system to search 1235 * @hashval: hash value (usually inode number) to search for 1236 * @test: callback used for comparisons between inodes 1237 * @data: opaque data pointer to pass to @test 1238 * 1239 * Search for the inode specified by @hashval and @data in the inode cache, 1240 * and if the inode is in the cache, return the inode with an incremented 1241 * reference count. Waits on I_NEW before returning the inode. 1242 * returned with an incremented reference count. 1243 * 1244 * This is a generalized version of ilookup() for file systems where the 1245 * inode number is not sufficient for unique identification of an inode. 1246 * 1247 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1248 */ 1249 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1250 int (*test)(struct inode *, void *), void *data) 1251 { 1252 struct inode *inode = ilookup5_nowait(sb, hashval, test, data); 1253 1254 if (inode) 1255 wait_on_inode(inode); 1256 return inode; 1257 } 1258 EXPORT_SYMBOL(ilookup5); 1259 1260 /** 1261 * ilookup - search for an inode in the inode cache 1262 * @sb: super block of file system to search 1263 * @ino: inode number to search for 1264 * 1265 * Search for the inode @ino in the inode cache, and if the inode is in the 1266 * cache, the inode is returned with an incremented reference count. 1267 */ 1268 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1269 { 1270 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1271 struct inode *inode; 1272 1273 spin_lock(&inode_hash_lock); 1274 inode = find_inode_fast(sb, head, ino); 1275 spin_unlock(&inode_hash_lock); 1276 1277 if (inode) 1278 wait_on_inode(inode); 1279 return inode; 1280 } 1281 EXPORT_SYMBOL(ilookup); 1282 1283 int insert_inode_locked(struct inode *inode) 1284 { 1285 struct super_block *sb = inode->i_sb; 1286 ino_t ino = inode->i_ino; 1287 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1288 1289 while (1) { 1290 struct inode *old = NULL; 1291 spin_lock(&inode_hash_lock); 1292 hlist_for_each_entry(old, head, i_hash) { 1293 if (old->i_ino != ino) 1294 continue; 1295 if (old->i_sb != sb) 1296 continue; 1297 spin_lock(&old->i_lock); 1298 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1299 spin_unlock(&old->i_lock); 1300 continue; 1301 } 1302 break; 1303 } 1304 if (likely(!old)) { 1305 spin_lock(&inode->i_lock); 1306 inode->i_state |= I_NEW; 1307 hlist_add_head(&inode->i_hash, head); 1308 spin_unlock(&inode->i_lock); 1309 spin_unlock(&inode_hash_lock); 1310 return 0; 1311 } 1312 __iget(old); 1313 spin_unlock(&old->i_lock); 1314 spin_unlock(&inode_hash_lock); 1315 wait_on_inode(old); 1316 if (unlikely(!inode_unhashed(old))) { 1317 iput(old); 1318 return -EBUSY; 1319 } 1320 iput(old); 1321 } 1322 } 1323 EXPORT_SYMBOL(insert_inode_locked); 1324 1325 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1326 int (*test)(struct inode *, void *), void *data) 1327 { 1328 struct super_block *sb = inode->i_sb; 1329 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1330 1331 while (1) { 1332 struct inode *old = NULL; 1333 1334 spin_lock(&inode_hash_lock); 1335 hlist_for_each_entry(old, head, i_hash) { 1336 if (old->i_sb != sb) 1337 continue; 1338 if (!test(old, data)) 1339 continue; 1340 spin_lock(&old->i_lock); 1341 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1342 spin_unlock(&old->i_lock); 1343 continue; 1344 } 1345 break; 1346 } 1347 if (likely(!old)) { 1348 spin_lock(&inode->i_lock); 1349 inode->i_state |= I_NEW; 1350 hlist_add_head(&inode->i_hash, head); 1351 spin_unlock(&inode->i_lock); 1352 spin_unlock(&inode_hash_lock); 1353 return 0; 1354 } 1355 __iget(old); 1356 spin_unlock(&old->i_lock); 1357 spin_unlock(&inode_hash_lock); 1358 wait_on_inode(old); 1359 if (unlikely(!inode_unhashed(old))) { 1360 iput(old); 1361 return -EBUSY; 1362 } 1363 iput(old); 1364 } 1365 } 1366 EXPORT_SYMBOL(insert_inode_locked4); 1367 1368 1369 int generic_delete_inode(struct inode *inode) 1370 { 1371 return 1; 1372 } 1373 EXPORT_SYMBOL(generic_delete_inode); 1374 1375 /* 1376 * Called when we're dropping the last reference 1377 * to an inode. 1378 * 1379 * Call the FS "drop_inode()" function, defaulting to 1380 * the legacy UNIX filesystem behaviour. If it tells 1381 * us to evict inode, do so. Otherwise, retain inode 1382 * in cache if fs is alive, sync and evict if fs is 1383 * shutting down. 1384 */ 1385 static void iput_final(struct inode *inode) 1386 { 1387 struct super_block *sb = inode->i_sb; 1388 const struct super_operations *op = inode->i_sb->s_op; 1389 int drop; 1390 1391 WARN_ON(inode->i_state & I_NEW); 1392 1393 if (op->drop_inode) 1394 drop = op->drop_inode(inode); 1395 else 1396 drop = generic_drop_inode(inode); 1397 1398 if (!drop && (sb->s_flags & MS_ACTIVE)) { 1399 inode->i_state |= I_REFERENCED; 1400 inode_add_lru(inode); 1401 spin_unlock(&inode->i_lock); 1402 return; 1403 } 1404 1405 if (!drop) { 1406 inode->i_state |= I_WILL_FREE; 1407 spin_unlock(&inode->i_lock); 1408 write_inode_now(inode, 1); 1409 spin_lock(&inode->i_lock); 1410 WARN_ON(inode->i_state & I_NEW); 1411 inode->i_state &= ~I_WILL_FREE; 1412 } 1413 1414 inode->i_state |= I_FREEING; 1415 if (!list_empty(&inode->i_lru)) 1416 inode_lru_list_del(inode); 1417 spin_unlock(&inode->i_lock); 1418 1419 evict(inode); 1420 } 1421 1422 /** 1423 * iput - put an inode 1424 * @inode: inode to put 1425 * 1426 * Puts an inode, dropping its usage count. If the inode use count hits 1427 * zero, the inode is then freed and may also be destroyed. 1428 * 1429 * Consequently, iput() can sleep. 1430 */ 1431 void iput(struct inode *inode) 1432 { 1433 if (inode) { 1434 BUG_ON(inode->i_state & I_CLEAR); 1435 1436 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) 1437 iput_final(inode); 1438 } 1439 } 1440 EXPORT_SYMBOL(iput); 1441 1442 /** 1443 * bmap - find a block number in a file 1444 * @inode: inode of file 1445 * @block: block to find 1446 * 1447 * Returns the block number on the device holding the inode that 1448 * is the disk block number for the block of the file requested. 1449 * That is, asked for block 4 of inode 1 the function will return the 1450 * disk block relative to the disk start that holds that block of the 1451 * file. 1452 */ 1453 sector_t bmap(struct inode *inode, sector_t block) 1454 { 1455 sector_t res = 0; 1456 if (inode->i_mapping->a_ops->bmap) 1457 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1458 return res; 1459 } 1460 EXPORT_SYMBOL(bmap); 1461 1462 /* 1463 * With relative atime, only update atime if the previous atime is 1464 * earlier than either the ctime or mtime or if at least a day has 1465 * passed since the last atime update. 1466 */ 1467 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1468 struct timespec now) 1469 { 1470 1471 if (!(mnt->mnt_flags & MNT_RELATIME)) 1472 return 1; 1473 /* 1474 * Is mtime younger than atime? If yes, update atime: 1475 */ 1476 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1477 return 1; 1478 /* 1479 * Is ctime younger than atime? If yes, update atime: 1480 */ 1481 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1482 return 1; 1483 1484 /* 1485 * Is the previous atime value older than a day? If yes, 1486 * update atime: 1487 */ 1488 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1489 return 1; 1490 /* 1491 * Good, we can skip the atime update: 1492 */ 1493 return 0; 1494 } 1495 1496 /* 1497 * This does the actual work of updating an inodes time or version. Must have 1498 * had called mnt_want_write() before calling this. 1499 */ 1500 static int update_time(struct inode *inode, struct timespec *time, int flags) 1501 { 1502 if (inode->i_op->update_time) 1503 return inode->i_op->update_time(inode, time, flags); 1504 1505 if (flags & S_ATIME) 1506 inode->i_atime = *time; 1507 if (flags & S_VERSION) 1508 inode_inc_iversion(inode); 1509 if (flags & S_CTIME) 1510 inode->i_ctime = *time; 1511 if (flags & S_MTIME) 1512 inode->i_mtime = *time; 1513 mark_inode_dirty_sync(inode); 1514 return 0; 1515 } 1516 1517 /** 1518 * touch_atime - update the access time 1519 * @path: the &struct path to update 1520 * 1521 * Update the accessed time on an inode and mark it for writeback. 1522 * This function automatically handles read only file systems and media, 1523 * as well as the "noatime" flag and inode specific "noatime" markers. 1524 */ 1525 void touch_atime(const struct path *path) 1526 { 1527 struct vfsmount *mnt = path->mnt; 1528 struct inode *inode = path->dentry->d_inode; 1529 struct timespec now; 1530 1531 if (inode->i_flags & S_NOATIME) 1532 return; 1533 if (IS_NOATIME(inode)) 1534 return; 1535 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1536 return; 1537 1538 if (mnt->mnt_flags & MNT_NOATIME) 1539 return; 1540 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1541 return; 1542 1543 now = current_fs_time(inode->i_sb); 1544 1545 if (!relatime_need_update(mnt, inode, now)) 1546 return; 1547 1548 if (timespec_equal(&inode->i_atime, &now)) 1549 return; 1550 1551 if (!sb_start_write_trylock(inode->i_sb)) 1552 return; 1553 1554 if (__mnt_want_write(mnt)) 1555 goto skip_update; 1556 /* 1557 * File systems can error out when updating inodes if they need to 1558 * allocate new space to modify an inode (such is the case for 1559 * Btrfs), but since we touch atime while walking down the path we 1560 * really don't care if we failed to update the atime of the file, 1561 * so just ignore the return value. 1562 * We may also fail on filesystems that have the ability to make parts 1563 * of the fs read only, e.g. subvolumes in Btrfs. 1564 */ 1565 update_time(inode, &now, S_ATIME); 1566 __mnt_drop_write(mnt); 1567 skip_update: 1568 sb_end_write(inode->i_sb); 1569 } 1570 EXPORT_SYMBOL(touch_atime); 1571 1572 /* 1573 * The logic we want is 1574 * 1575 * if suid or (sgid and xgrp) 1576 * remove privs 1577 */ 1578 int should_remove_suid(struct dentry *dentry) 1579 { 1580 umode_t mode = dentry->d_inode->i_mode; 1581 int kill = 0; 1582 1583 /* suid always must be killed */ 1584 if (unlikely(mode & S_ISUID)) 1585 kill = ATTR_KILL_SUID; 1586 1587 /* 1588 * sgid without any exec bits is just a mandatory locking mark; leave 1589 * it alone. If some exec bits are set, it's a real sgid; kill it. 1590 */ 1591 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1592 kill |= ATTR_KILL_SGID; 1593 1594 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1595 return kill; 1596 1597 return 0; 1598 } 1599 EXPORT_SYMBOL(should_remove_suid); 1600 1601 static int __remove_suid(struct dentry *dentry, int kill) 1602 { 1603 struct iattr newattrs; 1604 1605 newattrs.ia_valid = ATTR_FORCE | kill; 1606 /* 1607 * Note we call this on write, so notify_change will not 1608 * encounter any conflicting delegations: 1609 */ 1610 return notify_change(dentry, &newattrs, NULL); 1611 } 1612 1613 int file_remove_suid(struct file *file) 1614 { 1615 struct dentry *dentry = file->f_path.dentry; 1616 struct inode *inode = dentry->d_inode; 1617 int killsuid; 1618 int killpriv; 1619 int error = 0; 1620 1621 /* Fast path for nothing security related */ 1622 if (IS_NOSEC(inode)) 1623 return 0; 1624 1625 killsuid = should_remove_suid(dentry); 1626 killpriv = security_inode_need_killpriv(dentry); 1627 1628 if (killpriv < 0) 1629 return killpriv; 1630 if (killpriv) 1631 error = security_inode_killpriv(dentry); 1632 if (!error && killsuid) 1633 error = __remove_suid(dentry, killsuid); 1634 if (!error && (inode->i_sb->s_flags & MS_NOSEC)) 1635 inode->i_flags |= S_NOSEC; 1636 1637 return error; 1638 } 1639 EXPORT_SYMBOL(file_remove_suid); 1640 1641 /** 1642 * file_update_time - update mtime and ctime time 1643 * @file: file accessed 1644 * 1645 * Update the mtime and ctime members of an inode and mark the inode 1646 * for writeback. Note that this function is meant exclusively for 1647 * usage in the file write path of filesystems, and filesystems may 1648 * choose to explicitly ignore update via this function with the 1649 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1650 * timestamps are handled by the server. This can return an error for 1651 * file systems who need to allocate space in order to update an inode. 1652 */ 1653 1654 int file_update_time(struct file *file) 1655 { 1656 struct inode *inode = file_inode(file); 1657 struct timespec now; 1658 int sync_it = 0; 1659 int ret; 1660 1661 /* First try to exhaust all avenues to not sync */ 1662 if (IS_NOCMTIME(inode)) 1663 return 0; 1664 1665 now = current_fs_time(inode->i_sb); 1666 if (!timespec_equal(&inode->i_mtime, &now)) 1667 sync_it = S_MTIME; 1668 1669 if (!timespec_equal(&inode->i_ctime, &now)) 1670 sync_it |= S_CTIME; 1671 1672 if (IS_I_VERSION(inode)) 1673 sync_it |= S_VERSION; 1674 1675 if (!sync_it) 1676 return 0; 1677 1678 /* Finally allowed to write? Takes lock. */ 1679 if (__mnt_want_write_file(file)) 1680 return 0; 1681 1682 ret = update_time(inode, &now, sync_it); 1683 __mnt_drop_write_file(file); 1684 1685 return ret; 1686 } 1687 EXPORT_SYMBOL(file_update_time); 1688 1689 int inode_needs_sync(struct inode *inode) 1690 { 1691 if (IS_SYNC(inode)) 1692 return 1; 1693 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1694 return 1; 1695 return 0; 1696 } 1697 EXPORT_SYMBOL(inode_needs_sync); 1698 1699 int inode_wait(void *word) 1700 { 1701 schedule(); 1702 return 0; 1703 } 1704 EXPORT_SYMBOL(inode_wait); 1705 1706 /* 1707 * If we try to find an inode in the inode hash while it is being 1708 * deleted, we have to wait until the filesystem completes its 1709 * deletion before reporting that it isn't found. This function waits 1710 * until the deletion _might_ have completed. Callers are responsible 1711 * to recheck inode state. 1712 * 1713 * It doesn't matter if I_NEW is not set initially, a call to 1714 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 1715 * will DTRT. 1716 */ 1717 static void __wait_on_freeing_inode(struct inode *inode) 1718 { 1719 wait_queue_head_t *wq; 1720 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 1721 wq = bit_waitqueue(&inode->i_state, __I_NEW); 1722 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1723 spin_unlock(&inode->i_lock); 1724 spin_unlock(&inode_hash_lock); 1725 schedule(); 1726 finish_wait(wq, &wait.wait); 1727 spin_lock(&inode_hash_lock); 1728 } 1729 1730 static __initdata unsigned long ihash_entries; 1731 static int __init set_ihash_entries(char *str) 1732 { 1733 if (!str) 1734 return 0; 1735 ihash_entries = simple_strtoul(str, &str, 0); 1736 return 1; 1737 } 1738 __setup("ihash_entries=", set_ihash_entries); 1739 1740 /* 1741 * Initialize the waitqueues and inode hash table. 1742 */ 1743 void __init inode_init_early(void) 1744 { 1745 unsigned int loop; 1746 1747 /* If hashes are distributed across NUMA nodes, defer 1748 * hash allocation until vmalloc space is available. 1749 */ 1750 if (hashdist) 1751 return; 1752 1753 inode_hashtable = 1754 alloc_large_system_hash("Inode-cache", 1755 sizeof(struct hlist_head), 1756 ihash_entries, 1757 14, 1758 HASH_EARLY, 1759 &i_hash_shift, 1760 &i_hash_mask, 1761 0, 1762 0); 1763 1764 for (loop = 0; loop < (1U << i_hash_shift); loop++) 1765 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1766 } 1767 1768 void __init inode_init(void) 1769 { 1770 unsigned int loop; 1771 1772 /* inode slab cache */ 1773 inode_cachep = kmem_cache_create("inode_cache", 1774 sizeof(struct inode), 1775 0, 1776 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1777 SLAB_MEM_SPREAD), 1778 init_once); 1779 1780 /* Hash may have been set up in inode_init_early */ 1781 if (!hashdist) 1782 return; 1783 1784 inode_hashtable = 1785 alloc_large_system_hash("Inode-cache", 1786 sizeof(struct hlist_head), 1787 ihash_entries, 1788 14, 1789 0, 1790 &i_hash_shift, 1791 &i_hash_mask, 1792 0, 1793 0); 1794 1795 for (loop = 0; loop < (1U << i_hash_shift); loop++) 1796 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1797 } 1798 1799 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1800 { 1801 inode->i_mode = mode; 1802 if (S_ISCHR(mode)) { 1803 inode->i_fop = &def_chr_fops; 1804 inode->i_rdev = rdev; 1805 } else if (S_ISBLK(mode)) { 1806 inode->i_fop = &def_blk_fops; 1807 inode->i_rdev = rdev; 1808 } else if (S_ISFIFO(mode)) 1809 inode->i_fop = &pipefifo_fops; 1810 else if (S_ISSOCK(mode)) 1811 inode->i_fop = &bad_sock_fops; 1812 else 1813 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 1814 " inode %s:%lu\n", mode, inode->i_sb->s_id, 1815 inode->i_ino); 1816 } 1817 EXPORT_SYMBOL(init_special_inode); 1818 1819 /** 1820 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 1821 * @inode: New inode 1822 * @dir: Directory inode 1823 * @mode: mode of the new inode 1824 */ 1825 void inode_init_owner(struct inode *inode, const struct inode *dir, 1826 umode_t mode) 1827 { 1828 inode->i_uid = current_fsuid(); 1829 if (dir && dir->i_mode & S_ISGID) { 1830 inode->i_gid = dir->i_gid; 1831 if (S_ISDIR(mode)) 1832 mode |= S_ISGID; 1833 } else 1834 inode->i_gid = current_fsgid(); 1835 inode->i_mode = mode; 1836 } 1837 EXPORT_SYMBOL(inode_init_owner); 1838 1839 /** 1840 * inode_owner_or_capable - check current task permissions to inode 1841 * @inode: inode being checked 1842 * 1843 * Return true if current either has CAP_FOWNER to the inode, or 1844 * owns the file. 1845 */ 1846 bool inode_owner_or_capable(const struct inode *inode) 1847 { 1848 if (uid_eq(current_fsuid(), inode->i_uid)) 1849 return true; 1850 if (inode_capable(inode, CAP_FOWNER)) 1851 return true; 1852 return false; 1853 } 1854 EXPORT_SYMBOL(inode_owner_or_capable); 1855 1856 /* 1857 * Direct i/o helper functions 1858 */ 1859 static void __inode_dio_wait(struct inode *inode) 1860 { 1861 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 1862 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 1863 1864 do { 1865 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE); 1866 if (atomic_read(&inode->i_dio_count)) 1867 schedule(); 1868 } while (atomic_read(&inode->i_dio_count)); 1869 finish_wait(wq, &q.wait); 1870 } 1871 1872 /** 1873 * inode_dio_wait - wait for outstanding DIO requests to finish 1874 * @inode: inode to wait for 1875 * 1876 * Waits for all pending direct I/O requests to finish so that we can 1877 * proceed with a truncate or equivalent operation. 1878 * 1879 * Must be called under a lock that serializes taking new references 1880 * to i_dio_count, usually by inode->i_mutex. 1881 */ 1882 void inode_dio_wait(struct inode *inode) 1883 { 1884 if (atomic_read(&inode->i_dio_count)) 1885 __inode_dio_wait(inode); 1886 } 1887 EXPORT_SYMBOL(inode_dio_wait); 1888 1889 /* 1890 * inode_dio_done - signal finish of a direct I/O requests 1891 * @inode: inode the direct I/O happens on 1892 * 1893 * This is called once we've finished processing a direct I/O request, 1894 * and is used to wake up callers waiting for direct I/O to be quiesced. 1895 */ 1896 void inode_dio_done(struct inode *inode) 1897 { 1898 if (atomic_dec_and_test(&inode->i_dio_count)) 1899 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP); 1900 } 1901 EXPORT_SYMBOL(inode_dio_done); 1902