xref: /openbmc/linux/fs/inode.c (revision 6e10e219)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fsnotify.h>
16 #include <linux/mount.h>
17 #include <linux/posix_acl.h>
18 #include <linux/prefetch.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <trace/events/writeback.h>
24 #include "internal.h"
25 
26 /*
27  * Inode locking rules:
28  *
29  * inode->i_lock protects:
30  *   inode->i_state, inode->i_hash, __iget()
31  * Inode LRU list locks protect:
32  *   inode->i_sb->s_inode_lru, inode->i_lru
33  * inode->i_sb->s_inode_list_lock protects:
34  *   inode->i_sb->s_inodes, inode->i_sb_list
35  * bdi->wb.list_lock protects:
36  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37  * inode_hash_lock protects:
38  *   inode_hashtable, inode->i_hash
39  *
40  * Lock ordering:
41  *
42  * inode->i_sb->s_inode_list_lock
43  *   inode->i_lock
44  *     Inode LRU list locks
45  *
46  * bdi->wb.list_lock
47  *   inode->i_lock
48  *
49  * inode_hash_lock
50  *   inode->i_sb->s_inode_list_lock
51  *   inode->i_lock
52  *
53  * iunique_lock
54  *   inode_hash_lock
55  */
56 
57 static unsigned int i_hash_mask __read_mostly;
58 static unsigned int i_hash_shift __read_mostly;
59 static struct hlist_head *inode_hashtable __read_mostly;
60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61 
62 /*
63  * Empty aops. Can be used for the cases where the user does not
64  * define any of the address_space operations.
65  */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69 
70 /*
71  * Statistics gathering..
72  */
73 struct inodes_stat_t inodes_stat;
74 
75 static DEFINE_PER_CPU(unsigned long, nr_inodes);
76 static DEFINE_PER_CPU(unsigned long, nr_unused);
77 
78 static struct kmem_cache *inode_cachep __read_mostly;
79 
80 static long get_nr_inodes(void)
81 {
82 	int i;
83 	long sum = 0;
84 	for_each_possible_cpu(i)
85 		sum += per_cpu(nr_inodes, i);
86 	return sum < 0 ? 0 : sum;
87 }
88 
89 static inline long get_nr_inodes_unused(void)
90 {
91 	int i;
92 	long sum = 0;
93 	for_each_possible_cpu(i)
94 		sum += per_cpu(nr_unused, i);
95 	return sum < 0 ? 0 : sum;
96 }
97 
98 long get_nr_dirty_inodes(void)
99 {
100 	/* not actually dirty inodes, but a wild approximation */
101 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
102 	return nr_dirty > 0 ? nr_dirty : 0;
103 }
104 
105 /*
106  * Handle nr_inode sysctl
107  */
108 #ifdef CONFIG_SYSCTL
109 int proc_nr_inodes(struct ctl_table *table, int write,
110 		   void *buffer, size_t *lenp, loff_t *ppos)
111 {
112 	inodes_stat.nr_inodes = get_nr_inodes();
113 	inodes_stat.nr_unused = get_nr_inodes_unused();
114 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116 #endif
117 
118 static int no_open(struct inode *inode, struct file *file)
119 {
120 	return -ENXIO;
121 }
122 
123 /**
124  * inode_init_always - perform inode structure initialisation
125  * @sb: superblock inode belongs to
126  * @inode: inode to initialise
127  *
128  * These are initializations that need to be done on every inode
129  * allocation as the fields are not initialised by slab allocation.
130  */
131 int inode_init_always(struct super_block *sb, struct inode *inode)
132 {
133 	static const struct inode_operations empty_iops;
134 	static const struct file_operations no_open_fops = {.open = no_open};
135 	struct address_space *const mapping = &inode->i_data;
136 
137 	inode->i_sb = sb;
138 	inode->i_blkbits = sb->s_blocksize_bits;
139 	inode->i_flags = 0;
140 	atomic64_set(&inode->i_sequence, 0);
141 	atomic_set(&inode->i_count, 1);
142 	inode->i_op = &empty_iops;
143 	inode->i_fop = &no_open_fops;
144 	inode->i_ino = 0;
145 	inode->__i_nlink = 1;
146 	inode->i_opflags = 0;
147 	if (sb->s_xattr)
148 		inode->i_opflags |= IOP_XATTR;
149 	i_uid_write(inode, 0);
150 	i_gid_write(inode, 0);
151 	atomic_set(&inode->i_writecount, 0);
152 	inode->i_size = 0;
153 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
154 	inode->i_blocks = 0;
155 	inode->i_bytes = 0;
156 	inode->i_generation = 0;
157 	inode->i_pipe = NULL;
158 	inode->i_cdev = NULL;
159 	inode->i_link = NULL;
160 	inode->i_dir_seq = 0;
161 	inode->i_rdev = 0;
162 	inode->dirtied_when = 0;
163 
164 #ifdef CONFIG_CGROUP_WRITEBACK
165 	inode->i_wb_frn_winner = 0;
166 	inode->i_wb_frn_avg_time = 0;
167 	inode->i_wb_frn_history = 0;
168 #endif
169 
170 	if (security_inode_alloc(inode))
171 		goto out;
172 	spin_lock_init(&inode->i_lock);
173 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
174 
175 	init_rwsem(&inode->i_rwsem);
176 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
177 
178 	atomic_set(&inode->i_dio_count, 0);
179 
180 	mapping->a_ops = &empty_aops;
181 	mapping->host = inode;
182 	mapping->flags = 0;
183 	mapping->wb_err = 0;
184 	atomic_set(&mapping->i_mmap_writable, 0);
185 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
186 	atomic_set(&mapping->nr_thps, 0);
187 #endif
188 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
189 	mapping->private_data = NULL;
190 	mapping->writeback_index = 0;
191 	init_rwsem(&mapping->invalidate_lock);
192 	lockdep_set_class_and_name(&mapping->invalidate_lock,
193 				   &sb->s_type->invalidate_lock_key,
194 				   "mapping.invalidate_lock");
195 	inode->i_private = NULL;
196 	inode->i_mapping = mapping;
197 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
198 #ifdef CONFIG_FS_POSIX_ACL
199 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
200 #endif
201 
202 #ifdef CONFIG_FSNOTIFY
203 	inode->i_fsnotify_mask = 0;
204 #endif
205 	inode->i_flctx = NULL;
206 	this_cpu_inc(nr_inodes);
207 
208 	return 0;
209 out:
210 	return -ENOMEM;
211 }
212 EXPORT_SYMBOL(inode_init_always);
213 
214 void free_inode_nonrcu(struct inode *inode)
215 {
216 	kmem_cache_free(inode_cachep, inode);
217 }
218 EXPORT_SYMBOL(free_inode_nonrcu);
219 
220 static void i_callback(struct rcu_head *head)
221 {
222 	struct inode *inode = container_of(head, struct inode, i_rcu);
223 	if (inode->free_inode)
224 		inode->free_inode(inode);
225 	else
226 		free_inode_nonrcu(inode);
227 }
228 
229 static struct inode *alloc_inode(struct super_block *sb)
230 {
231 	const struct super_operations *ops = sb->s_op;
232 	struct inode *inode;
233 
234 	if (ops->alloc_inode)
235 		inode = ops->alloc_inode(sb);
236 	else
237 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
238 
239 	if (!inode)
240 		return NULL;
241 
242 	if (unlikely(inode_init_always(sb, inode))) {
243 		if (ops->destroy_inode) {
244 			ops->destroy_inode(inode);
245 			if (!ops->free_inode)
246 				return NULL;
247 		}
248 		inode->free_inode = ops->free_inode;
249 		i_callback(&inode->i_rcu);
250 		return NULL;
251 	}
252 
253 	return inode;
254 }
255 
256 void __destroy_inode(struct inode *inode)
257 {
258 	BUG_ON(inode_has_buffers(inode));
259 	inode_detach_wb(inode);
260 	security_inode_free(inode);
261 	fsnotify_inode_delete(inode);
262 	locks_free_lock_context(inode);
263 	if (!inode->i_nlink) {
264 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
265 		atomic_long_dec(&inode->i_sb->s_remove_count);
266 	}
267 
268 #ifdef CONFIG_FS_POSIX_ACL
269 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
270 		posix_acl_release(inode->i_acl);
271 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
272 		posix_acl_release(inode->i_default_acl);
273 #endif
274 	this_cpu_dec(nr_inodes);
275 }
276 EXPORT_SYMBOL(__destroy_inode);
277 
278 static void destroy_inode(struct inode *inode)
279 {
280 	const struct super_operations *ops = inode->i_sb->s_op;
281 
282 	BUG_ON(!list_empty(&inode->i_lru));
283 	__destroy_inode(inode);
284 	if (ops->destroy_inode) {
285 		ops->destroy_inode(inode);
286 		if (!ops->free_inode)
287 			return;
288 	}
289 	inode->free_inode = ops->free_inode;
290 	call_rcu(&inode->i_rcu, i_callback);
291 }
292 
293 /**
294  * drop_nlink - directly drop an inode's link count
295  * @inode: inode
296  *
297  * This is a low-level filesystem helper to replace any
298  * direct filesystem manipulation of i_nlink.  In cases
299  * where we are attempting to track writes to the
300  * filesystem, a decrement to zero means an imminent
301  * write when the file is truncated and actually unlinked
302  * on the filesystem.
303  */
304 void drop_nlink(struct inode *inode)
305 {
306 	WARN_ON(inode->i_nlink == 0);
307 	inode->__i_nlink--;
308 	if (!inode->i_nlink)
309 		atomic_long_inc(&inode->i_sb->s_remove_count);
310 }
311 EXPORT_SYMBOL(drop_nlink);
312 
313 /**
314  * clear_nlink - directly zero an inode's link count
315  * @inode: inode
316  *
317  * This is a low-level filesystem helper to replace any
318  * direct filesystem manipulation of i_nlink.  See
319  * drop_nlink() for why we care about i_nlink hitting zero.
320  */
321 void clear_nlink(struct inode *inode)
322 {
323 	if (inode->i_nlink) {
324 		inode->__i_nlink = 0;
325 		atomic_long_inc(&inode->i_sb->s_remove_count);
326 	}
327 }
328 EXPORT_SYMBOL(clear_nlink);
329 
330 /**
331  * set_nlink - directly set an inode's link count
332  * @inode: inode
333  * @nlink: new nlink (should be non-zero)
334  *
335  * This is a low-level filesystem helper to replace any
336  * direct filesystem manipulation of i_nlink.
337  */
338 void set_nlink(struct inode *inode, unsigned int nlink)
339 {
340 	if (!nlink) {
341 		clear_nlink(inode);
342 	} else {
343 		/* Yes, some filesystems do change nlink from zero to one */
344 		if (inode->i_nlink == 0)
345 			atomic_long_dec(&inode->i_sb->s_remove_count);
346 
347 		inode->__i_nlink = nlink;
348 	}
349 }
350 EXPORT_SYMBOL(set_nlink);
351 
352 /**
353  * inc_nlink - directly increment an inode's link count
354  * @inode: inode
355  *
356  * This is a low-level filesystem helper to replace any
357  * direct filesystem manipulation of i_nlink.  Currently,
358  * it is only here for parity with dec_nlink().
359  */
360 void inc_nlink(struct inode *inode)
361 {
362 	if (unlikely(inode->i_nlink == 0)) {
363 		WARN_ON(!(inode->i_state & I_LINKABLE));
364 		atomic_long_dec(&inode->i_sb->s_remove_count);
365 	}
366 
367 	inode->__i_nlink++;
368 }
369 EXPORT_SYMBOL(inc_nlink);
370 
371 static void __address_space_init_once(struct address_space *mapping)
372 {
373 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
374 	init_rwsem(&mapping->i_mmap_rwsem);
375 	INIT_LIST_HEAD(&mapping->private_list);
376 	spin_lock_init(&mapping->private_lock);
377 	mapping->i_mmap = RB_ROOT_CACHED;
378 }
379 
380 void address_space_init_once(struct address_space *mapping)
381 {
382 	memset(mapping, 0, sizeof(*mapping));
383 	__address_space_init_once(mapping);
384 }
385 EXPORT_SYMBOL(address_space_init_once);
386 
387 /*
388  * These are initializations that only need to be done
389  * once, because the fields are idempotent across use
390  * of the inode, so let the slab aware of that.
391  */
392 void inode_init_once(struct inode *inode)
393 {
394 	memset(inode, 0, sizeof(*inode));
395 	INIT_HLIST_NODE(&inode->i_hash);
396 	INIT_LIST_HEAD(&inode->i_devices);
397 	INIT_LIST_HEAD(&inode->i_io_list);
398 	INIT_LIST_HEAD(&inode->i_wb_list);
399 	INIT_LIST_HEAD(&inode->i_lru);
400 	__address_space_init_once(&inode->i_data);
401 	i_size_ordered_init(inode);
402 }
403 EXPORT_SYMBOL(inode_init_once);
404 
405 static void init_once(void *foo)
406 {
407 	struct inode *inode = (struct inode *) foo;
408 
409 	inode_init_once(inode);
410 }
411 
412 /*
413  * inode->i_lock must be held
414  */
415 void __iget(struct inode *inode)
416 {
417 	atomic_inc(&inode->i_count);
418 }
419 
420 /*
421  * get additional reference to inode; caller must already hold one.
422  */
423 void ihold(struct inode *inode)
424 {
425 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
426 }
427 EXPORT_SYMBOL(ihold);
428 
429 static void __inode_add_lru(struct inode *inode, bool rotate)
430 {
431 	if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
432 		return;
433 	if (atomic_read(&inode->i_count))
434 		return;
435 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
436 		return;
437 	if (!mapping_shrinkable(&inode->i_data))
438 		return;
439 
440 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
441 		this_cpu_inc(nr_unused);
442 	else if (rotate)
443 		inode->i_state |= I_REFERENCED;
444 }
445 
446 /*
447  * Add inode to LRU if needed (inode is unused and clean).
448  *
449  * Needs inode->i_lock held.
450  */
451 void inode_add_lru(struct inode *inode)
452 {
453 	__inode_add_lru(inode, false);
454 }
455 
456 static void inode_lru_list_del(struct inode *inode)
457 {
458 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
459 		this_cpu_dec(nr_unused);
460 }
461 
462 /**
463  * inode_sb_list_add - add inode to the superblock list of inodes
464  * @inode: inode to add
465  */
466 void inode_sb_list_add(struct inode *inode)
467 {
468 	spin_lock(&inode->i_sb->s_inode_list_lock);
469 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
470 	spin_unlock(&inode->i_sb->s_inode_list_lock);
471 }
472 EXPORT_SYMBOL_GPL(inode_sb_list_add);
473 
474 static inline void inode_sb_list_del(struct inode *inode)
475 {
476 	if (!list_empty(&inode->i_sb_list)) {
477 		spin_lock(&inode->i_sb->s_inode_list_lock);
478 		list_del_init(&inode->i_sb_list);
479 		spin_unlock(&inode->i_sb->s_inode_list_lock);
480 	}
481 }
482 
483 static unsigned long hash(struct super_block *sb, unsigned long hashval)
484 {
485 	unsigned long tmp;
486 
487 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
488 			L1_CACHE_BYTES;
489 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
490 	return tmp & i_hash_mask;
491 }
492 
493 /**
494  *	__insert_inode_hash - hash an inode
495  *	@inode: unhashed inode
496  *	@hashval: unsigned long value used to locate this object in the
497  *		inode_hashtable.
498  *
499  *	Add an inode to the inode hash for this superblock.
500  */
501 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
502 {
503 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
504 
505 	spin_lock(&inode_hash_lock);
506 	spin_lock(&inode->i_lock);
507 	hlist_add_head_rcu(&inode->i_hash, b);
508 	spin_unlock(&inode->i_lock);
509 	spin_unlock(&inode_hash_lock);
510 }
511 EXPORT_SYMBOL(__insert_inode_hash);
512 
513 /**
514  *	__remove_inode_hash - remove an inode from the hash
515  *	@inode: inode to unhash
516  *
517  *	Remove an inode from the superblock.
518  */
519 void __remove_inode_hash(struct inode *inode)
520 {
521 	spin_lock(&inode_hash_lock);
522 	spin_lock(&inode->i_lock);
523 	hlist_del_init_rcu(&inode->i_hash);
524 	spin_unlock(&inode->i_lock);
525 	spin_unlock(&inode_hash_lock);
526 }
527 EXPORT_SYMBOL(__remove_inode_hash);
528 
529 void dump_mapping(const struct address_space *mapping)
530 {
531 	struct inode *host;
532 	const struct address_space_operations *a_ops;
533 	struct hlist_node *dentry_first;
534 	struct dentry *dentry_ptr;
535 	struct dentry dentry;
536 	unsigned long ino;
537 
538 	/*
539 	 * If mapping is an invalid pointer, we don't want to crash
540 	 * accessing it, so probe everything depending on it carefully.
541 	 */
542 	if (get_kernel_nofault(host, &mapping->host) ||
543 	    get_kernel_nofault(a_ops, &mapping->a_ops)) {
544 		pr_warn("invalid mapping:%px\n", mapping);
545 		return;
546 	}
547 
548 	if (!host) {
549 		pr_warn("aops:%ps\n", a_ops);
550 		return;
551 	}
552 
553 	if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
554 	    get_kernel_nofault(ino, &host->i_ino)) {
555 		pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
556 		return;
557 	}
558 
559 	if (!dentry_first) {
560 		pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
561 		return;
562 	}
563 
564 	dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
565 	if (get_kernel_nofault(dentry, dentry_ptr)) {
566 		pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
567 				a_ops, ino, dentry_ptr);
568 		return;
569 	}
570 
571 	/*
572 	 * if dentry is corrupted, the %pd handler may still crash,
573 	 * but it's unlikely that we reach here with a corrupt mapping
574 	 */
575 	pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry);
576 }
577 
578 void clear_inode(struct inode *inode)
579 {
580 	/*
581 	 * We have to cycle the i_pages lock here because reclaim can be in the
582 	 * process of removing the last page (in __delete_from_page_cache())
583 	 * and we must not free the mapping under it.
584 	 */
585 	xa_lock_irq(&inode->i_data.i_pages);
586 	BUG_ON(inode->i_data.nrpages);
587 	/*
588 	 * Almost always, mapping_empty(&inode->i_data) here; but there are
589 	 * two known and long-standing ways in which nodes may get left behind
590 	 * (when deep radix-tree node allocation failed partway; or when THP
591 	 * collapse_file() failed). Until those two known cases are cleaned up,
592 	 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
593 	 * nor even WARN_ON(!mapping_empty).
594 	 */
595 	xa_unlock_irq(&inode->i_data.i_pages);
596 	BUG_ON(!list_empty(&inode->i_data.private_list));
597 	BUG_ON(!(inode->i_state & I_FREEING));
598 	BUG_ON(inode->i_state & I_CLEAR);
599 	BUG_ON(!list_empty(&inode->i_wb_list));
600 	/* don't need i_lock here, no concurrent mods to i_state */
601 	inode->i_state = I_FREEING | I_CLEAR;
602 }
603 EXPORT_SYMBOL(clear_inode);
604 
605 /*
606  * Free the inode passed in, removing it from the lists it is still connected
607  * to. We remove any pages still attached to the inode and wait for any IO that
608  * is still in progress before finally destroying the inode.
609  *
610  * An inode must already be marked I_FREEING so that we avoid the inode being
611  * moved back onto lists if we race with other code that manipulates the lists
612  * (e.g. writeback_single_inode). The caller is responsible for setting this.
613  *
614  * An inode must already be removed from the LRU list before being evicted from
615  * the cache. This should occur atomically with setting the I_FREEING state
616  * flag, so no inodes here should ever be on the LRU when being evicted.
617  */
618 static void evict(struct inode *inode)
619 {
620 	const struct super_operations *op = inode->i_sb->s_op;
621 
622 	BUG_ON(!(inode->i_state & I_FREEING));
623 	BUG_ON(!list_empty(&inode->i_lru));
624 
625 	if (!list_empty(&inode->i_io_list))
626 		inode_io_list_del(inode);
627 
628 	inode_sb_list_del(inode);
629 
630 	/*
631 	 * Wait for flusher thread to be done with the inode so that filesystem
632 	 * does not start destroying it while writeback is still running. Since
633 	 * the inode has I_FREEING set, flusher thread won't start new work on
634 	 * the inode.  We just have to wait for running writeback to finish.
635 	 */
636 	inode_wait_for_writeback(inode);
637 
638 	if (op->evict_inode) {
639 		op->evict_inode(inode);
640 	} else {
641 		truncate_inode_pages_final(&inode->i_data);
642 		clear_inode(inode);
643 	}
644 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
645 		cd_forget(inode);
646 
647 	remove_inode_hash(inode);
648 
649 	spin_lock(&inode->i_lock);
650 	wake_up_bit(&inode->i_state, __I_NEW);
651 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
652 	spin_unlock(&inode->i_lock);
653 
654 	destroy_inode(inode);
655 }
656 
657 /*
658  * dispose_list - dispose of the contents of a local list
659  * @head: the head of the list to free
660  *
661  * Dispose-list gets a local list with local inodes in it, so it doesn't
662  * need to worry about list corruption and SMP locks.
663  */
664 static void dispose_list(struct list_head *head)
665 {
666 	while (!list_empty(head)) {
667 		struct inode *inode;
668 
669 		inode = list_first_entry(head, struct inode, i_lru);
670 		list_del_init(&inode->i_lru);
671 
672 		evict(inode);
673 		cond_resched();
674 	}
675 }
676 
677 /**
678  * evict_inodes	- evict all evictable inodes for a superblock
679  * @sb:		superblock to operate on
680  *
681  * Make sure that no inodes with zero refcount are retained.  This is
682  * called by superblock shutdown after having SB_ACTIVE flag removed,
683  * so any inode reaching zero refcount during or after that call will
684  * be immediately evicted.
685  */
686 void evict_inodes(struct super_block *sb)
687 {
688 	struct inode *inode, *next;
689 	LIST_HEAD(dispose);
690 
691 again:
692 	spin_lock(&sb->s_inode_list_lock);
693 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
694 		if (atomic_read(&inode->i_count))
695 			continue;
696 
697 		spin_lock(&inode->i_lock);
698 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
699 			spin_unlock(&inode->i_lock);
700 			continue;
701 		}
702 
703 		inode->i_state |= I_FREEING;
704 		inode_lru_list_del(inode);
705 		spin_unlock(&inode->i_lock);
706 		list_add(&inode->i_lru, &dispose);
707 
708 		/*
709 		 * We can have a ton of inodes to evict at unmount time given
710 		 * enough memory, check to see if we need to go to sleep for a
711 		 * bit so we don't livelock.
712 		 */
713 		if (need_resched()) {
714 			spin_unlock(&sb->s_inode_list_lock);
715 			cond_resched();
716 			dispose_list(&dispose);
717 			goto again;
718 		}
719 	}
720 	spin_unlock(&sb->s_inode_list_lock);
721 
722 	dispose_list(&dispose);
723 }
724 EXPORT_SYMBOL_GPL(evict_inodes);
725 
726 /**
727  * invalidate_inodes	- attempt to free all inodes on a superblock
728  * @sb:		superblock to operate on
729  * @kill_dirty: flag to guide handling of dirty inodes
730  *
731  * Attempts to free all inodes for a given superblock.  If there were any
732  * busy inodes return a non-zero value, else zero.
733  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
734  * them as busy.
735  */
736 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
737 {
738 	int busy = 0;
739 	struct inode *inode, *next;
740 	LIST_HEAD(dispose);
741 
742 again:
743 	spin_lock(&sb->s_inode_list_lock);
744 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
745 		spin_lock(&inode->i_lock);
746 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
747 			spin_unlock(&inode->i_lock);
748 			continue;
749 		}
750 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
751 			spin_unlock(&inode->i_lock);
752 			busy = 1;
753 			continue;
754 		}
755 		if (atomic_read(&inode->i_count)) {
756 			spin_unlock(&inode->i_lock);
757 			busy = 1;
758 			continue;
759 		}
760 
761 		inode->i_state |= I_FREEING;
762 		inode_lru_list_del(inode);
763 		spin_unlock(&inode->i_lock);
764 		list_add(&inode->i_lru, &dispose);
765 		if (need_resched()) {
766 			spin_unlock(&sb->s_inode_list_lock);
767 			cond_resched();
768 			dispose_list(&dispose);
769 			goto again;
770 		}
771 	}
772 	spin_unlock(&sb->s_inode_list_lock);
773 
774 	dispose_list(&dispose);
775 
776 	return busy;
777 }
778 
779 /*
780  * Isolate the inode from the LRU in preparation for freeing it.
781  *
782  * If the inode has the I_REFERENCED flag set, then it means that it has been
783  * used recently - the flag is set in iput_final(). When we encounter such an
784  * inode, clear the flag and move it to the back of the LRU so it gets another
785  * pass through the LRU before it gets reclaimed. This is necessary because of
786  * the fact we are doing lazy LRU updates to minimise lock contention so the
787  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
788  * with this flag set because they are the inodes that are out of order.
789  */
790 static enum lru_status inode_lru_isolate(struct list_head *item,
791 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
792 {
793 	struct list_head *freeable = arg;
794 	struct inode	*inode = container_of(item, struct inode, i_lru);
795 
796 	/*
797 	 * We are inverting the lru lock/inode->i_lock here, so use a
798 	 * trylock. If we fail to get the lock, just skip it.
799 	 */
800 	if (!spin_trylock(&inode->i_lock))
801 		return LRU_SKIP;
802 
803 	/*
804 	 * Inodes can get referenced, redirtied, or repopulated while
805 	 * they're already on the LRU, and this can make them
806 	 * unreclaimable for a while. Remove them lazily here; iput,
807 	 * sync, or the last page cache deletion will requeue them.
808 	 */
809 	if (atomic_read(&inode->i_count) ||
810 	    (inode->i_state & ~I_REFERENCED) ||
811 	    !mapping_shrinkable(&inode->i_data)) {
812 		list_lru_isolate(lru, &inode->i_lru);
813 		spin_unlock(&inode->i_lock);
814 		this_cpu_dec(nr_unused);
815 		return LRU_REMOVED;
816 	}
817 
818 	/* Recently referenced inodes get one more pass */
819 	if (inode->i_state & I_REFERENCED) {
820 		inode->i_state &= ~I_REFERENCED;
821 		spin_unlock(&inode->i_lock);
822 		return LRU_ROTATE;
823 	}
824 
825 	/*
826 	 * On highmem systems, mapping_shrinkable() permits dropping
827 	 * page cache in order to free up struct inodes: lowmem might
828 	 * be under pressure before the cache inside the highmem zone.
829 	 */
830 	if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
831 		__iget(inode);
832 		spin_unlock(&inode->i_lock);
833 		spin_unlock(lru_lock);
834 		if (remove_inode_buffers(inode)) {
835 			unsigned long reap;
836 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
837 			if (current_is_kswapd())
838 				__count_vm_events(KSWAPD_INODESTEAL, reap);
839 			else
840 				__count_vm_events(PGINODESTEAL, reap);
841 			if (current->reclaim_state)
842 				current->reclaim_state->reclaimed_slab += reap;
843 		}
844 		iput(inode);
845 		spin_lock(lru_lock);
846 		return LRU_RETRY;
847 	}
848 
849 	WARN_ON(inode->i_state & I_NEW);
850 	inode->i_state |= I_FREEING;
851 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
852 	spin_unlock(&inode->i_lock);
853 
854 	this_cpu_dec(nr_unused);
855 	return LRU_REMOVED;
856 }
857 
858 /*
859  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
860  * This is called from the superblock shrinker function with a number of inodes
861  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
862  * then are freed outside inode_lock by dispose_list().
863  */
864 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
865 {
866 	LIST_HEAD(freeable);
867 	long freed;
868 
869 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
870 				     inode_lru_isolate, &freeable);
871 	dispose_list(&freeable);
872 	return freed;
873 }
874 
875 static void __wait_on_freeing_inode(struct inode *inode);
876 /*
877  * Called with the inode lock held.
878  */
879 static struct inode *find_inode(struct super_block *sb,
880 				struct hlist_head *head,
881 				int (*test)(struct inode *, void *),
882 				void *data)
883 {
884 	struct inode *inode = NULL;
885 
886 repeat:
887 	hlist_for_each_entry(inode, head, i_hash) {
888 		if (inode->i_sb != sb)
889 			continue;
890 		if (!test(inode, data))
891 			continue;
892 		spin_lock(&inode->i_lock);
893 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
894 			__wait_on_freeing_inode(inode);
895 			goto repeat;
896 		}
897 		if (unlikely(inode->i_state & I_CREATING)) {
898 			spin_unlock(&inode->i_lock);
899 			return ERR_PTR(-ESTALE);
900 		}
901 		__iget(inode);
902 		spin_unlock(&inode->i_lock);
903 		return inode;
904 	}
905 	return NULL;
906 }
907 
908 /*
909  * find_inode_fast is the fast path version of find_inode, see the comment at
910  * iget_locked for details.
911  */
912 static struct inode *find_inode_fast(struct super_block *sb,
913 				struct hlist_head *head, unsigned long ino)
914 {
915 	struct inode *inode = NULL;
916 
917 repeat:
918 	hlist_for_each_entry(inode, head, i_hash) {
919 		if (inode->i_ino != ino)
920 			continue;
921 		if (inode->i_sb != sb)
922 			continue;
923 		spin_lock(&inode->i_lock);
924 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
925 			__wait_on_freeing_inode(inode);
926 			goto repeat;
927 		}
928 		if (unlikely(inode->i_state & I_CREATING)) {
929 			spin_unlock(&inode->i_lock);
930 			return ERR_PTR(-ESTALE);
931 		}
932 		__iget(inode);
933 		spin_unlock(&inode->i_lock);
934 		return inode;
935 	}
936 	return NULL;
937 }
938 
939 /*
940  * Each cpu owns a range of LAST_INO_BATCH numbers.
941  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
942  * to renew the exhausted range.
943  *
944  * This does not significantly increase overflow rate because every CPU can
945  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
946  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
947  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
948  * overflow rate by 2x, which does not seem too significant.
949  *
950  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
951  * error if st_ino won't fit in target struct field. Use 32bit counter
952  * here to attempt to avoid that.
953  */
954 #define LAST_INO_BATCH 1024
955 static DEFINE_PER_CPU(unsigned int, last_ino);
956 
957 unsigned int get_next_ino(void)
958 {
959 	unsigned int *p = &get_cpu_var(last_ino);
960 	unsigned int res = *p;
961 
962 #ifdef CONFIG_SMP
963 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
964 		static atomic_t shared_last_ino;
965 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
966 
967 		res = next - LAST_INO_BATCH;
968 	}
969 #endif
970 
971 	res++;
972 	/* get_next_ino should not provide a 0 inode number */
973 	if (unlikely(!res))
974 		res++;
975 	*p = res;
976 	put_cpu_var(last_ino);
977 	return res;
978 }
979 EXPORT_SYMBOL(get_next_ino);
980 
981 /**
982  *	new_inode_pseudo 	- obtain an inode
983  *	@sb: superblock
984  *
985  *	Allocates a new inode for given superblock.
986  *	Inode wont be chained in superblock s_inodes list
987  *	This means :
988  *	- fs can't be unmount
989  *	- quotas, fsnotify, writeback can't work
990  */
991 struct inode *new_inode_pseudo(struct super_block *sb)
992 {
993 	struct inode *inode = alloc_inode(sb);
994 
995 	if (inode) {
996 		spin_lock(&inode->i_lock);
997 		inode->i_state = 0;
998 		spin_unlock(&inode->i_lock);
999 		INIT_LIST_HEAD(&inode->i_sb_list);
1000 	}
1001 	return inode;
1002 }
1003 
1004 /**
1005  *	new_inode 	- obtain an inode
1006  *	@sb: superblock
1007  *
1008  *	Allocates a new inode for given superblock. The default gfp_mask
1009  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1010  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
1011  *	for the page cache are not reclaimable or migratable,
1012  *	mapping_set_gfp_mask() must be called with suitable flags on the
1013  *	newly created inode's mapping
1014  *
1015  */
1016 struct inode *new_inode(struct super_block *sb)
1017 {
1018 	struct inode *inode;
1019 
1020 	spin_lock_prefetch(&sb->s_inode_list_lock);
1021 
1022 	inode = new_inode_pseudo(sb);
1023 	if (inode)
1024 		inode_sb_list_add(inode);
1025 	return inode;
1026 }
1027 EXPORT_SYMBOL(new_inode);
1028 
1029 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1030 void lockdep_annotate_inode_mutex_key(struct inode *inode)
1031 {
1032 	if (S_ISDIR(inode->i_mode)) {
1033 		struct file_system_type *type = inode->i_sb->s_type;
1034 
1035 		/* Set new key only if filesystem hasn't already changed it */
1036 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1037 			/*
1038 			 * ensure nobody is actually holding i_mutex
1039 			 */
1040 			// mutex_destroy(&inode->i_mutex);
1041 			init_rwsem(&inode->i_rwsem);
1042 			lockdep_set_class(&inode->i_rwsem,
1043 					  &type->i_mutex_dir_key);
1044 		}
1045 	}
1046 }
1047 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1048 #endif
1049 
1050 /**
1051  * unlock_new_inode - clear the I_NEW state and wake up any waiters
1052  * @inode:	new inode to unlock
1053  *
1054  * Called when the inode is fully initialised to clear the new state of the
1055  * inode and wake up anyone waiting for the inode to finish initialisation.
1056  */
1057 void unlock_new_inode(struct inode *inode)
1058 {
1059 	lockdep_annotate_inode_mutex_key(inode);
1060 	spin_lock(&inode->i_lock);
1061 	WARN_ON(!(inode->i_state & I_NEW));
1062 	inode->i_state &= ~I_NEW & ~I_CREATING;
1063 	smp_mb();
1064 	wake_up_bit(&inode->i_state, __I_NEW);
1065 	spin_unlock(&inode->i_lock);
1066 }
1067 EXPORT_SYMBOL(unlock_new_inode);
1068 
1069 void discard_new_inode(struct inode *inode)
1070 {
1071 	lockdep_annotate_inode_mutex_key(inode);
1072 	spin_lock(&inode->i_lock);
1073 	WARN_ON(!(inode->i_state & I_NEW));
1074 	inode->i_state &= ~I_NEW;
1075 	smp_mb();
1076 	wake_up_bit(&inode->i_state, __I_NEW);
1077 	spin_unlock(&inode->i_lock);
1078 	iput(inode);
1079 }
1080 EXPORT_SYMBOL(discard_new_inode);
1081 
1082 /**
1083  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1084  *
1085  * Lock any non-NULL argument that is not a directory.
1086  * Zero, one or two objects may be locked by this function.
1087  *
1088  * @inode1: first inode to lock
1089  * @inode2: second inode to lock
1090  */
1091 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1092 {
1093 	if (inode1 > inode2)
1094 		swap(inode1, inode2);
1095 
1096 	if (inode1 && !S_ISDIR(inode1->i_mode))
1097 		inode_lock(inode1);
1098 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1099 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1100 }
1101 EXPORT_SYMBOL(lock_two_nondirectories);
1102 
1103 /**
1104  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1105  * @inode1: first inode to unlock
1106  * @inode2: second inode to unlock
1107  */
1108 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1109 {
1110 	if (inode1 && !S_ISDIR(inode1->i_mode))
1111 		inode_unlock(inode1);
1112 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1113 		inode_unlock(inode2);
1114 }
1115 EXPORT_SYMBOL(unlock_two_nondirectories);
1116 
1117 /**
1118  * inode_insert5 - obtain an inode from a mounted file system
1119  * @inode:	pre-allocated inode to use for insert to cache
1120  * @hashval:	hash value (usually inode number) to get
1121  * @test:	callback used for comparisons between inodes
1122  * @set:	callback used to initialize a new struct inode
1123  * @data:	opaque data pointer to pass to @test and @set
1124  *
1125  * Search for the inode specified by @hashval and @data in the inode cache,
1126  * and if present it is return it with an increased reference count. This is
1127  * a variant of iget5_locked() for callers that don't want to fail on memory
1128  * allocation of inode.
1129  *
1130  * If the inode is not in cache, insert the pre-allocated inode to cache and
1131  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1132  * to fill it in before unlocking it via unlock_new_inode().
1133  *
1134  * Note both @test and @set are called with the inode_hash_lock held, so can't
1135  * sleep.
1136  */
1137 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1138 			    int (*test)(struct inode *, void *),
1139 			    int (*set)(struct inode *, void *), void *data)
1140 {
1141 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1142 	struct inode *old;
1143 	bool creating = inode->i_state & I_CREATING;
1144 
1145 again:
1146 	spin_lock(&inode_hash_lock);
1147 	old = find_inode(inode->i_sb, head, test, data);
1148 	if (unlikely(old)) {
1149 		/*
1150 		 * Uhhuh, somebody else created the same inode under us.
1151 		 * Use the old inode instead of the preallocated one.
1152 		 */
1153 		spin_unlock(&inode_hash_lock);
1154 		if (IS_ERR(old))
1155 			return NULL;
1156 		wait_on_inode(old);
1157 		if (unlikely(inode_unhashed(old))) {
1158 			iput(old);
1159 			goto again;
1160 		}
1161 		return old;
1162 	}
1163 
1164 	if (set && unlikely(set(inode, data))) {
1165 		inode = NULL;
1166 		goto unlock;
1167 	}
1168 
1169 	/*
1170 	 * Return the locked inode with I_NEW set, the
1171 	 * caller is responsible for filling in the contents
1172 	 */
1173 	spin_lock(&inode->i_lock);
1174 	inode->i_state |= I_NEW;
1175 	hlist_add_head_rcu(&inode->i_hash, head);
1176 	spin_unlock(&inode->i_lock);
1177 	if (!creating)
1178 		inode_sb_list_add(inode);
1179 unlock:
1180 	spin_unlock(&inode_hash_lock);
1181 
1182 	return inode;
1183 }
1184 EXPORT_SYMBOL(inode_insert5);
1185 
1186 /**
1187  * iget5_locked - obtain an inode from a mounted file system
1188  * @sb:		super block of file system
1189  * @hashval:	hash value (usually inode number) to get
1190  * @test:	callback used for comparisons between inodes
1191  * @set:	callback used to initialize a new struct inode
1192  * @data:	opaque data pointer to pass to @test and @set
1193  *
1194  * Search for the inode specified by @hashval and @data in the inode cache,
1195  * and if present it is return it with an increased reference count. This is
1196  * a generalized version of iget_locked() for file systems where the inode
1197  * number is not sufficient for unique identification of an inode.
1198  *
1199  * If the inode is not in cache, allocate a new inode and return it locked,
1200  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1201  * before unlocking it via unlock_new_inode().
1202  *
1203  * Note both @test and @set are called with the inode_hash_lock held, so can't
1204  * sleep.
1205  */
1206 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1207 		int (*test)(struct inode *, void *),
1208 		int (*set)(struct inode *, void *), void *data)
1209 {
1210 	struct inode *inode = ilookup5(sb, hashval, test, data);
1211 
1212 	if (!inode) {
1213 		struct inode *new = alloc_inode(sb);
1214 
1215 		if (new) {
1216 			new->i_state = 0;
1217 			inode = inode_insert5(new, hashval, test, set, data);
1218 			if (unlikely(inode != new))
1219 				destroy_inode(new);
1220 		}
1221 	}
1222 	return inode;
1223 }
1224 EXPORT_SYMBOL(iget5_locked);
1225 
1226 /**
1227  * iget_locked - obtain an inode from a mounted file system
1228  * @sb:		super block of file system
1229  * @ino:	inode number to get
1230  *
1231  * Search for the inode specified by @ino in the inode cache and if present
1232  * return it with an increased reference count. This is for file systems
1233  * where the inode number is sufficient for unique identification of an inode.
1234  *
1235  * If the inode is not in cache, allocate a new inode and return it locked,
1236  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1237  * before unlocking it via unlock_new_inode().
1238  */
1239 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1240 {
1241 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1242 	struct inode *inode;
1243 again:
1244 	spin_lock(&inode_hash_lock);
1245 	inode = find_inode_fast(sb, head, ino);
1246 	spin_unlock(&inode_hash_lock);
1247 	if (inode) {
1248 		if (IS_ERR(inode))
1249 			return NULL;
1250 		wait_on_inode(inode);
1251 		if (unlikely(inode_unhashed(inode))) {
1252 			iput(inode);
1253 			goto again;
1254 		}
1255 		return inode;
1256 	}
1257 
1258 	inode = alloc_inode(sb);
1259 	if (inode) {
1260 		struct inode *old;
1261 
1262 		spin_lock(&inode_hash_lock);
1263 		/* We released the lock, so.. */
1264 		old = find_inode_fast(sb, head, ino);
1265 		if (!old) {
1266 			inode->i_ino = ino;
1267 			spin_lock(&inode->i_lock);
1268 			inode->i_state = I_NEW;
1269 			hlist_add_head_rcu(&inode->i_hash, head);
1270 			spin_unlock(&inode->i_lock);
1271 			inode_sb_list_add(inode);
1272 			spin_unlock(&inode_hash_lock);
1273 
1274 			/* Return the locked inode with I_NEW set, the
1275 			 * caller is responsible for filling in the contents
1276 			 */
1277 			return inode;
1278 		}
1279 
1280 		/*
1281 		 * Uhhuh, somebody else created the same inode under
1282 		 * us. Use the old inode instead of the one we just
1283 		 * allocated.
1284 		 */
1285 		spin_unlock(&inode_hash_lock);
1286 		destroy_inode(inode);
1287 		if (IS_ERR(old))
1288 			return NULL;
1289 		inode = old;
1290 		wait_on_inode(inode);
1291 		if (unlikely(inode_unhashed(inode))) {
1292 			iput(inode);
1293 			goto again;
1294 		}
1295 	}
1296 	return inode;
1297 }
1298 EXPORT_SYMBOL(iget_locked);
1299 
1300 /*
1301  * search the inode cache for a matching inode number.
1302  * If we find one, then the inode number we are trying to
1303  * allocate is not unique and so we should not use it.
1304  *
1305  * Returns 1 if the inode number is unique, 0 if it is not.
1306  */
1307 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1308 {
1309 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1310 	struct inode *inode;
1311 
1312 	hlist_for_each_entry_rcu(inode, b, i_hash) {
1313 		if (inode->i_ino == ino && inode->i_sb == sb)
1314 			return 0;
1315 	}
1316 	return 1;
1317 }
1318 
1319 /**
1320  *	iunique - get a unique inode number
1321  *	@sb: superblock
1322  *	@max_reserved: highest reserved inode number
1323  *
1324  *	Obtain an inode number that is unique on the system for a given
1325  *	superblock. This is used by file systems that have no natural
1326  *	permanent inode numbering system. An inode number is returned that
1327  *	is higher than the reserved limit but unique.
1328  *
1329  *	BUGS:
1330  *	With a large number of inodes live on the file system this function
1331  *	currently becomes quite slow.
1332  */
1333 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1334 {
1335 	/*
1336 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1337 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1338 	 * here to attempt to avoid that.
1339 	 */
1340 	static DEFINE_SPINLOCK(iunique_lock);
1341 	static unsigned int counter;
1342 	ino_t res;
1343 
1344 	rcu_read_lock();
1345 	spin_lock(&iunique_lock);
1346 	do {
1347 		if (counter <= max_reserved)
1348 			counter = max_reserved + 1;
1349 		res = counter++;
1350 	} while (!test_inode_iunique(sb, res));
1351 	spin_unlock(&iunique_lock);
1352 	rcu_read_unlock();
1353 
1354 	return res;
1355 }
1356 EXPORT_SYMBOL(iunique);
1357 
1358 struct inode *igrab(struct inode *inode)
1359 {
1360 	spin_lock(&inode->i_lock);
1361 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1362 		__iget(inode);
1363 		spin_unlock(&inode->i_lock);
1364 	} else {
1365 		spin_unlock(&inode->i_lock);
1366 		/*
1367 		 * Handle the case where s_op->clear_inode is not been
1368 		 * called yet, and somebody is calling igrab
1369 		 * while the inode is getting freed.
1370 		 */
1371 		inode = NULL;
1372 	}
1373 	return inode;
1374 }
1375 EXPORT_SYMBOL(igrab);
1376 
1377 /**
1378  * ilookup5_nowait - search for an inode in the inode cache
1379  * @sb:		super block of file system to search
1380  * @hashval:	hash value (usually inode number) to search for
1381  * @test:	callback used for comparisons between inodes
1382  * @data:	opaque data pointer to pass to @test
1383  *
1384  * Search for the inode specified by @hashval and @data in the inode cache.
1385  * If the inode is in the cache, the inode is returned with an incremented
1386  * reference count.
1387  *
1388  * Note: I_NEW is not waited upon so you have to be very careful what you do
1389  * with the returned inode.  You probably should be using ilookup5() instead.
1390  *
1391  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1392  */
1393 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1394 		int (*test)(struct inode *, void *), void *data)
1395 {
1396 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1397 	struct inode *inode;
1398 
1399 	spin_lock(&inode_hash_lock);
1400 	inode = find_inode(sb, head, test, data);
1401 	spin_unlock(&inode_hash_lock);
1402 
1403 	return IS_ERR(inode) ? NULL : inode;
1404 }
1405 EXPORT_SYMBOL(ilookup5_nowait);
1406 
1407 /**
1408  * ilookup5 - search for an inode in the inode cache
1409  * @sb:		super block of file system to search
1410  * @hashval:	hash value (usually inode number) to search for
1411  * @test:	callback used for comparisons between inodes
1412  * @data:	opaque data pointer to pass to @test
1413  *
1414  * Search for the inode specified by @hashval and @data in the inode cache,
1415  * and if the inode is in the cache, return the inode with an incremented
1416  * reference count.  Waits on I_NEW before returning the inode.
1417  * returned with an incremented reference count.
1418  *
1419  * This is a generalized version of ilookup() for file systems where the
1420  * inode number is not sufficient for unique identification of an inode.
1421  *
1422  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1423  */
1424 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1425 		int (*test)(struct inode *, void *), void *data)
1426 {
1427 	struct inode *inode;
1428 again:
1429 	inode = ilookup5_nowait(sb, hashval, test, data);
1430 	if (inode) {
1431 		wait_on_inode(inode);
1432 		if (unlikely(inode_unhashed(inode))) {
1433 			iput(inode);
1434 			goto again;
1435 		}
1436 	}
1437 	return inode;
1438 }
1439 EXPORT_SYMBOL(ilookup5);
1440 
1441 /**
1442  * ilookup - search for an inode in the inode cache
1443  * @sb:		super block of file system to search
1444  * @ino:	inode number to search for
1445  *
1446  * Search for the inode @ino in the inode cache, and if the inode is in the
1447  * cache, the inode is returned with an incremented reference count.
1448  */
1449 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1450 {
1451 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1452 	struct inode *inode;
1453 again:
1454 	spin_lock(&inode_hash_lock);
1455 	inode = find_inode_fast(sb, head, ino);
1456 	spin_unlock(&inode_hash_lock);
1457 
1458 	if (inode) {
1459 		if (IS_ERR(inode))
1460 			return NULL;
1461 		wait_on_inode(inode);
1462 		if (unlikely(inode_unhashed(inode))) {
1463 			iput(inode);
1464 			goto again;
1465 		}
1466 	}
1467 	return inode;
1468 }
1469 EXPORT_SYMBOL(ilookup);
1470 
1471 /**
1472  * find_inode_nowait - find an inode in the inode cache
1473  * @sb:		super block of file system to search
1474  * @hashval:	hash value (usually inode number) to search for
1475  * @match:	callback used for comparisons between inodes
1476  * @data:	opaque data pointer to pass to @match
1477  *
1478  * Search for the inode specified by @hashval and @data in the inode
1479  * cache, where the helper function @match will return 0 if the inode
1480  * does not match, 1 if the inode does match, and -1 if the search
1481  * should be stopped.  The @match function must be responsible for
1482  * taking the i_lock spin_lock and checking i_state for an inode being
1483  * freed or being initialized, and incrementing the reference count
1484  * before returning 1.  It also must not sleep, since it is called with
1485  * the inode_hash_lock spinlock held.
1486  *
1487  * This is a even more generalized version of ilookup5() when the
1488  * function must never block --- find_inode() can block in
1489  * __wait_on_freeing_inode() --- or when the caller can not increment
1490  * the reference count because the resulting iput() might cause an
1491  * inode eviction.  The tradeoff is that the @match funtion must be
1492  * very carefully implemented.
1493  */
1494 struct inode *find_inode_nowait(struct super_block *sb,
1495 				unsigned long hashval,
1496 				int (*match)(struct inode *, unsigned long,
1497 					     void *),
1498 				void *data)
1499 {
1500 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1501 	struct inode *inode, *ret_inode = NULL;
1502 	int mval;
1503 
1504 	spin_lock(&inode_hash_lock);
1505 	hlist_for_each_entry(inode, head, i_hash) {
1506 		if (inode->i_sb != sb)
1507 			continue;
1508 		mval = match(inode, hashval, data);
1509 		if (mval == 0)
1510 			continue;
1511 		if (mval == 1)
1512 			ret_inode = inode;
1513 		goto out;
1514 	}
1515 out:
1516 	spin_unlock(&inode_hash_lock);
1517 	return ret_inode;
1518 }
1519 EXPORT_SYMBOL(find_inode_nowait);
1520 
1521 /**
1522  * find_inode_rcu - find an inode in the inode cache
1523  * @sb:		Super block of file system to search
1524  * @hashval:	Key to hash
1525  * @test:	Function to test match on an inode
1526  * @data:	Data for test function
1527  *
1528  * Search for the inode specified by @hashval and @data in the inode cache,
1529  * where the helper function @test will return 0 if the inode does not match
1530  * and 1 if it does.  The @test function must be responsible for taking the
1531  * i_lock spin_lock and checking i_state for an inode being freed or being
1532  * initialized.
1533  *
1534  * If successful, this will return the inode for which the @test function
1535  * returned 1 and NULL otherwise.
1536  *
1537  * The @test function is not permitted to take a ref on any inode presented.
1538  * It is also not permitted to sleep.
1539  *
1540  * The caller must hold the RCU read lock.
1541  */
1542 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1543 			     int (*test)(struct inode *, void *), void *data)
1544 {
1545 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1546 	struct inode *inode;
1547 
1548 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1549 			 "suspicious find_inode_rcu() usage");
1550 
1551 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1552 		if (inode->i_sb == sb &&
1553 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1554 		    test(inode, data))
1555 			return inode;
1556 	}
1557 	return NULL;
1558 }
1559 EXPORT_SYMBOL(find_inode_rcu);
1560 
1561 /**
1562  * find_inode_by_ino_rcu - Find an inode in the inode cache
1563  * @sb:		Super block of file system to search
1564  * @ino:	The inode number to match
1565  *
1566  * Search for the inode specified by @hashval and @data in the inode cache,
1567  * where the helper function @test will return 0 if the inode does not match
1568  * and 1 if it does.  The @test function must be responsible for taking the
1569  * i_lock spin_lock and checking i_state for an inode being freed or being
1570  * initialized.
1571  *
1572  * If successful, this will return the inode for which the @test function
1573  * returned 1 and NULL otherwise.
1574  *
1575  * The @test function is not permitted to take a ref on any inode presented.
1576  * It is also not permitted to sleep.
1577  *
1578  * The caller must hold the RCU read lock.
1579  */
1580 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1581 				    unsigned long ino)
1582 {
1583 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1584 	struct inode *inode;
1585 
1586 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1587 			 "suspicious find_inode_by_ino_rcu() usage");
1588 
1589 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1590 		if (inode->i_ino == ino &&
1591 		    inode->i_sb == sb &&
1592 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1593 		    return inode;
1594 	}
1595 	return NULL;
1596 }
1597 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1598 
1599 int insert_inode_locked(struct inode *inode)
1600 {
1601 	struct super_block *sb = inode->i_sb;
1602 	ino_t ino = inode->i_ino;
1603 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1604 
1605 	while (1) {
1606 		struct inode *old = NULL;
1607 		spin_lock(&inode_hash_lock);
1608 		hlist_for_each_entry(old, head, i_hash) {
1609 			if (old->i_ino != ino)
1610 				continue;
1611 			if (old->i_sb != sb)
1612 				continue;
1613 			spin_lock(&old->i_lock);
1614 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1615 				spin_unlock(&old->i_lock);
1616 				continue;
1617 			}
1618 			break;
1619 		}
1620 		if (likely(!old)) {
1621 			spin_lock(&inode->i_lock);
1622 			inode->i_state |= I_NEW | I_CREATING;
1623 			hlist_add_head_rcu(&inode->i_hash, head);
1624 			spin_unlock(&inode->i_lock);
1625 			spin_unlock(&inode_hash_lock);
1626 			return 0;
1627 		}
1628 		if (unlikely(old->i_state & I_CREATING)) {
1629 			spin_unlock(&old->i_lock);
1630 			spin_unlock(&inode_hash_lock);
1631 			return -EBUSY;
1632 		}
1633 		__iget(old);
1634 		spin_unlock(&old->i_lock);
1635 		spin_unlock(&inode_hash_lock);
1636 		wait_on_inode(old);
1637 		if (unlikely(!inode_unhashed(old))) {
1638 			iput(old);
1639 			return -EBUSY;
1640 		}
1641 		iput(old);
1642 	}
1643 }
1644 EXPORT_SYMBOL(insert_inode_locked);
1645 
1646 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1647 		int (*test)(struct inode *, void *), void *data)
1648 {
1649 	struct inode *old;
1650 
1651 	inode->i_state |= I_CREATING;
1652 	old = inode_insert5(inode, hashval, test, NULL, data);
1653 
1654 	if (old != inode) {
1655 		iput(old);
1656 		return -EBUSY;
1657 	}
1658 	return 0;
1659 }
1660 EXPORT_SYMBOL(insert_inode_locked4);
1661 
1662 
1663 int generic_delete_inode(struct inode *inode)
1664 {
1665 	return 1;
1666 }
1667 EXPORT_SYMBOL(generic_delete_inode);
1668 
1669 /*
1670  * Called when we're dropping the last reference
1671  * to an inode.
1672  *
1673  * Call the FS "drop_inode()" function, defaulting to
1674  * the legacy UNIX filesystem behaviour.  If it tells
1675  * us to evict inode, do so.  Otherwise, retain inode
1676  * in cache if fs is alive, sync and evict if fs is
1677  * shutting down.
1678  */
1679 static void iput_final(struct inode *inode)
1680 {
1681 	struct super_block *sb = inode->i_sb;
1682 	const struct super_operations *op = inode->i_sb->s_op;
1683 	unsigned long state;
1684 	int drop;
1685 
1686 	WARN_ON(inode->i_state & I_NEW);
1687 
1688 	if (op->drop_inode)
1689 		drop = op->drop_inode(inode);
1690 	else
1691 		drop = generic_drop_inode(inode);
1692 
1693 	if (!drop &&
1694 	    !(inode->i_state & I_DONTCACHE) &&
1695 	    (sb->s_flags & SB_ACTIVE)) {
1696 		__inode_add_lru(inode, true);
1697 		spin_unlock(&inode->i_lock);
1698 		return;
1699 	}
1700 
1701 	state = inode->i_state;
1702 	if (!drop) {
1703 		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1704 		spin_unlock(&inode->i_lock);
1705 
1706 		write_inode_now(inode, 1);
1707 
1708 		spin_lock(&inode->i_lock);
1709 		state = inode->i_state;
1710 		WARN_ON(state & I_NEW);
1711 		state &= ~I_WILL_FREE;
1712 	}
1713 
1714 	WRITE_ONCE(inode->i_state, state | I_FREEING);
1715 	if (!list_empty(&inode->i_lru))
1716 		inode_lru_list_del(inode);
1717 	spin_unlock(&inode->i_lock);
1718 
1719 	evict(inode);
1720 }
1721 
1722 /**
1723  *	iput	- put an inode
1724  *	@inode: inode to put
1725  *
1726  *	Puts an inode, dropping its usage count. If the inode use count hits
1727  *	zero, the inode is then freed and may also be destroyed.
1728  *
1729  *	Consequently, iput() can sleep.
1730  */
1731 void iput(struct inode *inode)
1732 {
1733 	if (!inode)
1734 		return;
1735 	BUG_ON(inode->i_state & I_CLEAR);
1736 retry:
1737 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1738 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1739 			atomic_inc(&inode->i_count);
1740 			spin_unlock(&inode->i_lock);
1741 			trace_writeback_lazytime_iput(inode);
1742 			mark_inode_dirty_sync(inode);
1743 			goto retry;
1744 		}
1745 		iput_final(inode);
1746 	}
1747 }
1748 EXPORT_SYMBOL(iput);
1749 
1750 #ifdef CONFIG_BLOCK
1751 /**
1752  *	bmap	- find a block number in a file
1753  *	@inode:  inode owning the block number being requested
1754  *	@block: pointer containing the block to find
1755  *
1756  *	Replaces the value in ``*block`` with the block number on the device holding
1757  *	corresponding to the requested block number in the file.
1758  *	That is, asked for block 4 of inode 1 the function will replace the
1759  *	4 in ``*block``, with disk block relative to the disk start that holds that
1760  *	block of the file.
1761  *
1762  *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1763  *	hole, returns 0 and ``*block`` is also set to 0.
1764  */
1765 int bmap(struct inode *inode, sector_t *block)
1766 {
1767 	if (!inode->i_mapping->a_ops->bmap)
1768 		return -EINVAL;
1769 
1770 	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1771 	return 0;
1772 }
1773 EXPORT_SYMBOL(bmap);
1774 #endif
1775 
1776 /*
1777  * With relative atime, only update atime if the previous atime is
1778  * earlier than either the ctime or mtime or if at least a day has
1779  * passed since the last atime update.
1780  */
1781 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1782 			     struct timespec64 now)
1783 {
1784 
1785 	if (!(mnt->mnt_flags & MNT_RELATIME))
1786 		return 1;
1787 	/*
1788 	 * Is mtime younger than atime? If yes, update atime:
1789 	 */
1790 	if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1791 		return 1;
1792 	/*
1793 	 * Is ctime younger than atime? If yes, update atime:
1794 	 */
1795 	if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1796 		return 1;
1797 
1798 	/*
1799 	 * Is the previous atime value older than a day? If yes,
1800 	 * update atime:
1801 	 */
1802 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1803 		return 1;
1804 	/*
1805 	 * Good, we can skip the atime update:
1806 	 */
1807 	return 0;
1808 }
1809 
1810 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1811 {
1812 	int dirty_flags = 0;
1813 
1814 	if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
1815 		if (flags & S_ATIME)
1816 			inode->i_atime = *time;
1817 		if (flags & S_CTIME)
1818 			inode->i_ctime = *time;
1819 		if (flags & S_MTIME)
1820 			inode->i_mtime = *time;
1821 
1822 		if (inode->i_sb->s_flags & SB_LAZYTIME)
1823 			dirty_flags |= I_DIRTY_TIME;
1824 		else
1825 			dirty_flags |= I_DIRTY_SYNC;
1826 	}
1827 
1828 	if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
1829 		dirty_flags |= I_DIRTY_SYNC;
1830 
1831 	__mark_inode_dirty(inode, dirty_flags);
1832 	return 0;
1833 }
1834 EXPORT_SYMBOL(generic_update_time);
1835 
1836 /*
1837  * This does the actual work of updating an inodes time or version.  Must have
1838  * had called mnt_want_write() before calling this.
1839  */
1840 int inode_update_time(struct inode *inode, struct timespec64 *time, int flags)
1841 {
1842 	if (inode->i_op->update_time)
1843 		return inode->i_op->update_time(inode, time, flags);
1844 	return generic_update_time(inode, time, flags);
1845 }
1846 EXPORT_SYMBOL(inode_update_time);
1847 
1848 /**
1849  *	atime_needs_update	-	update the access time
1850  *	@path: the &struct path to update
1851  *	@inode: inode to update
1852  *
1853  *	Update the accessed time on an inode and mark it for writeback.
1854  *	This function automatically handles read only file systems and media,
1855  *	as well as the "noatime" flag and inode specific "noatime" markers.
1856  */
1857 bool atime_needs_update(const struct path *path, struct inode *inode)
1858 {
1859 	struct vfsmount *mnt = path->mnt;
1860 	struct timespec64 now;
1861 
1862 	if (inode->i_flags & S_NOATIME)
1863 		return false;
1864 
1865 	/* Atime updates will likely cause i_uid and i_gid to be written
1866 	 * back improprely if their true value is unknown to the vfs.
1867 	 */
1868 	if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode))
1869 		return false;
1870 
1871 	if (IS_NOATIME(inode))
1872 		return false;
1873 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1874 		return false;
1875 
1876 	if (mnt->mnt_flags & MNT_NOATIME)
1877 		return false;
1878 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1879 		return false;
1880 
1881 	now = current_time(inode);
1882 
1883 	if (!relatime_need_update(mnt, inode, now))
1884 		return false;
1885 
1886 	if (timespec64_equal(&inode->i_atime, &now))
1887 		return false;
1888 
1889 	return true;
1890 }
1891 
1892 void touch_atime(const struct path *path)
1893 {
1894 	struct vfsmount *mnt = path->mnt;
1895 	struct inode *inode = d_inode(path->dentry);
1896 	struct timespec64 now;
1897 
1898 	if (!atime_needs_update(path, inode))
1899 		return;
1900 
1901 	if (!sb_start_write_trylock(inode->i_sb))
1902 		return;
1903 
1904 	if (__mnt_want_write(mnt) != 0)
1905 		goto skip_update;
1906 	/*
1907 	 * File systems can error out when updating inodes if they need to
1908 	 * allocate new space to modify an inode (such is the case for
1909 	 * Btrfs), but since we touch atime while walking down the path we
1910 	 * really don't care if we failed to update the atime of the file,
1911 	 * so just ignore the return value.
1912 	 * We may also fail on filesystems that have the ability to make parts
1913 	 * of the fs read only, e.g. subvolumes in Btrfs.
1914 	 */
1915 	now = current_time(inode);
1916 	inode_update_time(inode, &now, S_ATIME);
1917 	__mnt_drop_write(mnt);
1918 skip_update:
1919 	sb_end_write(inode->i_sb);
1920 }
1921 EXPORT_SYMBOL(touch_atime);
1922 
1923 /*
1924  * The logic we want is
1925  *
1926  *	if suid or (sgid and xgrp)
1927  *		remove privs
1928  */
1929 int should_remove_suid(struct dentry *dentry)
1930 {
1931 	umode_t mode = d_inode(dentry)->i_mode;
1932 	int kill = 0;
1933 
1934 	/* suid always must be killed */
1935 	if (unlikely(mode & S_ISUID))
1936 		kill = ATTR_KILL_SUID;
1937 
1938 	/*
1939 	 * sgid without any exec bits is just a mandatory locking mark; leave
1940 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1941 	 */
1942 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1943 		kill |= ATTR_KILL_SGID;
1944 
1945 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1946 		return kill;
1947 
1948 	return 0;
1949 }
1950 EXPORT_SYMBOL(should_remove_suid);
1951 
1952 /*
1953  * Return mask of changes for notify_change() that need to be done as a
1954  * response to write or truncate. Return 0 if nothing has to be changed.
1955  * Negative value on error (change should be denied).
1956  */
1957 int dentry_needs_remove_privs(struct dentry *dentry)
1958 {
1959 	struct inode *inode = d_inode(dentry);
1960 	int mask = 0;
1961 	int ret;
1962 
1963 	if (IS_NOSEC(inode))
1964 		return 0;
1965 
1966 	mask = should_remove_suid(dentry);
1967 	ret = security_inode_need_killpriv(dentry);
1968 	if (ret < 0)
1969 		return ret;
1970 	if (ret)
1971 		mask |= ATTR_KILL_PRIV;
1972 	return mask;
1973 }
1974 
1975 static int __remove_privs(struct user_namespace *mnt_userns,
1976 			  struct dentry *dentry, int kill)
1977 {
1978 	struct iattr newattrs;
1979 
1980 	newattrs.ia_valid = ATTR_FORCE | kill;
1981 	/*
1982 	 * Note we call this on write, so notify_change will not
1983 	 * encounter any conflicting delegations:
1984 	 */
1985 	return notify_change(mnt_userns, dentry, &newattrs, NULL);
1986 }
1987 
1988 /*
1989  * Remove special file priviledges (suid, capabilities) when file is written
1990  * to or truncated.
1991  */
1992 int file_remove_privs(struct file *file)
1993 {
1994 	struct dentry *dentry = file_dentry(file);
1995 	struct inode *inode = file_inode(file);
1996 	int kill;
1997 	int error = 0;
1998 
1999 	/*
2000 	 * Fast path for nothing security related.
2001 	 * As well for non-regular files, e.g. blkdev inodes.
2002 	 * For example, blkdev_write_iter() might get here
2003 	 * trying to remove privs which it is not allowed to.
2004 	 */
2005 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2006 		return 0;
2007 
2008 	kill = dentry_needs_remove_privs(dentry);
2009 	if (kill < 0)
2010 		return kill;
2011 	if (kill)
2012 		error = __remove_privs(file_mnt_user_ns(file), dentry, kill);
2013 	if (!error)
2014 		inode_has_no_xattr(inode);
2015 
2016 	return error;
2017 }
2018 EXPORT_SYMBOL(file_remove_privs);
2019 
2020 /**
2021  *	file_update_time	-	update mtime and ctime time
2022  *	@file: file accessed
2023  *
2024  *	Update the mtime and ctime members of an inode and mark the inode
2025  *	for writeback.  Note that this function is meant exclusively for
2026  *	usage in the file write path of filesystems, and filesystems may
2027  *	choose to explicitly ignore update via this function with the
2028  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
2029  *	timestamps are handled by the server.  This can return an error for
2030  *	file systems who need to allocate space in order to update an inode.
2031  */
2032 
2033 int file_update_time(struct file *file)
2034 {
2035 	struct inode *inode = file_inode(file);
2036 	struct timespec64 now;
2037 	int sync_it = 0;
2038 	int ret;
2039 
2040 	/* First try to exhaust all avenues to not sync */
2041 	if (IS_NOCMTIME(inode))
2042 		return 0;
2043 
2044 	now = current_time(inode);
2045 	if (!timespec64_equal(&inode->i_mtime, &now))
2046 		sync_it = S_MTIME;
2047 
2048 	if (!timespec64_equal(&inode->i_ctime, &now))
2049 		sync_it |= S_CTIME;
2050 
2051 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2052 		sync_it |= S_VERSION;
2053 
2054 	if (!sync_it)
2055 		return 0;
2056 
2057 	/* Finally allowed to write? Takes lock. */
2058 	if (__mnt_want_write_file(file))
2059 		return 0;
2060 
2061 	ret = inode_update_time(inode, &now, sync_it);
2062 	__mnt_drop_write_file(file);
2063 
2064 	return ret;
2065 }
2066 EXPORT_SYMBOL(file_update_time);
2067 
2068 /* Caller must hold the file's inode lock */
2069 int file_modified(struct file *file)
2070 {
2071 	int err;
2072 
2073 	/*
2074 	 * Clear the security bits if the process is not being run by root.
2075 	 * This keeps people from modifying setuid and setgid binaries.
2076 	 */
2077 	err = file_remove_privs(file);
2078 	if (err)
2079 		return err;
2080 
2081 	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2082 		return 0;
2083 
2084 	return file_update_time(file);
2085 }
2086 EXPORT_SYMBOL(file_modified);
2087 
2088 int inode_needs_sync(struct inode *inode)
2089 {
2090 	if (IS_SYNC(inode))
2091 		return 1;
2092 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2093 		return 1;
2094 	return 0;
2095 }
2096 EXPORT_SYMBOL(inode_needs_sync);
2097 
2098 /*
2099  * If we try to find an inode in the inode hash while it is being
2100  * deleted, we have to wait until the filesystem completes its
2101  * deletion before reporting that it isn't found.  This function waits
2102  * until the deletion _might_ have completed.  Callers are responsible
2103  * to recheck inode state.
2104  *
2105  * It doesn't matter if I_NEW is not set initially, a call to
2106  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2107  * will DTRT.
2108  */
2109 static void __wait_on_freeing_inode(struct inode *inode)
2110 {
2111 	wait_queue_head_t *wq;
2112 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2113 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
2114 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2115 	spin_unlock(&inode->i_lock);
2116 	spin_unlock(&inode_hash_lock);
2117 	schedule();
2118 	finish_wait(wq, &wait.wq_entry);
2119 	spin_lock(&inode_hash_lock);
2120 }
2121 
2122 static __initdata unsigned long ihash_entries;
2123 static int __init set_ihash_entries(char *str)
2124 {
2125 	if (!str)
2126 		return 0;
2127 	ihash_entries = simple_strtoul(str, &str, 0);
2128 	return 1;
2129 }
2130 __setup("ihash_entries=", set_ihash_entries);
2131 
2132 /*
2133  * Initialize the waitqueues and inode hash table.
2134  */
2135 void __init inode_init_early(void)
2136 {
2137 	/* If hashes are distributed across NUMA nodes, defer
2138 	 * hash allocation until vmalloc space is available.
2139 	 */
2140 	if (hashdist)
2141 		return;
2142 
2143 	inode_hashtable =
2144 		alloc_large_system_hash("Inode-cache",
2145 					sizeof(struct hlist_head),
2146 					ihash_entries,
2147 					14,
2148 					HASH_EARLY | HASH_ZERO,
2149 					&i_hash_shift,
2150 					&i_hash_mask,
2151 					0,
2152 					0);
2153 }
2154 
2155 void __init inode_init(void)
2156 {
2157 	/* inode slab cache */
2158 	inode_cachep = kmem_cache_create("inode_cache",
2159 					 sizeof(struct inode),
2160 					 0,
2161 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2162 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2163 					 init_once);
2164 
2165 	/* Hash may have been set up in inode_init_early */
2166 	if (!hashdist)
2167 		return;
2168 
2169 	inode_hashtable =
2170 		alloc_large_system_hash("Inode-cache",
2171 					sizeof(struct hlist_head),
2172 					ihash_entries,
2173 					14,
2174 					HASH_ZERO,
2175 					&i_hash_shift,
2176 					&i_hash_mask,
2177 					0,
2178 					0);
2179 }
2180 
2181 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2182 {
2183 	inode->i_mode = mode;
2184 	if (S_ISCHR(mode)) {
2185 		inode->i_fop = &def_chr_fops;
2186 		inode->i_rdev = rdev;
2187 	} else if (S_ISBLK(mode)) {
2188 		inode->i_fop = &def_blk_fops;
2189 		inode->i_rdev = rdev;
2190 	} else if (S_ISFIFO(mode))
2191 		inode->i_fop = &pipefifo_fops;
2192 	else if (S_ISSOCK(mode))
2193 		;	/* leave it no_open_fops */
2194 	else
2195 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2196 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2197 				  inode->i_ino);
2198 }
2199 EXPORT_SYMBOL(init_special_inode);
2200 
2201 /**
2202  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2203  * @mnt_userns:	User namespace of the mount the inode was created from
2204  * @inode: New inode
2205  * @dir: Directory inode
2206  * @mode: mode of the new inode
2207  *
2208  * If the inode has been created through an idmapped mount the user namespace of
2209  * the vfsmount must be passed through @mnt_userns. This function will then take
2210  * care to map the inode according to @mnt_userns before checking permissions
2211  * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2212  * checking is to be performed on the raw inode simply passs init_user_ns.
2213  */
2214 void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode,
2215 		      const struct inode *dir, umode_t mode)
2216 {
2217 	inode_fsuid_set(inode, mnt_userns);
2218 	if (dir && dir->i_mode & S_ISGID) {
2219 		inode->i_gid = dir->i_gid;
2220 
2221 		/* Directories are special, and always inherit S_ISGID */
2222 		if (S_ISDIR(mode))
2223 			mode |= S_ISGID;
2224 		else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2225 			 !in_group_p(i_gid_into_mnt(mnt_userns, dir)) &&
2226 			 !capable_wrt_inode_uidgid(mnt_userns, dir, CAP_FSETID))
2227 			mode &= ~S_ISGID;
2228 	} else
2229 		inode_fsgid_set(inode, mnt_userns);
2230 	inode->i_mode = mode;
2231 }
2232 EXPORT_SYMBOL(inode_init_owner);
2233 
2234 /**
2235  * inode_owner_or_capable - check current task permissions to inode
2236  * @mnt_userns:	user namespace of the mount the inode was found from
2237  * @inode: inode being checked
2238  *
2239  * Return true if current either has CAP_FOWNER in a namespace with the
2240  * inode owner uid mapped, or owns the file.
2241  *
2242  * If the inode has been found through an idmapped mount the user namespace of
2243  * the vfsmount must be passed through @mnt_userns. This function will then take
2244  * care to map the inode according to @mnt_userns before checking permissions.
2245  * On non-idmapped mounts or if permission checking is to be performed on the
2246  * raw inode simply passs init_user_ns.
2247  */
2248 bool inode_owner_or_capable(struct user_namespace *mnt_userns,
2249 			    const struct inode *inode)
2250 {
2251 	kuid_t i_uid;
2252 	struct user_namespace *ns;
2253 
2254 	i_uid = i_uid_into_mnt(mnt_userns, inode);
2255 	if (uid_eq(current_fsuid(), i_uid))
2256 		return true;
2257 
2258 	ns = current_user_ns();
2259 	if (kuid_has_mapping(ns, i_uid) && ns_capable(ns, CAP_FOWNER))
2260 		return true;
2261 	return false;
2262 }
2263 EXPORT_SYMBOL(inode_owner_or_capable);
2264 
2265 /*
2266  * Direct i/o helper functions
2267  */
2268 static void __inode_dio_wait(struct inode *inode)
2269 {
2270 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2271 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2272 
2273 	do {
2274 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2275 		if (atomic_read(&inode->i_dio_count))
2276 			schedule();
2277 	} while (atomic_read(&inode->i_dio_count));
2278 	finish_wait(wq, &q.wq_entry);
2279 }
2280 
2281 /**
2282  * inode_dio_wait - wait for outstanding DIO requests to finish
2283  * @inode: inode to wait for
2284  *
2285  * Waits for all pending direct I/O requests to finish so that we can
2286  * proceed with a truncate or equivalent operation.
2287  *
2288  * Must be called under a lock that serializes taking new references
2289  * to i_dio_count, usually by inode->i_mutex.
2290  */
2291 void inode_dio_wait(struct inode *inode)
2292 {
2293 	if (atomic_read(&inode->i_dio_count))
2294 		__inode_dio_wait(inode);
2295 }
2296 EXPORT_SYMBOL(inode_dio_wait);
2297 
2298 /*
2299  * inode_set_flags - atomically set some inode flags
2300  *
2301  * Note: the caller should be holding i_mutex, or else be sure that
2302  * they have exclusive access to the inode structure (i.e., while the
2303  * inode is being instantiated).  The reason for the cmpxchg() loop
2304  * --- which wouldn't be necessary if all code paths which modify
2305  * i_flags actually followed this rule, is that there is at least one
2306  * code path which doesn't today so we use cmpxchg() out of an abundance
2307  * of caution.
2308  *
2309  * In the long run, i_mutex is overkill, and we should probably look
2310  * at using the i_lock spinlock to protect i_flags, and then make sure
2311  * it is so documented in include/linux/fs.h and that all code follows
2312  * the locking convention!!
2313  */
2314 void inode_set_flags(struct inode *inode, unsigned int flags,
2315 		     unsigned int mask)
2316 {
2317 	WARN_ON_ONCE(flags & ~mask);
2318 	set_mask_bits(&inode->i_flags, mask, flags);
2319 }
2320 EXPORT_SYMBOL(inode_set_flags);
2321 
2322 void inode_nohighmem(struct inode *inode)
2323 {
2324 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2325 }
2326 EXPORT_SYMBOL(inode_nohighmem);
2327 
2328 /**
2329  * timestamp_truncate - Truncate timespec to a granularity
2330  * @t: Timespec
2331  * @inode: inode being updated
2332  *
2333  * Truncate a timespec to the granularity supported by the fs
2334  * containing the inode. Always rounds down. gran must
2335  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2336  */
2337 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2338 {
2339 	struct super_block *sb = inode->i_sb;
2340 	unsigned int gran = sb->s_time_gran;
2341 
2342 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2343 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2344 		t.tv_nsec = 0;
2345 
2346 	/* Avoid division in the common cases 1 ns and 1 s. */
2347 	if (gran == 1)
2348 		; /* nothing */
2349 	else if (gran == NSEC_PER_SEC)
2350 		t.tv_nsec = 0;
2351 	else if (gran > 1 && gran < NSEC_PER_SEC)
2352 		t.tv_nsec -= t.tv_nsec % gran;
2353 	else
2354 		WARN(1, "invalid file time granularity: %u", gran);
2355 	return t;
2356 }
2357 EXPORT_SYMBOL(timestamp_truncate);
2358 
2359 /**
2360  * current_time - Return FS time
2361  * @inode: inode.
2362  *
2363  * Return the current time truncated to the time granularity supported by
2364  * the fs.
2365  *
2366  * Note that inode and inode->sb cannot be NULL.
2367  * Otherwise, the function warns and returns time without truncation.
2368  */
2369 struct timespec64 current_time(struct inode *inode)
2370 {
2371 	struct timespec64 now;
2372 
2373 	ktime_get_coarse_real_ts64(&now);
2374 
2375 	if (unlikely(!inode->i_sb)) {
2376 		WARN(1, "current_time() called with uninitialized super_block in the inode");
2377 		return now;
2378 	}
2379 
2380 	return timestamp_truncate(now, inode);
2381 }
2382 EXPORT_SYMBOL(current_time);
2383