1 /* 2 * (C) 1997 Linus Torvalds 3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 4 */ 5 #include <linux/export.h> 6 #include <linux/fs.h> 7 #include <linux/mm.h> 8 #include <linux/backing-dev.h> 9 #include <linux/hash.h> 10 #include <linux/swap.h> 11 #include <linux/security.h> 12 #include <linux/cdev.h> 13 #include <linux/bootmem.h> 14 #include <linux/fsnotify.h> 15 #include <linux/mount.h> 16 #include <linux/posix_acl.h> 17 #include <linux/prefetch.h> 18 #include <linux/buffer_head.h> /* for inode_has_buffers */ 19 #include <linux/ratelimit.h> 20 #include <linux/list_lru.h> 21 #include <trace/events/writeback.h> 22 #include "internal.h" 23 24 /* 25 * Inode locking rules: 26 * 27 * inode->i_lock protects: 28 * inode->i_state, inode->i_hash, __iget() 29 * Inode LRU list locks protect: 30 * inode->i_sb->s_inode_lru, inode->i_lru 31 * inode->i_sb->s_inode_list_lock protects: 32 * inode->i_sb->s_inodes, inode->i_sb_list 33 * bdi->wb.list_lock protects: 34 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 35 * inode_hash_lock protects: 36 * inode_hashtable, inode->i_hash 37 * 38 * Lock ordering: 39 * 40 * inode->i_sb->s_inode_list_lock 41 * inode->i_lock 42 * Inode LRU list locks 43 * 44 * bdi->wb.list_lock 45 * inode->i_lock 46 * 47 * inode_hash_lock 48 * inode->i_sb->s_inode_list_lock 49 * inode->i_lock 50 * 51 * iunique_lock 52 * inode_hash_lock 53 */ 54 55 static unsigned int i_hash_mask __read_mostly; 56 static unsigned int i_hash_shift __read_mostly; 57 static struct hlist_head *inode_hashtable __read_mostly; 58 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 59 60 /* 61 * Empty aops. Can be used for the cases where the user does not 62 * define any of the address_space operations. 63 */ 64 const struct address_space_operations empty_aops = { 65 }; 66 EXPORT_SYMBOL(empty_aops); 67 68 /* 69 * Statistics gathering.. 70 */ 71 struct inodes_stat_t inodes_stat; 72 73 static DEFINE_PER_CPU(unsigned long, nr_inodes); 74 static DEFINE_PER_CPU(unsigned long, nr_unused); 75 76 static struct kmem_cache *inode_cachep __read_mostly; 77 78 static long get_nr_inodes(void) 79 { 80 int i; 81 long sum = 0; 82 for_each_possible_cpu(i) 83 sum += per_cpu(nr_inodes, i); 84 return sum < 0 ? 0 : sum; 85 } 86 87 static inline long get_nr_inodes_unused(void) 88 { 89 int i; 90 long sum = 0; 91 for_each_possible_cpu(i) 92 sum += per_cpu(nr_unused, i); 93 return sum < 0 ? 0 : sum; 94 } 95 96 long get_nr_dirty_inodes(void) 97 { 98 /* not actually dirty inodes, but a wild approximation */ 99 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 100 return nr_dirty > 0 ? nr_dirty : 0; 101 } 102 103 /* 104 * Handle nr_inode sysctl 105 */ 106 #ifdef CONFIG_SYSCTL 107 int proc_nr_inodes(struct ctl_table *table, int write, 108 void __user *buffer, size_t *lenp, loff_t *ppos) 109 { 110 inodes_stat.nr_inodes = get_nr_inodes(); 111 inodes_stat.nr_unused = get_nr_inodes_unused(); 112 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 113 } 114 #endif 115 116 static int no_open(struct inode *inode, struct file *file) 117 { 118 return -ENXIO; 119 } 120 121 /** 122 * inode_init_always - perform inode structure intialisation 123 * @sb: superblock inode belongs to 124 * @inode: inode to initialise 125 * 126 * These are initializations that need to be done on every inode 127 * allocation as the fields are not initialised by slab allocation. 128 */ 129 int inode_init_always(struct super_block *sb, struct inode *inode) 130 { 131 static const struct inode_operations empty_iops; 132 static const struct file_operations no_open_fops = {.open = no_open}; 133 struct address_space *const mapping = &inode->i_data; 134 135 inode->i_sb = sb; 136 inode->i_blkbits = sb->s_blocksize_bits; 137 inode->i_flags = 0; 138 atomic_set(&inode->i_count, 1); 139 inode->i_op = &empty_iops; 140 inode->i_fop = &no_open_fops; 141 inode->__i_nlink = 1; 142 inode->i_opflags = 0; 143 if (sb->s_xattr) 144 inode->i_opflags |= IOP_XATTR; 145 i_uid_write(inode, 0); 146 i_gid_write(inode, 0); 147 atomic_set(&inode->i_writecount, 0); 148 inode->i_size = 0; 149 inode->i_blocks = 0; 150 inode->i_bytes = 0; 151 inode->i_generation = 0; 152 inode->i_pipe = NULL; 153 inode->i_bdev = NULL; 154 inode->i_cdev = NULL; 155 inode->i_link = NULL; 156 inode->i_dir_seq = 0; 157 inode->i_rdev = 0; 158 inode->dirtied_when = 0; 159 160 #ifdef CONFIG_CGROUP_WRITEBACK 161 inode->i_wb_frn_winner = 0; 162 inode->i_wb_frn_avg_time = 0; 163 inode->i_wb_frn_history = 0; 164 #endif 165 166 if (security_inode_alloc(inode)) 167 goto out; 168 spin_lock_init(&inode->i_lock); 169 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 170 171 init_rwsem(&inode->i_rwsem); 172 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 173 174 atomic_set(&inode->i_dio_count, 0); 175 176 mapping->a_ops = &empty_aops; 177 mapping->host = inode; 178 mapping->flags = 0; 179 atomic_set(&mapping->i_mmap_writable, 0); 180 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 181 mapping->private_data = NULL; 182 mapping->writeback_index = 0; 183 inode->i_private = NULL; 184 inode->i_mapping = mapping; 185 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 186 #ifdef CONFIG_FS_POSIX_ACL 187 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 188 #endif 189 190 #ifdef CONFIG_FSNOTIFY 191 inode->i_fsnotify_mask = 0; 192 #endif 193 inode->i_flctx = NULL; 194 this_cpu_inc(nr_inodes); 195 196 return 0; 197 out: 198 return -ENOMEM; 199 } 200 EXPORT_SYMBOL(inode_init_always); 201 202 static struct inode *alloc_inode(struct super_block *sb) 203 { 204 struct inode *inode; 205 206 if (sb->s_op->alloc_inode) 207 inode = sb->s_op->alloc_inode(sb); 208 else 209 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 210 211 if (!inode) 212 return NULL; 213 214 if (unlikely(inode_init_always(sb, inode))) { 215 if (inode->i_sb->s_op->destroy_inode) 216 inode->i_sb->s_op->destroy_inode(inode); 217 else 218 kmem_cache_free(inode_cachep, inode); 219 return NULL; 220 } 221 222 return inode; 223 } 224 225 void free_inode_nonrcu(struct inode *inode) 226 { 227 kmem_cache_free(inode_cachep, inode); 228 } 229 EXPORT_SYMBOL(free_inode_nonrcu); 230 231 void __destroy_inode(struct inode *inode) 232 { 233 BUG_ON(inode_has_buffers(inode)); 234 inode_detach_wb(inode); 235 security_inode_free(inode); 236 fsnotify_inode_delete(inode); 237 locks_free_lock_context(inode); 238 if (!inode->i_nlink) { 239 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 240 atomic_long_dec(&inode->i_sb->s_remove_count); 241 } 242 243 #ifdef CONFIG_FS_POSIX_ACL 244 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 245 posix_acl_release(inode->i_acl); 246 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 247 posix_acl_release(inode->i_default_acl); 248 #endif 249 this_cpu_dec(nr_inodes); 250 } 251 EXPORT_SYMBOL(__destroy_inode); 252 253 static void i_callback(struct rcu_head *head) 254 { 255 struct inode *inode = container_of(head, struct inode, i_rcu); 256 kmem_cache_free(inode_cachep, inode); 257 } 258 259 static void destroy_inode(struct inode *inode) 260 { 261 BUG_ON(!list_empty(&inode->i_lru)); 262 __destroy_inode(inode); 263 if (inode->i_sb->s_op->destroy_inode) 264 inode->i_sb->s_op->destroy_inode(inode); 265 else 266 call_rcu(&inode->i_rcu, i_callback); 267 } 268 269 /** 270 * drop_nlink - directly drop an inode's link count 271 * @inode: inode 272 * 273 * This is a low-level filesystem helper to replace any 274 * direct filesystem manipulation of i_nlink. In cases 275 * where we are attempting to track writes to the 276 * filesystem, a decrement to zero means an imminent 277 * write when the file is truncated and actually unlinked 278 * on the filesystem. 279 */ 280 void drop_nlink(struct inode *inode) 281 { 282 WARN_ON(inode->i_nlink == 0); 283 inode->__i_nlink--; 284 if (!inode->i_nlink) 285 atomic_long_inc(&inode->i_sb->s_remove_count); 286 } 287 EXPORT_SYMBOL(drop_nlink); 288 289 /** 290 * clear_nlink - directly zero an inode's link count 291 * @inode: inode 292 * 293 * This is a low-level filesystem helper to replace any 294 * direct filesystem manipulation of i_nlink. See 295 * drop_nlink() for why we care about i_nlink hitting zero. 296 */ 297 void clear_nlink(struct inode *inode) 298 { 299 if (inode->i_nlink) { 300 inode->__i_nlink = 0; 301 atomic_long_inc(&inode->i_sb->s_remove_count); 302 } 303 } 304 EXPORT_SYMBOL(clear_nlink); 305 306 /** 307 * set_nlink - directly set an inode's link count 308 * @inode: inode 309 * @nlink: new nlink (should be non-zero) 310 * 311 * This is a low-level filesystem helper to replace any 312 * direct filesystem manipulation of i_nlink. 313 */ 314 void set_nlink(struct inode *inode, unsigned int nlink) 315 { 316 if (!nlink) { 317 clear_nlink(inode); 318 } else { 319 /* Yes, some filesystems do change nlink from zero to one */ 320 if (inode->i_nlink == 0) 321 atomic_long_dec(&inode->i_sb->s_remove_count); 322 323 inode->__i_nlink = nlink; 324 } 325 } 326 EXPORT_SYMBOL(set_nlink); 327 328 /** 329 * inc_nlink - directly increment an inode's link count 330 * @inode: inode 331 * 332 * This is a low-level filesystem helper to replace any 333 * direct filesystem manipulation of i_nlink. Currently, 334 * it is only here for parity with dec_nlink(). 335 */ 336 void inc_nlink(struct inode *inode) 337 { 338 if (unlikely(inode->i_nlink == 0)) { 339 WARN_ON(!(inode->i_state & I_LINKABLE)); 340 atomic_long_dec(&inode->i_sb->s_remove_count); 341 } 342 343 inode->__i_nlink++; 344 } 345 EXPORT_SYMBOL(inc_nlink); 346 347 void address_space_init_once(struct address_space *mapping) 348 { 349 memset(mapping, 0, sizeof(*mapping)); 350 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC | __GFP_ACCOUNT); 351 spin_lock_init(&mapping->tree_lock); 352 init_rwsem(&mapping->i_mmap_rwsem); 353 INIT_LIST_HEAD(&mapping->private_list); 354 spin_lock_init(&mapping->private_lock); 355 mapping->i_mmap = RB_ROOT; 356 } 357 EXPORT_SYMBOL(address_space_init_once); 358 359 /* 360 * These are initializations that only need to be done 361 * once, because the fields are idempotent across use 362 * of the inode, so let the slab aware of that. 363 */ 364 void inode_init_once(struct inode *inode) 365 { 366 memset(inode, 0, sizeof(*inode)); 367 INIT_HLIST_NODE(&inode->i_hash); 368 INIT_LIST_HEAD(&inode->i_devices); 369 INIT_LIST_HEAD(&inode->i_io_list); 370 INIT_LIST_HEAD(&inode->i_wb_list); 371 INIT_LIST_HEAD(&inode->i_lru); 372 address_space_init_once(&inode->i_data); 373 i_size_ordered_init(inode); 374 #ifdef CONFIG_FSNOTIFY 375 INIT_HLIST_HEAD(&inode->i_fsnotify_marks); 376 #endif 377 } 378 EXPORT_SYMBOL(inode_init_once); 379 380 static void init_once(void *foo) 381 { 382 struct inode *inode = (struct inode *) foo; 383 384 inode_init_once(inode); 385 } 386 387 /* 388 * inode->i_lock must be held 389 */ 390 void __iget(struct inode *inode) 391 { 392 atomic_inc(&inode->i_count); 393 } 394 395 /* 396 * get additional reference to inode; caller must already hold one. 397 */ 398 void ihold(struct inode *inode) 399 { 400 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 401 } 402 EXPORT_SYMBOL(ihold); 403 404 static void inode_lru_list_add(struct inode *inode) 405 { 406 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) 407 this_cpu_inc(nr_unused); 408 } 409 410 /* 411 * Add inode to LRU if needed (inode is unused and clean). 412 * 413 * Needs inode->i_lock held. 414 */ 415 void inode_add_lru(struct inode *inode) 416 { 417 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC | 418 I_FREEING | I_WILL_FREE)) && 419 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE) 420 inode_lru_list_add(inode); 421 } 422 423 424 static void inode_lru_list_del(struct inode *inode) 425 { 426 427 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) 428 this_cpu_dec(nr_unused); 429 } 430 431 /** 432 * inode_sb_list_add - add inode to the superblock list of inodes 433 * @inode: inode to add 434 */ 435 void inode_sb_list_add(struct inode *inode) 436 { 437 spin_lock(&inode->i_sb->s_inode_list_lock); 438 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 439 spin_unlock(&inode->i_sb->s_inode_list_lock); 440 } 441 EXPORT_SYMBOL_GPL(inode_sb_list_add); 442 443 static inline void inode_sb_list_del(struct inode *inode) 444 { 445 if (!list_empty(&inode->i_sb_list)) { 446 spin_lock(&inode->i_sb->s_inode_list_lock); 447 list_del_init(&inode->i_sb_list); 448 spin_unlock(&inode->i_sb->s_inode_list_lock); 449 } 450 } 451 452 static unsigned long hash(struct super_block *sb, unsigned long hashval) 453 { 454 unsigned long tmp; 455 456 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 457 L1_CACHE_BYTES; 458 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 459 return tmp & i_hash_mask; 460 } 461 462 /** 463 * __insert_inode_hash - hash an inode 464 * @inode: unhashed inode 465 * @hashval: unsigned long value used to locate this object in the 466 * inode_hashtable. 467 * 468 * Add an inode to the inode hash for this superblock. 469 */ 470 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 471 { 472 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 473 474 spin_lock(&inode_hash_lock); 475 spin_lock(&inode->i_lock); 476 hlist_add_head(&inode->i_hash, b); 477 spin_unlock(&inode->i_lock); 478 spin_unlock(&inode_hash_lock); 479 } 480 EXPORT_SYMBOL(__insert_inode_hash); 481 482 /** 483 * __remove_inode_hash - remove an inode from the hash 484 * @inode: inode to unhash 485 * 486 * Remove an inode from the superblock. 487 */ 488 void __remove_inode_hash(struct inode *inode) 489 { 490 spin_lock(&inode_hash_lock); 491 spin_lock(&inode->i_lock); 492 hlist_del_init(&inode->i_hash); 493 spin_unlock(&inode->i_lock); 494 spin_unlock(&inode_hash_lock); 495 } 496 EXPORT_SYMBOL(__remove_inode_hash); 497 498 void clear_inode(struct inode *inode) 499 { 500 might_sleep(); 501 /* 502 * We have to cycle tree_lock here because reclaim can be still in the 503 * process of removing the last page (in __delete_from_page_cache()) 504 * and we must not free mapping under it. 505 */ 506 spin_lock_irq(&inode->i_data.tree_lock); 507 BUG_ON(inode->i_data.nrpages); 508 BUG_ON(inode->i_data.nrexceptional); 509 spin_unlock_irq(&inode->i_data.tree_lock); 510 BUG_ON(!list_empty(&inode->i_data.private_list)); 511 BUG_ON(!(inode->i_state & I_FREEING)); 512 BUG_ON(inode->i_state & I_CLEAR); 513 BUG_ON(!list_empty(&inode->i_wb_list)); 514 /* don't need i_lock here, no concurrent mods to i_state */ 515 inode->i_state = I_FREEING | I_CLEAR; 516 } 517 EXPORT_SYMBOL(clear_inode); 518 519 /* 520 * Free the inode passed in, removing it from the lists it is still connected 521 * to. We remove any pages still attached to the inode and wait for any IO that 522 * is still in progress before finally destroying the inode. 523 * 524 * An inode must already be marked I_FREEING so that we avoid the inode being 525 * moved back onto lists if we race with other code that manipulates the lists 526 * (e.g. writeback_single_inode). The caller is responsible for setting this. 527 * 528 * An inode must already be removed from the LRU list before being evicted from 529 * the cache. This should occur atomically with setting the I_FREEING state 530 * flag, so no inodes here should ever be on the LRU when being evicted. 531 */ 532 static void evict(struct inode *inode) 533 { 534 const struct super_operations *op = inode->i_sb->s_op; 535 536 BUG_ON(!(inode->i_state & I_FREEING)); 537 BUG_ON(!list_empty(&inode->i_lru)); 538 539 if (!list_empty(&inode->i_io_list)) 540 inode_io_list_del(inode); 541 542 inode_sb_list_del(inode); 543 544 /* 545 * Wait for flusher thread to be done with the inode so that filesystem 546 * does not start destroying it while writeback is still running. Since 547 * the inode has I_FREEING set, flusher thread won't start new work on 548 * the inode. We just have to wait for running writeback to finish. 549 */ 550 inode_wait_for_writeback(inode); 551 552 if (op->evict_inode) { 553 op->evict_inode(inode); 554 } else { 555 truncate_inode_pages_final(&inode->i_data); 556 clear_inode(inode); 557 } 558 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 559 bd_forget(inode); 560 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 561 cd_forget(inode); 562 563 remove_inode_hash(inode); 564 565 spin_lock(&inode->i_lock); 566 wake_up_bit(&inode->i_state, __I_NEW); 567 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 568 spin_unlock(&inode->i_lock); 569 570 destroy_inode(inode); 571 } 572 573 /* 574 * dispose_list - dispose of the contents of a local list 575 * @head: the head of the list to free 576 * 577 * Dispose-list gets a local list with local inodes in it, so it doesn't 578 * need to worry about list corruption and SMP locks. 579 */ 580 static void dispose_list(struct list_head *head) 581 { 582 while (!list_empty(head)) { 583 struct inode *inode; 584 585 inode = list_first_entry(head, struct inode, i_lru); 586 list_del_init(&inode->i_lru); 587 588 evict(inode); 589 cond_resched(); 590 } 591 } 592 593 /** 594 * evict_inodes - evict all evictable inodes for a superblock 595 * @sb: superblock to operate on 596 * 597 * Make sure that no inodes with zero refcount are retained. This is 598 * called by superblock shutdown after having MS_ACTIVE flag removed, 599 * so any inode reaching zero refcount during or after that call will 600 * be immediately evicted. 601 */ 602 void evict_inodes(struct super_block *sb) 603 { 604 struct inode *inode, *next; 605 LIST_HEAD(dispose); 606 607 again: 608 spin_lock(&sb->s_inode_list_lock); 609 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 610 if (atomic_read(&inode->i_count)) 611 continue; 612 613 spin_lock(&inode->i_lock); 614 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 615 spin_unlock(&inode->i_lock); 616 continue; 617 } 618 619 inode->i_state |= I_FREEING; 620 inode_lru_list_del(inode); 621 spin_unlock(&inode->i_lock); 622 list_add(&inode->i_lru, &dispose); 623 624 /* 625 * We can have a ton of inodes to evict at unmount time given 626 * enough memory, check to see if we need to go to sleep for a 627 * bit so we don't livelock. 628 */ 629 if (need_resched()) { 630 spin_unlock(&sb->s_inode_list_lock); 631 cond_resched(); 632 dispose_list(&dispose); 633 goto again; 634 } 635 } 636 spin_unlock(&sb->s_inode_list_lock); 637 638 dispose_list(&dispose); 639 } 640 641 /** 642 * invalidate_inodes - attempt to free all inodes on a superblock 643 * @sb: superblock to operate on 644 * @kill_dirty: flag to guide handling of dirty inodes 645 * 646 * Attempts to free all inodes for a given superblock. If there were any 647 * busy inodes return a non-zero value, else zero. 648 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 649 * them as busy. 650 */ 651 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 652 { 653 int busy = 0; 654 struct inode *inode, *next; 655 LIST_HEAD(dispose); 656 657 spin_lock(&sb->s_inode_list_lock); 658 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 659 spin_lock(&inode->i_lock); 660 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 661 spin_unlock(&inode->i_lock); 662 continue; 663 } 664 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) { 665 spin_unlock(&inode->i_lock); 666 busy = 1; 667 continue; 668 } 669 if (atomic_read(&inode->i_count)) { 670 spin_unlock(&inode->i_lock); 671 busy = 1; 672 continue; 673 } 674 675 inode->i_state |= I_FREEING; 676 inode_lru_list_del(inode); 677 spin_unlock(&inode->i_lock); 678 list_add(&inode->i_lru, &dispose); 679 } 680 spin_unlock(&sb->s_inode_list_lock); 681 682 dispose_list(&dispose); 683 684 return busy; 685 } 686 687 /* 688 * Isolate the inode from the LRU in preparation for freeing it. 689 * 690 * Any inodes which are pinned purely because of attached pagecache have their 691 * pagecache removed. If the inode has metadata buffers attached to 692 * mapping->private_list then try to remove them. 693 * 694 * If the inode has the I_REFERENCED flag set, then it means that it has been 695 * used recently - the flag is set in iput_final(). When we encounter such an 696 * inode, clear the flag and move it to the back of the LRU so it gets another 697 * pass through the LRU before it gets reclaimed. This is necessary because of 698 * the fact we are doing lazy LRU updates to minimise lock contention so the 699 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 700 * with this flag set because they are the inodes that are out of order. 701 */ 702 static enum lru_status inode_lru_isolate(struct list_head *item, 703 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 704 { 705 struct list_head *freeable = arg; 706 struct inode *inode = container_of(item, struct inode, i_lru); 707 708 /* 709 * we are inverting the lru lock/inode->i_lock here, so use a trylock. 710 * If we fail to get the lock, just skip it. 711 */ 712 if (!spin_trylock(&inode->i_lock)) 713 return LRU_SKIP; 714 715 /* 716 * Referenced or dirty inodes are still in use. Give them another pass 717 * through the LRU as we canot reclaim them now. 718 */ 719 if (atomic_read(&inode->i_count) || 720 (inode->i_state & ~I_REFERENCED)) { 721 list_lru_isolate(lru, &inode->i_lru); 722 spin_unlock(&inode->i_lock); 723 this_cpu_dec(nr_unused); 724 return LRU_REMOVED; 725 } 726 727 /* recently referenced inodes get one more pass */ 728 if (inode->i_state & I_REFERENCED) { 729 inode->i_state &= ~I_REFERENCED; 730 spin_unlock(&inode->i_lock); 731 return LRU_ROTATE; 732 } 733 734 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 735 __iget(inode); 736 spin_unlock(&inode->i_lock); 737 spin_unlock(lru_lock); 738 if (remove_inode_buffers(inode)) { 739 unsigned long reap; 740 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 741 if (current_is_kswapd()) 742 __count_vm_events(KSWAPD_INODESTEAL, reap); 743 else 744 __count_vm_events(PGINODESTEAL, reap); 745 if (current->reclaim_state) 746 current->reclaim_state->reclaimed_slab += reap; 747 } 748 iput(inode); 749 spin_lock(lru_lock); 750 return LRU_RETRY; 751 } 752 753 WARN_ON(inode->i_state & I_NEW); 754 inode->i_state |= I_FREEING; 755 list_lru_isolate_move(lru, &inode->i_lru, freeable); 756 spin_unlock(&inode->i_lock); 757 758 this_cpu_dec(nr_unused); 759 return LRU_REMOVED; 760 } 761 762 /* 763 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 764 * This is called from the superblock shrinker function with a number of inodes 765 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 766 * then are freed outside inode_lock by dispose_list(). 767 */ 768 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 769 { 770 LIST_HEAD(freeable); 771 long freed; 772 773 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 774 inode_lru_isolate, &freeable); 775 dispose_list(&freeable); 776 return freed; 777 } 778 779 static void __wait_on_freeing_inode(struct inode *inode); 780 /* 781 * Called with the inode lock held. 782 */ 783 static struct inode *find_inode(struct super_block *sb, 784 struct hlist_head *head, 785 int (*test)(struct inode *, void *), 786 void *data) 787 { 788 struct inode *inode = NULL; 789 790 repeat: 791 hlist_for_each_entry(inode, head, i_hash) { 792 if (inode->i_sb != sb) 793 continue; 794 if (!test(inode, data)) 795 continue; 796 spin_lock(&inode->i_lock); 797 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 798 __wait_on_freeing_inode(inode); 799 goto repeat; 800 } 801 __iget(inode); 802 spin_unlock(&inode->i_lock); 803 return inode; 804 } 805 return NULL; 806 } 807 808 /* 809 * find_inode_fast is the fast path version of find_inode, see the comment at 810 * iget_locked for details. 811 */ 812 static struct inode *find_inode_fast(struct super_block *sb, 813 struct hlist_head *head, unsigned long ino) 814 { 815 struct inode *inode = NULL; 816 817 repeat: 818 hlist_for_each_entry(inode, head, i_hash) { 819 if (inode->i_ino != ino) 820 continue; 821 if (inode->i_sb != sb) 822 continue; 823 spin_lock(&inode->i_lock); 824 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 825 __wait_on_freeing_inode(inode); 826 goto repeat; 827 } 828 __iget(inode); 829 spin_unlock(&inode->i_lock); 830 return inode; 831 } 832 return NULL; 833 } 834 835 /* 836 * Each cpu owns a range of LAST_INO_BATCH numbers. 837 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 838 * to renew the exhausted range. 839 * 840 * This does not significantly increase overflow rate because every CPU can 841 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 842 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 843 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 844 * overflow rate by 2x, which does not seem too significant. 845 * 846 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 847 * error if st_ino won't fit in target struct field. Use 32bit counter 848 * here to attempt to avoid that. 849 */ 850 #define LAST_INO_BATCH 1024 851 static DEFINE_PER_CPU(unsigned int, last_ino); 852 853 unsigned int get_next_ino(void) 854 { 855 unsigned int *p = &get_cpu_var(last_ino); 856 unsigned int res = *p; 857 858 #ifdef CONFIG_SMP 859 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 860 static atomic_t shared_last_ino; 861 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 862 863 res = next - LAST_INO_BATCH; 864 } 865 #endif 866 867 res++; 868 /* get_next_ino should not provide a 0 inode number */ 869 if (unlikely(!res)) 870 res++; 871 *p = res; 872 put_cpu_var(last_ino); 873 return res; 874 } 875 EXPORT_SYMBOL(get_next_ino); 876 877 /** 878 * new_inode_pseudo - obtain an inode 879 * @sb: superblock 880 * 881 * Allocates a new inode for given superblock. 882 * Inode wont be chained in superblock s_inodes list 883 * This means : 884 * - fs can't be unmount 885 * - quotas, fsnotify, writeback can't work 886 */ 887 struct inode *new_inode_pseudo(struct super_block *sb) 888 { 889 struct inode *inode = alloc_inode(sb); 890 891 if (inode) { 892 spin_lock(&inode->i_lock); 893 inode->i_state = 0; 894 spin_unlock(&inode->i_lock); 895 INIT_LIST_HEAD(&inode->i_sb_list); 896 } 897 return inode; 898 } 899 900 /** 901 * new_inode - obtain an inode 902 * @sb: superblock 903 * 904 * Allocates a new inode for given superblock. The default gfp_mask 905 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 906 * If HIGHMEM pages are unsuitable or it is known that pages allocated 907 * for the page cache are not reclaimable or migratable, 908 * mapping_set_gfp_mask() must be called with suitable flags on the 909 * newly created inode's mapping 910 * 911 */ 912 struct inode *new_inode(struct super_block *sb) 913 { 914 struct inode *inode; 915 916 spin_lock_prefetch(&sb->s_inode_list_lock); 917 918 inode = new_inode_pseudo(sb); 919 if (inode) 920 inode_sb_list_add(inode); 921 return inode; 922 } 923 EXPORT_SYMBOL(new_inode); 924 925 #ifdef CONFIG_DEBUG_LOCK_ALLOC 926 void lockdep_annotate_inode_mutex_key(struct inode *inode) 927 { 928 if (S_ISDIR(inode->i_mode)) { 929 struct file_system_type *type = inode->i_sb->s_type; 930 931 /* Set new key only if filesystem hasn't already changed it */ 932 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 933 /* 934 * ensure nobody is actually holding i_mutex 935 */ 936 // mutex_destroy(&inode->i_mutex); 937 init_rwsem(&inode->i_rwsem); 938 lockdep_set_class(&inode->i_rwsem, 939 &type->i_mutex_dir_key); 940 } 941 } 942 } 943 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 944 #endif 945 946 /** 947 * unlock_new_inode - clear the I_NEW state and wake up any waiters 948 * @inode: new inode to unlock 949 * 950 * Called when the inode is fully initialised to clear the new state of the 951 * inode and wake up anyone waiting for the inode to finish initialisation. 952 */ 953 void unlock_new_inode(struct inode *inode) 954 { 955 lockdep_annotate_inode_mutex_key(inode); 956 spin_lock(&inode->i_lock); 957 WARN_ON(!(inode->i_state & I_NEW)); 958 inode->i_state &= ~I_NEW; 959 smp_mb(); 960 wake_up_bit(&inode->i_state, __I_NEW); 961 spin_unlock(&inode->i_lock); 962 } 963 EXPORT_SYMBOL(unlock_new_inode); 964 965 /** 966 * lock_two_nondirectories - take two i_mutexes on non-directory objects 967 * 968 * Lock any non-NULL argument that is not a directory. 969 * Zero, one or two objects may be locked by this function. 970 * 971 * @inode1: first inode to lock 972 * @inode2: second inode to lock 973 */ 974 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 975 { 976 if (inode1 > inode2) 977 swap(inode1, inode2); 978 979 if (inode1 && !S_ISDIR(inode1->i_mode)) 980 inode_lock(inode1); 981 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 982 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 983 } 984 EXPORT_SYMBOL(lock_two_nondirectories); 985 986 /** 987 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 988 * @inode1: first inode to unlock 989 * @inode2: second inode to unlock 990 */ 991 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 992 { 993 if (inode1 && !S_ISDIR(inode1->i_mode)) 994 inode_unlock(inode1); 995 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 996 inode_unlock(inode2); 997 } 998 EXPORT_SYMBOL(unlock_two_nondirectories); 999 1000 /** 1001 * iget5_locked - obtain an inode from a mounted file system 1002 * @sb: super block of file system 1003 * @hashval: hash value (usually inode number) to get 1004 * @test: callback used for comparisons between inodes 1005 * @set: callback used to initialize a new struct inode 1006 * @data: opaque data pointer to pass to @test and @set 1007 * 1008 * Search for the inode specified by @hashval and @data in the inode cache, 1009 * and if present it is return it with an increased reference count. This is 1010 * a generalized version of iget_locked() for file systems where the inode 1011 * number is not sufficient for unique identification of an inode. 1012 * 1013 * If the inode is not in cache, allocate a new inode and return it locked, 1014 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1015 * before unlocking it via unlock_new_inode(). 1016 * 1017 * Note both @test and @set are called with the inode_hash_lock held, so can't 1018 * sleep. 1019 */ 1020 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1021 int (*test)(struct inode *, void *), 1022 int (*set)(struct inode *, void *), void *data) 1023 { 1024 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1025 struct inode *inode; 1026 again: 1027 spin_lock(&inode_hash_lock); 1028 inode = find_inode(sb, head, test, data); 1029 spin_unlock(&inode_hash_lock); 1030 1031 if (inode) { 1032 wait_on_inode(inode); 1033 if (unlikely(inode_unhashed(inode))) { 1034 iput(inode); 1035 goto again; 1036 } 1037 return inode; 1038 } 1039 1040 inode = alloc_inode(sb); 1041 if (inode) { 1042 struct inode *old; 1043 1044 spin_lock(&inode_hash_lock); 1045 /* We released the lock, so.. */ 1046 old = find_inode(sb, head, test, data); 1047 if (!old) { 1048 if (set(inode, data)) 1049 goto set_failed; 1050 1051 spin_lock(&inode->i_lock); 1052 inode->i_state = I_NEW; 1053 hlist_add_head(&inode->i_hash, head); 1054 spin_unlock(&inode->i_lock); 1055 inode_sb_list_add(inode); 1056 spin_unlock(&inode_hash_lock); 1057 1058 /* Return the locked inode with I_NEW set, the 1059 * caller is responsible for filling in the contents 1060 */ 1061 return inode; 1062 } 1063 1064 /* 1065 * Uhhuh, somebody else created the same inode under 1066 * us. Use the old inode instead of the one we just 1067 * allocated. 1068 */ 1069 spin_unlock(&inode_hash_lock); 1070 destroy_inode(inode); 1071 inode = old; 1072 wait_on_inode(inode); 1073 if (unlikely(inode_unhashed(inode))) { 1074 iput(inode); 1075 goto again; 1076 } 1077 } 1078 return inode; 1079 1080 set_failed: 1081 spin_unlock(&inode_hash_lock); 1082 destroy_inode(inode); 1083 return NULL; 1084 } 1085 EXPORT_SYMBOL(iget5_locked); 1086 1087 /** 1088 * iget_locked - obtain an inode from a mounted file system 1089 * @sb: super block of file system 1090 * @ino: inode number to get 1091 * 1092 * Search for the inode specified by @ino in the inode cache and if present 1093 * return it with an increased reference count. This is for file systems 1094 * where the inode number is sufficient for unique identification of an inode. 1095 * 1096 * If the inode is not in cache, allocate a new inode and return it locked, 1097 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1098 * before unlocking it via unlock_new_inode(). 1099 */ 1100 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1101 { 1102 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1103 struct inode *inode; 1104 again: 1105 spin_lock(&inode_hash_lock); 1106 inode = find_inode_fast(sb, head, ino); 1107 spin_unlock(&inode_hash_lock); 1108 if (inode) { 1109 wait_on_inode(inode); 1110 if (unlikely(inode_unhashed(inode))) { 1111 iput(inode); 1112 goto again; 1113 } 1114 return inode; 1115 } 1116 1117 inode = alloc_inode(sb); 1118 if (inode) { 1119 struct inode *old; 1120 1121 spin_lock(&inode_hash_lock); 1122 /* We released the lock, so.. */ 1123 old = find_inode_fast(sb, head, ino); 1124 if (!old) { 1125 inode->i_ino = ino; 1126 spin_lock(&inode->i_lock); 1127 inode->i_state = I_NEW; 1128 hlist_add_head(&inode->i_hash, head); 1129 spin_unlock(&inode->i_lock); 1130 inode_sb_list_add(inode); 1131 spin_unlock(&inode_hash_lock); 1132 1133 /* Return the locked inode with I_NEW set, the 1134 * caller is responsible for filling in the contents 1135 */ 1136 return inode; 1137 } 1138 1139 /* 1140 * Uhhuh, somebody else created the same inode under 1141 * us. Use the old inode instead of the one we just 1142 * allocated. 1143 */ 1144 spin_unlock(&inode_hash_lock); 1145 destroy_inode(inode); 1146 inode = old; 1147 wait_on_inode(inode); 1148 if (unlikely(inode_unhashed(inode))) { 1149 iput(inode); 1150 goto again; 1151 } 1152 } 1153 return inode; 1154 } 1155 EXPORT_SYMBOL(iget_locked); 1156 1157 /* 1158 * search the inode cache for a matching inode number. 1159 * If we find one, then the inode number we are trying to 1160 * allocate is not unique and so we should not use it. 1161 * 1162 * Returns 1 if the inode number is unique, 0 if it is not. 1163 */ 1164 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1165 { 1166 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1167 struct inode *inode; 1168 1169 spin_lock(&inode_hash_lock); 1170 hlist_for_each_entry(inode, b, i_hash) { 1171 if (inode->i_ino == ino && inode->i_sb == sb) { 1172 spin_unlock(&inode_hash_lock); 1173 return 0; 1174 } 1175 } 1176 spin_unlock(&inode_hash_lock); 1177 1178 return 1; 1179 } 1180 1181 /** 1182 * iunique - get a unique inode number 1183 * @sb: superblock 1184 * @max_reserved: highest reserved inode number 1185 * 1186 * Obtain an inode number that is unique on the system for a given 1187 * superblock. This is used by file systems that have no natural 1188 * permanent inode numbering system. An inode number is returned that 1189 * is higher than the reserved limit but unique. 1190 * 1191 * BUGS: 1192 * With a large number of inodes live on the file system this function 1193 * currently becomes quite slow. 1194 */ 1195 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1196 { 1197 /* 1198 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1199 * error if st_ino won't fit in target struct field. Use 32bit counter 1200 * here to attempt to avoid that. 1201 */ 1202 static DEFINE_SPINLOCK(iunique_lock); 1203 static unsigned int counter; 1204 ino_t res; 1205 1206 spin_lock(&iunique_lock); 1207 do { 1208 if (counter <= max_reserved) 1209 counter = max_reserved + 1; 1210 res = counter++; 1211 } while (!test_inode_iunique(sb, res)); 1212 spin_unlock(&iunique_lock); 1213 1214 return res; 1215 } 1216 EXPORT_SYMBOL(iunique); 1217 1218 struct inode *igrab(struct inode *inode) 1219 { 1220 spin_lock(&inode->i_lock); 1221 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1222 __iget(inode); 1223 spin_unlock(&inode->i_lock); 1224 } else { 1225 spin_unlock(&inode->i_lock); 1226 /* 1227 * Handle the case where s_op->clear_inode is not been 1228 * called yet, and somebody is calling igrab 1229 * while the inode is getting freed. 1230 */ 1231 inode = NULL; 1232 } 1233 return inode; 1234 } 1235 EXPORT_SYMBOL(igrab); 1236 1237 /** 1238 * ilookup5_nowait - search for an inode in the inode cache 1239 * @sb: super block of file system to search 1240 * @hashval: hash value (usually inode number) to search for 1241 * @test: callback used for comparisons between inodes 1242 * @data: opaque data pointer to pass to @test 1243 * 1244 * Search for the inode specified by @hashval and @data in the inode cache. 1245 * If the inode is in the cache, the inode is returned with an incremented 1246 * reference count. 1247 * 1248 * Note: I_NEW is not waited upon so you have to be very careful what you do 1249 * with the returned inode. You probably should be using ilookup5() instead. 1250 * 1251 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1252 */ 1253 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1254 int (*test)(struct inode *, void *), void *data) 1255 { 1256 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1257 struct inode *inode; 1258 1259 spin_lock(&inode_hash_lock); 1260 inode = find_inode(sb, head, test, data); 1261 spin_unlock(&inode_hash_lock); 1262 1263 return inode; 1264 } 1265 EXPORT_SYMBOL(ilookup5_nowait); 1266 1267 /** 1268 * ilookup5 - search for an inode in the inode cache 1269 * @sb: super block of file system to search 1270 * @hashval: hash value (usually inode number) to search for 1271 * @test: callback used for comparisons between inodes 1272 * @data: opaque data pointer to pass to @test 1273 * 1274 * Search for the inode specified by @hashval and @data in the inode cache, 1275 * and if the inode is in the cache, return the inode with an incremented 1276 * reference count. Waits on I_NEW before returning the inode. 1277 * returned with an incremented reference count. 1278 * 1279 * This is a generalized version of ilookup() for file systems where the 1280 * inode number is not sufficient for unique identification of an inode. 1281 * 1282 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1283 */ 1284 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1285 int (*test)(struct inode *, void *), void *data) 1286 { 1287 struct inode *inode; 1288 again: 1289 inode = ilookup5_nowait(sb, hashval, test, data); 1290 if (inode) { 1291 wait_on_inode(inode); 1292 if (unlikely(inode_unhashed(inode))) { 1293 iput(inode); 1294 goto again; 1295 } 1296 } 1297 return inode; 1298 } 1299 EXPORT_SYMBOL(ilookup5); 1300 1301 /** 1302 * ilookup - search for an inode in the inode cache 1303 * @sb: super block of file system to search 1304 * @ino: inode number to search for 1305 * 1306 * Search for the inode @ino in the inode cache, and if the inode is in the 1307 * cache, the inode is returned with an incremented reference count. 1308 */ 1309 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1310 { 1311 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1312 struct inode *inode; 1313 again: 1314 spin_lock(&inode_hash_lock); 1315 inode = find_inode_fast(sb, head, ino); 1316 spin_unlock(&inode_hash_lock); 1317 1318 if (inode) { 1319 wait_on_inode(inode); 1320 if (unlikely(inode_unhashed(inode))) { 1321 iput(inode); 1322 goto again; 1323 } 1324 } 1325 return inode; 1326 } 1327 EXPORT_SYMBOL(ilookup); 1328 1329 /** 1330 * find_inode_nowait - find an inode in the inode cache 1331 * @sb: super block of file system to search 1332 * @hashval: hash value (usually inode number) to search for 1333 * @match: callback used for comparisons between inodes 1334 * @data: opaque data pointer to pass to @match 1335 * 1336 * Search for the inode specified by @hashval and @data in the inode 1337 * cache, where the helper function @match will return 0 if the inode 1338 * does not match, 1 if the inode does match, and -1 if the search 1339 * should be stopped. The @match function must be responsible for 1340 * taking the i_lock spin_lock and checking i_state for an inode being 1341 * freed or being initialized, and incrementing the reference count 1342 * before returning 1. It also must not sleep, since it is called with 1343 * the inode_hash_lock spinlock held. 1344 * 1345 * This is a even more generalized version of ilookup5() when the 1346 * function must never block --- find_inode() can block in 1347 * __wait_on_freeing_inode() --- or when the caller can not increment 1348 * the reference count because the resulting iput() might cause an 1349 * inode eviction. The tradeoff is that the @match funtion must be 1350 * very carefully implemented. 1351 */ 1352 struct inode *find_inode_nowait(struct super_block *sb, 1353 unsigned long hashval, 1354 int (*match)(struct inode *, unsigned long, 1355 void *), 1356 void *data) 1357 { 1358 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1359 struct inode *inode, *ret_inode = NULL; 1360 int mval; 1361 1362 spin_lock(&inode_hash_lock); 1363 hlist_for_each_entry(inode, head, i_hash) { 1364 if (inode->i_sb != sb) 1365 continue; 1366 mval = match(inode, hashval, data); 1367 if (mval == 0) 1368 continue; 1369 if (mval == 1) 1370 ret_inode = inode; 1371 goto out; 1372 } 1373 out: 1374 spin_unlock(&inode_hash_lock); 1375 return ret_inode; 1376 } 1377 EXPORT_SYMBOL(find_inode_nowait); 1378 1379 int insert_inode_locked(struct inode *inode) 1380 { 1381 struct super_block *sb = inode->i_sb; 1382 ino_t ino = inode->i_ino; 1383 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1384 1385 while (1) { 1386 struct inode *old = NULL; 1387 spin_lock(&inode_hash_lock); 1388 hlist_for_each_entry(old, head, i_hash) { 1389 if (old->i_ino != ino) 1390 continue; 1391 if (old->i_sb != sb) 1392 continue; 1393 spin_lock(&old->i_lock); 1394 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1395 spin_unlock(&old->i_lock); 1396 continue; 1397 } 1398 break; 1399 } 1400 if (likely(!old)) { 1401 spin_lock(&inode->i_lock); 1402 inode->i_state |= I_NEW; 1403 hlist_add_head(&inode->i_hash, head); 1404 spin_unlock(&inode->i_lock); 1405 spin_unlock(&inode_hash_lock); 1406 return 0; 1407 } 1408 __iget(old); 1409 spin_unlock(&old->i_lock); 1410 spin_unlock(&inode_hash_lock); 1411 wait_on_inode(old); 1412 if (unlikely(!inode_unhashed(old))) { 1413 iput(old); 1414 return -EBUSY; 1415 } 1416 iput(old); 1417 } 1418 } 1419 EXPORT_SYMBOL(insert_inode_locked); 1420 1421 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1422 int (*test)(struct inode *, void *), void *data) 1423 { 1424 struct super_block *sb = inode->i_sb; 1425 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1426 1427 while (1) { 1428 struct inode *old = NULL; 1429 1430 spin_lock(&inode_hash_lock); 1431 hlist_for_each_entry(old, head, i_hash) { 1432 if (old->i_sb != sb) 1433 continue; 1434 if (!test(old, data)) 1435 continue; 1436 spin_lock(&old->i_lock); 1437 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1438 spin_unlock(&old->i_lock); 1439 continue; 1440 } 1441 break; 1442 } 1443 if (likely(!old)) { 1444 spin_lock(&inode->i_lock); 1445 inode->i_state |= I_NEW; 1446 hlist_add_head(&inode->i_hash, head); 1447 spin_unlock(&inode->i_lock); 1448 spin_unlock(&inode_hash_lock); 1449 return 0; 1450 } 1451 __iget(old); 1452 spin_unlock(&old->i_lock); 1453 spin_unlock(&inode_hash_lock); 1454 wait_on_inode(old); 1455 if (unlikely(!inode_unhashed(old))) { 1456 iput(old); 1457 return -EBUSY; 1458 } 1459 iput(old); 1460 } 1461 } 1462 EXPORT_SYMBOL(insert_inode_locked4); 1463 1464 1465 int generic_delete_inode(struct inode *inode) 1466 { 1467 return 1; 1468 } 1469 EXPORT_SYMBOL(generic_delete_inode); 1470 1471 /* 1472 * Called when we're dropping the last reference 1473 * to an inode. 1474 * 1475 * Call the FS "drop_inode()" function, defaulting to 1476 * the legacy UNIX filesystem behaviour. If it tells 1477 * us to evict inode, do so. Otherwise, retain inode 1478 * in cache if fs is alive, sync and evict if fs is 1479 * shutting down. 1480 */ 1481 static void iput_final(struct inode *inode) 1482 { 1483 struct super_block *sb = inode->i_sb; 1484 const struct super_operations *op = inode->i_sb->s_op; 1485 int drop; 1486 1487 WARN_ON(inode->i_state & I_NEW); 1488 1489 if (op->drop_inode) 1490 drop = op->drop_inode(inode); 1491 else 1492 drop = generic_drop_inode(inode); 1493 1494 if (!drop && (sb->s_flags & MS_ACTIVE)) { 1495 inode->i_state |= I_REFERENCED; 1496 inode_add_lru(inode); 1497 spin_unlock(&inode->i_lock); 1498 return; 1499 } 1500 1501 if (!drop) { 1502 inode->i_state |= I_WILL_FREE; 1503 spin_unlock(&inode->i_lock); 1504 write_inode_now(inode, 1); 1505 spin_lock(&inode->i_lock); 1506 WARN_ON(inode->i_state & I_NEW); 1507 inode->i_state &= ~I_WILL_FREE; 1508 } 1509 1510 inode->i_state |= I_FREEING; 1511 if (!list_empty(&inode->i_lru)) 1512 inode_lru_list_del(inode); 1513 spin_unlock(&inode->i_lock); 1514 1515 evict(inode); 1516 } 1517 1518 /** 1519 * iput - put an inode 1520 * @inode: inode to put 1521 * 1522 * Puts an inode, dropping its usage count. If the inode use count hits 1523 * zero, the inode is then freed and may also be destroyed. 1524 * 1525 * Consequently, iput() can sleep. 1526 */ 1527 void iput(struct inode *inode) 1528 { 1529 if (!inode) 1530 return; 1531 BUG_ON(inode->i_state & I_CLEAR); 1532 retry: 1533 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1534 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1535 atomic_inc(&inode->i_count); 1536 inode->i_state &= ~I_DIRTY_TIME; 1537 spin_unlock(&inode->i_lock); 1538 trace_writeback_lazytime_iput(inode); 1539 mark_inode_dirty_sync(inode); 1540 goto retry; 1541 } 1542 iput_final(inode); 1543 } 1544 } 1545 EXPORT_SYMBOL(iput); 1546 1547 /** 1548 * bmap - find a block number in a file 1549 * @inode: inode of file 1550 * @block: block to find 1551 * 1552 * Returns the block number on the device holding the inode that 1553 * is the disk block number for the block of the file requested. 1554 * That is, asked for block 4 of inode 1 the function will return the 1555 * disk block relative to the disk start that holds that block of the 1556 * file. 1557 */ 1558 sector_t bmap(struct inode *inode, sector_t block) 1559 { 1560 sector_t res = 0; 1561 if (inode->i_mapping->a_ops->bmap) 1562 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1563 return res; 1564 } 1565 EXPORT_SYMBOL(bmap); 1566 1567 /* 1568 * Update times in overlayed inode from underlying real inode 1569 */ 1570 static void update_ovl_inode_times(struct dentry *dentry, struct inode *inode, 1571 bool rcu) 1572 { 1573 if (!rcu) { 1574 struct inode *realinode = d_real_inode(dentry); 1575 1576 if (unlikely(inode != realinode) && 1577 (!timespec_equal(&inode->i_mtime, &realinode->i_mtime) || 1578 !timespec_equal(&inode->i_ctime, &realinode->i_ctime))) { 1579 inode->i_mtime = realinode->i_mtime; 1580 inode->i_ctime = realinode->i_ctime; 1581 } 1582 } 1583 } 1584 1585 /* 1586 * With relative atime, only update atime if the previous atime is 1587 * earlier than either the ctime or mtime or if at least a day has 1588 * passed since the last atime update. 1589 */ 1590 static int relatime_need_update(const struct path *path, struct inode *inode, 1591 struct timespec now, bool rcu) 1592 { 1593 1594 if (!(path->mnt->mnt_flags & MNT_RELATIME)) 1595 return 1; 1596 1597 update_ovl_inode_times(path->dentry, inode, rcu); 1598 /* 1599 * Is mtime younger than atime? If yes, update atime: 1600 */ 1601 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1602 return 1; 1603 /* 1604 * Is ctime younger than atime? If yes, update atime: 1605 */ 1606 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1607 return 1; 1608 1609 /* 1610 * Is the previous atime value older than a day? If yes, 1611 * update atime: 1612 */ 1613 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1614 return 1; 1615 /* 1616 * Good, we can skip the atime update: 1617 */ 1618 return 0; 1619 } 1620 1621 int generic_update_time(struct inode *inode, struct timespec *time, int flags) 1622 { 1623 int iflags = I_DIRTY_TIME; 1624 1625 if (flags & S_ATIME) 1626 inode->i_atime = *time; 1627 if (flags & S_VERSION) 1628 inode_inc_iversion(inode); 1629 if (flags & S_CTIME) 1630 inode->i_ctime = *time; 1631 if (flags & S_MTIME) 1632 inode->i_mtime = *time; 1633 1634 if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION)) 1635 iflags |= I_DIRTY_SYNC; 1636 __mark_inode_dirty(inode, iflags); 1637 return 0; 1638 } 1639 EXPORT_SYMBOL(generic_update_time); 1640 1641 /* 1642 * This does the actual work of updating an inodes time or version. Must have 1643 * had called mnt_want_write() before calling this. 1644 */ 1645 static int update_time(struct inode *inode, struct timespec *time, int flags) 1646 { 1647 int (*update_time)(struct inode *, struct timespec *, int); 1648 1649 update_time = inode->i_op->update_time ? inode->i_op->update_time : 1650 generic_update_time; 1651 1652 return update_time(inode, time, flags); 1653 } 1654 1655 /** 1656 * touch_atime - update the access time 1657 * @path: the &struct path to update 1658 * @inode: inode to update 1659 * 1660 * Update the accessed time on an inode and mark it for writeback. 1661 * This function automatically handles read only file systems and media, 1662 * as well as the "noatime" flag and inode specific "noatime" markers. 1663 */ 1664 bool __atime_needs_update(const struct path *path, struct inode *inode, 1665 bool rcu) 1666 { 1667 struct vfsmount *mnt = path->mnt; 1668 struct timespec now; 1669 1670 if (inode->i_flags & S_NOATIME) 1671 return false; 1672 1673 /* Atime updates will likely cause i_uid and i_gid to be written 1674 * back improprely if their true value is unknown to the vfs. 1675 */ 1676 if (HAS_UNMAPPED_ID(inode)) 1677 return false; 1678 1679 if (IS_NOATIME(inode)) 1680 return false; 1681 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1682 return false; 1683 1684 if (mnt->mnt_flags & MNT_NOATIME) 1685 return false; 1686 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1687 return false; 1688 1689 now = current_time(inode); 1690 1691 if (!relatime_need_update(path, inode, now, rcu)) 1692 return false; 1693 1694 if (timespec_equal(&inode->i_atime, &now)) 1695 return false; 1696 1697 return true; 1698 } 1699 1700 void touch_atime(const struct path *path) 1701 { 1702 struct vfsmount *mnt = path->mnt; 1703 struct inode *inode = d_inode(path->dentry); 1704 struct timespec now; 1705 1706 if (!__atime_needs_update(path, inode, false)) 1707 return; 1708 1709 if (!sb_start_write_trylock(inode->i_sb)) 1710 return; 1711 1712 if (__mnt_want_write(mnt) != 0) 1713 goto skip_update; 1714 /* 1715 * File systems can error out when updating inodes if they need to 1716 * allocate new space to modify an inode (such is the case for 1717 * Btrfs), but since we touch atime while walking down the path we 1718 * really don't care if we failed to update the atime of the file, 1719 * so just ignore the return value. 1720 * We may also fail on filesystems that have the ability to make parts 1721 * of the fs read only, e.g. subvolumes in Btrfs. 1722 */ 1723 now = current_time(inode); 1724 update_time(inode, &now, S_ATIME); 1725 __mnt_drop_write(mnt); 1726 skip_update: 1727 sb_end_write(inode->i_sb); 1728 } 1729 EXPORT_SYMBOL(touch_atime); 1730 1731 /* 1732 * The logic we want is 1733 * 1734 * if suid or (sgid and xgrp) 1735 * remove privs 1736 */ 1737 int should_remove_suid(struct dentry *dentry) 1738 { 1739 umode_t mode = d_inode(dentry)->i_mode; 1740 int kill = 0; 1741 1742 /* suid always must be killed */ 1743 if (unlikely(mode & S_ISUID)) 1744 kill = ATTR_KILL_SUID; 1745 1746 /* 1747 * sgid without any exec bits is just a mandatory locking mark; leave 1748 * it alone. If some exec bits are set, it's a real sgid; kill it. 1749 */ 1750 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1751 kill |= ATTR_KILL_SGID; 1752 1753 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1754 return kill; 1755 1756 return 0; 1757 } 1758 EXPORT_SYMBOL(should_remove_suid); 1759 1760 /* 1761 * Return mask of changes for notify_change() that need to be done as a 1762 * response to write or truncate. Return 0 if nothing has to be changed. 1763 * Negative value on error (change should be denied). 1764 */ 1765 int dentry_needs_remove_privs(struct dentry *dentry) 1766 { 1767 struct inode *inode = d_inode(dentry); 1768 int mask = 0; 1769 int ret; 1770 1771 if (IS_NOSEC(inode)) 1772 return 0; 1773 1774 mask = should_remove_suid(dentry); 1775 ret = security_inode_need_killpriv(dentry); 1776 if (ret < 0) 1777 return ret; 1778 if (ret) 1779 mask |= ATTR_KILL_PRIV; 1780 return mask; 1781 } 1782 1783 static int __remove_privs(struct dentry *dentry, int kill) 1784 { 1785 struct iattr newattrs; 1786 1787 newattrs.ia_valid = ATTR_FORCE | kill; 1788 /* 1789 * Note we call this on write, so notify_change will not 1790 * encounter any conflicting delegations: 1791 */ 1792 return notify_change(dentry, &newattrs, NULL); 1793 } 1794 1795 /* 1796 * Remove special file priviledges (suid, capabilities) when file is written 1797 * to or truncated. 1798 */ 1799 int file_remove_privs(struct file *file) 1800 { 1801 struct dentry *dentry = file_dentry(file); 1802 struct inode *inode = file_inode(file); 1803 int kill; 1804 int error = 0; 1805 1806 /* Fast path for nothing security related */ 1807 if (IS_NOSEC(inode)) 1808 return 0; 1809 1810 kill = dentry_needs_remove_privs(dentry); 1811 if (kill < 0) 1812 return kill; 1813 if (kill) 1814 error = __remove_privs(dentry, kill); 1815 if (!error) 1816 inode_has_no_xattr(inode); 1817 1818 return error; 1819 } 1820 EXPORT_SYMBOL(file_remove_privs); 1821 1822 /** 1823 * file_update_time - update mtime and ctime time 1824 * @file: file accessed 1825 * 1826 * Update the mtime and ctime members of an inode and mark the inode 1827 * for writeback. Note that this function is meant exclusively for 1828 * usage in the file write path of filesystems, and filesystems may 1829 * choose to explicitly ignore update via this function with the 1830 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1831 * timestamps are handled by the server. This can return an error for 1832 * file systems who need to allocate space in order to update an inode. 1833 */ 1834 1835 int file_update_time(struct file *file) 1836 { 1837 struct inode *inode = file_inode(file); 1838 struct timespec now; 1839 int sync_it = 0; 1840 int ret; 1841 1842 /* First try to exhaust all avenues to not sync */ 1843 if (IS_NOCMTIME(inode)) 1844 return 0; 1845 1846 now = current_time(inode); 1847 if (!timespec_equal(&inode->i_mtime, &now)) 1848 sync_it = S_MTIME; 1849 1850 if (!timespec_equal(&inode->i_ctime, &now)) 1851 sync_it |= S_CTIME; 1852 1853 if (IS_I_VERSION(inode)) 1854 sync_it |= S_VERSION; 1855 1856 if (!sync_it) 1857 return 0; 1858 1859 /* Finally allowed to write? Takes lock. */ 1860 if (__mnt_want_write_file(file)) 1861 return 0; 1862 1863 ret = update_time(inode, &now, sync_it); 1864 __mnt_drop_write_file(file); 1865 1866 return ret; 1867 } 1868 EXPORT_SYMBOL(file_update_time); 1869 1870 int inode_needs_sync(struct inode *inode) 1871 { 1872 if (IS_SYNC(inode)) 1873 return 1; 1874 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1875 return 1; 1876 return 0; 1877 } 1878 EXPORT_SYMBOL(inode_needs_sync); 1879 1880 /* 1881 * If we try to find an inode in the inode hash while it is being 1882 * deleted, we have to wait until the filesystem completes its 1883 * deletion before reporting that it isn't found. This function waits 1884 * until the deletion _might_ have completed. Callers are responsible 1885 * to recheck inode state. 1886 * 1887 * It doesn't matter if I_NEW is not set initially, a call to 1888 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 1889 * will DTRT. 1890 */ 1891 static void __wait_on_freeing_inode(struct inode *inode) 1892 { 1893 wait_queue_head_t *wq; 1894 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 1895 wq = bit_waitqueue(&inode->i_state, __I_NEW); 1896 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1897 spin_unlock(&inode->i_lock); 1898 spin_unlock(&inode_hash_lock); 1899 schedule(); 1900 finish_wait(wq, &wait.wait); 1901 spin_lock(&inode_hash_lock); 1902 } 1903 1904 static __initdata unsigned long ihash_entries; 1905 static int __init set_ihash_entries(char *str) 1906 { 1907 if (!str) 1908 return 0; 1909 ihash_entries = simple_strtoul(str, &str, 0); 1910 return 1; 1911 } 1912 __setup("ihash_entries=", set_ihash_entries); 1913 1914 /* 1915 * Initialize the waitqueues and inode hash table. 1916 */ 1917 void __init inode_init_early(void) 1918 { 1919 unsigned int loop; 1920 1921 /* If hashes are distributed across NUMA nodes, defer 1922 * hash allocation until vmalloc space is available. 1923 */ 1924 if (hashdist) 1925 return; 1926 1927 inode_hashtable = 1928 alloc_large_system_hash("Inode-cache", 1929 sizeof(struct hlist_head), 1930 ihash_entries, 1931 14, 1932 HASH_EARLY, 1933 &i_hash_shift, 1934 &i_hash_mask, 1935 0, 1936 0); 1937 1938 for (loop = 0; loop < (1U << i_hash_shift); loop++) 1939 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1940 } 1941 1942 void __init inode_init(void) 1943 { 1944 unsigned int loop; 1945 1946 /* inode slab cache */ 1947 inode_cachep = kmem_cache_create("inode_cache", 1948 sizeof(struct inode), 1949 0, 1950 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1951 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 1952 init_once); 1953 1954 /* Hash may have been set up in inode_init_early */ 1955 if (!hashdist) 1956 return; 1957 1958 inode_hashtable = 1959 alloc_large_system_hash("Inode-cache", 1960 sizeof(struct hlist_head), 1961 ihash_entries, 1962 14, 1963 0, 1964 &i_hash_shift, 1965 &i_hash_mask, 1966 0, 1967 0); 1968 1969 for (loop = 0; loop < (1U << i_hash_shift); loop++) 1970 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1971 } 1972 1973 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1974 { 1975 inode->i_mode = mode; 1976 if (S_ISCHR(mode)) { 1977 inode->i_fop = &def_chr_fops; 1978 inode->i_rdev = rdev; 1979 } else if (S_ISBLK(mode)) { 1980 inode->i_fop = &def_blk_fops; 1981 inode->i_rdev = rdev; 1982 } else if (S_ISFIFO(mode)) 1983 inode->i_fop = &pipefifo_fops; 1984 else if (S_ISSOCK(mode)) 1985 ; /* leave it no_open_fops */ 1986 else 1987 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 1988 " inode %s:%lu\n", mode, inode->i_sb->s_id, 1989 inode->i_ino); 1990 } 1991 EXPORT_SYMBOL(init_special_inode); 1992 1993 /** 1994 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 1995 * @inode: New inode 1996 * @dir: Directory inode 1997 * @mode: mode of the new inode 1998 */ 1999 void inode_init_owner(struct inode *inode, const struct inode *dir, 2000 umode_t mode) 2001 { 2002 inode->i_uid = current_fsuid(); 2003 if (dir && dir->i_mode & S_ISGID) { 2004 inode->i_gid = dir->i_gid; 2005 if (S_ISDIR(mode)) 2006 mode |= S_ISGID; 2007 } else 2008 inode->i_gid = current_fsgid(); 2009 inode->i_mode = mode; 2010 } 2011 EXPORT_SYMBOL(inode_init_owner); 2012 2013 /** 2014 * inode_owner_or_capable - check current task permissions to inode 2015 * @inode: inode being checked 2016 * 2017 * Return true if current either has CAP_FOWNER in a namespace with the 2018 * inode owner uid mapped, or owns the file. 2019 */ 2020 bool inode_owner_or_capable(const struct inode *inode) 2021 { 2022 struct user_namespace *ns; 2023 2024 if (uid_eq(current_fsuid(), inode->i_uid)) 2025 return true; 2026 2027 ns = current_user_ns(); 2028 if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid)) 2029 return true; 2030 return false; 2031 } 2032 EXPORT_SYMBOL(inode_owner_or_capable); 2033 2034 /* 2035 * Direct i/o helper functions 2036 */ 2037 static void __inode_dio_wait(struct inode *inode) 2038 { 2039 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2040 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2041 2042 do { 2043 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE); 2044 if (atomic_read(&inode->i_dio_count)) 2045 schedule(); 2046 } while (atomic_read(&inode->i_dio_count)); 2047 finish_wait(wq, &q.wait); 2048 } 2049 2050 /** 2051 * inode_dio_wait - wait for outstanding DIO requests to finish 2052 * @inode: inode to wait for 2053 * 2054 * Waits for all pending direct I/O requests to finish so that we can 2055 * proceed with a truncate or equivalent operation. 2056 * 2057 * Must be called under a lock that serializes taking new references 2058 * to i_dio_count, usually by inode->i_mutex. 2059 */ 2060 void inode_dio_wait(struct inode *inode) 2061 { 2062 if (atomic_read(&inode->i_dio_count)) 2063 __inode_dio_wait(inode); 2064 } 2065 EXPORT_SYMBOL(inode_dio_wait); 2066 2067 /* 2068 * inode_set_flags - atomically set some inode flags 2069 * 2070 * Note: the caller should be holding i_mutex, or else be sure that 2071 * they have exclusive access to the inode structure (i.e., while the 2072 * inode is being instantiated). The reason for the cmpxchg() loop 2073 * --- which wouldn't be necessary if all code paths which modify 2074 * i_flags actually followed this rule, is that there is at least one 2075 * code path which doesn't today so we use cmpxchg() out of an abundance 2076 * of caution. 2077 * 2078 * In the long run, i_mutex is overkill, and we should probably look 2079 * at using the i_lock spinlock to protect i_flags, and then make sure 2080 * it is so documented in include/linux/fs.h and that all code follows 2081 * the locking convention!! 2082 */ 2083 void inode_set_flags(struct inode *inode, unsigned int flags, 2084 unsigned int mask) 2085 { 2086 unsigned int old_flags, new_flags; 2087 2088 WARN_ON_ONCE(flags & ~mask); 2089 do { 2090 old_flags = ACCESS_ONCE(inode->i_flags); 2091 new_flags = (old_flags & ~mask) | flags; 2092 } while (unlikely(cmpxchg(&inode->i_flags, old_flags, 2093 new_flags) != old_flags)); 2094 } 2095 EXPORT_SYMBOL(inode_set_flags); 2096 2097 void inode_nohighmem(struct inode *inode) 2098 { 2099 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2100 } 2101 EXPORT_SYMBOL(inode_nohighmem); 2102 2103 /** 2104 * current_time - Return FS time 2105 * @inode: inode. 2106 * 2107 * Return the current time truncated to the time granularity supported by 2108 * the fs. 2109 * 2110 * Note that inode and inode->sb cannot be NULL. 2111 * Otherwise, the function warns and returns time without truncation. 2112 */ 2113 struct timespec current_time(struct inode *inode) 2114 { 2115 struct timespec now = current_kernel_time(); 2116 2117 if (unlikely(!inode->i_sb)) { 2118 WARN(1, "current_time() called with uninitialized super_block in the inode"); 2119 return now; 2120 } 2121 2122 return timespec_trunc(now, inode->i_sb->s_time_gran); 2123 } 2124 EXPORT_SYMBOL(current_time); 2125