xref: /openbmc/linux/fs/inode.c (revision 6aeadf78)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/filelock.h>
9 #include <linux/mm.h>
10 #include <linux/backing-dev.h>
11 #include <linux/hash.h>
12 #include <linux/swap.h>
13 #include <linux/security.h>
14 #include <linux/cdev.h>
15 #include <linux/memblock.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/prefetch.h>
20 #include <linux/buffer_head.h> /* for inode_has_buffers */
21 #include <linux/ratelimit.h>
22 #include <linux/list_lru.h>
23 #include <linux/iversion.h>
24 #include <trace/events/writeback.h>
25 #include "internal.h"
26 
27 /*
28  * Inode locking rules:
29  *
30  * inode->i_lock protects:
31  *   inode->i_state, inode->i_hash, __iget(), inode->i_io_list
32  * Inode LRU list locks protect:
33  *   inode->i_sb->s_inode_lru, inode->i_lru
34  * inode->i_sb->s_inode_list_lock protects:
35  *   inode->i_sb->s_inodes, inode->i_sb_list
36  * bdi->wb.list_lock protects:
37  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
38  * inode_hash_lock protects:
39  *   inode_hashtable, inode->i_hash
40  *
41  * Lock ordering:
42  *
43  * inode->i_sb->s_inode_list_lock
44  *   inode->i_lock
45  *     Inode LRU list locks
46  *
47  * bdi->wb.list_lock
48  *   inode->i_lock
49  *
50  * inode_hash_lock
51  *   inode->i_sb->s_inode_list_lock
52  *   inode->i_lock
53  *
54  * iunique_lock
55  *   inode_hash_lock
56  */
57 
58 static unsigned int i_hash_mask __read_mostly;
59 static unsigned int i_hash_shift __read_mostly;
60 static struct hlist_head *inode_hashtable __read_mostly;
61 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
62 
63 /*
64  * Empty aops. Can be used for the cases where the user does not
65  * define any of the address_space operations.
66  */
67 const struct address_space_operations empty_aops = {
68 };
69 EXPORT_SYMBOL(empty_aops);
70 
71 static DEFINE_PER_CPU(unsigned long, nr_inodes);
72 static DEFINE_PER_CPU(unsigned long, nr_unused);
73 
74 static struct kmem_cache *inode_cachep __read_mostly;
75 
76 static long get_nr_inodes(void)
77 {
78 	int i;
79 	long sum = 0;
80 	for_each_possible_cpu(i)
81 		sum += per_cpu(nr_inodes, i);
82 	return sum < 0 ? 0 : sum;
83 }
84 
85 static inline long get_nr_inodes_unused(void)
86 {
87 	int i;
88 	long sum = 0;
89 	for_each_possible_cpu(i)
90 		sum += per_cpu(nr_unused, i);
91 	return sum < 0 ? 0 : sum;
92 }
93 
94 long get_nr_dirty_inodes(void)
95 {
96 	/* not actually dirty inodes, but a wild approximation */
97 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
98 	return nr_dirty > 0 ? nr_dirty : 0;
99 }
100 
101 /*
102  * Handle nr_inode sysctl
103  */
104 #ifdef CONFIG_SYSCTL
105 /*
106  * Statistics gathering..
107  */
108 static struct inodes_stat_t inodes_stat;
109 
110 static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer,
111 			  size_t *lenp, loff_t *ppos)
112 {
113 	inodes_stat.nr_inodes = get_nr_inodes();
114 	inodes_stat.nr_unused = get_nr_inodes_unused();
115 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
116 }
117 
118 static struct ctl_table inodes_sysctls[] = {
119 	{
120 		.procname	= "inode-nr",
121 		.data		= &inodes_stat,
122 		.maxlen		= 2*sizeof(long),
123 		.mode		= 0444,
124 		.proc_handler	= proc_nr_inodes,
125 	},
126 	{
127 		.procname	= "inode-state",
128 		.data		= &inodes_stat,
129 		.maxlen		= 7*sizeof(long),
130 		.mode		= 0444,
131 		.proc_handler	= proc_nr_inodes,
132 	},
133 	{ }
134 };
135 
136 static int __init init_fs_inode_sysctls(void)
137 {
138 	register_sysctl_init("fs", inodes_sysctls);
139 	return 0;
140 }
141 early_initcall(init_fs_inode_sysctls);
142 #endif
143 
144 static int no_open(struct inode *inode, struct file *file)
145 {
146 	return -ENXIO;
147 }
148 
149 /**
150  * inode_init_always - perform inode structure initialisation
151  * @sb: superblock inode belongs to
152  * @inode: inode to initialise
153  *
154  * These are initializations that need to be done on every inode
155  * allocation as the fields are not initialised by slab allocation.
156  */
157 int inode_init_always(struct super_block *sb, struct inode *inode)
158 {
159 	static const struct inode_operations empty_iops;
160 	static const struct file_operations no_open_fops = {.open = no_open};
161 	struct address_space *const mapping = &inode->i_data;
162 
163 	inode->i_sb = sb;
164 	inode->i_blkbits = sb->s_blocksize_bits;
165 	inode->i_flags = 0;
166 	atomic64_set(&inode->i_sequence, 0);
167 	atomic_set(&inode->i_count, 1);
168 	inode->i_op = &empty_iops;
169 	inode->i_fop = &no_open_fops;
170 	inode->i_ino = 0;
171 	inode->__i_nlink = 1;
172 	inode->i_opflags = 0;
173 	if (sb->s_xattr)
174 		inode->i_opflags |= IOP_XATTR;
175 	i_uid_write(inode, 0);
176 	i_gid_write(inode, 0);
177 	atomic_set(&inode->i_writecount, 0);
178 	inode->i_size = 0;
179 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
180 	inode->i_blocks = 0;
181 	inode->i_bytes = 0;
182 	inode->i_generation = 0;
183 	inode->i_pipe = NULL;
184 	inode->i_cdev = NULL;
185 	inode->i_link = NULL;
186 	inode->i_dir_seq = 0;
187 	inode->i_rdev = 0;
188 	inode->dirtied_when = 0;
189 
190 #ifdef CONFIG_CGROUP_WRITEBACK
191 	inode->i_wb_frn_winner = 0;
192 	inode->i_wb_frn_avg_time = 0;
193 	inode->i_wb_frn_history = 0;
194 #endif
195 
196 	spin_lock_init(&inode->i_lock);
197 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
198 
199 	init_rwsem(&inode->i_rwsem);
200 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
201 
202 	atomic_set(&inode->i_dio_count, 0);
203 
204 	mapping->a_ops = &empty_aops;
205 	mapping->host = inode;
206 	mapping->flags = 0;
207 	mapping->wb_err = 0;
208 	atomic_set(&mapping->i_mmap_writable, 0);
209 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
210 	atomic_set(&mapping->nr_thps, 0);
211 #endif
212 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
213 	mapping->private_data = NULL;
214 	mapping->writeback_index = 0;
215 	init_rwsem(&mapping->invalidate_lock);
216 	lockdep_set_class_and_name(&mapping->invalidate_lock,
217 				   &sb->s_type->invalidate_lock_key,
218 				   "mapping.invalidate_lock");
219 	inode->i_private = NULL;
220 	inode->i_mapping = mapping;
221 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
222 #ifdef CONFIG_FS_POSIX_ACL
223 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
224 #endif
225 
226 #ifdef CONFIG_FSNOTIFY
227 	inode->i_fsnotify_mask = 0;
228 #endif
229 	inode->i_flctx = NULL;
230 
231 	if (unlikely(security_inode_alloc(inode)))
232 		return -ENOMEM;
233 	this_cpu_inc(nr_inodes);
234 
235 	return 0;
236 }
237 EXPORT_SYMBOL(inode_init_always);
238 
239 void free_inode_nonrcu(struct inode *inode)
240 {
241 	kmem_cache_free(inode_cachep, inode);
242 }
243 EXPORT_SYMBOL(free_inode_nonrcu);
244 
245 static void i_callback(struct rcu_head *head)
246 {
247 	struct inode *inode = container_of(head, struct inode, i_rcu);
248 	if (inode->free_inode)
249 		inode->free_inode(inode);
250 	else
251 		free_inode_nonrcu(inode);
252 }
253 
254 static struct inode *alloc_inode(struct super_block *sb)
255 {
256 	const struct super_operations *ops = sb->s_op;
257 	struct inode *inode;
258 
259 	if (ops->alloc_inode)
260 		inode = ops->alloc_inode(sb);
261 	else
262 		inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL);
263 
264 	if (!inode)
265 		return NULL;
266 
267 	if (unlikely(inode_init_always(sb, inode))) {
268 		if (ops->destroy_inode) {
269 			ops->destroy_inode(inode);
270 			if (!ops->free_inode)
271 				return NULL;
272 		}
273 		inode->free_inode = ops->free_inode;
274 		i_callback(&inode->i_rcu);
275 		return NULL;
276 	}
277 
278 	return inode;
279 }
280 
281 void __destroy_inode(struct inode *inode)
282 {
283 	BUG_ON(inode_has_buffers(inode));
284 	inode_detach_wb(inode);
285 	security_inode_free(inode);
286 	fsnotify_inode_delete(inode);
287 	locks_free_lock_context(inode);
288 	if (!inode->i_nlink) {
289 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
290 		atomic_long_dec(&inode->i_sb->s_remove_count);
291 	}
292 
293 #ifdef CONFIG_FS_POSIX_ACL
294 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
295 		posix_acl_release(inode->i_acl);
296 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
297 		posix_acl_release(inode->i_default_acl);
298 #endif
299 	this_cpu_dec(nr_inodes);
300 }
301 EXPORT_SYMBOL(__destroy_inode);
302 
303 static void destroy_inode(struct inode *inode)
304 {
305 	const struct super_operations *ops = inode->i_sb->s_op;
306 
307 	BUG_ON(!list_empty(&inode->i_lru));
308 	__destroy_inode(inode);
309 	if (ops->destroy_inode) {
310 		ops->destroy_inode(inode);
311 		if (!ops->free_inode)
312 			return;
313 	}
314 	inode->free_inode = ops->free_inode;
315 	call_rcu(&inode->i_rcu, i_callback);
316 }
317 
318 /**
319  * drop_nlink - directly drop an inode's link count
320  * @inode: inode
321  *
322  * This is a low-level filesystem helper to replace any
323  * direct filesystem manipulation of i_nlink.  In cases
324  * where we are attempting to track writes to the
325  * filesystem, a decrement to zero means an imminent
326  * write when the file is truncated and actually unlinked
327  * on the filesystem.
328  */
329 void drop_nlink(struct inode *inode)
330 {
331 	WARN_ON(inode->i_nlink == 0);
332 	inode->__i_nlink--;
333 	if (!inode->i_nlink)
334 		atomic_long_inc(&inode->i_sb->s_remove_count);
335 }
336 EXPORT_SYMBOL(drop_nlink);
337 
338 /**
339  * clear_nlink - directly zero an inode's link count
340  * @inode: inode
341  *
342  * This is a low-level filesystem helper to replace any
343  * direct filesystem manipulation of i_nlink.  See
344  * drop_nlink() for why we care about i_nlink hitting zero.
345  */
346 void clear_nlink(struct inode *inode)
347 {
348 	if (inode->i_nlink) {
349 		inode->__i_nlink = 0;
350 		atomic_long_inc(&inode->i_sb->s_remove_count);
351 	}
352 }
353 EXPORT_SYMBOL(clear_nlink);
354 
355 /**
356  * set_nlink - directly set an inode's link count
357  * @inode: inode
358  * @nlink: new nlink (should be non-zero)
359  *
360  * This is a low-level filesystem helper to replace any
361  * direct filesystem manipulation of i_nlink.
362  */
363 void set_nlink(struct inode *inode, unsigned int nlink)
364 {
365 	if (!nlink) {
366 		clear_nlink(inode);
367 	} else {
368 		/* Yes, some filesystems do change nlink from zero to one */
369 		if (inode->i_nlink == 0)
370 			atomic_long_dec(&inode->i_sb->s_remove_count);
371 
372 		inode->__i_nlink = nlink;
373 	}
374 }
375 EXPORT_SYMBOL(set_nlink);
376 
377 /**
378  * inc_nlink - directly increment an inode's link count
379  * @inode: inode
380  *
381  * This is a low-level filesystem helper to replace any
382  * direct filesystem manipulation of i_nlink.  Currently,
383  * it is only here for parity with dec_nlink().
384  */
385 void inc_nlink(struct inode *inode)
386 {
387 	if (unlikely(inode->i_nlink == 0)) {
388 		WARN_ON(!(inode->i_state & I_LINKABLE));
389 		atomic_long_dec(&inode->i_sb->s_remove_count);
390 	}
391 
392 	inode->__i_nlink++;
393 }
394 EXPORT_SYMBOL(inc_nlink);
395 
396 static void __address_space_init_once(struct address_space *mapping)
397 {
398 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
399 	init_rwsem(&mapping->i_mmap_rwsem);
400 	INIT_LIST_HEAD(&mapping->private_list);
401 	spin_lock_init(&mapping->private_lock);
402 	mapping->i_mmap = RB_ROOT_CACHED;
403 }
404 
405 void address_space_init_once(struct address_space *mapping)
406 {
407 	memset(mapping, 0, sizeof(*mapping));
408 	__address_space_init_once(mapping);
409 }
410 EXPORT_SYMBOL(address_space_init_once);
411 
412 /*
413  * These are initializations that only need to be done
414  * once, because the fields are idempotent across use
415  * of the inode, so let the slab aware of that.
416  */
417 void inode_init_once(struct inode *inode)
418 {
419 	memset(inode, 0, sizeof(*inode));
420 	INIT_HLIST_NODE(&inode->i_hash);
421 	INIT_LIST_HEAD(&inode->i_devices);
422 	INIT_LIST_HEAD(&inode->i_io_list);
423 	INIT_LIST_HEAD(&inode->i_wb_list);
424 	INIT_LIST_HEAD(&inode->i_lru);
425 	INIT_LIST_HEAD(&inode->i_sb_list);
426 	__address_space_init_once(&inode->i_data);
427 	i_size_ordered_init(inode);
428 }
429 EXPORT_SYMBOL(inode_init_once);
430 
431 static void init_once(void *foo)
432 {
433 	struct inode *inode = (struct inode *) foo;
434 
435 	inode_init_once(inode);
436 }
437 
438 /*
439  * inode->i_lock must be held
440  */
441 void __iget(struct inode *inode)
442 {
443 	atomic_inc(&inode->i_count);
444 }
445 
446 /*
447  * get additional reference to inode; caller must already hold one.
448  */
449 void ihold(struct inode *inode)
450 {
451 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
452 }
453 EXPORT_SYMBOL(ihold);
454 
455 static void __inode_add_lru(struct inode *inode, bool rotate)
456 {
457 	if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
458 		return;
459 	if (atomic_read(&inode->i_count))
460 		return;
461 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
462 		return;
463 	if (!mapping_shrinkable(&inode->i_data))
464 		return;
465 
466 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
467 		this_cpu_inc(nr_unused);
468 	else if (rotate)
469 		inode->i_state |= I_REFERENCED;
470 }
471 
472 /*
473  * Add inode to LRU if needed (inode is unused and clean).
474  *
475  * Needs inode->i_lock held.
476  */
477 void inode_add_lru(struct inode *inode)
478 {
479 	__inode_add_lru(inode, false);
480 }
481 
482 static void inode_lru_list_del(struct inode *inode)
483 {
484 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
485 		this_cpu_dec(nr_unused);
486 }
487 
488 /**
489  * inode_sb_list_add - add inode to the superblock list of inodes
490  * @inode: inode to add
491  */
492 void inode_sb_list_add(struct inode *inode)
493 {
494 	spin_lock(&inode->i_sb->s_inode_list_lock);
495 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
496 	spin_unlock(&inode->i_sb->s_inode_list_lock);
497 }
498 EXPORT_SYMBOL_GPL(inode_sb_list_add);
499 
500 static inline void inode_sb_list_del(struct inode *inode)
501 {
502 	if (!list_empty(&inode->i_sb_list)) {
503 		spin_lock(&inode->i_sb->s_inode_list_lock);
504 		list_del_init(&inode->i_sb_list);
505 		spin_unlock(&inode->i_sb->s_inode_list_lock);
506 	}
507 }
508 
509 static unsigned long hash(struct super_block *sb, unsigned long hashval)
510 {
511 	unsigned long tmp;
512 
513 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
514 			L1_CACHE_BYTES;
515 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
516 	return tmp & i_hash_mask;
517 }
518 
519 /**
520  *	__insert_inode_hash - hash an inode
521  *	@inode: unhashed inode
522  *	@hashval: unsigned long value used to locate this object in the
523  *		inode_hashtable.
524  *
525  *	Add an inode to the inode hash for this superblock.
526  */
527 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
528 {
529 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
530 
531 	spin_lock(&inode_hash_lock);
532 	spin_lock(&inode->i_lock);
533 	hlist_add_head_rcu(&inode->i_hash, b);
534 	spin_unlock(&inode->i_lock);
535 	spin_unlock(&inode_hash_lock);
536 }
537 EXPORT_SYMBOL(__insert_inode_hash);
538 
539 /**
540  *	__remove_inode_hash - remove an inode from the hash
541  *	@inode: inode to unhash
542  *
543  *	Remove an inode from the superblock.
544  */
545 void __remove_inode_hash(struct inode *inode)
546 {
547 	spin_lock(&inode_hash_lock);
548 	spin_lock(&inode->i_lock);
549 	hlist_del_init_rcu(&inode->i_hash);
550 	spin_unlock(&inode->i_lock);
551 	spin_unlock(&inode_hash_lock);
552 }
553 EXPORT_SYMBOL(__remove_inode_hash);
554 
555 void dump_mapping(const struct address_space *mapping)
556 {
557 	struct inode *host;
558 	const struct address_space_operations *a_ops;
559 	struct hlist_node *dentry_first;
560 	struct dentry *dentry_ptr;
561 	struct dentry dentry;
562 	unsigned long ino;
563 
564 	/*
565 	 * If mapping is an invalid pointer, we don't want to crash
566 	 * accessing it, so probe everything depending on it carefully.
567 	 */
568 	if (get_kernel_nofault(host, &mapping->host) ||
569 	    get_kernel_nofault(a_ops, &mapping->a_ops)) {
570 		pr_warn("invalid mapping:%px\n", mapping);
571 		return;
572 	}
573 
574 	if (!host) {
575 		pr_warn("aops:%ps\n", a_ops);
576 		return;
577 	}
578 
579 	if (get_kernel_nofault(dentry_first, &host->i_dentry.first) ||
580 	    get_kernel_nofault(ino, &host->i_ino)) {
581 		pr_warn("aops:%ps invalid inode:%px\n", a_ops, host);
582 		return;
583 	}
584 
585 	if (!dentry_first) {
586 		pr_warn("aops:%ps ino:%lx\n", a_ops, ino);
587 		return;
588 	}
589 
590 	dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias);
591 	if (get_kernel_nofault(dentry, dentry_ptr)) {
592 		pr_warn("aops:%ps ino:%lx invalid dentry:%px\n",
593 				a_ops, ino, dentry_ptr);
594 		return;
595 	}
596 
597 	/*
598 	 * if dentry is corrupted, the %pd handler may still crash,
599 	 * but it's unlikely that we reach here with a corrupt mapping
600 	 */
601 	pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry);
602 }
603 
604 void clear_inode(struct inode *inode)
605 {
606 	/*
607 	 * We have to cycle the i_pages lock here because reclaim can be in the
608 	 * process of removing the last page (in __filemap_remove_folio())
609 	 * and we must not free the mapping under it.
610 	 */
611 	xa_lock_irq(&inode->i_data.i_pages);
612 	BUG_ON(inode->i_data.nrpages);
613 	/*
614 	 * Almost always, mapping_empty(&inode->i_data) here; but there are
615 	 * two known and long-standing ways in which nodes may get left behind
616 	 * (when deep radix-tree node allocation failed partway; or when THP
617 	 * collapse_file() failed). Until those two known cases are cleaned up,
618 	 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
619 	 * nor even WARN_ON(!mapping_empty).
620 	 */
621 	xa_unlock_irq(&inode->i_data.i_pages);
622 	BUG_ON(!list_empty(&inode->i_data.private_list));
623 	BUG_ON(!(inode->i_state & I_FREEING));
624 	BUG_ON(inode->i_state & I_CLEAR);
625 	BUG_ON(!list_empty(&inode->i_wb_list));
626 	/* don't need i_lock here, no concurrent mods to i_state */
627 	inode->i_state = I_FREEING | I_CLEAR;
628 }
629 EXPORT_SYMBOL(clear_inode);
630 
631 /*
632  * Free the inode passed in, removing it from the lists it is still connected
633  * to. We remove any pages still attached to the inode and wait for any IO that
634  * is still in progress before finally destroying the inode.
635  *
636  * An inode must already be marked I_FREEING so that we avoid the inode being
637  * moved back onto lists if we race with other code that manipulates the lists
638  * (e.g. writeback_single_inode). The caller is responsible for setting this.
639  *
640  * An inode must already be removed from the LRU list before being evicted from
641  * the cache. This should occur atomically with setting the I_FREEING state
642  * flag, so no inodes here should ever be on the LRU when being evicted.
643  */
644 static void evict(struct inode *inode)
645 {
646 	const struct super_operations *op = inode->i_sb->s_op;
647 
648 	BUG_ON(!(inode->i_state & I_FREEING));
649 	BUG_ON(!list_empty(&inode->i_lru));
650 
651 	if (!list_empty(&inode->i_io_list))
652 		inode_io_list_del(inode);
653 
654 	inode_sb_list_del(inode);
655 
656 	/*
657 	 * Wait for flusher thread to be done with the inode so that filesystem
658 	 * does not start destroying it while writeback is still running. Since
659 	 * the inode has I_FREEING set, flusher thread won't start new work on
660 	 * the inode.  We just have to wait for running writeback to finish.
661 	 */
662 	inode_wait_for_writeback(inode);
663 
664 	if (op->evict_inode) {
665 		op->evict_inode(inode);
666 	} else {
667 		truncate_inode_pages_final(&inode->i_data);
668 		clear_inode(inode);
669 	}
670 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
671 		cd_forget(inode);
672 
673 	remove_inode_hash(inode);
674 
675 	spin_lock(&inode->i_lock);
676 	wake_up_bit(&inode->i_state, __I_NEW);
677 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
678 	spin_unlock(&inode->i_lock);
679 
680 	destroy_inode(inode);
681 }
682 
683 /*
684  * dispose_list - dispose of the contents of a local list
685  * @head: the head of the list to free
686  *
687  * Dispose-list gets a local list with local inodes in it, so it doesn't
688  * need to worry about list corruption and SMP locks.
689  */
690 static void dispose_list(struct list_head *head)
691 {
692 	while (!list_empty(head)) {
693 		struct inode *inode;
694 
695 		inode = list_first_entry(head, struct inode, i_lru);
696 		list_del_init(&inode->i_lru);
697 
698 		evict(inode);
699 		cond_resched();
700 	}
701 }
702 
703 /**
704  * evict_inodes	- evict all evictable inodes for a superblock
705  * @sb:		superblock to operate on
706  *
707  * Make sure that no inodes with zero refcount are retained.  This is
708  * called by superblock shutdown after having SB_ACTIVE flag removed,
709  * so any inode reaching zero refcount during or after that call will
710  * be immediately evicted.
711  */
712 void evict_inodes(struct super_block *sb)
713 {
714 	struct inode *inode, *next;
715 	LIST_HEAD(dispose);
716 
717 again:
718 	spin_lock(&sb->s_inode_list_lock);
719 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
720 		if (atomic_read(&inode->i_count))
721 			continue;
722 
723 		spin_lock(&inode->i_lock);
724 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
725 			spin_unlock(&inode->i_lock);
726 			continue;
727 		}
728 
729 		inode->i_state |= I_FREEING;
730 		inode_lru_list_del(inode);
731 		spin_unlock(&inode->i_lock);
732 		list_add(&inode->i_lru, &dispose);
733 
734 		/*
735 		 * We can have a ton of inodes to evict at unmount time given
736 		 * enough memory, check to see if we need to go to sleep for a
737 		 * bit so we don't livelock.
738 		 */
739 		if (need_resched()) {
740 			spin_unlock(&sb->s_inode_list_lock);
741 			cond_resched();
742 			dispose_list(&dispose);
743 			goto again;
744 		}
745 	}
746 	spin_unlock(&sb->s_inode_list_lock);
747 
748 	dispose_list(&dispose);
749 }
750 EXPORT_SYMBOL_GPL(evict_inodes);
751 
752 /**
753  * invalidate_inodes	- attempt to free all inodes on a superblock
754  * @sb:		superblock to operate on
755  * @kill_dirty: flag to guide handling of dirty inodes
756  *
757  * Attempts to free all inodes for a given superblock.  If there were any
758  * busy inodes return a non-zero value, else zero.
759  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
760  * them as busy.
761  */
762 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
763 {
764 	int busy = 0;
765 	struct inode *inode, *next;
766 	LIST_HEAD(dispose);
767 
768 again:
769 	spin_lock(&sb->s_inode_list_lock);
770 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
771 		spin_lock(&inode->i_lock);
772 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
773 			spin_unlock(&inode->i_lock);
774 			continue;
775 		}
776 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
777 			spin_unlock(&inode->i_lock);
778 			busy = 1;
779 			continue;
780 		}
781 		if (atomic_read(&inode->i_count)) {
782 			spin_unlock(&inode->i_lock);
783 			busy = 1;
784 			continue;
785 		}
786 
787 		inode->i_state |= I_FREEING;
788 		inode_lru_list_del(inode);
789 		spin_unlock(&inode->i_lock);
790 		list_add(&inode->i_lru, &dispose);
791 		if (need_resched()) {
792 			spin_unlock(&sb->s_inode_list_lock);
793 			cond_resched();
794 			dispose_list(&dispose);
795 			goto again;
796 		}
797 	}
798 	spin_unlock(&sb->s_inode_list_lock);
799 
800 	dispose_list(&dispose);
801 
802 	return busy;
803 }
804 
805 /*
806  * Isolate the inode from the LRU in preparation for freeing it.
807  *
808  * If the inode has the I_REFERENCED flag set, then it means that it has been
809  * used recently - the flag is set in iput_final(). When we encounter such an
810  * inode, clear the flag and move it to the back of the LRU so it gets another
811  * pass through the LRU before it gets reclaimed. This is necessary because of
812  * the fact we are doing lazy LRU updates to minimise lock contention so the
813  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
814  * with this flag set because they are the inodes that are out of order.
815  */
816 static enum lru_status inode_lru_isolate(struct list_head *item,
817 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
818 {
819 	struct list_head *freeable = arg;
820 	struct inode	*inode = container_of(item, struct inode, i_lru);
821 
822 	/*
823 	 * We are inverting the lru lock/inode->i_lock here, so use a
824 	 * trylock. If we fail to get the lock, just skip it.
825 	 */
826 	if (!spin_trylock(&inode->i_lock))
827 		return LRU_SKIP;
828 
829 	/*
830 	 * Inodes can get referenced, redirtied, or repopulated while
831 	 * they're already on the LRU, and this can make them
832 	 * unreclaimable for a while. Remove them lazily here; iput,
833 	 * sync, or the last page cache deletion will requeue them.
834 	 */
835 	if (atomic_read(&inode->i_count) ||
836 	    (inode->i_state & ~I_REFERENCED) ||
837 	    !mapping_shrinkable(&inode->i_data)) {
838 		list_lru_isolate(lru, &inode->i_lru);
839 		spin_unlock(&inode->i_lock);
840 		this_cpu_dec(nr_unused);
841 		return LRU_REMOVED;
842 	}
843 
844 	/* Recently referenced inodes get one more pass */
845 	if (inode->i_state & I_REFERENCED) {
846 		inode->i_state &= ~I_REFERENCED;
847 		spin_unlock(&inode->i_lock);
848 		return LRU_ROTATE;
849 	}
850 
851 	/*
852 	 * On highmem systems, mapping_shrinkable() permits dropping
853 	 * page cache in order to free up struct inodes: lowmem might
854 	 * be under pressure before the cache inside the highmem zone.
855 	 */
856 	if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
857 		__iget(inode);
858 		spin_unlock(&inode->i_lock);
859 		spin_unlock(lru_lock);
860 		if (remove_inode_buffers(inode)) {
861 			unsigned long reap;
862 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
863 			if (current_is_kswapd())
864 				__count_vm_events(KSWAPD_INODESTEAL, reap);
865 			else
866 				__count_vm_events(PGINODESTEAL, reap);
867 			mm_account_reclaimed_pages(reap);
868 		}
869 		iput(inode);
870 		spin_lock(lru_lock);
871 		return LRU_RETRY;
872 	}
873 
874 	WARN_ON(inode->i_state & I_NEW);
875 	inode->i_state |= I_FREEING;
876 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
877 	spin_unlock(&inode->i_lock);
878 
879 	this_cpu_dec(nr_unused);
880 	return LRU_REMOVED;
881 }
882 
883 /*
884  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
885  * This is called from the superblock shrinker function with a number of inodes
886  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
887  * then are freed outside inode_lock by dispose_list().
888  */
889 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
890 {
891 	LIST_HEAD(freeable);
892 	long freed;
893 
894 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
895 				     inode_lru_isolate, &freeable);
896 	dispose_list(&freeable);
897 	return freed;
898 }
899 
900 static void __wait_on_freeing_inode(struct inode *inode);
901 /*
902  * Called with the inode lock held.
903  */
904 static struct inode *find_inode(struct super_block *sb,
905 				struct hlist_head *head,
906 				int (*test)(struct inode *, void *),
907 				void *data)
908 {
909 	struct inode *inode = NULL;
910 
911 repeat:
912 	hlist_for_each_entry(inode, head, i_hash) {
913 		if (inode->i_sb != sb)
914 			continue;
915 		if (!test(inode, data))
916 			continue;
917 		spin_lock(&inode->i_lock);
918 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
919 			__wait_on_freeing_inode(inode);
920 			goto repeat;
921 		}
922 		if (unlikely(inode->i_state & I_CREATING)) {
923 			spin_unlock(&inode->i_lock);
924 			return ERR_PTR(-ESTALE);
925 		}
926 		__iget(inode);
927 		spin_unlock(&inode->i_lock);
928 		return inode;
929 	}
930 	return NULL;
931 }
932 
933 /*
934  * find_inode_fast is the fast path version of find_inode, see the comment at
935  * iget_locked for details.
936  */
937 static struct inode *find_inode_fast(struct super_block *sb,
938 				struct hlist_head *head, unsigned long ino)
939 {
940 	struct inode *inode = NULL;
941 
942 repeat:
943 	hlist_for_each_entry(inode, head, i_hash) {
944 		if (inode->i_ino != ino)
945 			continue;
946 		if (inode->i_sb != sb)
947 			continue;
948 		spin_lock(&inode->i_lock);
949 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
950 			__wait_on_freeing_inode(inode);
951 			goto repeat;
952 		}
953 		if (unlikely(inode->i_state & I_CREATING)) {
954 			spin_unlock(&inode->i_lock);
955 			return ERR_PTR(-ESTALE);
956 		}
957 		__iget(inode);
958 		spin_unlock(&inode->i_lock);
959 		return inode;
960 	}
961 	return NULL;
962 }
963 
964 /*
965  * Each cpu owns a range of LAST_INO_BATCH numbers.
966  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
967  * to renew the exhausted range.
968  *
969  * This does not significantly increase overflow rate because every CPU can
970  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
971  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
972  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
973  * overflow rate by 2x, which does not seem too significant.
974  *
975  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
976  * error if st_ino won't fit in target struct field. Use 32bit counter
977  * here to attempt to avoid that.
978  */
979 #define LAST_INO_BATCH 1024
980 static DEFINE_PER_CPU(unsigned int, last_ino);
981 
982 unsigned int get_next_ino(void)
983 {
984 	unsigned int *p = &get_cpu_var(last_ino);
985 	unsigned int res = *p;
986 
987 #ifdef CONFIG_SMP
988 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
989 		static atomic_t shared_last_ino;
990 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
991 
992 		res = next - LAST_INO_BATCH;
993 	}
994 #endif
995 
996 	res++;
997 	/* get_next_ino should not provide a 0 inode number */
998 	if (unlikely(!res))
999 		res++;
1000 	*p = res;
1001 	put_cpu_var(last_ino);
1002 	return res;
1003 }
1004 EXPORT_SYMBOL(get_next_ino);
1005 
1006 /**
1007  *	new_inode_pseudo 	- obtain an inode
1008  *	@sb: superblock
1009  *
1010  *	Allocates a new inode for given superblock.
1011  *	Inode wont be chained in superblock s_inodes list
1012  *	This means :
1013  *	- fs can't be unmount
1014  *	- quotas, fsnotify, writeback can't work
1015  */
1016 struct inode *new_inode_pseudo(struct super_block *sb)
1017 {
1018 	struct inode *inode = alloc_inode(sb);
1019 
1020 	if (inode) {
1021 		spin_lock(&inode->i_lock);
1022 		inode->i_state = 0;
1023 		spin_unlock(&inode->i_lock);
1024 	}
1025 	return inode;
1026 }
1027 
1028 /**
1029  *	new_inode 	- obtain an inode
1030  *	@sb: superblock
1031  *
1032  *	Allocates a new inode for given superblock. The default gfp_mask
1033  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
1034  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
1035  *	for the page cache are not reclaimable or migratable,
1036  *	mapping_set_gfp_mask() must be called with suitable flags on the
1037  *	newly created inode's mapping
1038  *
1039  */
1040 struct inode *new_inode(struct super_block *sb)
1041 {
1042 	struct inode *inode;
1043 
1044 	spin_lock_prefetch(&sb->s_inode_list_lock);
1045 
1046 	inode = new_inode_pseudo(sb);
1047 	if (inode)
1048 		inode_sb_list_add(inode);
1049 	return inode;
1050 }
1051 EXPORT_SYMBOL(new_inode);
1052 
1053 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1054 void lockdep_annotate_inode_mutex_key(struct inode *inode)
1055 {
1056 	if (S_ISDIR(inode->i_mode)) {
1057 		struct file_system_type *type = inode->i_sb->s_type;
1058 
1059 		/* Set new key only if filesystem hasn't already changed it */
1060 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
1061 			/*
1062 			 * ensure nobody is actually holding i_mutex
1063 			 */
1064 			// mutex_destroy(&inode->i_mutex);
1065 			init_rwsem(&inode->i_rwsem);
1066 			lockdep_set_class(&inode->i_rwsem,
1067 					  &type->i_mutex_dir_key);
1068 		}
1069 	}
1070 }
1071 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
1072 #endif
1073 
1074 /**
1075  * unlock_new_inode - clear the I_NEW state and wake up any waiters
1076  * @inode:	new inode to unlock
1077  *
1078  * Called when the inode is fully initialised to clear the new state of the
1079  * inode and wake up anyone waiting for the inode to finish initialisation.
1080  */
1081 void unlock_new_inode(struct inode *inode)
1082 {
1083 	lockdep_annotate_inode_mutex_key(inode);
1084 	spin_lock(&inode->i_lock);
1085 	WARN_ON(!(inode->i_state & I_NEW));
1086 	inode->i_state &= ~I_NEW & ~I_CREATING;
1087 	smp_mb();
1088 	wake_up_bit(&inode->i_state, __I_NEW);
1089 	spin_unlock(&inode->i_lock);
1090 }
1091 EXPORT_SYMBOL(unlock_new_inode);
1092 
1093 void discard_new_inode(struct inode *inode)
1094 {
1095 	lockdep_annotate_inode_mutex_key(inode);
1096 	spin_lock(&inode->i_lock);
1097 	WARN_ON(!(inode->i_state & I_NEW));
1098 	inode->i_state &= ~I_NEW;
1099 	smp_mb();
1100 	wake_up_bit(&inode->i_state, __I_NEW);
1101 	spin_unlock(&inode->i_lock);
1102 	iput(inode);
1103 }
1104 EXPORT_SYMBOL(discard_new_inode);
1105 
1106 /**
1107  * lock_two_inodes - lock two inodes (may be regular files but also dirs)
1108  *
1109  * Lock any non-NULL argument. The caller must make sure that if he is passing
1110  * in two directories, one is not ancestor of the other.  Zero, one or two
1111  * objects may be locked by this function.
1112  *
1113  * @inode1: first inode to lock
1114  * @inode2: second inode to lock
1115  * @subclass1: inode lock subclass for the first lock obtained
1116  * @subclass2: inode lock subclass for the second lock obtained
1117  */
1118 void lock_two_inodes(struct inode *inode1, struct inode *inode2,
1119 		     unsigned subclass1, unsigned subclass2)
1120 {
1121 	if (!inode1 || !inode2) {
1122 		/*
1123 		 * Make sure @subclass1 will be used for the acquired lock.
1124 		 * This is not strictly necessary (no current caller cares) but
1125 		 * let's keep things consistent.
1126 		 */
1127 		if (!inode1)
1128 			swap(inode1, inode2);
1129 		goto lock;
1130 	}
1131 
1132 	/*
1133 	 * If one object is directory and the other is not, we must make sure
1134 	 * to lock directory first as the other object may be its child.
1135 	 */
1136 	if (S_ISDIR(inode2->i_mode) == S_ISDIR(inode1->i_mode)) {
1137 		if (inode1 > inode2)
1138 			swap(inode1, inode2);
1139 	} else if (!S_ISDIR(inode1->i_mode))
1140 		swap(inode1, inode2);
1141 lock:
1142 	if (inode1)
1143 		inode_lock_nested(inode1, subclass1);
1144 	if (inode2 && inode2 != inode1)
1145 		inode_lock_nested(inode2, subclass2);
1146 }
1147 
1148 /**
1149  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1150  *
1151  * Lock any non-NULL argument. Passed objects must not be directories.
1152  * Zero, one or two objects may be locked by this function.
1153  *
1154  * @inode1: first inode to lock
1155  * @inode2: second inode to lock
1156  */
1157 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1158 {
1159 	WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1160 	WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1161 	lock_two_inodes(inode1, inode2, I_MUTEX_NORMAL, I_MUTEX_NONDIR2);
1162 }
1163 EXPORT_SYMBOL(lock_two_nondirectories);
1164 
1165 /**
1166  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1167  * @inode1: first inode to unlock
1168  * @inode2: second inode to unlock
1169  */
1170 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1171 {
1172 	if (inode1) {
1173 		WARN_ON_ONCE(S_ISDIR(inode1->i_mode));
1174 		inode_unlock(inode1);
1175 	}
1176 	if (inode2 && inode2 != inode1) {
1177 		WARN_ON_ONCE(S_ISDIR(inode2->i_mode));
1178 		inode_unlock(inode2);
1179 	}
1180 }
1181 EXPORT_SYMBOL(unlock_two_nondirectories);
1182 
1183 /**
1184  * inode_insert5 - obtain an inode from a mounted file system
1185  * @inode:	pre-allocated inode to use for insert to cache
1186  * @hashval:	hash value (usually inode number) to get
1187  * @test:	callback used for comparisons between inodes
1188  * @set:	callback used to initialize a new struct inode
1189  * @data:	opaque data pointer to pass to @test and @set
1190  *
1191  * Search for the inode specified by @hashval and @data in the inode cache,
1192  * and if present it is return it with an increased reference count. This is
1193  * a variant of iget5_locked() for callers that don't want to fail on memory
1194  * allocation of inode.
1195  *
1196  * If the inode is not in cache, insert the pre-allocated inode to cache and
1197  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1198  * to fill it in before unlocking it via unlock_new_inode().
1199  *
1200  * Note both @test and @set are called with the inode_hash_lock held, so can't
1201  * sleep.
1202  */
1203 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1204 			    int (*test)(struct inode *, void *),
1205 			    int (*set)(struct inode *, void *), void *data)
1206 {
1207 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1208 	struct inode *old;
1209 
1210 again:
1211 	spin_lock(&inode_hash_lock);
1212 	old = find_inode(inode->i_sb, head, test, data);
1213 	if (unlikely(old)) {
1214 		/*
1215 		 * Uhhuh, somebody else created the same inode under us.
1216 		 * Use the old inode instead of the preallocated one.
1217 		 */
1218 		spin_unlock(&inode_hash_lock);
1219 		if (IS_ERR(old))
1220 			return NULL;
1221 		wait_on_inode(old);
1222 		if (unlikely(inode_unhashed(old))) {
1223 			iput(old);
1224 			goto again;
1225 		}
1226 		return old;
1227 	}
1228 
1229 	if (set && unlikely(set(inode, data))) {
1230 		inode = NULL;
1231 		goto unlock;
1232 	}
1233 
1234 	/*
1235 	 * Return the locked inode with I_NEW set, the
1236 	 * caller is responsible for filling in the contents
1237 	 */
1238 	spin_lock(&inode->i_lock);
1239 	inode->i_state |= I_NEW;
1240 	hlist_add_head_rcu(&inode->i_hash, head);
1241 	spin_unlock(&inode->i_lock);
1242 
1243 	/*
1244 	 * Add inode to the sb list if it's not already. It has I_NEW at this
1245 	 * point, so it should be safe to test i_sb_list locklessly.
1246 	 */
1247 	if (list_empty(&inode->i_sb_list))
1248 		inode_sb_list_add(inode);
1249 unlock:
1250 	spin_unlock(&inode_hash_lock);
1251 
1252 	return inode;
1253 }
1254 EXPORT_SYMBOL(inode_insert5);
1255 
1256 /**
1257  * iget5_locked - obtain an inode from a mounted file system
1258  * @sb:		super block of file system
1259  * @hashval:	hash value (usually inode number) to get
1260  * @test:	callback used for comparisons between inodes
1261  * @set:	callback used to initialize a new struct inode
1262  * @data:	opaque data pointer to pass to @test and @set
1263  *
1264  * Search for the inode specified by @hashval and @data in the inode cache,
1265  * and if present it is return it with an increased reference count. This is
1266  * a generalized version of iget_locked() for file systems where the inode
1267  * number is not sufficient for unique identification of an inode.
1268  *
1269  * If the inode is not in cache, allocate a new inode and return it locked,
1270  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1271  * before unlocking it via unlock_new_inode().
1272  *
1273  * Note both @test and @set are called with the inode_hash_lock held, so can't
1274  * sleep.
1275  */
1276 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1277 		int (*test)(struct inode *, void *),
1278 		int (*set)(struct inode *, void *), void *data)
1279 {
1280 	struct inode *inode = ilookup5(sb, hashval, test, data);
1281 
1282 	if (!inode) {
1283 		struct inode *new = alloc_inode(sb);
1284 
1285 		if (new) {
1286 			new->i_state = 0;
1287 			inode = inode_insert5(new, hashval, test, set, data);
1288 			if (unlikely(inode != new))
1289 				destroy_inode(new);
1290 		}
1291 	}
1292 	return inode;
1293 }
1294 EXPORT_SYMBOL(iget5_locked);
1295 
1296 /**
1297  * iget_locked - obtain an inode from a mounted file system
1298  * @sb:		super block of file system
1299  * @ino:	inode number to get
1300  *
1301  * Search for the inode specified by @ino in the inode cache and if present
1302  * return it with an increased reference count. This is for file systems
1303  * where the inode number is sufficient for unique identification of an inode.
1304  *
1305  * If the inode is not in cache, allocate a new inode and return it locked,
1306  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1307  * before unlocking it via unlock_new_inode().
1308  */
1309 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1310 {
1311 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1312 	struct inode *inode;
1313 again:
1314 	spin_lock(&inode_hash_lock);
1315 	inode = find_inode_fast(sb, head, ino);
1316 	spin_unlock(&inode_hash_lock);
1317 	if (inode) {
1318 		if (IS_ERR(inode))
1319 			return NULL;
1320 		wait_on_inode(inode);
1321 		if (unlikely(inode_unhashed(inode))) {
1322 			iput(inode);
1323 			goto again;
1324 		}
1325 		return inode;
1326 	}
1327 
1328 	inode = alloc_inode(sb);
1329 	if (inode) {
1330 		struct inode *old;
1331 
1332 		spin_lock(&inode_hash_lock);
1333 		/* We released the lock, so.. */
1334 		old = find_inode_fast(sb, head, ino);
1335 		if (!old) {
1336 			inode->i_ino = ino;
1337 			spin_lock(&inode->i_lock);
1338 			inode->i_state = I_NEW;
1339 			hlist_add_head_rcu(&inode->i_hash, head);
1340 			spin_unlock(&inode->i_lock);
1341 			inode_sb_list_add(inode);
1342 			spin_unlock(&inode_hash_lock);
1343 
1344 			/* Return the locked inode with I_NEW set, the
1345 			 * caller is responsible for filling in the contents
1346 			 */
1347 			return inode;
1348 		}
1349 
1350 		/*
1351 		 * Uhhuh, somebody else created the same inode under
1352 		 * us. Use the old inode instead of the one we just
1353 		 * allocated.
1354 		 */
1355 		spin_unlock(&inode_hash_lock);
1356 		destroy_inode(inode);
1357 		if (IS_ERR(old))
1358 			return NULL;
1359 		inode = old;
1360 		wait_on_inode(inode);
1361 		if (unlikely(inode_unhashed(inode))) {
1362 			iput(inode);
1363 			goto again;
1364 		}
1365 	}
1366 	return inode;
1367 }
1368 EXPORT_SYMBOL(iget_locked);
1369 
1370 /*
1371  * search the inode cache for a matching inode number.
1372  * If we find one, then the inode number we are trying to
1373  * allocate is not unique and so we should not use it.
1374  *
1375  * Returns 1 if the inode number is unique, 0 if it is not.
1376  */
1377 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1378 {
1379 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1380 	struct inode *inode;
1381 
1382 	hlist_for_each_entry_rcu(inode, b, i_hash) {
1383 		if (inode->i_ino == ino && inode->i_sb == sb)
1384 			return 0;
1385 	}
1386 	return 1;
1387 }
1388 
1389 /**
1390  *	iunique - get a unique inode number
1391  *	@sb: superblock
1392  *	@max_reserved: highest reserved inode number
1393  *
1394  *	Obtain an inode number that is unique on the system for a given
1395  *	superblock. This is used by file systems that have no natural
1396  *	permanent inode numbering system. An inode number is returned that
1397  *	is higher than the reserved limit but unique.
1398  *
1399  *	BUGS:
1400  *	With a large number of inodes live on the file system this function
1401  *	currently becomes quite slow.
1402  */
1403 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1404 {
1405 	/*
1406 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1407 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1408 	 * here to attempt to avoid that.
1409 	 */
1410 	static DEFINE_SPINLOCK(iunique_lock);
1411 	static unsigned int counter;
1412 	ino_t res;
1413 
1414 	rcu_read_lock();
1415 	spin_lock(&iunique_lock);
1416 	do {
1417 		if (counter <= max_reserved)
1418 			counter = max_reserved + 1;
1419 		res = counter++;
1420 	} while (!test_inode_iunique(sb, res));
1421 	spin_unlock(&iunique_lock);
1422 	rcu_read_unlock();
1423 
1424 	return res;
1425 }
1426 EXPORT_SYMBOL(iunique);
1427 
1428 struct inode *igrab(struct inode *inode)
1429 {
1430 	spin_lock(&inode->i_lock);
1431 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1432 		__iget(inode);
1433 		spin_unlock(&inode->i_lock);
1434 	} else {
1435 		spin_unlock(&inode->i_lock);
1436 		/*
1437 		 * Handle the case where s_op->clear_inode is not been
1438 		 * called yet, and somebody is calling igrab
1439 		 * while the inode is getting freed.
1440 		 */
1441 		inode = NULL;
1442 	}
1443 	return inode;
1444 }
1445 EXPORT_SYMBOL(igrab);
1446 
1447 /**
1448  * ilookup5_nowait - search for an inode in the inode cache
1449  * @sb:		super block of file system to search
1450  * @hashval:	hash value (usually inode number) to search for
1451  * @test:	callback used for comparisons between inodes
1452  * @data:	opaque data pointer to pass to @test
1453  *
1454  * Search for the inode specified by @hashval and @data in the inode cache.
1455  * If the inode is in the cache, the inode is returned with an incremented
1456  * reference count.
1457  *
1458  * Note: I_NEW is not waited upon so you have to be very careful what you do
1459  * with the returned inode.  You probably should be using ilookup5() instead.
1460  *
1461  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1462  */
1463 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1464 		int (*test)(struct inode *, void *), void *data)
1465 {
1466 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1467 	struct inode *inode;
1468 
1469 	spin_lock(&inode_hash_lock);
1470 	inode = find_inode(sb, head, test, data);
1471 	spin_unlock(&inode_hash_lock);
1472 
1473 	return IS_ERR(inode) ? NULL : inode;
1474 }
1475 EXPORT_SYMBOL(ilookup5_nowait);
1476 
1477 /**
1478  * ilookup5 - search for an inode in the inode cache
1479  * @sb:		super block of file system to search
1480  * @hashval:	hash value (usually inode number) to search for
1481  * @test:	callback used for comparisons between inodes
1482  * @data:	opaque data pointer to pass to @test
1483  *
1484  * Search for the inode specified by @hashval and @data in the inode cache,
1485  * and if the inode is in the cache, return the inode with an incremented
1486  * reference count.  Waits on I_NEW before returning the inode.
1487  * returned with an incremented reference count.
1488  *
1489  * This is a generalized version of ilookup() for file systems where the
1490  * inode number is not sufficient for unique identification of an inode.
1491  *
1492  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1493  */
1494 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1495 		int (*test)(struct inode *, void *), void *data)
1496 {
1497 	struct inode *inode;
1498 again:
1499 	inode = ilookup5_nowait(sb, hashval, test, data);
1500 	if (inode) {
1501 		wait_on_inode(inode);
1502 		if (unlikely(inode_unhashed(inode))) {
1503 			iput(inode);
1504 			goto again;
1505 		}
1506 	}
1507 	return inode;
1508 }
1509 EXPORT_SYMBOL(ilookup5);
1510 
1511 /**
1512  * ilookup - search for an inode in the inode cache
1513  * @sb:		super block of file system to search
1514  * @ino:	inode number to search for
1515  *
1516  * Search for the inode @ino in the inode cache, and if the inode is in the
1517  * cache, the inode is returned with an incremented reference count.
1518  */
1519 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1520 {
1521 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1522 	struct inode *inode;
1523 again:
1524 	spin_lock(&inode_hash_lock);
1525 	inode = find_inode_fast(sb, head, ino);
1526 	spin_unlock(&inode_hash_lock);
1527 
1528 	if (inode) {
1529 		if (IS_ERR(inode))
1530 			return NULL;
1531 		wait_on_inode(inode);
1532 		if (unlikely(inode_unhashed(inode))) {
1533 			iput(inode);
1534 			goto again;
1535 		}
1536 	}
1537 	return inode;
1538 }
1539 EXPORT_SYMBOL(ilookup);
1540 
1541 /**
1542  * find_inode_nowait - find an inode in the inode cache
1543  * @sb:		super block of file system to search
1544  * @hashval:	hash value (usually inode number) to search for
1545  * @match:	callback used for comparisons between inodes
1546  * @data:	opaque data pointer to pass to @match
1547  *
1548  * Search for the inode specified by @hashval and @data in the inode
1549  * cache, where the helper function @match will return 0 if the inode
1550  * does not match, 1 if the inode does match, and -1 if the search
1551  * should be stopped.  The @match function must be responsible for
1552  * taking the i_lock spin_lock and checking i_state for an inode being
1553  * freed or being initialized, and incrementing the reference count
1554  * before returning 1.  It also must not sleep, since it is called with
1555  * the inode_hash_lock spinlock held.
1556  *
1557  * This is a even more generalized version of ilookup5() when the
1558  * function must never block --- find_inode() can block in
1559  * __wait_on_freeing_inode() --- or when the caller can not increment
1560  * the reference count because the resulting iput() might cause an
1561  * inode eviction.  The tradeoff is that the @match funtion must be
1562  * very carefully implemented.
1563  */
1564 struct inode *find_inode_nowait(struct super_block *sb,
1565 				unsigned long hashval,
1566 				int (*match)(struct inode *, unsigned long,
1567 					     void *),
1568 				void *data)
1569 {
1570 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1571 	struct inode *inode, *ret_inode = NULL;
1572 	int mval;
1573 
1574 	spin_lock(&inode_hash_lock);
1575 	hlist_for_each_entry(inode, head, i_hash) {
1576 		if (inode->i_sb != sb)
1577 			continue;
1578 		mval = match(inode, hashval, data);
1579 		if (mval == 0)
1580 			continue;
1581 		if (mval == 1)
1582 			ret_inode = inode;
1583 		goto out;
1584 	}
1585 out:
1586 	spin_unlock(&inode_hash_lock);
1587 	return ret_inode;
1588 }
1589 EXPORT_SYMBOL(find_inode_nowait);
1590 
1591 /**
1592  * find_inode_rcu - find an inode in the inode cache
1593  * @sb:		Super block of file system to search
1594  * @hashval:	Key to hash
1595  * @test:	Function to test match on an inode
1596  * @data:	Data for test function
1597  *
1598  * Search for the inode specified by @hashval and @data in the inode cache,
1599  * where the helper function @test will return 0 if the inode does not match
1600  * and 1 if it does.  The @test function must be responsible for taking the
1601  * i_lock spin_lock and checking i_state for an inode being freed or being
1602  * initialized.
1603  *
1604  * If successful, this will return the inode for which the @test function
1605  * returned 1 and NULL otherwise.
1606  *
1607  * The @test function is not permitted to take a ref on any inode presented.
1608  * It is also not permitted to sleep.
1609  *
1610  * The caller must hold the RCU read lock.
1611  */
1612 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1613 			     int (*test)(struct inode *, void *), void *data)
1614 {
1615 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1616 	struct inode *inode;
1617 
1618 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1619 			 "suspicious find_inode_rcu() usage");
1620 
1621 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1622 		if (inode->i_sb == sb &&
1623 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1624 		    test(inode, data))
1625 			return inode;
1626 	}
1627 	return NULL;
1628 }
1629 EXPORT_SYMBOL(find_inode_rcu);
1630 
1631 /**
1632  * find_inode_by_ino_rcu - Find an inode in the inode cache
1633  * @sb:		Super block of file system to search
1634  * @ino:	The inode number to match
1635  *
1636  * Search for the inode specified by @hashval and @data in the inode cache,
1637  * where the helper function @test will return 0 if the inode does not match
1638  * and 1 if it does.  The @test function must be responsible for taking the
1639  * i_lock spin_lock and checking i_state for an inode being freed or being
1640  * initialized.
1641  *
1642  * If successful, this will return the inode for which the @test function
1643  * returned 1 and NULL otherwise.
1644  *
1645  * The @test function is not permitted to take a ref on any inode presented.
1646  * It is also not permitted to sleep.
1647  *
1648  * The caller must hold the RCU read lock.
1649  */
1650 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1651 				    unsigned long ino)
1652 {
1653 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1654 	struct inode *inode;
1655 
1656 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1657 			 "suspicious find_inode_by_ino_rcu() usage");
1658 
1659 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1660 		if (inode->i_ino == ino &&
1661 		    inode->i_sb == sb &&
1662 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1663 		    return inode;
1664 	}
1665 	return NULL;
1666 }
1667 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1668 
1669 int insert_inode_locked(struct inode *inode)
1670 {
1671 	struct super_block *sb = inode->i_sb;
1672 	ino_t ino = inode->i_ino;
1673 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1674 
1675 	while (1) {
1676 		struct inode *old = NULL;
1677 		spin_lock(&inode_hash_lock);
1678 		hlist_for_each_entry(old, head, i_hash) {
1679 			if (old->i_ino != ino)
1680 				continue;
1681 			if (old->i_sb != sb)
1682 				continue;
1683 			spin_lock(&old->i_lock);
1684 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1685 				spin_unlock(&old->i_lock);
1686 				continue;
1687 			}
1688 			break;
1689 		}
1690 		if (likely(!old)) {
1691 			spin_lock(&inode->i_lock);
1692 			inode->i_state |= I_NEW | I_CREATING;
1693 			hlist_add_head_rcu(&inode->i_hash, head);
1694 			spin_unlock(&inode->i_lock);
1695 			spin_unlock(&inode_hash_lock);
1696 			return 0;
1697 		}
1698 		if (unlikely(old->i_state & I_CREATING)) {
1699 			spin_unlock(&old->i_lock);
1700 			spin_unlock(&inode_hash_lock);
1701 			return -EBUSY;
1702 		}
1703 		__iget(old);
1704 		spin_unlock(&old->i_lock);
1705 		spin_unlock(&inode_hash_lock);
1706 		wait_on_inode(old);
1707 		if (unlikely(!inode_unhashed(old))) {
1708 			iput(old);
1709 			return -EBUSY;
1710 		}
1711 		iput(old);
1712 	}
1713 }
1714 EXPORT_SYMBOL(insert_inode_locked);
1715 
1716 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1717 		int (*test)(struct inode *, void *), void *data)
1718 {
1719 	struct inode *old;
1720 
1721 	inode->i_state |= I_CREATING;
1722 	old = inode_insert5(inode, hashval, test, NULL, data);
1723 
1724 	if (old != inode) {
1725 		iput(old);
1726 		return -EBUSY;
1727 	}
1728 	return 0;
1729 }
1730 EXPORT_SYMBOL(insert_inode_locked4);
1731 
1732 
1733 int generic_delete_inode(struct inode *inode)
1734 {
1735 	return 1;
1736 }
1737 EXPORT_SYMBOL(generic_delete_inode);
1738 
1739 /*
1740  * Called when we're dropping the last reference
1741  * to an inode.
1742  *
1743  * Call the FS "drop_inode()" function, defaulting to
1744  * the legacy UNIX filesystem behaviour.  If it tells
1745  * us to evict inode, do so.  Otherwise, retain inode
1746  * in cache if fs is alive, sync and evict if fs is
1747  * shutting down.
1748  */
1749 static void iput_final(struct inode *inode)
1750 {
1751 	struct super_block *sb = inode->i_sb;
1752 	const struct super_operations *op = inode->i_sb->s_op;
1753 	unsigned long state;
1754 	int drop;
1755 
1756 	WARN_ON(inode->i_state & I_NEW);
1757 
1758 	if (op->drop_inode)
1759 		drop = op->drop_inode(inode);
1760 	else
1761 		drop = generic_drop_inode(inode);
1762 
1763 	if (!drop &&
1764 	    !(inode->i_state & I_DONTCACHE) &&
1765 	    (sb->s_flags & SB_ACTIVE)) {
1766 		__inode_add_lru(inode, true);
1767 		spin_unlock(&inode->i_lock);
1768 		return;
1769 	}
1770 
1771 	state = inode->i_state;
1772 	if (!drop) {
1773 		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1774 		spin_unlock(&inode->i_lock);
1775 
1776 		write_inode_now(inode, 1);
1777 
1778 		spin_lock(&inode->i_lock);
1779 		state = inode->i_state;
1780 		WARN_ON(state & I_NEW);
1781 		state &= ~I_WILL_FREE;
1782 	}
1783 
1784 	WRITE_ONCE(inode->i_state, state | I_FREEING);
1785 	if (!list_empty(&inode->i_lru))
1786 		inode_lru_list_del(inode);
1787 	spin_unlock(&inode->i_lock);
1788 
1789 	evict(inode);
1790 }
1791 
1792 /**
1793  *	iput	- put an inode
1794  *	@inode: inode to put
1795  *
1796  *	Puts an inode, dropping its usage count. If the inode use count hits
1797  *	zero, the inode is then freed and may also be destroyed.
1798  *
1799  *	Consequently, iput() can sleep.
1800  */
1801 void iput(struct inode *inode)
1802 {
1803 	if (!inode)
1804 		return;
1805 	BUG_ON(inode->i_state & I_CLEAR);
1806 retry:
1807 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1808 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1809 			atomic_inc(&inode->i_count);
1810 			spin_unlock(&inode->i_lock);
1811 			trace_writeback_lazytime_iput(inode);
1812 			mark_inode_dirty_sync(inode);
1813 			goto retry;
1814 		}
1815 		iput_final(inode);
1816 	}
1817 }
1818 EXPORT_SYMBOL(iput);
1819 
1820 #ifdef CONFIG_BLOCK
1821 /**
1822  *	bmap	- find a block number in a file
1823  *	@inode:  inode owning the block number being requested
1824  *	@block: pointer containing the block to find
1825  *
1826  *	Replaces the value in ``*block`` with the block number on the device holding
1827  *	corresponding to the requested block number in the file.
1828  *	That is, asked for block 4 of inode 1 the function will replace the
1829  *	4 in ``*block``, with disk block relative to the disk start that holds that
1830  *	block of the file.
1831  *
1832  *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1833  *	hole, returns 0 and ``*block`` is also set to 0.
1834  */
1835 int bmap(struct inode *inode, sector_t *block)
1836 {
1837 	if (!inode->i_mapping->a_ops->bmap)
1838 		return -EINVAL;
1839 
1840 	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1841 	return 0;
1842 }
1843 EXPORT_SYMBOL(bmap);
1844 #endif
1845 
1846 /*
1847  * With relative atime, only update atime if the previous atime is
1848  * earlier than or equal to either the ctime or mtime,
1849  * or if at least a day has passed since the last atime update.
1850  */
1851 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1852 			     struct timespec64 now)
1853 {
1854 
1855 	if (!(mnt->mnt_flags & MNT_RELATIME))
1856 		return 1;
1857 	/*
1858 	 * Is mtime younger than or equal to atime? If yes, update atime:
1859 	 */
1860 	if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1861 		return 1;
1862 	/*
1863 	 * Is ctime younger than or equal to atime? If yes, update atime:
1864 	 */
1865 	if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1866 		return 1;
1867 
1868 	/*
1869 	 * Is the previous atime value older than a day? If yes,
1870 	 * update atime:
1871 	 */
1872 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1873 		return 1;
1874 	/*
1875 	 * Good, we can skip the atime update:
1876 	 */
1877 	return 0;
1878 }
1879 
1880 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1881 {
1882 	int dirty_flags = 0;
1883 
1884 	if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
1885 		if (flags & S_ATIME)
1886 			inode->i_atime = *time;
1887 		if (flags & S_CTIME)
1888 			inode->i_ctime = *time;
1889 		if (flags & S_MTIME)
1890 			inode->i_mtime = *time;
1891 
1892 		if (inode->i_sb->s_flags & SB_LAZYTIME)
1893 			dirty_flags |= I_DIRTY_TIME;
1894 		else
1895 			dirty_flags |= I_DIRTY_SYNC;
1896 	}
1897 
1898 	if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
1899 		dirty_flags |= I_DIRTY_SYNC;
1900 
1901 	__mark_inode_dirty(inode, dirty_flags);
1902 	return 0;
1903 }
1904 EXPORT_SYMBOL(generic_update_time);
1905 
1906 /*
1907  * This does the actual work of updating an inodes time or version.  Must have
1908  * had called mnt_want_write() before calling this.
1909  */
1910 int inode_update_time(struct inode *inode, struct timespec64 *time, int flags)
1911 {
1912 	if (inode->i_op->update_time)
1913 		return inode->i_op->update_time(inode, time, flags);
1914 	return generic_update_time(inode, time, flags);
1915 }
1916 EXPORT_SYMBOL(inode_update_time);
1917 
1918 /**
1919  *	atime_needs_update	-	update the access time
1920  *	@path: the &struct path to update
1921  *	@inode: inode to update
1922  *
1923  *	Update the accessed time on an inode and mark it for writeback.
1924  *	This function automatically handles read only file systems and media,
1925  *	as well as the "noatime" flag and inode specific "noatime" markers.
1926  */
1927 bool atime_needs_update(const struct path *path, struct inode *inode)
1928 {
1929 	struct vfsmount *mnt = path->mnt;
1930 	struct timespec64 now;
1931 
1932 	if (inode->i_flags & S_NOATIME)
1933 		return false;
1934 
1935 	/* Atime updates will likely cause i_uid and i_gid to be written
1936 	 * back improprely if their true value is unknown to the vfs.
1937 	 */
1938 	if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode))
1939 		return false;
1940 
1941 	if (IS_NOATIME(inode))
1942 		return false;
1943 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1944 		return false;
1945 
1946 	if (mnt->mnt_flags & MNT_NOATIME)
1947 		return false;
1948 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1949 		return false;
1950 
1951 	now = current_time(inode);
1952 
1953 	if (!relatime_need_update(mnt, inode, now))
1954 		return false;
1955 
1956 	if (timespec64_equal(&inode->i_atime, &now))
1957 		return false;
1958 
1959 	return true;
1960 }
1961 
1962 void touch_atime(const struct path *path)
1963 {
1964 	struct vfsmount *mnt = path->mnt;
1965 	struct inode *inode = d_inode(path->dentry);
1966 	struct timespec64 now;
1967 
1968 	if (!atime_needs_update(path, inode))
1969 		return;
1970 
1971 	if (!sb_start_write_trylock(inode->i_sb))
1972 		return;
1973 
1974 	if (__mnt_want_write(mnt) != 0)
1975 		goto skip_update;
1976 	/*
1977 	 * File systems can error out when updating inodes if they need to
1978 	 * allocate new space to modify an inode (such is the case for
1979 	 * Btrfs), but since we touch atime while walking down the path we
1980 	 * really don't care if we failed to update the atime of the file,
1981 	 * so just ignore the return value.
1982 	 * We may also fail on filesystems that have the ability to make parts
1983 	 * of the fs read only, e.g. subvolumes in Btrfs.
1984 	 */
1985 	now = current_time(inode);
1986 	inode_update_time(inode, &now, S_ATIME);
1987 	__mnt_drop_write(mnt);
1988 skip_update:
1989 	sb_end_write(inode->i_sb);
1990 }
1991 EXPORT_SYMBOL(touch_atime);
1992 
1993 /*
1994  * Return mask of changes for notify_change() that need to be done as a
1995  * response to write or truncate. Return 0 if nothing has to be changed.
1996  * Negative value on error (change should be denied).
1997  */
1998 int dentry_needs_remove_privs(struct mnt_idmap *idmap,
1999 			      struct dentry *dentry)
2000 {
2001 	struct inode *inode = d_inode(dentry);
2002 	int mask = 0;
2003 	int ret;
2004 
2005 	if (IS_NOSEC(inode))
2006 		return 0;
2007 
2008 	mask = setattr_should_drop_suidgid(idmap, inode);
2009 	ret = security_inode_need_killpriv(dentry);
2010 	if (ret < 0)
2011 		return ret;
2012 	if (ret)
2013 		mask |= ATTR_KILL_PRIV;
2014 	return mask;
2015 }
2016 
2017 static int __remove_privs(struct mnt_idmap *idmap,
2018 			  struct dentry *dentry, int kill)
2019 {
2020 	struct iattr newattrs;
2021 
2022 	newattrs.ia_valid = ATTR_FORCE | kill;
2023 	/*
2024 	 * Note we call this on write, so notify_change will not
2025 	 * encounter any conflicting delegations:
2026 	 */
2027 	return notify_change(idmap, dentry, &newattrs, NULL);
2028 }
2029 
2030 static int __file_remove_privs(struct file *file, unsigned int flags)
2031 {
2032 	struct dentry *dentry = file_dentry(file);
2033 	struct inode *inode = file_inode(file);
2034 	int error = 0;
2035 	int kill;
2036 
2037 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
2038 		return 0;
2039 
2040 	kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry);
2041 	if (kill < 0)
2042 		return kill;
2043 
2044 	if (kill) {
2045 		if (flags & IOCB_NOWAIT)
2046 			return -EAGAIN;
2047 
2048 		error = __remove_privs(file_mnt_idmap(file), dentry, kill);
2049 	}
2050 
2051 	if (!error)
2052 		inode_has_no_xattr(inode);
2053 	return error;
2054 }
2055 
2056 /**
2057  * file_remove_privs - remove special file privileges (suid, capabilities)
2058  * @file: file to remove privileges from
2059  *
2060  * When file is modified by a write or truncation ensure that special
2061  * file privileges are removed.
2062  *
2063  * Return: 0 on success, negative errno on failure.
2064  */
2065 int file_remove_privs(struct file *file)
2066 {
2067 	return __file_remove_privs(file, 0);
2068 }
2069 EXPORT_SYMBOL(file_remove_privs);
2070 
2071 static int inode_needs_update_time(struct inode *inode, struct timespec64 *now)
2072 {
2073 	int sync_it = 0;
2074 
2075 	/* First try to exhaust all avenues to not sync */
2076 	if (IS_NOCMTIME(inode))
2077 		return 0;
2078 
2079 	if (!timespec64_equal(&inode->i_mtime, now))
2080 		sync_it = S_MTIME;
2081 
2082 	if (!timespec64_equal(&inode->i_ctime, now))
2083 		sync_it |= S_CTIME;
2084 
2085 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2086 		sync_it |= S_VERSION;
2087 
2088 	return sync_it;
2089 }
2090 
2091 static int __file_update_time(struct file *file, struct timespec64 *now,
2092 			int sync_mode)
2093 {
2094 	int ret = 0;
2095 	struct inode *inode = file_inode(file);
2096 
2097 	/* try to update time settings */
2098 	if (!__mnt_want_write_file(file)) {
2099 		ret = inode_update_time(inode, now, sync_mode);
2100 		__mnt_drop_write_file(file);
2101 	}
2102 
2103 	return ret;
2104 }
2105 
2106 /**
2107  * file_update_time - update mtime and ctime time
2108  * @file: file accessed
2109  *
2110  * Update the mtime and ctime members of an inode and mark the inode for
2111  * writeback. Note that this function is meant exclusively for usage in
2112  * the file write path of filesystems, and filesystems may choose to
2113  * explicitly ignore updates via this function with the _NOCMTIME inode
2114  * flag, e.g. for network filesystem where these imestamps are handled
2115  * by the server. This can return an error for file systems who need to
2116  * allocate space in order to update an inode.
2117  *
2118  * Return: 0 on success, negative errno on failure.
2119  */
2120 int file_update_time(struct file *file)
2121 {
2122 	int ret;
2123 	struct inode *inode = file_inode(file);
2124 	struct timespec64 now = current_time(inode);
2125 
2126 	ret = inode_needs_update_time(inode, &now);
2127 	if (ret <= 0)
2128 		return ret;
2129 
2130 	return __file_update_time(file, &now, ret);
2131 }
2132 EXPORT_SYMBOL(file_update_time);
2133 
2134 /**
2135  * file_modified_flags - handle mandated vfs changes when modifying a file
2136  * @file: file that was modified
2137  * @flags: kiocb flags
2138  *
2139  * When file has been modified ensure that special
2140  * file privileges are removed and time settings are updated.
2141  *
2142  * If IOCB_NOWAIT is set, special file privileges will not be removed and
2143  * time settings will not be updated. It will return -EAGAIN.
2144  *
2145  * Context: Caller must hold the file's inode lock.
2146  *
2147  * Return: 0 on success, negative errno on failure.
2148  */
2149 static int file_modified_flags(struct file *file, int flags)
2150 {
2151 	int ret;
2152 	struct inode *inode = file_inode(file);
2153 	struct timespec64 now = current_time(inode);
2154 
2155 	/*
2156 	 * Clear the security bits if the process is not being run by root.
2157 	 * This keeps people from modifying setuid and setgid binaries.
2158 	 */
2159 	ret = __file_remove_privs(file, flags);
2160 	if (ret)
2161 		return ret;
2162 
2163 	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2164 		return 0;
2165 
2166 	ret = inode_needs_update_time(inode, &now);
2167 	if (ret <= 0)
2168 		return ret;
2169 	if (flags & IOCB_NOWAIT)
2170 		return -EAGAIN;
2171 
2172 	return __file_update_time(file, &now, ret);
2173 }
2174 
2175 /**
2176  * file_modified - handle mandated vfs changes when modifying a file
2177  * @file: file that was modified
2178  *
2179  * When file has been modified ensure that special
2180  * file privileges are removed and time settings are updated.
2181  *
2182  * Context: Caller must hold the file's inode lock.
2183  *
2184  * Return: 0 on success, negative errno on failure.
2185  */
2186 int file_modified(struct file *file)
2187 {
2188 	return file_modified_flags(file, 0);
2189 }
2190 EXPORT_SYMBOL(file_modified);
2191 
2192 /**
2193  * kiocb_modified - handle mandated vfs changes when modifying a file
2194  * @iocb: iocb that was modified
2195  *
2196  * When file has been modified ensure that special
2197  * file privileges are removed and time settings are updated.
2198  *
2199  * Context: Caller must hold the file's inode lock.
2200  *
2201  * Return: 0 on success, negative errno on failure.
2202  */
2203 int kiocb_modified(struct kiocb *iocb)
2204 {
2205 	return file_modified_flags(iocb->ki_filp, iocb->ki_flags);
2206 }
2207 EXPORT_SYMBOL_GPL(kiocb_modified);
2208 
2209 int inode_needs_sync(struct inode *inode)
2210 {
2211 	if (IS_SYNC(inode))
2212 		return 1;
2213 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2214 		return 1;
2215 	return 0;
2216 }
2217 EXPORT_SYMBOL(inode_needs_sync);
2218 
2219 /*
2220  * If we try to find an inode in the inode hash while it is being
2221  * deleted, we have to wait until the filesystem completes its
2222  * deletion before reporting that it isn't found.  This function waits
2223  * until the deletion _might_ have completed.  Callers are responsible
2224  * to recheck inode state.
2225  *
2226  * It doesn't matter if I_NEW is not set initially, a call to
2227  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2228  * will DTRT.
2229  */
2230 static void __wait_on_freeing_inode(struct inode *inode)
2231 {
2232 	wait_queue_head_t *wq;
2233 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2234 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
2235 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2236 	spin_unlock(&inode->i_lock);
2237 	spin_unlock(&inode_hash_lock);
2238 	schedule();
2239 	finish_wait(wq, &wait.wq_entry);
2240 	spin_lock(&inode_hash_lock);
2241 }
2242 
2243 static __initdata unsigned long ihash_entries;
2244 static int __init set_ihash_entries(char *str)
2245 {
2246 	if (!str)
2247 		return 0;
2248 	ihash_entries = simple_strtoul(str, &str, 0);
2249 	return 1;
2250 }
2251 __setup("ihash_entries=", set_ihash_entries);
2252 
2253 /*
2254  * Initialize the waitqueues and inode hash table.
2255  */
2256 void __init inode_init_early(void)
2257 {
2258 	/* If hashes are distributed across NUMA nodes, defer
2259 	 * hash allocation until vmalloc space is available.
2260 	 */
2261 	if (hashdist)
2262 		return;
2263 
2264 	inode_hashtable =
2265 		alloc_large_system_hash("Inode-cache",
2266 					sizeof(struct hlist_head),
2267 					ihash_entries,
2268 					14,
2269 					HASH_EARLY | HASH_ZERO,
2270 					&i_hash_shift,
2271 					&i_hash_mask,
2272 					0,
2273 					0);
2274 }
2275 
2276 void __init inode_init(void)
2277 {
2278 	/* inode slab cache */
2279 	inode_cachep = kmem_cache_create("inode_cache",
2280 					 sizeof(struct inode),
2281 					 0,
2282 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2283 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2284 					 init_once);
2285 
2286 	/* Hash may have been set up in inode_init_early */
2287 	if (!hashdist)
2288 		return;
2289 
2290 	inode_hashtable =
2291 		alloc_large_system_hash("Inode-cache",
2292 					sizeof(struct hlist_head),
2293 					ihash_entries,
2294 					14,
2295 					HASH_ZERO,
2296 					&i_hash_shift,
2297 					&i_hash_mask,
2298 					0,
2299 					0);
2300 }
2301 
2302 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2303 {
2304 	inode->i_mode = mode;
2305 	if (S_ISCHR(mode)) {
2306 		inode->i_fop = &def_chr_fops;
2307 		inode->i_rdev = rdev;
2308 	} else if (S_ISBLK(mode)) {
2309 		if (IS_ENABLED(CONFIG_BLOCK))
2310 			inode->i_fop = &def_blk_fops;
2311 		inode->i_rdev = rdev;
2312 	} else if (S_ISFIFO(mode))
2313 		inode->i_fop = &pipefifo_fops;
2314 	else if (S_ISSOCK(mode))
2315 		;	/* leave it no_open_fops */
2316 	else
2317 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2318 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2319 				  inode->i_ino);
2320 }
2321 EXPORT_SYMBOL(init_special_inode);
2322 
2323 /**
2324  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2325  * @idmap: idmap of the mount the inode was created from
2326  * @inode: New inode
2327  * @dir: Directory inode
2328  * @mode: mode of the new inode
2329  *
2330  * If the inode has been created through an idmapped mount the idmap of
2331  * the vfsmount must be passed through @idmap. This function will then take
2332  * care to map the inode according to @idmap before checking permissions
2333  * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2334  * checking is to be performed on the raw inode simply pass @nop_mnt_idmap.
2335  */
2336 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode,
2337 		      const struct inode *dir, umode_t mode)
2338 {
2339 	inode_fsuid_set(inode, idmap);
2340 	if (dir && dir->i_mode & S_ISGID) {
2341 		inode->i_gid = dir->i_gid;
2342 
2343 		/* Directories are special, and always inherit S_ISGID */
2344 		if (S_ISDIR(mode))
2345 			mode |= S_ISGID;
2346 	} else
2347 		inode_fsgid_set(inode, idmap);
2348 	inode->i_mode = mode;
2349 }
2350 EXPORT_SYMBOL(inode_init_owner);
2351 
2352 /**
2353  * inode_owner_or_capable - check current task permissions to inode
2354  * @idmap: idmap of the mount the inode was found from
2355  * @inode: inode being checked
2356  *
2357  * Return true if current either has CAP_FOWNER in a namespace with the
2358  * inode owner uid mapped, or owns the file.
2359  *
2360  * If the inode has been found through an idmapped mount the idmap of
2361  * the vfsmount must be passed through @idmap. This function will then take
2362  * care to map the inode according to @idmap before checking permissions.
2363  * On non-idmapped mounts or if permission checking is to be performed on the
2364  * raw inode simply passs @nop_mnt_idmap.
2365  */
2366 bool inode_owner_or_capable(struct mnt_idmap *idmap,
2367 			    const struct inode *inode)
2368 {
2369 	vfsuid_t vfsuid;
2370 	struct user_namespace *ns;
2371 
2372 	vfsuid = i_uid_into_vfsuid(idmap, inode);
2373 	if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
2374 		return true;
2375 
2376 	ns = current_user_ns();
2377 	if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER))
2378 		return true;
2379 	return false;
2380 }
2381 EXPORT_SYMBOL(inode_owner_or_capable);
2382 
2383 /*
2384  * Direct i/o helper functions
2385  */
2386 static void __inode_dio_wait(struct inode *inode)
2387 {
2388 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2389 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2390 
2391 	do {
2392 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2393 		if (atomic_read(&inode->i_dio_count))
2394 			schedule();
2395 	} while (atomic_read(&inode->i_dio_count));
2396 	finish_wait(wq, &q.wq_entry);
2397 }
2398 
2399 /**
2400  * inode_dio_wait - wait for outstanding DIO requests to finish
2401  * @inode: inode to wait for
2402  *
2403  * Waits for all pending direct I/O requests to finish so that we can
2404  * proceed with a truncate or equivalent operation.
2405  *
2406  * Must be called under a lock that serializes taking new references
2407  * to i_dio_count, usually by inode->i_mutex.
2408  */
2409 void inode_dio_wait(struct inode *inode)
2410 {
2411 	if (atomic_read(&inode->i_dio_count))
2412 		__inode_dio_wait(inode);
2413 }
2414 EXPORT_SYMBOL(inode_dio_wait);
2415 
2416 /*
2417  * inode_set_flags - atomically set some inode flags
2418  *
2419  * Note: the caller should be holding i_mutex, or else be sure that
2420  * they have exclusive access to the inode structure (i.e., while the
2421  * inode is being instantiated).  The reason for the cmpxchg() loop
2422  * --- which wouldn't be necessary if all code paths which modify
2423  * i_flags actually followed this rule, is that there is at least one
2424  * code path which doesn't today so we use cmpxchg() out of an abundance
2425  * of caution.
2426  *
2427  * In the long run, i_mutex is overkill, and we should probably look
2428  * at using the i_lock spinlock to protect i_flags, and then make sure
2429  * it is so documented in include/linux/fs.h and that all code follows
2430  * the locking convention!!
2431  */
2432 void inode_set_flags(struct inode *inode, unsigned int flags,
2433 		     unsigned int mask)
2434 {
2435 	WARN_ON_ONCE(flags & ~mask);
2436 	set_mask_bits(&inode->i_flags, mask, flags);
2437 }
2438 EXPORT_SYMBOL(inode_set_flags);
2439 
2440 void inode_nohighmem(struct inode *inode)
2441 {
2442 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2443 }
2444 EXPORT_SYMBOL(inode_nohighmem);
2445 
2446 /**
2447  * timestamp_truncate - Truncate timespec to a granularity
2448  * @t: Timespec
2449  * @inode: inode being updated
2450  *
2451  * Truncate a timespec to the granularity supported by the fs
2452  * containing the inode. Always rounds down. gran must
2453  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2454  */
2455 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2456 {
2457 	struct super_block *sb = inode->i_sb;
2458 	unsigned int gran = sb->s_time_gran;
2459 
2460 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2461 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2462 		t.tv_nsec = 0;
2463 
2464 	/* Avoid division in the common cases 1 ns and 1 s. */
2465 	if (gran == 1)
2466 		; /* nothing */
2467 	else if (gran == NSEC_PER_SEC)
2468 		t.tv_nsec = 0;
2469 	else if (gran > 1 && gran < NSEC_PER_SEC)
2470 		t.tv_nsec -= t.tv_nsec % gran;
2471 	else
2472 		WARN(1, "invalid file time granularity: %u", gran);
2473 	return t;
2474 }
2475 EXPORT_SYMBOL(timestamp_truncate);
2476 
2477 /**
2478  * current_time - Return FS time
2479  * @inode: inode.
2480  *
2481  * Return the current time truncated to the time granularity supported by
2482  * the fs.
2483  *
2484  * Note that inode and inode->sb cannot be NULL.
2485  * Otherwise, the function warns and returns time without truncation.
2486  */
2487 struct timespec64 current_time(struct inode *inode)
2488 {
2489 	struct timespec64 now;
2490 
2491 	ktime_get_coarse_real_ts64(&now);
2492 
2493 	if (unlikely(!inode->i_sb)) {
2494 		WARN(1, "current_time() called with uninitialized super_block in the inode");
2495 		return now;
2496 	}
2497 
2498 	return timestamp_truncate(now, inode);
2499 }
2500 EXPORT_SYMBOL(current_time);
2501 
2502 /**
2503  * in_group_or_capable - check whether caller is CAP_FSETID privileged
2504  * @idmap:	idmap of the mount @inode was found from
2505  * @inode:	inode to check
2506  * @vfsgid:	the new/current vfsgid of @inode
2507  *
2508  * Check wether @vfsgid is in the caller's group list or if the caller is
2509  * privileged with CAP_FSETID over @inode. This can be used to determine
2510  * whether the setgid bit can be kept or must be dropped.
2511  *
2512  * Return: true if the caller is sufficiently privileged, false if not.
2513  */
2514 bool in_group_or_capable(struct mnt_idmap *idmap,
2515 			 const struct inode *inode, vfsgid_t vfsgid)
2516 {
2517 	if (vfsgid_in_group_p(vfsgid))
2518 		return true;
2519 	if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID))
2520 		return true;
2521 	return false;
2522 }
2523 
2524 /**
2525  * mode_strip_sgid - handle the sgid bit for non-directories
2526  * @idmap: idmap of the mount the inode was created from
2527  * @dir: parent directory inode
2528  * @mode: mode of the file to be created in @dir
2529  *
2530  * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2531  * raised and @dir has the S_ISGID bit raised ensure that the caller is
2532  * either in the group of the parent directory or they have CAP_FSETID
2533  * in their user namespace and are privileged over the parent directory.
2534  * In all other cases, strip the S_ISGID bit from @mode.
2535  *
2536  * Return: the new mode to use for the file
2537  */
2538 umode_t mode_strip_sgid(struct mnt_idmap *idmap,
2539 			const struct inode *dir, umode_t mode)
2540 {
2541 	if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2542 		return mode;
2543 	if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2544 		return mode;
2545 	if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir)))
2546 		return mode;
2547 	return mode & ~S_ISGID;
2548 }
2549 EXPORT_SYMBOL(mode_strip_sgid);
2550