1 /* 2 * linux/fs/inode.c 3 * 4 * (C) 1997 Linus Torvalds 5 */ 6 7 #include <linux/fs.h> 8 #include <linux/mm.h> 9 #include <linux/dcache.h> 10 #include <linux/init.h> 11 #include <linux/quotaops.h> 12 #include <linux/slab.h> 13 #include <linux/writeback.h> 14 #include <linux/module.h> 15 #include <linux/backing-dev.h> 16 #include <linux/wait.h> 17 #include <linux/hash.h> 18 #include <linux/swap.h> 19 #include <linux/security.h> 20 #include <linux/pagemap.h> 21 #include <linux/cdev.h> 22 #include <linux/bootmem.h> 23 #include <linux/inotify.h> 24 #include <linux/mount.h> 25 26 /* 27 * This is needed for the following functions: 28 * - inode_has_buffers 29 * - invalidate_inode_buffers 30 * - invalidate_bdev 31 * 32 * FIXME: remove all knowledge of the buffer layer from this file 33 */ 34 #include <linux/buffer_head.h> 35 36 /* 37 * New inode.c implementation. 38 * 39 * This implementation has the basic premise of trying 40 * to be extremely low-overhead and SMP-safe, yet be 41 * simple enough to be "obviously correct". 42 * 43 * Famous last words. 44 */ 45 46 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */ 47 48 /* #define INODE_PARANOIA 1 */ 49 /* #define INODE_DEBUG 1 */ 50 51 /* 52 * Inode lookup is no longer as critical as it used to be: 53 * most of the lookups are going to be through the dcache. 54 */ 55 #define I_HASHBITS i_hash_shift 56 #define I_HASHMASK i_hash_mask 57 58 static unsigned int i_hash_mask __read_mostly; 59 static unsigned int i_hash_shift __read_mostly; 60 61 /* 62 * Each inode can be on two separate lists. One is 63 * the hash list of the inode, used for lookups. The 64 * other linked list is the "type" list: 65 * "in_use" - valid inode, i_count > 0, i_nlink > 0 66 * "dirty" - as "in_use" but also dirty 67 * "unused" - valid inode, i_count = 0 68 * 69 * A "dirty" list is maintained for each super block, 70 * allowing for low-overhead inode sync() operations. 71 */ 72 73 LIST_HEAD(inode_in_use); 74 LIST_HEAD(inode_unused); 75 static struct hlist_head *inode_hashtable __read_mostly; 76 77 /* 78 * A simple spinlock to protect the list manipulations. 79 * 80 * NOTE! You also have to own the lock if you change 81 * the i_state of an inode while it is in use.. 82 */ 83 DEFINE_SPINLOCK(inode_lock); 84 85 /* 86 * iprune_mutex provides exclusion between the kswapd or try_to_free_pages 87 * icache shrinking path, and the umount path. Without this exclusion, 88 * by the time prune_icache calls iput for the inode whose pages it has 89 * been invalidating, or by the time it calls clear_inode & destroy_inode 90 * from its final dispose_list, the struct super_block they refer to 91 * (for inode->i_sb->s_op) may already have been freed and reused. 92 */ 93 static DEFINE_MUTEX(iprune_mutex); 94 95 /* 96 * Statistics gathering.. 97 */ 98 struct inodes_stat_t inodes_stat; 99 100 static struct kmem_cache * inode_cachep __read_mostly; 101 102 static struct inode *alloc_inode(struct super_block *sb) 103 { 104 static const struct address_space_operations empty_aops; 105 static struct inode_operations empty_iops; 106 static const struct file_operations empty_fops; 107 struct inode *inode; 108 109 if (sb->s_op->alloc_inode) 110 inode = sb->s_op->alloc_inode(sb); 111 else 112 inode = (struct inode *) kmem_cache_alloc(inode_cachep, GFP_KERNEL); 113 114 if (inode) { 115 struct address_space * const mapping = &inode->i_data; 116 117 inode->i_sb = sb; 118 inode->i_blkbits = sb->s_blocksize_bits; 119 inode->i_flags = 0; 120 atomic_set(&inode->i_count, 1); 121 inode->i_op = &empty_iops; 122 inode->i_fop = &empty_fops; 123 inode->i_nlink = 1; 124 atomic_set(&inode->i_writecount, 0); 125 inode->i_size = 0; 126 inode->i_blocks = 0; 127 inode->i_bytes = 0; 128 inode->i_generation = 0; 129 #ifdef CONFIG_QUOTA 130 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 131 #endif 132 inode->i_pipe = NULL; 133 inode->i_bdev = NULL; 134 inode->i_cdev = NULL; 135 inode->i_rdev = 0; 136 inode->dirtied_when = 0; 137 if (security_inode_alloc(inode)) { 138 if (inode->i_sb->s_op->destroy_inode) 139 inode->i_sb->s_op->destroy_inode(inode); 140 else 141 kmem_cache_free(inode_cachep, (inode)); 142 return NULL; 143 } 144 145 mapping->a_ops = &empty_aops; 146 mapping->host = inode; 147 mapping->flags = 0; 148 mapping_set_gfp_mask(mapping, GFP_HIGHUSER); 149 mapping->assoc_mapping = NULL; 150 mapping->backing_dev_info = &default_backing_dev_info; 151 152 /* 153 * If the block_device provides a backing_dev_info for client 154 * inodes then use that. Otherwise the inode share the bdev's 155 * backing_dev_info. 156 */ 157 if (sb->s_bdev) { 158 struct backing_dev_info *bdi; 159 160 bdi = sb->s_bdev->bd_inode_backing_dev_info; 161 if (!bdi) 162 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 163 mapping->backing_dev_info = bdi; 164 } 165 inode->i_private = NULL; 166 inode->i_mapping = mapping; 167 } 168 return inode; 169 } 170 171 void destroy_inode(struct inode *inode) 172 { 173 BUG_ON(inode_has_buffers(inode)); 174 security_inode_free(inode); 175 if (inode->i_sb->s_op->destroy_inode) 176 inode->i_sb->s_op->destroy_inode(inode); 177 else 178 kmem_cache_free(inode_cachep, (inode)); 179 } 180 181 182 /* 183 * These are initializations that only need to be done 184 * once, because the fields are idempotent across use 185 * of the inode, so let the slab aware of that. 186 */ 187 void inode_init_once(struct inode *inode) 188 { 189 memset(inode, 0, sizeof(*inode)); 190 INIT_HLIST_NODE(&inode->i_hash); 191 INIT_LIST_HEAD(&inode->i_dentry); 192 INIT_LIST_HEAD(&inode->i_devices); 193 mutex_init(&inode->i_mutex); 194 init_rwsem(&inode->i_alloc_sem); 195 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC); 196 rwlock_init(&inode->i_data.tree_lock); 197 spin_lock_init(&inode->i_data.i_mmap_lock); 198 INIT_LIST_HEAD(&inode->i_data.private_list); 199 spin_lock_init(&inode->i_data.private_lock); 200 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap); 201 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear); 202 spin_lock_init(&inode->i_lock); 203 i_size_ordered_init(inode); 204 #ifdef CONFIG_INOTIFY 205 INIT_LIST_HEAD(&inode->inotify_watches); 206 mutex_init(&inode->inotify_mutex); 207 #endif 208 } 209 210 EXPORT_SYMBOL(inode_init_once); 211 212 static void init_once(void * foo, struct kmem_cache * cachep, unsigned long flags) 213 { 214 struct inode * inode = (struct inode *) foo; 215 216 inode_init_once(inode); 217 } 218 219 /* 220 * inode_lock must be held 221 */ 222 void __iget(struct inode * inode) 223 { 224 if (atomic_read(&inode->i_count)) { 225 atomic_inc(&inode->i_count); 226 return; 227 } 228 atomic_inc(&inode->i_count); 229 if (!(inode->i_state & (I_DIRTY|I_LOCK))) 230 list_move(&inode->i_list, &inode_in_use); 231 inodes_stat.nr_unused--; 232 } 233 234 /** 235 * clear_inode - clear an inode 236 * @inode: inode to clear 237 * 238 * This is called by the filesystem to tell us 239 * that the inode is no longer useful. We just 240 * terminate it with extreme prejudice. 241 */ 242 void clear_inode(struct inode *inode) 243 { 244 might_sleep(); 245 invalidate_inode_buffers(inode); 246 247 BUG_ON(inode->i_data.nrpages); 248 BUG_ON(!(inode->i_state & I_FREEING)); 249 BUG_ON(inode->i_state & I_CLEAR); 250 wait_on_inode(inode); 251 DQUOT_DROP(inode); 252 if (inode->i_sb->s_op->clear_inode) 253 inode->i_sb->s_op->clear_inode(inode); 254 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 255 bd_forget(inode); 256 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 257 cd_forget(inode); 258 inode->i_state = I_CLEAR; 259 } 260 261 EXPORT_SYMBOL(clear_inode); 262 263 /* 264 * dispose_list - dispose of the contents of a local list 265 * @head: the head of the list to free 266 * 267 * Dispose-list gets a local list with local inodes in it, so it doesn't 268 * need to worry about list corruption and SMP locks. 269 */ 270 static void dispose_list(struct list_head *head) 271 { 272 int nr_disposed = 0; 273 274 while (!list_empty(head)) { 275 struct inode *inode; 276 277 inode = list_first_entry(head, struct inode, i_list); 278 list_del(&inode->i_list); 279 280 if (inode->i_data.nrpages) 281 truncate_inode_pages(&inode->i_data, 0); 282 clear_inode(inode); 283 284 spin_lock(&inode_lock); 285 hlist_del_init(&inode->i_hash); 286 list_del_init(&inode->i_sb_list); 287 spin_unlock(&inode_lock); 288 289 wake_up_inode(inode); 290 destroy_inode(inode); 291 nr_disposed++; 292 } 293 spin_lock(&inode_lock); 294 inodes_stat.nr_inodes -= nr_disposed; 295 spin_unlock(&inode_lock); 296 } 297 298 /* 299 * Invalidate all inodes for a device. 300 */ 301 static int invalidate_list(struct list_head *head, struct list_head *dispose) 302 { 303 struct list_head *next; 304 int busy = 0, count = 0; 305 306 next = head->next; 307 for (;;) { 308 struct list_head * tmp = next; 309 struct inode * inode; 310 311 /* 312 * We can reschedule here without worrying about the list's 313 * consistency because the per-sb list of inodes must not 314 * change during umount anymore, and because iprune_mutex keeps 315 * shrink_icache_memory() away. 316 */ 317 cond_resched_lock(&inode_lock); 318 319 next = next->next; 320 if (tmp == head) 321 break; 322 inode = list_entry(tmp, struct inode, i_sb_list); 323 invalidate_inode_buffers(inode); 324 if (!atomic_read(&inode->i_count)) { 325 list_move(&inode->i_list, dispose); 326 inode->i_state |= I_FREEING; 327 count++; 328 continue; 329 } 330 busy = 1; 331 } 332 /* only unused inodes may be cached with i_count zero */ 333 inodes_stat.nr_unused -= count; 334 return busy; 335 } 336 337 /** 338 * invalidate_inodes - discard the inodes on a device 339 * @sb: superblock 340 * 341 * Discard all of the inodes for a given superblock. If the discard 342 * fails because there are busy inodes then a non zero value is returned. 343 * If the discard is successful all the inodes have been discarded. 344 */ 345 int invalidate_inodes(struct super_block * sb) 346 { 347 int busy; 348 LIST_HEAD(throw_away); 349 350 mutex_lock(&iprune_mutex); 351 spin_lock(&inode_lock); 352 inotify_unmount_inodes(&sb->s_inodes); 353 busy = invalidate_list(&sb->s_inodes, &throw_away); 354 spin_unlock(&inode_lock); 355 356 dispose_list(&throw_away); 357 mutex_unlock(&iprune_mutex); 358 359 return busy; 360 } 361 362 EXPORT_SYMBOL(invalidate_inodes); 363 364 static int can_unuse(struct inode *inode) 365 { 366 if (inode->i_state) 367 return 0; 368 if (inode_has_buffers(inode)) 369 return 0; 370 if (atomic_read(&inode->i_count)) 371 return 0; 372 if (inode->i_data.nrpages) 373 return 0; 374 return 1; 375 } 376 377 /* 378 * Scan `goal' inodes on the unused list for freeable ones. They are moved to 379 * a temporary list and then are freed outside inode_lock by dispose_list(). 380 * 381 * Any inodes which are pinned purely because of attached pagecache have their 382 * pagecache removed. We expect the final iput() on that inode to add it to 383 * the front of the inode_unused list. So look for it there and if the 384 * inode is still freeable, proceed. The right inode is found 99.9% of the 385 * time in testing on a 4-way. 386 * 387 * If the inode has metadata buffers attached to mapping->private_list then 388 * try to remove them. 389 */ 390 static void prune_icache(int nr_to_scan) 391 { 392 LIST_HEAD(freeable); 393 int nr_pruned = 0; 394 int nr_scanned; 395 unsigned long reap = 0; 396 397 mutex_lock(&iprune_mutex); 398 spin_lock(&inode_lock); 399 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) { 400 struct inode *inode; 401 402 if (list_empty(&inode_unused)) 403 break; 404 405 inode = list_entry(inode_unused.prev, struct inode, i_list); 406 407 if (inode->i_state || atomic_read(&inode->i_count)) { 408 list_move(&inode->i_list, &inode_unused); 409 continue; 410 } 411 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 412 __iget(inode); 413 spin_unlock(&inode_lock); 414 if (remove_inode_buffers(inode)) 415 reap += invalidate_mapping_pages(&inode->i_data, 416 0, -1); 417 iput(inode); 418 spin_lock(&inode_lock); 419 420 if (inode != list_entry(inode_unused.next, 421 struct inode, i_list)) 422 continue; /* wrong inode or list_empty */ 423 if (!can_unuse(inode)) 424 continue; 425 } 426 list_move(&inode->i_list, &freeable); 427 inode->i_state |= I_FREEING; 428 nr_pruned++; 429 } 430 inodes_stat.nr_unused -= nr_pruned; 431 if (current_is_kswapd()) 432 __count_vm_events(KSWAPD_INODESTEAL, reap); 433 else 434 __count_vm_events(PGINODESTEAL, reap); 435 spin_unlock(&inode_lock); 436 437 dispose_list(&freeable); 438 mutex_unlock(&iprune_mutex); 439 } 440 441 /* 442 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here, 443 * "unused" means that no dentries are referring to the inodes: the files are 444 * not open and the dcache references to those inodes have already been 445 * reclaimed. 446 * 447 * This function is passed the number of inodes to scan, and it returns the 448 * total number of remaining possibly-reclaimable inodes. 449 */ 450 static int shrink_icache_memory(int nr, gfp_t gfp_mask) 451 { 452 if (nr) { 453 /* 454 * Nasty deadlock avoidance. We may hold various FS locks, 455 * and we don't want to recurse into the FS that called us 456 * in clear_inode() and friends.. 457 */ 458 if (!(gfp_mask & __GFP_FS)) 459 return -1; 460 prune_icache(nr); 461 } 462 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure; 463 } 464 465 static void __wait_on_freeing_inode(struct inode *inode); 466 /* 467 * Called with the inode lock held. 468 * NOTE: we are not increasing the inode-refcount, you must call __iget() 469 * by hand after calling find_inode now! This simplifies iunique and won't 470 * add any additional branch in the common code. 471 */ 472 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data) 473 { 474 struct hlist_node *node; 475 struct inode * inode = NULL; 476 477 repeat: 478 hlist_for_each (node, head) { 479 inode = hlist_entry(node, struct inode, i_hash); 480 if (inode->i_sb != sb) 481 continue; 482 if (!test(inode, data)) 483 continue; 484 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 485 __wait_on_freeing_inode(inode); 486 goto repeat; 487 } 488 break; 489 } 490 return node ? inode : NULL; 491 } 492 493 /* 494 * find_inode_fast is the fast path version of find_inode, see the comment at 495 * iget_locked for details. 496 */ 497 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino) 498 { 499 struct hlist_node *node; 500 struct inode * inode = NULL; 501 502 repeat: 503 hlist_for_each (node, head) { 504 inode = hlist_entry(node, struct inode, i_hash); 505 if (inode->i_ino != ino) 506 continue; 507 if (inode->i_sb != sb) 508 continue; 509 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 510 __wait_on_freeing_inode(inode); 511 goto repeat; 512 } 513 break; 514 } 515 return node ? inode : NULL; 516 } 517 518 /** 519 * new_inode - obtain an inode 520 * @sb: superblock 521 * 522 * Allocates a new inode for given superblock. 523 */ 524 struct inode *new_inode(struct super_block *sb) 525 { 526 /* 527 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 528 * error if st_ino won't fit in target struct field. Use 32bit counter 529 * here to attempt to avoid that. 530 */ 531 static unsigned int last_ino; 532 struct inode * inode; 533 534 spin_lock_prefetch(&inode_lock); 535 536 inode = alloc_inode(sb); 537 if (inode) { 538 spin_lock(&inode_lock); 539 inodes_stat.nr_inodes++; 540 list_add(&inode->i_list, &inode_in_use); 541 list_add(&inode->i_sb_list, &sb->s_inodes); 542 inode->i_ino = ++last_ino; 543 inode->i_state = 0; 544 spin_unlock(&inode_lock); 545 } 546 return inode; 547 } 548 549 EXPORT_SYMBOL(new_inode); 550 551 void unlock_new_inode(struct inode *inode) 552 { 553 /* 554 * This is special! We do not need the spinlock 555 * when clearing I_LOCK, because we're guaranteed 556 * that nobody else tries to do anything about the 557 * state of the inode when it is locked, as we 558 * just created it (so there can be no old holders 559 * that haven't tested I_LOCK). 560 */ 561 inode->i_state &= ~(I_LOCK|I_NEW); 562 wake_up_inode(inode); 563 } 564 565 EXPORT_SYMBOL(unlock_new_inode); 566 567 /* 568 * This is called without the inode lock held.. Be careful. 569 * 570 * We no longer cache the sb_flags in i_flags - see fs.h 571 * -- rmk@arm.uk.linux.org 572 */ 573 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data) 574 { 575 struct inode * inode; 576 577 inode = alloc_inode(sb); 578 if (inode) { 579 struct inode * old; 580 581 spin_lock(&inode_lock); 582 /* We released the lock, so.. */ 583 old = find_inode(sb, head, test, data); 584 if (!old) { 585 if (set(inode, data)) 586 goto set_failed; 587 588 inodes_stat.nr_inodes++; 589 list_add(&inode->i_list, &inode_in_use); 590 list_add(&inode->i_sb_list, &sb->s_inodes); 591 hlist_add_head(&inode->i_hash, head); 592 inode->i_state = I_LOCK|I_NEW; 593 spin_unlock(&inode_lock); 594 595 /* Return the locked inode with I_NEW set, the 596 * caller is responsible for filling in the contents 597 */ 598 return inode; 599 } 600 601 /* 602 * Uhhuh, somebody else created the same inode under 603 * us. Use the old inode instead of the one we just 604 * allocated. 605 */ 606 __iget(old); 607 spin_unlock(&inode_lock); 608 destroy_inode(inode); 609 inode = old; 610 wait_on_inode(inode); 611 } 612 return inode; 613 614 set_failed: 615 spin_unlock(&inode_lock); 616 destroy_inode(inode); 617 return NULL; 618 } 619 620 /* 621 * get_new_inode_fast is the fast path version of get_new_inode, see the 622 * comment at iget_locked for details. 623 */ 624 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino) 625 { 626 struct inode * inode; 627 628 inode = alloc_inode(sb); 629 if (inode) { 630 struct inode * old; 631 632 spin_lock(&inode_lock); 633 /* We released the lock, so.. */ 634 old = find_inode_fast(sb, head, ino); 635 if (!old) { 636 inode->i_ino = ino; 637 inodes_stat.nr_inodes++; 638 list_add(&inode->i_list, &inode_in_use); 639 list_add(&inode->i_sb_list, &sb->s_inodes); 640 hlist_add_head(&inode->i_hash, head); 641 inode->i_state = I_LOCK|I_NEW; 642 spin_unlock(&inode_lock); 643 644 /* Return the locked inode with I_NEW set, the 645 * caller is responsible for filling in the contents 646 */ 647 return inode; 648 } 649 650 /* 651 * Uhhuh, somebody else created the same inode under 652 * us. Use the old inode instead of the one we just 653 * allocated. 654 */ 655 __iget(old); 656 spin_unlock(&inode_lock); 657 destroy_inode(inode); 658 inode = old; 659 wait_on_inode(inode); 660 } 661 return inode; 662 } 663 664 static unsigned long hash(struct super_block *sb, unsigned long hashval) 665 { 666 unsigned long tmp; 667 668 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 669 L1_CACHE_BYTES; 670 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS); 671 return tmp & I_HASHMASK; 672 } 673 674 /** 675 * iunique - get a unique inode number 676 * @sb: superblock 677 * @max_reserved: highest reserved inode number 678 * 679 * Obtain an inode number that is unique on the system for a given 680 * superblock. This is used by file systems that have no natural 681 * permanent inode numbering system. An inode number is returned that 682 * is higher than the reserved limit but unique. 683 * 684 * BUGS: 685 * With a large number of inodes live on the file system this function 686 * currently becomes quite slow. 687 */ 688 ino_t iunique(struct super_block *sb, ino_t max_reserved) 689 { 690 /* 691 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 692 * error if st_ino won't fit in target struct field. Use 32bit counter 693 * here to attempt to avoid that. 694 */ 695 static unsigned int counter; 696 struct inode *inode; 697 struct hlist_head *head; 698 ino_t res; 699 700 spin_lock(&inode_lock); 701 do { 702 if (counter <= max_reserved) 703 counter = max_reserved + 1; 704 res = counter++; 705 head = inode_hashtable + hash(sb, res); 706 inode = find_inode_fast(sb, head, res); 707 } while (inode != NULL); 708 spin_unlock(&inode_lock); 709 710 return res; 711 } 712 EXPORT_SYMBOL(iunique); 713 714 struct inode *igrab(struct inode *inode) 715 { 716 spin_lock(&inode_lock); 717 if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))) 718 __iget(inode); 719 else 720 /* 721 * Handle the case where s_op->clear_inode is not been 722 * called yet, and somebody is calling igrab 723 * while the inode is getting freed. 724 */ 725 inode = NULL; 726 spin_unlock(&inode_lock); 727 return inode; 728 } 729 730 EXPORT_SYMBOL(igrab); 731 732 /** 733 * ifind - internal function, you want ilookup5() or iget5(). 734 * @sb: super block of file system to search 735 * @head: the head of the list to search 736 * @test: callback used for comparisons between inodes 737 * @data: opaque data pointer to pass to @test 738 * @wait: if true wait for the inode to be unlocked, if false do not 739 * 740 * ifind() searches for the inode specified by @data in the inode 741 * cache. This is a generalized version of ifind_fast() for file systems where 742 * the inode number is not sufficient for unique identification of an inode. 743 * 744 * If the inode is in the cache, the inode is returned with an incremented 745 * reference count. 746 * 747 * Otherwise NULL is returned. 748 * 749 * Note, @test is called with the inode_lock held, so can't sleep. 750 */ 751 static struct inode *ifind(struct super_block *sb, 752 struct hlist_head *head, int (*test)(struct inode *, void *), 753 void *data, const int wait) 754 { 755 struct inode *inode; 756 757 spin_lock(&inode_lock); 758 inode = find_inode(sb, head, test, data); 759 if (inode) { 760 __iget(inode); 761 spin_unlock(&inode_lock); 762 if (likely(wait)) 763 wait_on_inode(inode); 764 return inode; 765 } 766 spin_unlock(&inode_lock); 767 return NULL; 768 } 769 770 /** 771 * ifind_fast - internal function, you want ilookup() or iget(). 772 * @sb: super block of file system to search 773 * @head: head of the list to search 774 * @ino: inode number to search for 775 * 776 * ifind_fast() searches for the inode @ino in the inode cache. This is for 777 * file systems where the inode number is sufficient for unique identification 778 * of an inode. 779 * 780 * If the inode is in the cache, the inode is returned with an incremented 781 * reference count. 782 * 783 * Otherwise NULL is returned. 784 */ 785 static struct inode *ifind_fast(struct super_block *sb, 786 struct hlist_head *head, unsigned long ino) 787 { 788 struct inode *inode; 789 790 spin_lock(&inode_lock); 791 inode = find_inode_fast(sb, head, ino); 792 if (inode) { 793 __iget(inode); 794 spin_unlock(&inode_lock); 795 wait_on_inode(inode); 796 return inode; 797 } 798 spin_unlock(&inode_lock); 799 return NULL; 800 } 801 802 /** 803 * ilookup5_nowait - search for an inode in the inode cache 804 * @sb: super block of file system to search 805 * @hashval: hash value (usually inode number) to search for 806 * @test: callback used for comparisons between inodes 807 * @data: opaque data pointer to pass to @test 808 * 809 * ilookup5() uses ifind() to search for the inode specified by @hashval and 810 * @data in the inode cache. This is a generalized version of ilookup() for 811 * file systems where the inode number is not sufficient for unique 812 * identification of an inode. 813 * 814 * If the inode is in the cache, the inode is returned with an incremented 815 * reference count. Note, the inode lock is not waited upon so you have to be 816 * very careful what you do with the returned inode. You probably should be 817 * using ilookup5() instead. 818 * 819 * Otherwise NULL is returned. 820 * 821 * Note, @test is called with the inode_lock held, so can't sleep. 822 */ 823 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 824 int (*test)(struct inode *, void *), void *data) 825 { 826 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 827 828 return ifind(sb, head, test, data, 0); 829 } 830 831 EXPORT_SYMBOL(ilookup5_nowait); 832 833 /** 834 * ilookup5 - search for an inode in the inode cache 835 * @sb: super block of file system to search 836 * @hashval: hash value (usually inode number) to search for 837 * @test: callback used for comparisons between inodes 838 * @data: opaque data pointer to pass to @test 839 * 840 * ilookup5() uses ifind() to search for the inode specified by @hashval and 841 * @data in the inode cache. This is a generalized version of ilookup() for 842 * file systems where the inode number is not sufficient for unique 843 * identification of an inode. 844 * 845 * If the inode is in the cache, the inode lock is waited upon and the inode is 846 * returned with an incremented reference count. 847 * 848 * Otherwise NULL is returned. 849 * 850 * Note, @test is called with the inode_lock held, so can't sleep. 851 */ 852 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 853 int (*test)(struct inode *, void *), void *data) 854 { 855 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 856 857 return ifind(sb, head, test, data, 1); 858 } 859 860 EXPORT_SYMBOL(ilookup5); 861 862 /** 863 * ilookup - search for an inode in the inode cache 864 * @sb: super block of file system to search 865 * @ino: inode number to search for 866 * 867 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache. 868 * This is for file systems where the inode number is sufficient for unique 869 * identification of an inode. 870 * 871 * If the inode is in the cache, the inode is returned with an incremented 872 * reference count. 873 * 874 * Otherwise NULL is returned. 875 */ 876 struct inode *ilookup(struct super_block *sb, unsigned long ino) 877 { 878 struct hlist_head *head = inode_hashtable + hash(sb, ino); 879 880 return ifind_fast(sb, head, ino); 881 } 882 883 EXPORT_SYMBOL(ilookup); 884 885 /** 886 * iget5_locked - obtain an inode from a mounted file system 887 * @sb: super block of file system 888 * @hashval: hash value (usually inode number) to get 889 * @test: callback used for comparisons between inodes 890 * @set: callback used to initialize a new struct inode 891 * @data: opaque data pointer to pass to @test and @set 892 * 893 * This is iget() without the read_inode() portion of get_new_inode(). 894 * 895 * iget5_locked() uses ifind() to search for the inode specified by @hashval 896 * and @data in the inode cache and if present it is returned with an increased 897 * reference count. This is a generalized version of iget_locked() for file 898 * systems where the inode number is not sufficient for unique identification 899 * of an inode. 900 * 901 * If the inode is not in cache, get_new_inode() is called to allocate a new 902 * inode and this is returned locked, hashed, and with the I_NEW flag set. The 903 * file system gets to fill it in before unlocking it via unlock_new_inode(). 904 * 905 * Note both @test and @set are called with the inode_lock held, so can't sleep. 906 */ 907 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 908 int (*test)(struct inode *, void *), 909 int (*set)(struct inode *, void *), void *data) 910 { 911 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 912 struct inode *inode; 913 914 inode = ifind(sb, head, test, data, 1); 915 if (inode) 916 return inode; 917 /* 918 * get_new_inode() will do the right thing, re-trying the search 919 * in case it had to block at any point. 920 */ 921 return get_new_inode(sb, head, test, set, data); 922 } 923 924 EXPORT_SYMBOL(iget5_locked); 925 926 /** 927 * iget_locked - obtain an inode from a mounted file system 928 * @sb: super block of file system 929 * @ino: inode number to get 930 * 931 * This is iget() without the read_inode() portion of get_new_inode_fast(). 932 * 933 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in 934 * the inode cache and if present it is returned with an increased reference 935 * count. This is for file systems where the inode number is sufficient for 936 * unique identification of an inode. 937 * 938 * If the inode is not in cache, get_new_inode_fast() is called to allocate a 939 * new inode and this is returned locked, hashed, and with the I_NEW flag set. 940 * The file system gets to fill it in before unlocking it via 941 * unlock_new_inode(). 942 */ 943 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 944 { 945 struct hlist_head *head = inode_hashtable + hash(sb, ino); 946 struct inode *inode; 947 948 inode = ifind_fast(sb, head, ino); 949 if (inode) 950 return inode; 951 /* 952 * get_new_inode_fast() will do the right thing, re-trying the search 953 * in case it had to block at any point. 954 */ 955 return get_new_inode_fast(sb, head, ino); 956 } 957 958 EXPORT_SYMBOL(iget_locked); 959 960 /** 961 * __insert_inode_hash - hash an inode 962 * @inode: unhashed inode 963 * @hashval: unsigned long value used to locate this object in the 964 * inode_hashtable. 965 * 966 * Add an inode to the inode hash for this superblock. 967 */ 968 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 969 { 970 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 971 spin_lock(&inode_lock); 972 hlist_add_head(&inode->i_hash, head); 973 spin_unlock(&inode_lock); 974 } 975 976 EXPORT_SYMBOL(__insert_inode_hash); 977 978 /** 979 * remove_inode_hash - remove an inode from the hash 980 * @inode: inode to unhash 981 * 982 * Remove an inode from the superblock. 983 */ 984 void remove_inode_hash(struct inode *inode) 985 { 986 spin_lock(&inode_lock); 987 hlist_del_init(&inode->i_hash); 988 spin_unlock(&inode_lock); 989 } 990 991 EXPORT_SYMBOL(remove_inode_hash); 992 993 /* 994 * Tell the filesystem that this inode is no longer of any interest and should 995 * be completely destroyed. 996 * 997 * We leave the inode in the inode hash table until *after* the filesystem's 998 * ->delete_inode completes. This ensures that an iget (such as nfsd might 999 * instigate) will always find up-to-date information either in the hash or on 1000 * disk. 1001 * 1002 * I_FREEING is set so that no-one will take a new reference to the inode while 1003 * it is being deleted. 1004 */ 1005 void generic_delete_inode(struct inode *inode) 1006 { 1007 const struct super_operations *op = inode->i_sb->s_op; 1008 1009 list_del_init(&inode->i_list); 1010 list_del_init(&inode->i_sb_list); 1011 inode->i_state |= I_FREEING; 1012 inodes_stat.nr_inodes--; 1013 spin_unlock(&inode_lock); 1014 1015 security_inode_delete(inode); 1016 1017 if (op->delete_inode) { 1018 void (*delete)(struct inode *) = op->delete_inode; 1019 if (!is_bad_inode(inode)) 1020 DQUOT_INIT(inode); 1021 /* Filesystems implementing their own 1022 * s_op->delete_inode are required to call 1023 * truncate_inode_pages and clear_inode() 1024 * internally */ 1025 delete(inode); 1026 } else { 1027 truncate_inode_pages(&inode->i_data, 0); 1028 clear_inode(inode); 1029 } 1030 spin_lock(&inode_lock); 1031 hlist_del_init(&inode->i_hash); 1032 spin_unlock(&inode_lock); 1033 wake_up_inode(inode); 1034 BUG_ON(inode->i_state != I_CLEAR); 1035 destroy_inode(inode); 1036 } 1037 1038 EXPORT_SYMBOL(generic_delete_inode); 1039 1040 static void generic_forget_inode(struct inode *inode) 1041 { 1042 struct super_block *sb = inode->i_sb; 1043 1044 if (!hlist_unhashed(&inode->i_hash)) { 1045 if (!(inode->i_state & (I_DIRTY|I_LOCK))) 1046 list_move(&inode->i_list, &inode_unused); 1047 inodes_stat.nr_unused++; 1048 if (sb->s_flags & MS_ACTIVE) { 1049 spin_unlock(&inode_lock); 1050 return; 1051 } 1052 inode->i_state |= I_WILL_FREE; 1053 spin_unlock(&inode_lock); 1054 write_inode_now(inode, 1); 1055 spin_lock(&inode_lock); 1056 inode->i_state &= ~I_WILL_FREE; 1057 inodes_stat.nr_unused--; 1058 hlist_del_init(&inode->i_hash); 1059 } 1060 list_del_init(&inode->i_list); 1061 list_del_init(&inode->i_sb_list); 1062 inode->i_state |= I_FREEING; 1063 inodes_stat.nr_inodes--; 1064 spin_unlock(&inode_lock); 1065 if (inode->i_data.nrpages) 1066 truncate_inode_pages(&inode->i_data, 0); 1067 clear_inode(inode); 1068 wake_up_inode(inode); 1069 destroy_inode(inode); 1070 } 1071 1072 /* 1073 * Normal UNIX filesystem behaviour: delete the 1074 * inode when the usage count drops to zero, and 1075 * i_nlink is zero. 1076 */ 1077 void generic_drop_inode(struct inode *inode) 1078 { 1079 if (!inode->i_nlink) 1080 generic_delete_inode(inode); 1081 else 1082 generic_forget_inode(inode); 1083 } 1084 1085 EXPORT_SYMBOL_GPL(generic_drop_inode); 1086 1087 /* 1088 * Called when we're dropping the last reference 1089 * to an inode. 1090 * 1091 * Call the FS "drop()" function, defaulting to 1092 * the legacy UNIX filesystem behaviour.. 1093 * 1094 * NOTE! NOTE! NOTE! We're called with the inode lock 1095 * held, and the drop function is supposed to release 1096 * the lock! 1097 */ 1098 static inline void iput_final(struct inode *inode) 1099 { 1100 const struct super_operations *op = inode->i_sb->s_op; 1101 void (*drop)(struct inode *) = generic_drop_inode; 1102 1103 if (op && op->drop_inode) 1104 drop = op->drop_inode; 1105 drop(inode); 1106 } 1107 1108 /** 1109 * iput - put an inode 1110 * @inode: inode to put 1111 * 1112 * Puts an inode, dropping its usage count. If the inode use count hits 1113 * zero, the inode is then freed and may also be destroyed. 1114 * 1115 * Consequently, iput() can sleep. 1116 */ 1117 void iput(struct inode *inode) 1118 { 1119 if (inode) { 1120 const struct super_operations *op = inode->i_sb->s_op; 1121 1122 BUG_ON(inode->i_state == I_CLEAR); 1123 1124 if (op && op->put_inode) 1125 op->put_inode(inode); 1126 1127 if (atomic_dec_and_lock(&inode->i_count, &inode_lock)) 1128 iput_final(inode); 1129 } 1130 } 1131 1132 EXPORT_SYMBOL(iput); 1133 1134 /** 1135 * bmap - find a block number in a file 1136 * @inode: inode of file 1137 * @block: block to find 1138 * 1139 * Returns the block number on the device holding the inode that 1140 * is the disk block number for the block of the file requested. 1141 * That is, asked for block 4 of inode 1 the function will return the 1142 * disk block relative to the disk start that holds that block of the 1143 * file. 1144 */ 1145 sector_t bmap(struct inode * inode, sector_t block) 1146 { 1147 sector_t res = 0; 1148 if (inode->i_mapping->a_ops->bmap) 1149 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1150 return res; 1151 } 1152 EXPORT_SYMBOL(bmap); 1153 1154 /** 1155 * touch_atime - update the access time 1156 * @mnt: mount the inode is accessed on 1157 * @dentry: dentry accessed 1158 * 1159 * Update the accessed time on an inode and mark it for writeback. 1160 * This function automatically handles read only file systems and media, 1161 * as well as the "noatime" flag and inode specific "noatime" markers. 1162 */ 1163 void touch_atime(struct vfsmount *mnt, struct dentry *dentry) 1164 { 1165 struct inode *inode = dentry->d_inode; 1166 struct timespec now; 1167 1168 if (inode->i_flags & S_NOATIME) 1169 return; 1170 if (IS_NOATIME(inode)) 1171 return; 1172 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1173 return; 1174 1175 /* 1176 * We may have a NULL vfsmount when coming from NFSD 1177 */ 1178 if (mnt) { 1179 if (mnt->mnt_flags & MNT_NOATIME) 1180 return; 1181 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1182 return; 1183 1184 if (mnt->mnt_flags & MNT_RELATIME) { 1185 /* 1186 * With relative atime, only update atime if the 1187 * previous atime is earlier than either the ctime or 1188 * mtime. 1189 */ 1190 if (timespec_compare(&inode->i_mtime, 1191 &inode->i_atime) < 0 && 1192 timespec_compare(&inode->i_ctime, 1193 &inode->i_atime) < 0) 1194 return; 1195 } 1196 } 1197 1198 now = current_fs_time(inode->i_sb); 1199 if (timespec_equal(&inode->i_atime, &now)) 1200 return; 1201 1202 inode->i_atime = now; 1203 mark_inode_dirty_sync(inode); 1204 } 1205 EXPORT_SYMBOL(touch_atime); 1206 1207 /** 1208 * file_update_time - update mtime and ctime time 1209 * @file: file accessed 1210 * 1211 * Update the mtime and ctime members of an inode and mark the inode 1212 * for writeback. Note that this function is meant exclusively for 1213 * usage in the file write path of filesystems, and filesystems may 1214 * choose to explicitly ignore update via this function with the 1215 * S_NOCTIME inode flag, e.g. for network filesystem where these 1216 * timestamps are handled by the server. 1217 */ 1218 1219 void file_update_time(struct file *file) 1220 { 1221 struct inode *inode = file->f_path.dentry->d_inode; 1222 struct timespec now; 1223 int sync_it = 0; 1224 1225 if (IS_NOCMTIME(inode)) 1226 return; 1227 if (IS_RDONLY(inode)) 1228 return; 1229 1230 now = current_fs_time(inode->i_sb); 1231 if (!timespec_equal(&inode->i_mtime, &now)) { 1232 inode->i_mtime = now; 1233 sync_it = 1; 1234 } 1235 1236 if (!timespec_equal(&inode->i_ctime, &now)) { 1237 inode->i_ctime = now; 1238 sync_it = 1; 1239 } 1240 1241 if (sync_it) 1242 mark_inode_dirty_sync(inode); 1243 } 1244 1245 EXPORT_SYMBOL(file_update_time); 1246 1247 int inode_needs_sync(struct inode *inode) 1248 { 1249 if (IS_SYNC(inode)) 1250 return 1; 1251 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1252 return 1; 1253 return 0; 1254 } 1255 1256 EXPORT_SYMBOL(inode_needs_sync); 1257 1258 int inode_wait(void *word) 1259 { 1260 schedule(); 1261 return 0; 1262 } 1263 1264 /* 1265 * If we try to find an inode in the inode hash while it is being 1266 * deleted, we have to wait until the filesystem completes its 1267 * deletion before reporting that it isn't found. This function waits 1268 * until the deletion _might_ have completed. Callers are responsible 1269 * to recheck inode state. 1270 * 1271 * It doesn't matter if I_LOCK is not set initially, a call to 1272 * wake_up_inode() after removing from the hash list will DTRT. 1273 * 1274 * This is called with inode_lock held. 1275 */ 1276 static void __wait_on_freeing_inode(struct inode *inode) 1277 { 1278 wait_queue_head_t *wq; 1279 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK); 1280 wq = bit_waitqueue(&inode->i_state, __I_LOCK); 1281 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1282 spin_unlock(&inode_lock); 1283 schedule(); 1284 finish_wait(wq, &wait.wait); 1285 spin_lock(&inode_lock); 1286 } 1287 1288 void wake_up_inode(struct inode *inode) 1289 { 1290 /* 1291 * Prevent speculative execution through spin_unlock(&inode_lock); 1292 */ 1293 smp_mb(); 1294 wake_up_bit(&inode->i_state, __I_LOCK); 1295 } 1296 1297 /* 1298 * We rarely want to lock two inodes that do not have a parent/child 1299 * relationship (such as directory, child inode) simultaneously. The 1300 * vast majority of file systems should be able to get along fine 1301 * without this. Do not use these functions except as a last resort. 1302 */ 1303 void inode_double_lock(struct inode *inode1, struct inode *inode2) 1304 { 1305 if (inode1 == NULL || inode2 == NULL || inode1 == inode2) { 1306 if (inode1) 1307 mutex_lock(&inode1->i_mutex); 1308 else if (inode2) 1309 mutex_lock(&inode2->i_mutex); 1310 return; 1311 } 1312 1313 if (inode1 < inode2) { 1314 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT); 1315 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD); 1316 } else { 1317 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_PARENT); 1318 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_CHILD); 1319 } 1320 } 1321 EXPORT_SYMBOL(inode_double_lock); 1322 1323 void inode_double_unlock(struct inode *inode1, struct inode *inode2) 1324 { 1325 if (inode1) 1326 mutex_unlock(&inode1->i_mutex); 1327 1328 if (inode2 && inode2 != inode1) 1329 mutex_unlock(&inode2->i_mutex); 1330 } 1331 EXPORT_SYMBOL(inode_double_unlock); 1332 1333 static __initdata unsigned long ihash_entries; 1334 static int __init set_ihash_entries(char *str) 1335 { 1336 if (!str) 1337 return 0; 1338 ihash_entries = simple_strtoul(str, &str, 0); 1339 return 1; 1340 } 1341 __setup("ihash_entries=", set_ihash_entries); 1342 1343 /* 1344 * Initialize the waitqueues and inode hash table. 1345 */ 1346 void __init inode_init_early(void) 1347 { 1348 int loop; 1349 1350 /* If hashes are distributed across NUMA nodes, defer 1351 * hash allocation until vmalloc space is available. 1352 */ 1353 if (hashdist) 1354 return; 1355 1356 inode_hashtable = 1357 alloc_large_system_hash("Inode-cache", 1358 sizeof(struct hlist_head), 1359 ihash_entries, 1360 14, 1361 HASH_EARLY, 1362 &i_hash_shift, 1363 &i_hash_mask, 1364 0); 1365 1366 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1367 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1368 } 1369 1370 void __init inode_init(unsigned long mempages) 1371 { 1372 int loop; 1373 1374 /* inode slab cache */ 1375 inode_cachep = kmem_cache_create("inode_cache", 1376 sizeof(struct inode), 1377 0, 1378 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1379 SLAB_MEM_SPREAD), 1380 init_once, 1381 NULL); 1382 set_shrinker(DEFAULT_SEEKS, shrink_icache_memory); 1383 1384 /* Hash may have been set up in inode_init_early */ 1385 if (!hashdist) 1386 return; 1387 1388 inode_hashtable = 1389 alloc_large_system_hash("Inode-cache", 1390 sizeof(struct hlist_head), 1391 ihash_entries, 1392 14, 1393 0, 1394 &i_hash_shift, 1395 &i_hash_mask, 1396 0); 1397 1398 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1399 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1400 } 1401 1402 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1403 { 1404 inode->i_mode = mode; 1405 if (S_ISCHR(mode)) { 1406 inode->i_fop = &def_chr_fops; 1407 inode->i_rdev = rdev; 1408 } else if (S_ISBLK(mode)) { 1409 inode->i_fop = &def_blk_fops; 1410 inode->i_rdev = rdev; 1411 } else if (S_ISFIFO(mode)) 1412 inode->i_fop = &def_fifo_fops; 1413 else if (S_ISSOCK(mode)) 1414 inode->i_fop = &bad_sock_fops; 1415 else 1416 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n", 1417 mode); 1418 } 1419 EXPORT_SYMBOL(init_special_inode); 1420