xref: /openbmc/linux/fs/inode.c (revision 64c70b1c)
1 /*
2  * linux/fs/inode.c
3  *
4  * (C) 1997 Linus Torvalds
5  */
6 
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/quotaops.h>
12 #include <linux/slab.h>
13 #include <linux/writeback.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/wait.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/inotify.h>
24 #include <linux/mount.h>
25 
26 /*
27  * This is needed for the following functions:
28  *  - inode_has_buffers
29  *  - invalidate_inode_buffers
30  *  - invalidate_bdev
31  *
32  * FIXME: remove all knowledge of the buffer layer from this file
33  */
34 #include <linux/buffer_head.h>
35 
36 /*
37  * New inode.c implementation.
38  *
39  * This implementation has the basic premise of trying
40  * to be extremely low-overhead and SMP-safe, yet be
41  * simple enough to be "obviously correct".
42  *
43  * Famous last words.
44  */
45 
46 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
47 
48 /* #define INODE_PARANOIA 1 */
49 /* #define INODE_DEBUG 1 */
50 
51 /*
52  * Inode lookup is no longer as critical as it used to be:
53  * most of the lookups are going to be through the dcache.
54  */
55 #define I_HASHBITS	i_hash_shift
56 #define I_HASHMASK	i_hash_mask
57 
58 static unsigned int i_hash_mask __read_mostly;
59 static unsigned int i_hash_shift __read_mostly;
60 
61 /*
62  * Each inode can be on two separate lists. One is
63  * the hash list of the inode, used for lookups. The
64  * other linked list is the "type" list:
65  *  "in_use" - valid inode, i_count > 0, i_nlink > 0
66  *  "dirty"  - as "in_use" but also dirty
67  *  "unused" - valid inode, i_count = 0
68  *
69  * A "dirty" list is maintained for each super block,
70  * allowing for low-overhead inode sync() operations.
71  */
72 
73 LIST_HEAD(inode_in_use);
74 LIST_HEAD(inode_unused);
75 static struct hlist_head *inode_hashtable __read_mostly;
76 
77 /*
78  * A simple spinlock to protect the list manipulations.
79  *
80  * NOTE! You also have to own the lock if you change
81  * the i_state of an inode while it is in use..
82  */
83 DEFINE_SPINLOCK(inode_lock);
84 
85 /*
86  * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
87  * icache shrinking path, and the umount path.  Without this exclusion,
88  * by the time prune_icache calls iput for the inode whose pages it has
89  * been invalidating, or by the time it calls clear_inode & destroy_inode
90  * from its final dispose_list, the struct super_block they refer to
91  * (for inode->i_sb->s_op) may already have been freed and reused.
92  */
93 static DEFINE_MUTEX(iprune_mutex);
94 
95 /*
96  * Statistics gathering..
97  */
98 struct inodes_stat_t inodes_stat;
99 
100 static struct kmem_cache * inode_cachep __read_mostly;
101 
102 static struct inode *alloc_inode(struct super_block *sb)
103 {
104 	static const struct address_space_operations empty_aops;
105 	static struct inode_operations empty_iops;
106 	static const struct file_operations empty_fops;
107 	struct inode *inode;
108 
109 	if (sb->s_op->alloc_inode)
110 		inode = sb->s_op->alloc_inode(sb);
111 	else
112 		inode = (struct inode *) kmem_cache_alloc(inode_cachep, GFP_KERNEL);
113 
114 	if (inode) {
115 		struct address_space * const mapping = &inode->i_data;
116 
117 		inode->i_sb = sb;
118 		inode->i_blkbits = sb->s_blocksize_bits;
119 		inode->i_flags = 0;
120 		atomic_set(&inode->i_count, 1);
121 		inode->i_op = &empty_iops;
122 		inode->i_fop = &empty_fops;
123 		inode->i_nlink = 1;
124 		atomic_set(&inode->i_writecount, 0);
125 		inode->i_size = 0;
126 		inode->i_blocks = 0;
127 		inode->i_bytes = 0;
128 		inode->i_generation = 0;
129 #ifdef CONFIG_QUOTA
130 		memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
131 #endif
132 		inode->i_pipe = NULL;
133 		inode->i_bdev = NULL;
134 		inode->i_cdev = NULL;
135 		inode->i_rdev = 0;
136 		inode->dirtied_when = 0;
137 		if (security_inode_alloc(inode)) {
138 			if (inode->i_sb->s_op->destroy_inode)
139 				inode->i_sb->s_op->destroy_inode(inode);
140 			else
141 				kmem_cache_free(inode_cachep, (inode));
142 			return NULL;
143 		}
144 
145 		mapping->a_ops = &empty_aops;
146  		mapping->host = inode;
147 		mapping->flags = 0;
148 		mapping_set_gfp_mask(mapping, GFP_HIGHUSER);
149 		mapping->assoc_mapping = NULL;
150 		mapping->backing_dev_info = &default_backing_dev_info;
151 
152 		/*
153 		 * If the block_device provides a backing_dev_info for client
154 		 * inodes then use that.  Otherwise the inode share the bdev's
155 		 * backing_dev_info.
156 		 */
157 		if (sb->s_bdev) {
158 			struct backing_dev_info *bdi;
159 
160 			bdi = sb->s_bdev->bd_inode_backing_dev_info;
161 			if (!bdi)
162 				bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
163 			mapping->backing_dev_info = bdi;
164 		}
165 		inode->i_private = NULL;
166 		inode->i_mapping = mapping;
167 	}
168 	return inode;
169 }
170 
171 void destroy_inode(struct inode *inode)
172 {
173 	BUG_ON(inode_has_buffers(inode));
174 	security_inode_free(inode);
175 	if (inode->i_sb->s_op->destroy_inode)
176 		inode->i_sb->s_op->destroy_inode(inode);
177 	else
178 		kmem_cache_free(inode_cachep, (inode));
179 }
180 
181 
182 /*
183  * These are initializations that only need to be done
184  * once, because the fields are idempotent across use
185  * of the inode, so let the slab aware of that.
186  */
187 void inode_init_once(struct inode *inode)
188 {
189 	memset(inode, 0, sizeof(*inode));
190 	INIT_HLIST_NODE(&inode->i_hash);
191 	INIT_LIST_HEAD(&inode->i_dentry);
192 	INIT_LIST_HEAD(&inode->i_devices);
193 	mutex_init(&inode->i_mutex);
194 	init_rwsem(&inode->i_alloc_sem);
195 	INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
196 	rwlock_init(&inode->i_data.tree_lock);
197 	spin_lock_init(&inode->i_data.i_mmap_lock);
198 	INIT_LIST_HEAD(&inode->i_data.private_list);
199 	spin_lock_init(&inode->i_data.private_lock);
200 	INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
201 	INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
202 	spin_lock_init(&inode->i_lock);
203 	i_size_ordered_init(inode);
204 #ifdef CONFIG_INOTIFY
205 	INIT_LIST_HEAD(&inode->inotify_watches);
206 	mutex_init(&inode->inotify_mutex);
207 #endif
208 }
209 
210 EXPORT_SYMBOL(inode_init_once);
211 
212 static void init_once(void * foo, struct kmem_cache * cachep, unsigned long flags)
213 {
214 	struct inode * inode = (struct inode *) foo;
215 
216 	inode_init_once(inode);
217 }
218 
219 /*
220  * inode_lock must be held
221  */
222 void __iget(struct inode * inode)
223 {
224 	if (atomic_read(&inode->i_count)) {
225 		atomic_inc(&inode->i_count);
226 		return;
227 	}
228 	atomic_inc(&inode->i_count);
229 	if (!(inode->i_state & (I_DIRTY|I_LOCK)))
230 		list_move(&inode->i_list, &inode_in_use);
231 	inodes_stat.nr_unused--;
232 }
233 
234 /**
235  * clear_inode - clear an inode
236  * @inode: inode to clear
237  *
238  * This is called by the filesystem to tell us
239  * that the inode is no longer useful. We just
240  * terminate it with extreme prejudice.
241  */
242 void clear_inode(struct inode *inode)
243 {
244 	might_sleep();
245 	invalidate_inode_buffers(inode);
246 
247 	BUG_ON(inode->i_data.nrpages);
248 	BUG_ON(!(inode->i_state & I_FREEING));
249 	BUG_ON(inode->i_state & I_CLEAR);
250 	wait_on_inode(inode);
251 	DQUOT_DROP(inode);
252 	if (inode->i_sb->s_op->clear_inode)
253 		inode->i_sb->s_op->clear_inode(inode);
254 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
255 		bd_forget(inode);
256 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
257 		cd_forget(inode);
258 	inode->i_state = I_CLEAR;
259 }
260 
261 EXPORT_SYMBOL(clear_inode);
262 
263 /*
264  * dispose_list - dispose of the contents of a local list
265  * @head: the head of the list to free
266  *
267  * Dispose-list gets a local list with local inodes in it, so it doesn't
268  * need to worry about list corruption and SMP locks.
269  */
270 static void dispose_list(struct list_head *head)
271 {
272 	int nr_disposed = 0;
273 
274 	while (!list_empty(head)) {
275 		struct inode *inode;
276 
277 		inode = list_first_entry(head, struct inode, i_list);
278 		list_del(&inode->i_list);
279 
280 		if (inode->i_data.nrpages)
281 			truncate_inode_pages(&inode->i_data, 0);
282 		clear_inode(inode);
283 
284 		spin_lock(&inode_lock);
285 		hlist_del_init(&inode->i_hash);
286 		list_del_init(&inode->i_sb_list);
287 		spin_unlock(&inode_lock);
288 
289 		wake_up_inode(inode);
290 		destroy_inode(inode);
291 		nr_disposed++;
292 	}
293 	spin_lock(&inode_lock);
294 	inodes_stat.nr_inodes -= nr_disposed;
295 	spin_unlock(&inode_lock);
296 }
297 
298 /*
299  * Invalidate all inodes for a device.
300  */
301 static int invalidate_list(struct list_head *head, struct list_head *dispose)
302 {
303 	struct list_head *next;
304 	int busy = 0, count = 0;
305 
306 	next = head->next;
307 	for (;;) {
308 		struct list_head * tmp = next;
309 		struct inode * inode;
310 
311 		/*
312 		 * We can reschedule here without worrying about the list's
313 		 * consistency because the per-sb list of inodes must not
314 		 * change during umount anymore, and because iprune_mutex keeps
315 		 * shrink_icache_memory() away.
316 		 */
317 		cond_resched_lock(&inode_lock);
318 
319 		next = next->next;
320 		if (tmp == head)
321 			break;
322 		inode = list_entry(tmp, struct inode, i_sb_list);
323 		invalidate_inode_buffers(inode);
324 		if (!atomic_read(&inode->i_count)) {
325 			list_move(&inode->i_list, dispose);
326 			inode->i_state |= I_FREEING;
327 			count++;
328 			continue;
329 		}
330 		busy = 1;
331 	}
332 	/* only unused inodes may be cached with i_count zero */
333 	inodes_stat.nr_unused -= count;
334 	return busy;
335 }
336 
337 /**
338  *	invalidate_inodes	- discard the inodes on a device
339  *	@sb: superblock
340  *
341  *	Discard all of the inodes for a given superblock. If the discard
342  *	fails because there are busy inodes then a non zero value is returned.
343  *	If the discard is successful all the inodes have been discarded.
344  */
345 int invalidate_inodes(struct super_block * sb)
346 {
347 	int busy;
348 	LIST_HEAD(throw_away);
349 
350 	mutex_lock(&iprune_mutex);
351 	spin_lock(&inode_lock);
352 	inotify_unmount_inodes(&sb->s_inodes);
353 	busy = invalidate_list(&sb->s_inodes, &throw_away);
354 	spin_unlock(&inode_lock);
355 
356 	dispose_list(&throw_away);
357 	mutex_unlock(&iprune_mutex);
358 
359 	return busy;
360 }
361 
362 EXPORT_SYMBOL(invalidate_inodes);
363 
364 static int can_unuse(struct inode *inode)
365 {
366 	if (inode->i_state)
367 		return 0;
368 	if (inode_has_buffers(inode))
369 		return 0;
370 	if (atomic_read(&inode->i_count))
371 		return 0;
372 	if (inode->i_data.nrpages)
373 		return 0;
374 	return 1;
375 }
376 
377 /*
378  * Scan `goal' inodes on the unused list for freeable ones. They are moved to
379  * a temporary list and then are freed outside inode_lock by dispose_list().
380  *
381  * Any inodes which are pinned purely because of attached pagecache have their
382  * pagecache removed.  We expect the final iput() on that inode to add it to
383  * the front of the inode_unused list.  So look for it there and if the
384  * inode is still freeable, proceed.  The right inode is found 99.9% of the
385  * time in testing on a 4-way.
386  *
387  * If the inode has metadata buffers attached to mapping->private_list then
388  * try to remove them.
389  */
390 static void prune_icache(int nr_to_scan)
391 {
392 	LIST_HEAD(freeable);
393 	int nr_pruned = 0;
394 	int nr_scanned;
395 	unsigned long reap = 0;
396 
397 	mutex_lock(&iprune_mutex);
398 	spin_lock(&inode_lock);
399 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
400 		struct inode *inode;
401 
402 		if (list_empty(&inode_unused))
403 			break;
404 
405 		inode = list_entry(inode_unused.prev, struct inode, i_list);
406 
407 		if (inode->i_state || atomic_read(&inode->i_count)) {
408 			list_move(&inode->i_list, &inode_unused);
409 			continue;
410 		}
411 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
412 			__iget(inode);
413 			spin_unlock(&inode_lock);
414 			if (remove_inode_buffers(inode))
415 				reap += invalidate_mapping_pages(&inode->i_data,
416 								0, -1);
417 			iput(inode);
418 			spin_lock(&inode_lock);
419 
420 			if (inode != list_entry(inode_unused.next,
421 						struct inode, i_list))
422 				continue;	/* wrong inode or list_empty */
423 			if (!can_unuse(inode))
424 				continue;
425 		}
426 		list_move(&inode->i_list, &freeable);
427 		inode->i_state |= I_FREEING;
428 		nr_pruned++;
429 	}
430 	inodes_stat.nr_unused -= nr_pruned;
431 	if (current_is_kswapd())
432 		__count_vm_events(KSWAPD_INODESTEAL, reap);
433 	else
434 		__count_vm_events(PGINODESTEAL, reap);
435 	spin_unlock(&inode_lock);
436 
437 	dispose_list(&freeable);
438 	mutex_unlock(&iprune_mutex);
439 }
440 
441 /*
442  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
443  * "unused" means that no dentries are referring to the inodes: the files are
444  * not open and the dcache references to those inodes have already been
445  * reclaimed.
446  *
447  * This function is passed the number of inodes to scan, and it returns the
448  * total number of remaining possibly-reclaimable inodes.
449  */
450 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
451 {
452 	if (nr) {
453 		/*
454 		 * Nasty deadlock avoidance.  We may hold various FS locks,
455 		 * and we don't want to recurse into the FS that called us
456 		 * in clear_inode() and friends..
457 	 	 */
458 		if (!(gfp_mask & __GFP_FS))
459 			return -1;
460 		prune_icache(nr);
461 	}
462 	return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
463 }
464 
465 static void __wait_on_freeing_inode(struct inode *inode);
466 /*
467  * Called with the inode lock held.
468  * NOTE: we are not increasing the inode-refcount, you must call __iget()
469  * by hand after calling find_inode now! This simplifies iunique and won't
470  * add any additional branch in the common code.
471  */
472 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data)
473 {
474 	struct hlist_node *node;
475 	struct inode * inode = NULL;
476 
477 repeat:
478 	hlist_for_each (node, head) {
479 		inode = hlist_entry(node, struct inode, i_hash);
480 		if (inode->i_sb != sb)
481 			continue;
482 		if (!test(inode, data))
483 			continue;
484 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
485 			__wait_on_freeing_inode(inode);
486 			goto repeat;
487 		}
488 		break;
489 	}
490 	return node ? inode : NULL;
491 }
492 
493 /*
494  * find_inode_fast is the fast path version of find_inode, see the comment at
495  * iget_locked for details.
496  */
497 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino)
498 {
499 	struct hlist_node *node;
500 	struct inode * inode = NULL;
501 
502 repeat:
503 	hlist_for_each (node, head) {
504 		inode = hlist_entry(node, struct inode, i_hash);
505 		if (inode->i_ino != ino)
506 			continue;
507 		if (inode->i_sb != sb)
508 			continue;
509 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
510 			__wait_on_freeing_inode(inode);
511 			goto repeat;
512 		}
513 		break;
514 	}
515 	return node ? inode : NULL;
516 }
517 
518 /**
519  *	new_inode 	- obtain an inode
520  *	@sb: superblock
521  *
522  *	Allocates a new inode for given superblock.
523  */
524 struct inode *new_inode(struct super_block *sb)
525 {
526 	/*
527 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
528 	 * error if st_ino won't fit in target struct field. Use 32bit counter
529 	 * here to attempt to avoid that.
530 	 */
531 	static unsigned int last_ino;
532 	struct inode * inode;
533 
534 	spin_lock_prefetch(&inode_lock);
535 
536 	inode = alloc_inode(sb);
537 	if (inode) {
538 		spin_lock(&inode_lock);
539 		inodes_stat.nr_inodes++;
540 		list_add(&inode->i_list, &inode_in_use);
541 		list_add(&inode->i_sb_list, &sb->s_inodes);
542 		inode->i_ino = ++last_ino;
543 		inode->i_state = 0;
544 		spin_unlock(&inode_lock);
545 	}
546 	return inode;
547 }
548 
549 EXPORT_SYMBOL(new_inode);
550 
551 void unlock_new_inode(struct inode *inode)
552 {
553 	/*
554 	 * This is special!  We do not need the spinlock
555 	 * when clearing I_LOCK, because we're guaranteed
556 	 * that nobody else tries to do anything about the
557 	 * state of the inode when it is locked, as we
558 	 * just created it (so there can be no old holders
559 	 * that haven't tested I_LOCK).
560 	 */
561 	inode->i_state &= ~(I_LOCK|I_NEW);
562 	wake_up_inode(inode);
563 }
564 
565 EXPORT_SYMBOL(unlock_new_inode);
566 
567 /*
568  * This is called without the inode lock held.. Be careful.
569  *
570  * We no longer cache the sb_flags in i_flags - see fs.h
571  *	-- rmk@arm.uk.linux.org
572  */
573 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data)
574 {
575 	struct inode * inode;
576 
577 	inode = alloc_inode(sb);
578 	if (inode) {
579 		struct inode * old;
580 
581 		spin_lock(&inode_lock);
582 		/* We released the lock, so.. */
583 		old = find_inode(sb, head, test, data);
584 		if (!old) {
585 			if (set(inode, data))
586 				goto set_failed;
587 
588 			inodes_stat.nr_inodes++;
589 			list_add(&inode->i_list, &inode_in_use);
590 			list_add(&inode->i_sb_list, &sb->s_inodes);
591 			hlist_add_head(&inode->i_hash, head);
592 			inode->i_state = I_LOCK|I_NEW;
593 			spin_unlock(&inode_lock);
594 
595 			/* Return the locked inode with I_NEW set, the
596 			 * caller is responsible for filling in the contents
597 			 */
598 			return inode;
599 		}
600 
601 		/*
602 		 * Uhhuh, somebody else created the same inode under
603 		 * us. Use the old inode instead of the one we just
604 		 * allocated.
605 		 */
606 		__iget(old);
607 		spin_unlock(&inode_lock);
608 		destroy_inode(inode);
609 		inode = old;
610 		wait_on_inode(inode);
611 	}
612 	return inode;
613 
614 set_failed:
615 	spin_unlock(&inode_lock);
616 	destroy_inode(inode);
617 	return NULL;
618 }
619 
620 /*
621  * get_new_inode_fast is the fast path version of get_new_inode, see the
622  * comment at iget_locked for details.
623  */
624 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino)
625 {
626 	struct inode * inode;
627 
628 	inode = alloc_inode(sb);
629 	if (inode) {
630 		struct inode * old;
631 
632 		spin_lock(&inode_lock);
633 		/* We released the lock, so.. */
634 		old = find_inode_fast(sb, head, ino);
635 		if (!old) {
636 			inode->i_ino = ino;
637 			inodes_stat.nr_inodes++;
638 			list_add(&inode->i_list, &inode_in_use);
639 			list_add(&inode->i_sb_list, &sb->s_inodes);
640 			hlist_add_head(&inode->i_hash, head);
641 			inode->i_state = I_LOCK|I_NEW;
642 			spin_unlock(&inode_lock);
643 
644 			/* Return the locked inode with I_NEW set, the
645 			 * caller is responsible for filling in the contents
646 			 */
647 			return inode;
648 		}
649 
650 		/*
651 		 * Uhhuh, somebody else created the same inode under
652 		 * us. Use the old inode instead of the one we just
653 		 * allocated.
654 		 */
655 		__iget(old);
656 		spin_unlock(&inode_lock);
657 		destroy_inode(inode);
658 		inode = old;
659 		wait_on_inode(inode);
660 	}
661 	return inode;
662 }
663 
664 static unsigned long hash(struct super_block *sb, unsigned long hashval)
665 {
666 	unsigned long tmp;
667 
668 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
669 			L1_CACHE_BYTES;
670 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
671 	return tmp & I_HASHMASK;
672 }
673 
674 /**
675  *	iunique - get a unique inode number
676  *	@sb: superblock
677  *	@max_reserved: highest reserved inode number
678  *
679  *	Obtain an inode number that is unique on the system for a given
680  *	superblock. This is used by file systems that have no natural
681  *	permanent inode numbering system. An inode number is returned that
682  *	is higher than the reserved limit but unique.
683  *
684  *	BUGS:
685  *	With a large number of inodes live on the file system this function
686  *	currently becomes quite slow.
687  */
688 ino_t iunique(struct super_block *sb, ino_t max_reserved)
689 {
690 	/*
691 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
692 	 * error if st_ino won't fit in target struct field. Use 32bit counter
693 	 * here to attempt to avoid that.
694 	 */
695 	static unsigned int counter;
696 	struct inode *inode;
697 	struct hlist_head *head;
698 	ino_t res;
699 
700 	spin_lock(&inode_lock);
701 	do {
702 		if (counter <= max_reserved)
703 			counter = max_reserved + 1;
704 		res = counter++;
705 		head = inode_hashtable + hash(sb, res);
706 		inode = find_inode_fast(sb, head, res);
707 	} while (inode != NULL);
708 	spin_unlock(&inode_lock);
709 
710 	return res;
711 }
712 EXPORT_SYMBOL(iunique);
713 
714 struct inode *igrab(struct inode *inode)
715 {
716 	spin_lock(&inode_lock);
717 	if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)))
718 		__iget(inode);
719 	else
720 		/*
721 		 * Handle the case where s_op->clear_inode is not been
722 		 * called yet, and somebody is calling igrab
723 		 * while the inode is getting freed.
724 		 */
725 		inode = NULL;
726 	spin_unlock(&inode_lock);
727 	return inode;
728 }
729 
730 EXPORT_SYMBOL(igrab);
731 
732 /**
733  * ifind - internal function, you want ilookup5() or iget5().
734  * @sb:		super block of file system to search
735  * @head:       the head of the list to search
736  * @test:	callback used for comparisons between inodes
737  * @data:	opaque data pointer to pass to @test
738  * @wait:	if true wait for the inode to be unlocked, if false do not
739  *
740  * ifind() searches for the inode specified by @data in the inode
741  * cache. This is a generalized version of ifind_fast() for file systems where
742  * the inode number is not sufficient for unique identification of an inode.
743  *
744  * If the inode is in the cache, the inode is returned with an incremented
745  * reference count.
746  *
747  * Otherwise NULL is returned.
748  *
749  * Note, @test is called with the inode_lock held, so can't sleep.
750  */
751 static struct inode *ifind(struct super_block *sb,
752 		struct hlist_head *head, int (*test)(struct inode *, void *),
753 		void *data, const int wait)
754 {
755 	struct inode *inode;
756 
757 	spin_lock(&inode_lock);
758 	inode = find_inode(sb, head, test, data);
759 	if (inode) {
760 		__iget(inode);
761 		spin_unlock(&inode_lock);
762 		if (likely(wait))
763 			wait_on_inode(inode);
764 		return inode;
765 	}
766 	spin_unlock(&inode_lock);
767 	return NULL;
768 }
769 
770 /**
771  * ifind_fast - internal function, you want ilookup() or iget().
772  * @sb:		super block of file system to search
773  * @head:       head of the list to search
774  * @ino:	inode number to search for
775  *
776  * ifind_fast() searches for the inode @ino in the inode cache. This is for
777  * file systems where the inode number is sufficient for unique identification
778  * of an inode.
779  *
780  * If the inode is in the cache, the inode is returned with an incremented
781  * reference count.
782  *
783  * Otherwise NULL is returned.
784  */
785 static struct inode *ifind_fast(struct super_block *sb,
786 		struct hlist_head *head, unsigned long ino)
787 {
788 	struct inode *inode;
789 
790 	spin_lock(&inode_lock);
791 	inode = find_inode_fast(sb, head, ino);
792 	if (inode) {
793 		__iget(inode);
794 		spin_unlock(&inode_lock);
795 		wait_on_inode(inode);
796 		return inode;
797 	}
798 	spin_unlock(&inode_lock);
799 	return NULL;
800 }
801 
802 /**
803  * ilookup5_nowait - search for an inode in the inode cache
804  * @sb:		super block of file system to search
805  * @hashval:	hash value (usually inode number) to search for
806  * @test:	callback used for comparisons between inodes
807  * @data:	opaque data pointer to pass to @test
808  *
809  * ilookup5() uses ifind() to search for the inode specified by @hashval and
810  * @data in the inode cache. This is a generalized version of ilookup() for
811  * file systems where the inode number is not sufficient for unique
812  * identification of an inode.
813  *
814  * If the inode is in the cache, the inode is returned with an incremented
815  * reference count.  Note, the inode lock is not waited upon so you have to be
816  * very careful what you do with the returned inode.  You probably should be
817  * using ilookup5() instead.
818  *
819  * Otherwise NULL is returned.
820  *
821  * Note, @test is called with the inode_lock held, so can't sleep.
822  */
823 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
824 		int (*test)(struct inode *, void *), void *data)
825 {
826 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
827 
828 	return ifind(sb, head, test, data, 0);
829 }
830 
831 EXPORT_SYMBOL(ilookup5_nowait);
832 
833 /**
834  * ilookup5 - search for an inode in the inode cache
835  * @sb:		super block of file system to search
836  * @hashval:	hash value (usually inode number) to search for
837  * @test:	callback used for comparisons between inodes
838  * @data:	opaque data pointer to pass to @test
839  *
840  * ilookup5() uses ifind() to search for the inode specified by @hashval and
841  * @data in the inode cache. This is a generalized version of ilookup() for
842  * file systems where the inode number is not sufficient for unique
843  * identification of an inode.
844  *
845  * If the inode is in the cache, the inode lock is waited upon and the inode is
846  * returned with an incremented reference count.
847  *
848  * Otherwise NULL is returned.
849  *
850  * Note, @test is called with the inode_lock held, so can't sleep.
851  */
852 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
853 		int (*test)(struct inode *, void *), void *data)
854 {
855 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
856 
857 	return ifind(sb, head, test, data, 1);
858 }
859 
860 EXPORT_SYMBOL(ilookup5);
861 
862 /**
863  * ilookup - search for an inode in the inode cache
864  * @sb:		super block of file system to search
865  * @ino:	inode number to search for
866  *
867  * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
868  * This is for file systems where the inode number is sufficient for unique
869  * identification of an inode.
870  *
871  * If the inode is in the cache, the inode is returned with an incremented
872  * reference count.
873  *
874  * Otherwise NULL is returned.
875  */
876 struct inode *ilookup(struct super_block *sb, unsigned long ino)
877 {
878 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
879 
880 	return ifind_fast(sb, head, ino);
881 }
882 
883 EXPORT_SYMBOL(ilookup);
884 
885 /**
886  * iget5_locked - obtain an inode from a mounted file system
887  * @sb:		super block of file system
888  * @hashval:	hash value (usually inode number) to get
889  * @test:	callback used for comparisons between inodes
890  * @set:	callback used to initialize a new struct inode
891  * @data:	opaque data pointer to pass to @test and @set
892  *
893  * This is iget() without the read_inode() portion of get_new_inode().
894  *
895  * iget5_locked() uses ifind() to search for the inode specified by @hashval
896  * and @data in the inode cache and if present it is returned with an increased
897  * reference count. This is a generalized version of iget_locked() for file
898  * systems where the inode number is not sufficient for unique identification
899  * of an inode.
900  *
901  * If the inode is not in cache, get_new_inode() is called to allocate a new
902  * inode and this is returned locked, hashed, and with the I_NEW flag set. The
903  * file system gets to fill it in before unlocking it via unlock_new_inode().
904  *
905  * Note both @test and @set are called with the inode_lock held, so can't sleep.
906  */
907 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
908 		int (*test)(struct inode *, void *),
909 		int (*set)(struct inode *, void *), void *data)
910 {
911 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
912 	struct inode *inode;
913 
914 	inode = ifind(sb, head, test, data, 1);
915 	if (inode)
916 		return inode;
917 	/*
918 	 * get_new_inode() will do the right thing, re-trying the search
919 	 * in case it had to block at any point.
920 	 */
921 	return get_new_inode(sb, head, test, set, data);
922 }
923 
924 EXPORT_SYMBOL(iget5_locked);
925 
926 /**
927  * iget_locked - obtain an inode from a mounted file system
928  * @sb:		super block of file system
929  * @ino:	inode number to get
930  *
931  * This is iget() without the read_inode() portion of get_new_inode_fast().
932  *
933  * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
934  * the inode cache and if present it is returned with an increased reference
935  * count. This is for file systems where the inode number is sufficient for
936  * unique identification of an inode.
937  *
938  * If the inode is not in cache, get_new_inode_fast() is called to allocate a
939  * new inode and this is returned locked, hashed, and with the I_NEW flag set.
940  * The file system gets to fill it in before unlocking it via
941  * unlock_new_inode().
942  */
943 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
944 {
945 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
946 	struct inode *inode;
947 
948 	inode = ifind_fast(sb, head, ino);
949 	if (inode)
950 		return inode;
951 	/*
952 	 * get_new_inode_fast() will do the right thing, re-trying the search
953 	 * in case it had to block at any point.
954 	 */
955 	return get_new_inode_fast(sb, head, ino);
956 }
957 
958 EXPORT_SYMBOL(iget_locked);
959 
960 /**
961  *	__insert_inode_hash - hash an inode
962  *	@inode: unhashed inode
963  *	@hashval: unsigned long value used to locate this object in the
964  *		inode_hashtable.
965  *
966  *	Add an inode to the inode hash for this superblock.
967  */
968 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
969 {
970 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
971 	spin_lock(&inode_lock);
972 	hlist_add_head(&inode->i_hash, head);
973 	spin_unlock(&inode_lock);
974 }
975 
976 EXPORT_SYMBOL(__insert_inode_hash);
977 
978 /**
979  *	remove_inode_hash - remove an inode from the hash
980  *	@inode: inode to unhash
981  *
982  *	Remove an inode from the superblock.
983  */
984 void remove_inode_hash(struct inode *inode)
985 {
986 	spin_lock(&inode_lock);
987 	hlist_del_init(&inode->i_hash);
988 	spin_unlock(&inode_lock);
989 }
990 
991 EXPORT_SYMBOL(remove_inode_hash);
992 
993 /*
994  * Tell the filesystem that this inode is no longer of any interest and should
995  * be completely destroyed.
996  *
997  * We leave the inode in the inode hash table until *after* the filesystem's
998  * ->delete_inode completes.  This ensures that an iget (such as nfsd might
999  * instigate) will always find up-to-date information either in the hash or on
1000  * disk.
1001  *
1002  * I_FREEING is set so that no-one will take a new reference to the inode while
1003  * it is being deleted.
1004  */
1005 void generic_delete_inode(struct inode *inode)
1006 {
1007 	const struct super_operations *op = inode->i_sb->s_op;
1008 
1009 	list_del_init(&inode->i_list);
1010 	list_del_init(&inode->i_sb_list);
1011 	inode->i_state |= I_FREEING;
1012 	inodes_stat.nr_inodes--;
1013 	spin_unlock(&inode_lock);
1014 
1015 	security_inode_delete(inode);
1016 
1017 	if (op->delete_inode) {
1018 		void (*delete)(struct inode *) = op->delete_inode;
1019 		if (!is_bad_inode(inode))
1020 			DQUOT_INIT(inode);
1021 		/* Filesystems implementing their own
1022 		 * s_op->delete_inode are required to call
1023 		 * truncate_inode_pages and clear_inode()
1024 		 * internally */
1025 		delete(inode);
1026 	} else {
1027 		truncate_inode_pages(&inode->i_data, 0);
1028 		clear_inode(inode);
1029 	}
1030 	spin_lock(&inode_lock);
1031 	hlist_del_init(&inode->i_hash);
1032 	spin_unlock(&inode_lock);
1033 	wake_up_inode(inode);
1034 	BUG_ON(inode->i_state != I_CLEAR);
1035 	destroy_inode(inode);
1036 }
1037 
1038 EXPORT_SYMBOL(generic_delete_inode);
1039 
1040 static void generic_forget_inode(struct inode *inode)
1041 {
1042 	struct super_block *sb = inode->i_sb;
1043 
1044 	if (!hlist_unhashed(&inode->i_hash)) {
1045 		if (!(inode->i_state & (I_DIRTY|I_LOCK)))
1046 			list_move(&inode->i_list, &inode_unused);
1047 		inodes_stat.nr_unused++;
1048 		if (sb->s_flags & MS_ACTIVE) {
1049 			spin_unlock(&inode_lock);
1050 			return;
1051 		}
1052 		inode->i_state |= I_WILL_FREE;
1053 		spin_unlock(&inode_lock);
1054 		write_inode_now(inode, 1);
1055 		spin_lock(&inode_lock);
1056 		inode->i_state &= ~I_WILL_FREE;
1057 		inodes_stat.nr_unused--;
1058 		hlist_del_init(&inode->i_hash);
1059 	}
1060 	list_del_init(&inode->i_list);
1061 	list_del_init(&inode->i_sb_list);
1062 	inode->i_state |= I_FREEING;
1063 	inodes_stat.nr_inodes--;
1064 	spin_unlock(&inode_lock);
1065 	if (inode->i_data.nrpages)
1066 		truncate_inode_pages(&inode->i_data, 0);
1067 	clear_inode(inode);
1068 	wake_up_inode(inode);
1069 	destroy_inode(inode);
1070 }
1071 
1072 /*
1073  * Normal UNIX filesystem behaviour: delete the
1074  * inode when the usage count drops to zero, and
1075  * i_nlink is zero.
1076  */
1077 void generic_drop_inode(struct inode *inode)
1078 {
1079 	if (!inode->i_nlink)
1080 		generic_delete_inode(inode);
1081 	else
1082 		generic_forget_inode(inode);
1083 }
1084 
1085 EXPORT_SYMBOL_GPL(generic_drop_inode);
1086 
1087 /*
1088  * Called when we're dropping the last reference
1089  * to an inode.
1090  *
1091  * Call the FS "drop()" function, defaulting to
1092  * the legacy UNIX filesystem behaviour..
1093  *
1094  * NOTE! NOTE! NOTE! We're called with the inode lock
1095  * held, and the drop function is supposed to release
1096  * the lock!
1097  */
1098 static inline void iput_final(struct inode *inode)
1099 {
1100 	const struct super_operations *op = inode->i_sb->s_op;
1101 	void (*drop)(struct inode *) = generic_drop_inode;
1102 
1103 	if (op && op->drop_inode)
1104 		drop = op->drop_inode;
1105 	drop(inode);
1106 }
1107 
1108 /**
1109  *	iput	- put an inode
1110  *	@inode: inode to put
1111  *
1112  *	Puts an inode, dropping its usage count. If the inode use count hits
1113  *	zero, the inode is then freed and may also be destroyed.
1114  *
1115  *	Consequently, iput() can sleep.
1116  */
1117 void iput(struct inode *inode)
1118 {
1119 	if (inode) {
1120 		const struct super_operations *op = inode->i_sb->s_op;
1121 
1122 		BUG_ON(inode->i_state == I_CLEAR);
1123 
1124 		if (op && op->put_inode)
1125 			op->put_inode(inode);
1126 
1127 		if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1128 			iput_final(inode);
1129 	}
1130 }
1131 
1132 EXPORT_SYMBOL(iput);
1133 
1134 /**
1135  *	bmap	- find a block number in a file
1136  *	@inode: inode of file
1137  *	@block: block to find
1138  *
1139  *	Returns the block number on the device holding the inode that
1140  *	is the disk block number for the block of the file requested.
1141  *	That is, asked for block 4 of inode 1 the function will return the
1142  *	disk block relative to the disk start that holds that block of the
1143  *	file.
1144  */
1145 sector_t bmap(struct inode * inode, sector_t block)
1146 {
1147 	sector_t res = 0;
1148 	if (inode->i_mapping->a_ops->bmap)
1149 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1150 	return res;
1151 }
1152 EXPORT_SYMBOL(bmap);
1153 
1154 /**
1155  *	touch_atime	-	update the access time
1156  *	@mnt: mount the inode is accessed on
1157  *	@dentry: dentry accessed
1158  *
1159  *	Update the accessed time on an inode and mark it for writeback.
1160  *	This function automatically handles read only file systems and media,
1161  *	as well as the "noatime" flag and inode specific "noatime" markers.
1162  */
1163 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1164 {
1165 	struct inode *inode = dentry->d_inode;
1166 	struct timespec now;
1167 
1168 	if (inode->i_flags & S_NOATIME)
1169 		return;
1170 	if (IS_NOATIME(inode))
1171 		return;
1172 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1173 		return;
1174 
1175 	/*
1176 	 * We may have a NULL vfsmount when coming from NFSD
1177 	 */
1178 	if (mnt) {
1179 		if (mnt->mnt_flags & MNT_NOATIME)
1180 			return;
1181 		if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1182 			return;
1183 
1184 		if (mnt->mnt_flags & MNT_RELATIME) {
1185 			/*
1186 			 * With relative atime, only update atime if the
1187 			 * previous atime is earlier than either the ctime or
1188 			 * mtime.
1189 			 */
1190 			if (timespec_compare(&inode->i_mtime,
1191 						&inode->i_atime) < 0 &&
1192 			    timespec_compare(&inode->i_ctime,
1193 						&inode->i_atime) < 0)
1194 				return;
1195 		}
1196 	}
1197 
1198 	now = current_fs_time(inode->i_sb);
1199 	if (timespec_equal(&inode->i_atime, &now))
1200 		return;
1201 
1202 	inode->i_atime = now;
1203 	mark_inode_dirty_sync(inode);
1204 }
1205 EXPORT_SYMBOL(touch_atime);
1206 
1207 /**
1208  *	file_update_time	-	update mtime and ctime time
1209  *	@file: file accessed
1210  *
1211  *	Update the mtime and ctime members of an inode and mark the inode
1212  *	for writeback.  Note that this function is meant exclusively for
1213  *	usage in the file write path of filesystems, and filesystems may
1214  *	choose to explicitly ignore update via this function with the
1215  *	S_NOCTIME inode flag, e.g. for network filesystem where these
1216  *	timestamps are handled by the server.
1217  */
1218 
1219 void file_update_time(struct file *file)
1220 {
1221 	struct inode *inode = file->f_path.dentry->d_inode;
1222 	struct timespec now;
1223 	int sync_it = 0;
1224 
1225 	if (IS_NOCMTIME(inode))
1226 		return;
1227 	if (IS_RDONLY(inode))
1228 		return;
1229 
1230 	now = current_fs_time(inode->i_sb);
1231 	if (!timespec_equal(&inode->i_mtime, &now)) {
1232 		inode->i_mtime = now;
1233 		sync_it = 1;
1234 	}
1235 
1236 	if (!timespec_equal(&inode->i_ctime, &now)) {
1237 		inode->i_ctime = now;
1238 		sync_it = 1;
1239 	}
1240 
1241 	if (sync_it)
1242 		mark_inode_dirty_sync(inode);
1243 }
1244 
1245 EXPORT_SYMBOL(file_update_time);
1246 
1247 int inode_needs_sync(struct inode *inode)
1248 {
1249 	if (IS_SYNC(inode))
1250 		return 1;
1251 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1252 		return 1;
1253 	return 0;
1254 }
1255 
1256 EXPORT_SYMBOL(inode_needs_sync);
1257 
1258 int inode_wait(void *word)
1259 {
1260 	schedule();
1261 	return 0;
1262 }
1263 
1264 /*
1265  * If we try to find an inode in the inode hash while it is being
1266  * deleted, we have to wait until the filesystem completes its
1267  * deletion before reporting that it isn't found.  This function waits
1268  * until the deletion _might_ have completed.  Callers are responsible
1269  * to recheck inode state.
1270  *
1271  * It doesn't matter if I_LOCK is not set initially, a call to
1272  * wake_up_inode() after removing from the hash list will DTRT.
1273  *
1274  * This is called with inode_lock held.
1275  */
1276 static void __wait_on_freeing_inode(struct inode *inode)
1277 {
1278 	wait_queue_head_t *wq;
1279 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1280 	wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1281 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1282 	spin_unlock(&inode_lock);
1283 	schedule();
1284 	finish_wait(wq, &wait.wait);
1285 	spin_lock(&inode_lock);
1286 }
1287 
1288 void wake_up_inode(struct inode *inode)
1289 {
1290 	/*
1291 	 * Prevent speculative execution through spin_unlock(&inode_lock);
1292 	 */
1293 	smp_mb();
1294 	wake_up_bit(&inode->i_state, __I_LOCK);
1295 }
1296 
1297 /*
1298  * We rarely want to lock two inodes that do not have a parent/child
1299  * relationship (such as directory, child inode) simultaneously. The
1300  * vast majority of file systems should be able to get along fine
1301  * without this. Do not use these functions except as a last resort.
1302  */
1303 void inode_double_lock(struct inode *inode1, struct inode *inode2)
1304 {
1305 	if (inode1 == NULL || inode2 == NULL || inode1 == inode2) {
1306 		if (inode1)
1307 			mutex_lock(&inode1->i_mutex);
1308 		else if (inode2)
1309 			mutex_lock(&inode2->i_mutex);
1310 		return;
1311 	}
1312 
1313 	if (inode1 < inode2) {
1314 		mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
1315 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
1316 	} else {
1317 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_PARENT);
1318 		mutex_lock_nested(&inode1->i_mutex, I_MUTEX_CHILD);
1319 	}
1320 }
1321 EXPORT_SYMBOL(inode_double_lock);
1322 
1323 void inode_double_unlock(struct inode *inode1, struct inode *inode2)
1324 {
1325 	if (inode1)
1326 		mutex_unlock(&inode1->i_mutex);
1327 
1328 	if (inode2 && inode2 != inode1)
1329 		mutex_unlock(&inode2->i_mutex);
1330 }
1331 EXPORT_SYMBOL(inode_double_unlock);
1332 
1333 static __initdata unsigned long ihash_entries;
1334 static int __init set_ihash_entries(char *str)
1335 {
1336 	if (!str)
1337 		return 0;
1338 	ihash_entries = simple_strtoul(str, &str, 0);
1339 	return 1;
1340 }
1341 __setup("ihash_entries=", set_ihash_entries);
1342 
1343 /*
1344  * Initialize the waitqueues and inode hash table.
1345  */
1346 void __init inode_init_early(void)
1347 {
1348 	int loop;
1349 
1350 	/* If hashes are distributed across NUMA nodes, defer
1351 	 * hash allocation until vmalloc space is available.
1352 	 */
1353 	if (hashdist)
1354 		return;
1355 
1356 	inode_hashtable =
1357 		alloc_large_system_hash("Inode-cache",
1358 					sizeof(struct hlist_head),
1359 					ihash_entries,
1360 					14,
1361 					HASH_EARLY,
1362 					&i_hash_shift,
1363 					&i_hash_mask,
1364 					0);
1365 
1366 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1367 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1368 }
1369 
1370 void __init inode_init(unsigned long mempages)
1371 {
1372 	int loop;
1373 
1374 	/* inode slab cache */
1375 	inode_cachep = kmem_cache_create("inode_cache",
1376 					 sizeof(struct inode),
1377 					 0,
1378 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1379 					 SLAB_MEM_SPREAD),
1380 					 init_once,
1381 					 NULL);
1382 	set_shrinker(DEFAULT_SEEKS, shrink_icache_memory);
1383 
1384 	/* Hash may have been set up in inode_init_early */
1385 	if (!hashdist)
1386 		return;
1387 
1388 	inode_hashtable =
1389 		alloc_large_system_hash("Inode-cache",
1390 					sizeof(struct hlist_head),
1391 					ihash_entries,
1392 					14,
1393 					0,
1394 					&i_hash_shift,
1395 					&i_hash_mask,
1396 					0);
1397 
1398 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1399 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1400 }
1401 
1402 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1403 {
1404 	inode->i_mode = mode;
1405 	if (S_ISCHR(mode)) {
1406 		inode->i_fop = &def_chr_fops;
1407 		inode->i_rdev = rdev;
1408 	} else if (S_ISBLK(mode)) {
1409 		inode->i_fop = &def_blk_fops;
1410 		inode->i_rdev = rdev;
1411 	} else if (S_ISFIFO(mode))
1412 		inode->i_fop = &def_fifo_fops;
1413 	else if (S_ISSOCK(mode))
1414 		inode->i_fop = &bad_sock_fops;
1415 	else
1416 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1417 		       mode);
1418 }
1419 EXPORT_SYMBOL(init_special_inode);
1420