xref: /openbmc/linux/fs/inode.c (revision 643d1f7f)
1 /*
2  * linux/fs/inode.c
3  *
4  * (C) 1997 Linus Torvalds
5  */
6 
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/quotaops.h>
12 #include <linux/slab.h>
13 #include <linux/writeback.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/wait.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/inotify.h>
24 #include <linux/mount.h>
25 
26 /*
27  * This is needed for the following functions:
28  *  - inode_has_buffers
29  *  - invalidate_inode_buffers
30  *  - invalidate_bdev
31  *
32  * FIXME: remove all knowledge of the buffer layer from this file
33  */
34 #include <linux/buffer_head.h>
35 
36 /*
37  * New inode.c implementation.
38  *
39  * This implementation has the basic premise of trying
40  * to be extremely low-overhead and SMP-safe, yet be
41  * simple enough to be "obviously correct".
42  *
43  * Famous last words.
44  */
45 
46 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
47 
48 /* #define INODE_PARANOIA 1 */
49 /* #define INODE_DEBUG 1 */
50 
51 /*
52  * Inode lookup is no longer as critical as it used to be:
53  * most of the lookups are going to be through the dcache.
54  */
55 #define I_HASHBITS	i_hash_shift
56 #define I_HASHMASK	i_hash_mask
57 
58 static unsigned int i_hash_mask __read_mostly;
59 static unsigned int i_hash_shift __read_mostly;
60 
61 /*
62  * Each inode can be on two separate lists. One is
63  * the hash list of the inode, used for lookups. The
64  * other linked list is the "type" list:
65  *  "in_use" - valid inode, i_count > 0, i_nlink > 0
66  *  "dirty"  - as "in_use" but also dirty
67  *  "unused" - valid inode, i_count = 0
68  *
69  * A "dirty" list is maintained for each super block,
70  * allowing for low-overhead inode sync() operations.
71  */
72 
73 LIST_HEAD(inode_in_use);
74 LIST_HEAD(inode_unused);
75 static struct hlist_head *inode_hashtable __read_mostly;
76 
77 /*
78  * A simple spinlock to protect the list manipulations.
79  *
80  * NOTE! You also have to own the lock if you change
81  * the i_state of an inode while it is in use..
82  */
83 DEFINE_SPINLOCK(inode_lock);
84 
85 /*
86  * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
87  * icache shrinking path, and the umount path.  Without this exclusion,
88  * by the time prune_icache calls iput for the inode whose pages it has
89  * been invalidating, or by the time it calls clear_inode & destroy_inode
90  * from its final dispose_list, the struct super_block they refer to
91  * (for inode->i_sb->s_op) may already have been freed and reused.
92  */
93 static DEFINE_MUTEX(iprune_mutex);
94 
95 /*
96  * Statistics gathering..
97  */
98 struct inodes_stat_t inodes_stat;
99 
100 static struct kmem_cache * inode_cachep __read_mostly;
101 
102 static void wake_up_inode(struct inode *inode)
103 {
104 	/*
105 	 * Prevent speculative execution through spin_unlock(&inode_lock);
106 	 */
107 	smp_mb();
108 	wake_up_bit(&inode->i_state, __I_LOCK);
109 }
110 
111 static struct inode *alloc_inode(struct super_block *sb)
112 {
113 	static const struct address_space_operations empty_aops;
114 	static struct inode_operations empty_iops;
115 	static const struct file_operations empty_fops;
116 	struct inode *inode;
117 
118 	if (sb->s_op->alloc_inode)
119 		inode = sb->s_op->alloc_inode(sb);
120 	else
121 		inode = (struct inode *) kmem_cache_alloc(inode_cachep, GFP_KERNEL);
122 
123 	if (inode) {
124 		struct address_space * const mapping = &inode->i_data;
125 
126 		inode->i_sb = sb;
127 		inode->i_blkbits = sb->s_blocksize_bits;
128 		inode->i_flags = 0;
129 		atomic_set(&inode->i_count, 1);
130 		inode->i_op = &empty_iops;
131 		inode->i_fop = &empty_fops;
132 		inode->i_nlink = 1;
133 		atomic_set(&inode->i_writecount, 0);
134 		inode->i_size = 0;
135 		inode->i_blocks = 0;
136 		inode->i_bytes = 0;
137 		inode->i_generation = 0;
138 #ifdef CONFIG_QUOTA
139 		memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
140 #endif
141 		inode->i_pipe = NULL;
142 		inode->i_bdev = NULL;
143 		inode->i_cdev = NULL;
144 		inode->i_rdev = 0;
145 		inode->dirtied_when = 0;
146 		if (security_inode_alloc(inode)) {
147 			if (inode->i_sb->s_op->destroy_inode)
148 				inode->i_sb->s_op->destroy_inode(inode);
149 			else
150 				kmem_cache_free(inode_cachep, (inode));
151 			return NULL;
152 		}
153 
154 		spin_lock_init(&inode->i_lock);
155 		lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
156 
157 		mutex_init(&inode->i_mutex);
158 		lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
159 
160 		init_rwsem(&inode->i_alloc_sem);
161 		lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
162 
163 		mapping->a_ops = &empty_aops;
164  		mapping->host = inode;
165 		mapping->flags = 0;
166 		mapping_set_gfp_mask(mapping, GFP_HIGHUSER_PAGECACHE);
167 		mapping->assoc_mapping = NULL;
168 		mapping->backing_dev_info = &default_backing_dev_info;
169 
170 		/*
171 		 * If the block_device provides a backing_dev_info for client
172 		 * inodes then use that.  Otherwise the inode share the bdev's
173 		 * backing_dev_info.
174 		 */
175 		if (sb->s_bdev) {
176 			struct backing_dev_info *bdi;
177 
178 			bdi = sb->s_bdev->bd_inode_backing_dev_info;
179 			if (!bdi)
180 				bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
181 			mapping->backing_dev_info = bdi;
182 		}
183 		inode->i_private = NULL;
184 		inode->i_mapping = mapping;
185 	}
186 	return inode;
187 }
188 
189 void destroy_inode(struct inode *inode)
190 {
191 	BUG_ON(inode_has_buffers(inode));
192 	security_inode_free(inode);
193 	if (inode->i_sb->s_op->destroy_inode)
194 		inode->i_sb->s_op->destroy_inode(inode);
195 	else
196 		kmem_cache_free(inode_cachep, (inode));
197 }
198 
199 
200 /*
201  * These are initializations that only need to be done
202  * once, because the fields are idempotent across use
203  * of the inode, so let the slab aware of that.
204  */
205 void inode_init_once(struct inode *inode)
206 {
207 	memset(inode, 0, sizeof(*inode));
208 	INIT_HLIST_NODE(&inode->i_hash);
209 	INIT_LIST_HEAD(&inode->i_dentry);
210 	INIT_LIST_HEAD(&inode->i_devices);
211 	INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
212 	rwlock_init(&inode->i_data.tree_lock);
213 	spin_lock_init(&inode->i_data.i_mmap_lock);
214 	INIT_LIST_HEAD(&inode->i_data.private_list);
215 	spin_lock_init(&inode->i_data.private_lock);
216 	INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
217 	INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
218 	i_size_ordered_init(inode);
219 #ifdef CONFIG_INOTIFY
220 	INIT_LIST_HEAD(&inode->inotify_watches);
221 	mutex_init(&inode->inotify_mutex);
222 #endif
223 }
224 
225 EXPORT_SYMBOL(inode_init_once);
226 
227 static void init_once(struct kmem_cache * cachep, void *foo)
228 {
229 	struct inode * inode = (struct inode *) foo;
230 
231 	inode_init_once(inode);
232 }
233 
234 /*
235  * inode_lock must be held
236  */
237 void __iget(struct inode * inode)
238 {
239 	if (atomic_read(&inode->i_count)) {
240 		atomic_inc(&inode->i_count);
241 		return;
242 	}
243 	atomic_inc(&inode->i_count);
244 	if (!(inode->i_state & (I_DIRTY|I_SYNC)))
245 		list_move(&inode->i_list, &inode_in_use);
246 	inodes_stat.nr_unused--;
247 }
248 
249 /**
250  * clear_inode - clear an inode
251  * @inode: inode to clear
252  *
253  * This is called by the filesystem to tell us
254  * that the inode is no longer useful. We just
255  * terminate it with extreme prejudice.
256  */
257 void clear_inode(struct inode *inode)
258 {
259 	might_sleep();
260 	invalidate_inode_buffers(inode);
261 
262 	BUG_ON(inode->i_data.nrpages);
263 	BUG_ON(!(inode->i_state & I_FREEING));
264 	BUG_ON(inode->i_state & I_CLEAR);
265 	inode_sync_wait(inode);
266 	DQUOT_DROP(inode);
267 	if (inode->i_sb->s_op->clear_inode)
268 		inode->i_sb->s_op->clear_inode(inode);
269 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
270 		bd_forget(inode);
271 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
272 		cd_forget(inode);
273 	inode->i_state = I_CLEAR;
274 }
275 
276 EXPORT_SYMBOL(clear_inode);
277 
278 /*
279  * dispose_list - dispose of the contents of a local list
280  * @head: the head of the list to free
281  *
282  * Dispose-list gets a local list with local inodes in it, so it doesn't
283  * need to worry about list corruption and SMP locks.
284  */
285 static void dispose_list(struct list_head *head)
286 {
287 	int nr_disposed = 0;
288 
289 	while (!list_empty(head)) {
290 		struct inode *inode;
291 
292 		inode = list_first_entry(head, struct inode, i_list);
293 		list_del(&inode->i_list);
294 
295 		if (inode->i_data.nrpages)
296 			truncate_inode_pages(&inode->i_data, 0);
297 		clear_inode(inode);
298 
299 		spin_lock(&inode_lock);
300 		hlist_del_init(&inode->i_hash);
301 		list_del_init(&inode->i_sb_list);
302 		spin_unlock(&inode_lock);
303 
304 		wake_up_inode(inode);
305 		destroy_inode(inode);
306 		nr_disposed++;
307 	}
308 	spin_lock(&inode_lock);
309 	inodes_stat.nr_inodes -= nr_disposed;
310 	spin_unlock(&inode_lock);
311 }
312 
313 /*
314  * Invalidate all inodes for a device.
315  */
316 static int invalidate_list(struct list_head *head, struct list_head *dispose)
317 {
318 	struct list_head *next;
319 	int busy = 0, count = 0;
320 
321 	next = head->next;
322 	for (;;) {
323 		struct list_head * tmp = next;
324 		struct inode * inode;
325 
326 		/*
327 		 * We can reschedule here without worrying about the list's
328 		 * consistency because the per-sb list of inodes must not
329 		 * change during umount anymore, and because iprune_mutex keeps
330 		 * shrink_icache_memory() away.
331 		 */
332 		cond_resched_lock(&inode_lock);
333 
334 		next = next->next;
335 		if (tmp == head)
336 			break;
337 		inode = list_entry(tmp, struct inode, i_sb_list);
338 		invalidate_inode_buffers(inode);
339 		if (!atomic_read(&inode->i_count)) {
340 			list_move(&inode->i_list, dispose);
341 			inode->i_state |= I_FREEING;
342 			count++;
343 			continue;
344 		}
345 		busy = 1;
346 	}
347 	/* only unused inodes may be cached with i_count zero */
348 	inodes_stat.nr_unused -= count;
349 	return busy;
350 }
351 
352 /**
353  *	invalidate_inodes	- discard the inodes on a device
354  *	@sb: superblock
355  *
356  *	Discard all of the inodes for a given superblock. If the discard
357  *	fails because there are busy inodes then a non zero value is returned.
358  *	If the discard is successful all the inodes have been discarded.
359  */
360 int invalidate_inodes(struct super_block * sb)
361 {
362 	int busy;
363 	LIST_HEAD(throw_away);
364 
365 	mutex_lock(&iprune_mutex);
366 	spin_lock(&inode_lock);
367 	inotify_unmount_inodes(&sb->s_inodes);
368 	busy = invalidate_list(&sb->s_inodes, &throw_away);
369 	spin_unlock(&inode_lock);
370 
371 	dispose_list(&throw_away);
372 	mutex_unlock(&iprune_mutex);
373 
374 	return busy;
375 }
376 
377 EXPORT_SYMBOL(invalidate_inodes);
378 
379 static int can_unuse(struct inode *inode)
380 {
381 	if (inode->i_state)
382 		return 0;
383 	if (inode_has_buffers(inode))
384 		return 0;
385 	if (atomic_read(&inode->i_count))
386 		return 0;
387 	if (inode->i_data.nrpages)
388 		return 0;
389 	return 1;
390 }
391 
392 /*
393  * Scan `goal' inodes on the unused list for freeable ones. They are moved to
394  * a temporary list and then are freed outside inode_lock by dispose_list().
395  *
396  * Any inodes which are pinned purely because of attached pagecache have their
397  * pagecache removed.  We expect the final iput() on that inode to add it to
398  * the front of the inode_unused list.  So look for it there and if the
399  * inode is still freeable, proceed.  The right inode is found 99.9% of the
400  * time in testing on a 4-way.
401  *
402  * If the inode has metadata buffers attached to mapping->private_list then
403  * try to remove them.
404  */
405 static void prune_icache(int nr_to_scan)
406 {
407 	LIST_HEAD(freeable);
408 	int nr_pruned = 0;
409 	int nr_scanned;
410 	unsigned long reap = 0;
411 
412 	mutex_lock(&iprune_mutex);
413 	spin_lock(&inode_lock);
414 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
415 		struct inode *inode;
416 
417 		if (list_empty(&inode_unused))
418 			break;
419 
420 		inode = list_entry(inode_unused.prev, struct inode, i_list);
421 
422 		if (inode->i_state || atomic_read(&inode->i_count)) {
423 			list_move(&inode->i_list, &inode_unused);
424 			continue;
425 		}
426 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
427 			__iget(inode);
428 			spin_unlock(&inode_lock);
429 			if (remove_inode_buffers(inode))
430 				reap += invalidate_mapping_pages(&inode->i_data,
431 								0, -1);
432 			iput(inode);
433 			spin_lock(&inode_lock);
434 
435 			if (inode != list_entry(inode_unused.next,
436 						struct inode, i_list))
437 				continue;	/* wrong inode or list_empty */
438 			if (!can_unuse(inode))
439 				continue;
440 		}
441 		list_move(&inode->i_list, &freeable);
442 		inode->i_state |= I_FREEING;
443 		nr_pruned++;
444 	}
445 	inodes_stat.nr_unused -= nr_pruned;
446 	if (current_is_kswapd())
447 		__count_vm_events(KSWAPD_INODESTEAL, reap);
448 	else
449 		__count_vm_events(PGINODESTEAL, reap);
450 	spin_unlock(&inode_lock);
451 
452 	dispose_list(&freeable);
453 	mutex_unlock(&iprune_mutex);
454 }
455 
456 /*
457  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
458  * "unused" means that no dentries are referring to the inodes: the files are
459  * not open and the dcache references to those inodes have already been
460  * reclaimed.
461  *
462  * This function is passed the number of inodes to scan, and it returns the
463  * total number of remaining possibly-reclaimable inodes.
464  */
465 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
466 {
467 	if (nr) {
468 		/*
469 		 * Nasty deadlock avoidance.  We may hold various FS locks,
470 		 * and we don't want to recurse into the FS that called us
471 		 * in clear_inode() and friends..
472 	 	 */
473 		if (!(gfp_mask & __GFP_FS))
474 			return -1;
475 		prune_icache(nr);
476 	}
477 	return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
478 }
479 
480 static struct shrinker icache_shrinker = {
481 	.shrink = shrink_icache_memory,
482 	.seeks = DEFAULT_SEEKS,
483 };
484 
485 static void __wait_on_freeing_inode(struct inode *inode);
486 /*
487  * Called with the inode lock held.
488  * NOTE: we are not increasing the inode-refcount, you must call __iget()
489  * by hand after calling find_inode now! This simplifies iunique and won't
490  * add any additional branch in the common code.
491  */
492 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data)
493 {
494 	struct hlist_node *node;
495 	struct inode * inode = NULL;
496 
497 repeat:
498 	hlist_for_each (node, head) {
499 		inode = hlist_entry(node, struct inode, i_hash);
500 		if (inode->i_sb != sb)
501 			continue;
502 		if (!test(inode, data))
503 			continue;
504 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
505 			__wait_on_freeing_inode(inode);
506 			goto repeat;
507 		}
508 		break;
509 	}
510 	return node ? inode : NULL;
511 }
512 
513 /*
514  * find_inode_fast is the fast path version of find_inode, see the comment at
515  * iget_locked for details.
516  */
517 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino)
518 {
519 	struct hlist_node *node;
520 	struct inode * inode = NULL;
521 
522 repeat:
523 	hlist_for_each (node, head) {
524 		inode = hlist_entry(node, struct inode, i_hash);
525 		if (inode->i_ino != ino)
526 			continue;
527 		if (inode->i_sb != sb)
528 			continue;
529 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
530 			__wait_on_freeing_inode(inode);
531 			goto repeat;
532 		}
533 		break;
534 	}
535 	return node ? inode : NULL;
536 }
537 
538 /**
539  *	new_inode 	- obtain an inode
540  *	@sb: superblock
541  *
542  *	Allocates a new inode for given superblock. The default gfp_mask
543  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_PAGECACHE.
544  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
545  *	for the page cache are not reclaimable or migratable,
546  *	mapping_set_gfp_mask() must be called with suitable flags on the
547  *	newly created inode's mapping
548  *
549  */
550 struct inode *new_inode(struct super_block *sb)
551 {
552 	/*
553 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
554 	 * error if st_ino won't fit in target struct field. Use 32bit counter
555 	 * here to attempt to avoid that.
556 	 */
557 	static unsigned int last_ino;
558 	struct inode * inode;
559 
560 	spin_lock_prefetch(&inode_lock);
561 
562 	inode = alloc_inode(sb);
563 	if (inode) {
564 		spin_lock(&inode_lock);
565 		inodes_stat.nr_inodes++;
566 		list_add(&inode->i_list, &inode_in_use);
567 		list_add(&inode->i_sb_list, &sb->s_inodes);
568 		inode->i_ino = ++last_ino;
569 		inode->i_state = 0;
570 		spin_unlock(&inode_lock);
571 	}
572 	return inode;
573 }
574 
575 EXPORT_SYMBOL(new_inode);
576 
577 void unlock_new_inode(struct inode *inode)
578 {
579 #ifdef CONFIG_DEBUG_LOCK_ALLOC
580 	if (inode->i_mode & S_IFDIR) {
581 		struct file_system_type *type = inode->i_sb->s_type;
582 
583 		/*
584 		 * ensure nobody is actually holding i_mutex
585 		 */
586 		mutex_destroy(&inode->i_mutex);
587 		mutex_init(&inode->i_mutex);
588 		lockdep_set_class(&inode->i_mutex, &type->i_mutex_dir_key);
589 	}
590 #endif
591 	/*
592 	 * This is special!  We do not need the spinlock
593 	 * when clearing I_LOCK, because we're guaranteed
594 	 * that nobody else tries to do anything about the
595 	 * state of the inode when it is locked, as we
596 	 * just created it (so there can be no old holders
597 	 * that haven't tested I_LOCK).
598 	 */
599 	inode->i_state &= ~(I_LOCK|I_NEW);
600 	wake_up_inode(inode);
601 }
602 
603 EXPORT_SYMBOL(unlock_new_inode);
604 
605 /*
606  * This is called without the inode lock held.. Be careful.
607  *
608  * We no longer cache the sb_flags in i_flags - see fs.h
609  *	-- rmk@arm.uk.linux.org
610  */
611 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data)
612 {
613 	struct inode * inode;
614 
615 	inode = alloc_inode(sb);
616 	if (inode) {
617 		struct inode * old;
618 
619 		spin_lock(&inode_lock);
620 		/* We released the lock, so.. */
621 		old = find_inode(sb, head, test, data);
622 		if (!old) {
623 			if (set(inode, data))
624 				goto set_failed;
625 
626 			inodes_stat.nr_inodes++;
627 			list_add(&inode->i_list, &inode_in_use);
628 			list_add(&inode->i_sb_list, &sb->s_inodes);
629 			hlist_add_head(&inode->i_hash, head);
630 			inode->i_state = I_LOCK|I_NEW;
631 			spin_unlock(&inode_lock);
632 
633 			/* Return the locked inode with I_NEW set, the
634 			 * caller is responsible for filling in the contents
635 			 */
636 			return inode;
637 		}
638 
639 		/*
640 		 * Uhhuh, somebody else created the same inode under
641 		 * us. Use the old inode instead of the one we just
642 		 * allocated.
643 		 */
644 		__iget(old);
645 		spin_unlock(&inode_lock);
646 		destroy_inode(inode);
647 		inode = old;
648 		wait_on_inode(inode);
649 	}
650 	return inode;
651 
652 set_failed:
653 	spin_unlock(&inode_lock);
654 	destroy_inode(inode);
655 	return NULL;
656 }
657 
658 /*
659  * get_new_inode_fast is the fast path version of get_new_inode, see the
660  * comment at iget_locked for details.
661  */
662 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino)
663 {
664 	struct inode * inode;
665 
666 	inode = alloc_inode(sb);
667 	if (inode) {
668 		struct inode * old;
669 
670 		spin_lock(&inode_lock);
671 		/* We released the lock, so.. */
672 		old = find_inode_fast(sb, head, ino);
673 		if (!old) {
674 			inode->i_ino = ino;
675 			inodes_stat.nr_inodes++;
676 			list_add(&inode->i_list, &inode_in_use);
677 			list_add(&inode->i_sb_list, &sb->s_inodes);
678 			hlist_add_head(&inode->i_hash, head);
679 			inode->i_state = I_LOCK|I_NEW;
680 			spin_unlock(&inode_lock);
681 
682 			/* Return the locked inode with I_NEW set, the
683 			 * caller is responsible for filling in the contents
684 			 */
685 			return inode;
686 		}
687 
688 		/*
689 		 * Uhhuh, somebody else created the same inode under
690 		 * us. Use the old inode instead of the one we just
691 		 * allocated.
692 		 */
693 		__iget(old);
694 		spin_unlock(&inode_lock);
695 		destroy_inode(inode);
696 		inode = old;
697 		wait_on_inode(inode);
698 	}
699 	return inode;
700 }
701 
702 static unsigned long hash(struct super_block *sb, unsigned long hashval)
703 {
704 	unsigned long tmp;
705 
706 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
707 			L1_CACHE_BYTES;
708 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
709 	return tmp & I_HASHMASK;
710 }
711 
712 /**
713  *	iunique - get a unique inode number
714  *	@sb: superblock
715  *	@max_reserved: highest reserved inode number
716  *
717  *	Obtain an inode number that is unique on the system for a given
718  *	superblock. This is used by file systems that have no natural
719  *	permanent inode numbering system. An inode number is returned that
720  *	is higher than the reserved limit but unique.
721  *
722  *	BUGS:
723  *	With a large number of inodes live on the file system this function
724  *	currently becomes quite slow.
725  */
726 ino_t iunique(struct super_block *sb, ino_t max_reserved)
727 {
728 	/*
729 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
730 	 * error if st_ino won't fit in target struct field. Use 32bit counter
731 	 * here to attempt to avoid that.
732 	 */
733 	static unsigned int counter;
734 	struct inode *inode;
735 	struct hlist_head *head;
736 	ino_t res;
737 
738 	spin_lock(&inode_lock);
739 	do {
740 		if (counter <= max_reserved)
741 			counter = max_reserved + 1;
742 		res = counter++;
743 		head = inode_hashtable + hash(sb, res);
744 		inode = find_inode_fast(sb, head, res);
745 	} while (inode != NULL);
746 	spin_unlock(&inode_lock);
747 
748 	return res;
749 }
750 EXPORT_SYMBOL(iunique);
751 
752 struct inode *igrab(struct inode *inode)
753 {
754 	spin_lock(&inode_lock);
755 	if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)))
756 		__iget(inode);
757 	else
758 		/*
759 		 * Handle the case where s_op->clear_inode is not been
760 		 * called yet, and somebody is calling igrab
761 		 * while the inode is getting freed.
762 		 */
763 		inode = NULL;
764 	spin_unlock(&inode_lock);
765 	return inode;
766 }
767 
768 EXPORT_SYMBOL(igrab);
769 
770 /**
771  * ifind - internal function, you want ilookup5() or iget5().
772  * @sb:		super block of file system to search
773  * @head:       the head of the list to search
774  * @test:	callback used for comparisons between inodes
775  * @data:	opaque data pointer to pass to @test
776  * @wait:	if true wait for the inode to be unlocked, if false do not
777  *
778  * ifind() searches for the inode specified by @data in the inode
779  * cache. This is a generalized version of ifind_fast() for file systems where
780  * the inode number is not sufficient for unique identification of an inode.
781  *
782  * If the inode is in the cache, the inode is returned with an incremented
783  * reference count.
784  *
785  * Otherwise NULL is returned.
786  *
787  * Note, @test is called with the inode_lock held, so can't sleep.
788  */
789 static struct inode *ifind(struct super_block *sb,
790 		struct hlist_head *head, int (*test)(struct inode *, void *),
791 		void *data, const int wait)
792 {
793 	struct inode *inode;
794 
795 	spin_lock(&inode_lock);
796 	inode = find_inode(sb, head, test, data);
797 	if (inode) {
798 		__iget(inode);
799 		spin_unlock(&inode_lock);
800 		if (likely(wait))
801 			wait_on_inode(inode);
802 		return inode;
803 	}
804 	spin_unlock(&inode_lock);
805 	return NULL;
806 }
807 
808 /**
809  * ifind_fast - internal function, you want ilookup() or iget().
810  * @sb:		super block of file system to search
811  * @head:       head of the list to search
812  * @ino:	inode number to search for
813  *
814  * ifind_fast() searches for the inode @ino in the inode cache. This is for
815  * file systems where the inode number is sufficient for unique identification
816  * of an inode.
817  *
818  * If the inode is in the cache, the inode is returned with an incremented
819  * reference count.
820  *
821  * Otherwise NULL is returned.
822  */
823 static struct inode *ifind_fast(struct super_block *sb,
824 		struct hlist_head *head, unsigned long ino)
825 {
826 	struct inode *inode;
827 
828 	spin_lock(&inode_lock);
829 	inode = find_inode_fast(sb, head, ino);
830 	if (inode) {
831 		__iget(inode);
832 		spin_unlock(&inode_lock);
833 		wait_on_inode(inode);
834 		return inode;
835 	}
836 	spin_unlock(&inode_lock);
837 	return NULL;
838 }
839 
840 /**
841  * ilookup5_nowait - search for an inode in the inode cache
842  * @sb:		super block of file system to search
843  * @hashval:	hash value (usually inode number) to search for
844  * @test:	callback used for comparisons between inodes
845  * @data:	opaque data pointer to pass to @test
846  *
847  * ilookup5() uses ifind() to search for the inode specified by @hashval and
848  * @data in the inode cache. This is a generalized version of ilookup() for
849  * file systems where the inode number is not sufficient for unique
850  * identification of an inode.
851  *
852  * If the inode is in the cache, the inode is returned with an incremented
853  * reference count.  Note, the inode lock is not waited upon so you have to be
854  * very careful what you do with the returned inode.  You probably should be
855  * using ilookup5() instead.
856  *
857  * Otherwise NULL is returned.
858  *
859  * Note, @test is called with the inode_lock held, so can't sleep.
860  */
861 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
862 		int (*test)(struct inode *, void *), void *data)
863 {
864 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
865 
866 	return ifind(sb, head, test, data, 0);
867 }
868 
869 EXPORT_SYMBOL(ilookup5_nowait);
870 
871 /**
872  * ilookup5 - search for an inode in the inode cache
873  * @sb:		super block of file system to search
874  * @hashval:	hash value (usually inode number) to search for
875  * @test:	callback used for comparisons between inodes
876  * @data:	opaque data pointer to pass to @test
877  *
878  * ilookup5() uses ifind() to search for the inode specified by @hashval and
879  * @data in the inode cache. This is a generalized version of ilookup() for
880  * file systems where the inode number is not sufficient for unique
881  * identification of an inode.
882  *
883  * If the inode is in the cache, the inode lock is waited upon and the inode is
884  * returned with an incremented reference count.
885  *
886  * Otherwise NULL is returned.
887  *
888  * Note, @test is called with the inode_lock held, so can't sleep.
889  */
890 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
891 		int (*test)(struct inode *, void *), void *data)
892 {
893 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
894 
895 	return ifind(sb, head, test, data, 1);
896 }
897 
898 EXPORT_SYMBOL(ilookup5);
899 
900 /**
901  * ilookup - search for an inode in the inode cache
902  * @sb:		super block of file system to search
903  * @ino:	inode number to search for
904  *
905  * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
906  * This is for file systems where the inode number is sufficient for unique
907  * identification of an inode.
908  *
909  * If the inode is in the cache, the inode is returned with an incremented
910  * reference count.
911  *
912  * Otherwise NULL is returned.
913  */
914 struct inode *ilookup(struct super_block *sb, unsigned long ino)
915 {
916 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
917 
918 	return ifind_fast(sb, head, ino);
919 }
920 
921 EXPORT_SYMBOL(ilookup);
922 
923 /**
924  * iget5_locked - obtain an inode from a mounted file system
925  * @sb:		super block of file system
926  * @hashval:	hash value (usually inode number) to get
927  * @test:	callback used for comparisons between inodes
928  * @set:	callback used to initialize a new struct inode
929  * @data:	opaque data pointer to pass to @test and @set
930  *
931  * This is iget() without the read_inode() portion of get_new_inode().
932  *
933  * iget5_locked() uses ifind() to search for the inode specified by @hashval
934  * and @data in the inode cache and if present it is returned with an increased
935  * reference count. This is a generalized version of iget_locked() for file
936  * systems where the inode number is not sufficient for unique identification
937  * of an inode.
938  *
939  * If the inode is not in cache, get_new_inode() is called to allocate a new
940  * inode and this is returned locked, hashed, and with the I_NEW flag set. The
941  * file system gets to fill it in before unlocking it via unlock_new_inode().
942  *
943  * Note both @test and @set are called with the inode_lock held, so can't sleep.
944  */
945 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
946 		int (*test)(struct inode *, void *),
947 		int (*set)(struct inode *, void *), void *data)
948 {
949 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
950 	struct inode *inode;
951 
952 	inode = ifind(sb, head, test, data, 1);
953 	if (inode)
954 		return inode;
955 	/*
956 	 * get_new_inode() will do the right thing, re-trying the search
957 	 * in case it had to block at any point.
958 	 */
959 	return get_new_inode(sb, head, test, set, data);
960 }
961 
962 EXPORT_SYMBOL(iget5_locked);
963 
964 /**
965  * iget_locked - obtain an inode from a mounted file system
966  * @sb:		super block of file system
967  * @ino:	inode number to get
968  *
969  * This is iget() without the read_inode() portion of get_new_inode_fast().
970  *
971  * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
972  * the inode cache and if present it is returned with an increased reference
973  * count. This is for file systems where the inode number is sufficient for
974  * unique identification of an inode.
975  *
976  * If the inode is not in cache, get_new_inode_fast() is called to allocate a
977  * new inode and this is returned locked, hashed, and with the I_NEW flag set.
978  * The file system gets to fill it in before unlocking it via
979  * unlock_new_inode().
980  */
981 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
982 {
983 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
984 	struct inode *inode;
985 
986 	inode = ifind_fast(sb, head, ino);
987 	if (inode)
988 		return inode;
989 	/*
990 	 * get_new_inode_fast() will do the right thing, re-trying the search
991 	 * in case it had to block at any point.
992 	 */
993 	return get_new_inode_fast(sb, head, ino);
994 }
995 
996 EXPORT_SYMBOL(iget_locked);
997 
998 /**
999  *	__insert_inode_hash - hash an inode
1000  *	@inode: unhashed inode
1001  *	@hashval: unsigned long value used to locate this object in the
1002  *		inode_hashtable.
1003  *
1004  *	Add an inode to the inode hash for this superblock.
1005  */
1006 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
1007 {
1008 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1009 	spin_lock(&inode_lock);
1010 	hlist_add_head(&inode->i_hash, head);
1011 	spin_unlock(&inode_lock);
1012 }
1013 
1014 EXPORT_SYMBOL(__insert_inode_hash);
1015 
1016 /**
1017  *	remove_inode_hash - remove an inode from the hash
1018  *	@inode: inode to unhash
1019  *
1020  *	Remove an inode from the superblock.
1021  */
1022 void remove_inode_hash(struct inode *inode)
1023 {
1024 	spin_lock(&inode_lock);
1025 	hlist_del_init(&inode->i_hash);
1026 	spin_unlock(&inode_lock);
1027 }
1028 
1029 EXPORT_SYMBOL(remove_inode_hash);
1030 
1031 /*
1032  * Tell the filesystem that this inode is no longer of any interest and should
1033  * be completely destroyed.
1034  *
1035  * We leave the inode in the inode hash table until *after* the filesystem's
1036  * ->delete_inode completes.  This ensures that an iget (such as nfsd might
1037  * instigate) will always find up-to-date information either in the hash or on
1038  * disk.
1039  *
1040  * I_FREEING is set so that no-one will take a new reference to the inode while
1041  * it is being deleted.
1042  */
1043 void generic_delete_inode(struct inode *inode)
1044 {
1045 	const struct super_operations *op = inode->i_sb->s_op;
1046 
1047 	list_del_init(&inode->i_list);
1048 	list_del_init(&inode->i_sb_list);
1049 	inode->i_state |= I_FREEING;
1050 	inodes_stat.nr_inodes--;
1051 	spin_unlock(&inode_lock);
1052 
1053 	security_inode_delete(inode);
1054 
1055 	if (op->delete_inode) {
1056 		void (*delete)(struct inode *) = op->delete_inode;
1057 		if (!is_bad_inode(inode))
1058 			DQUOT_INIT(inode);
1059 		/* Filesystems implementing their own
1060 		 * s_op->delete_inode are required to call
1061 		 * truncate_inode_pages and clear_inode()
1062 		 * internally */
1063 		delete(inode);
1064 	} else {
1065 		truncate_inode_pages(&inode->i_data, 0);
1066 		clear_inode(inode);
1067 	}
1068 	spin_lock(&inode_lock);
1069 	hlist_del_init(&inode->i_hash);
1070 	spin_unlock(&inode_lock);
1071 	wake_up_inode(inode);
1072 	BUG_ON(inode->i_state != I_CLEAR);
1073 	destroy_inode(inode);
1074 }
1075 
1076 EXPORT_SYMBOL(generic_delete_inode);
1077 
1078 static void generic_forget_inode(struct inode *inode)
1079 {
1080 	struct super_block *sb = inode->i_sb;
1081 
1082 	if (!hlist_unhashed(&inode->i_hash)) {
1083 		if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1084 			list_move(&inode->i_list, &inode_unused);
1085 		inodes_stat.nr_unused++;
1086 		if (sb->s_flags & MS_ACTIVE) {
1087 			spin_unlock(&inode_lock);
1088 			return;
1089 		}
1090 		inode->i_state |= I_WILL_FREE;
1091 		spin_unlock(&inode_lock);
1092 		write_inode_now(inode, 1);
1093 		spin_lock(&inode_lock);
1094 		inode->i_state &= ~I_WILL_FREE;
1095 		inodes_stat.nr_unused--;
1096 		hlist_del_init(&inode->i_hash);
1097 	}
1098 	list_del_init(&inode->i_list);
1099 	list_del_init(&inode->i_sb_list);
1100 	inode->i_state |= I_FREEING;
1101 	inodes_stat.nr_inodes--;
1102 	spin_unlock(&inode_lock);
1103 	if (inode->i_data.nrpages)
1104 		truncate_inode_pages(&inode->i_data, 0);
1105 	clear_inode(inode);
1106 	wake_up_inode(inode);
1107 	destroy_inode(inode);
1108 }
1109 
1110 /*
1111  * Normal UNIX filesystem behaviour: delete the
1112  * inode when the usage count drops to zero, and
1113  * i_nlink is zero.
1114  */
1115 void generic_drop_inode(struct inode *inode)
1116 {
1117 	if (!inode->i_nlink)
1118 		generic_delete_inode(inode);
1119 	else
1120 		generic_forget_inode(inode);
1121 }
1122 
1123 EXPORT_SYMBOL_GPL(generic_drop_inode);
1124 
1125 /*
1126  * Called when we're dropping the last reference
1127  * to an inode.
1128  *
1129  * Call the FS "drop()" function, defaulting to
1130  * the legacy UNIX filesystem behaviour..
1131  *
1132  * NOTE! NOTE! NOTE! We're called with the inode lock
1133  * held, and the drop function is supposed to release
1134  * the lock!
1135  */
1136 static inline void iput_final(struct inode *inode)
1137 {
1138 	const struct super_operations *op = inode->i_sb->s_op;
1139 	void (*drop)(struct inode *) = generic_drop_inode;
1140 
1141 	if (op && op->drop_inode)
1142 		drop = op->drop_inode;
1143 	drop(inode);
1144 }
1145 
1146 /**
1147  *	iput	- put an inode
1148  *	@inode: inode to put
1149  *
1150  *	Puts an inode, dropping its usage count. If the inode use count hits
1151  *	zero, the inode is then freed and may also be destroyed.
1152  *
1153  *	Consequently, iput() can sleep.
1154  */
1155 void iput(struct inode *inode)
1156 {
1157 	if (inode) {
1158 		const struct super_operations *op = inode->i_sb->s_op;
1159 
1160 		BUG_ON(inode->i_state == I_CLEAR);
1161 
1162 		if (op && op->put_inode)
1163 			op->put_inode(inode);
1164 
1165 		if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1166 			iput_final(inode);
1167 	}
1168 }
1169 
1170 EXPORT_SYMBOL(iput);
1171 
1172 /**
1173  *	bmap	- find a block number in a file
1174  *	@inode: inode of file
1175  *	@block: block to find
1176  *
1177  *	Returns the block number on the device holding the inode that
1178  *	is the disk block number for the block of the file requested.
1179  *	That is, asked for block 4 of inode 1 the function will return the
1180  *	disk block relative to the disk start that holds that block of the
1181  *	file.
1182  */
1183 sector_t bmap(struct inode * inode, sector_t block)
1184 {
1185 	sector_t res = 0;
1186 	if (inode->i_mapping->a_ops->bmap)
1187 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1188 	return res;
1189 }
1190 EXPORT_SYMBOL(bmap);
1191 
1192 /**
1193  *	touch_atime	-	update the access time
1194  *	@mnt: mount the inode is accessed on
1195  *	@dentry: dentry accessed
1196  *
1197  *	Update the accessed time on an inode and mark it for writeback.
1198  *	This function automatically handles read only file systems and media,
1199  *	as well as the "noatime" flag and inode specific "noatime" markers.
1200  */
1201 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1202 {
1203 	struct inode *inode = dentry->d_inode;
1204 	struct timespec now;
1205 
1206 	if (inode->i_flags & S_NOATIME)
1207 		return;
1208 	if (IS_NOATIME(inode))
1209 		return;
1210 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1211 		return;
1212 
1213 	/*
1214 	 * We may have a NULL vfsmount when coming from NFSD
1215 	 */
1216 	if (mnt) {
1217 		if (mnt->mnt_flags & MNT_NOATIME)
1218 			return;
1219 		if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1220 			return;
1221 
1222 		if (mnt->mnt_flags & MNT_RELATIME) {
1223 			/*
1224 			 * With relative atime, only update atime if the
1225 			 * previous atime is earlier than either the ctime or
1226 			 * mtime.
1227 			 */
1228 			if (timespec_compare(&inode->i_mtime,
1229 						&inode->i_atime) < 0 &&
1230 			    timespec_compare(&inode->i_ctime,
1231 						&inode->i_atime) < 0)
1232 				return;
1233 		}
1234 	}
1235 
1236 	now = current_fs_time(inode->i_sb);
1237 	if (timespec_equal(&inode->i_atime, &now))
1238 		return;
1239 
1240 	inode->i_atime = now;
1241 	mark_inode_dirty_sync(inode);
1242 }
1243 EXPORT_SYMBOL(touch_atime);
1244 
1245 /**
1246  *	file_update_time	-	update mtime and ctime time
1247  *	@file: file accessed
1248  *
1249  *	Update the mtime and ctime members of an inode and mark the inode
1250  *	for writeback.  Note that this function is meant exclusively for
1251  *	usage in the file write path of filesystems, and filesystems may
1252  *	choose to explicitly ignore update via this function with the
1253  *	S_NOCTIME inode flag, e.g. for network filesystem where these
1254  *	timestamps are handled by the server.
1255  */
1256 
1257 void file_update_time(struct file *file)
1258 {
1259 	struct inode *inode = file->f_path.dentry->d_inode;
1260 	struct timespec now;
1261 	int sync_it = 0;
1262 
1263 	if (IS_NOCMTIME(inode))
1264 		return;
1265 	if (IS_RDONLY(inode))
1266 		return;
1267 
1268 	now = current_fs_time(inode->i_sb);
1269 	if (!timespec_equal(&inode->i_mtime, &now)) {
1270 		inode->i_mtime = now;
1271 		sync_it = 1;
1272 	}
1273 
1274 	if (!timespec_equal(&inode->i_ctime, &now)) {
1275 		inode->i_ctime = now;
1276 		sync_it = 1;
1277 	}
1278 
1279 	if (IS_I_VERSION(inode)) {
1280 		inode_inc_iversion(inode);
1281 		sync_it = 1;
1282 	}
1283 
1284 	if (sync_it)
1285 		mark_inode_dirty_sync(inode);
1286 }
1287 
1288 EXPORT_SYMBOL(file_update_time);
1289 
1290 int inode_needs_sync(struct inode *inode)
1291 {
1292 	if (IS_SYNC(inode))
1293 		return 1;
1294 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1295 		return 1;
1296 	return 0;
1297 }
1298 
1299 EXPORT_SYMBOL(inode_needs_sync);
1300 
1301 int inode_wait(void *word)
1302 {
1303 	schedule();
1304 	return 0;
1305 }
1306 
1307 /*
1308  * If we try to find an inode in the inode hash while it is being
1309  * deleted, we have to wait until the filesystem completes its
1310  * deletion before reporting that it isn't found.  This function waits
1311  * until the deletion _might_ have completed.  Callers are responsible
1312  * to recheck inode state.
1313  *
1314  * It doesn't matter if I_LOCK is not set initially, a call to
1315  * wake_up_inode() after removing from the hash list will DTRT.
1316  *
1317  * This is called with inode_lock held.
1318  */
1319 static void __wait_on_freeing_inode(struct inode *inode)
1320 {
1321 	wait_queue_head_t *wq;
1322 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1323 	wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1324 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1325 	spin_unlock(&inode_lock);
1326 	schedule();
1327 	finish_wait(wq, &wait.wait);
1328 	spin_lock(&inode_lock);
1329 }
1330 
1331 /*
1332  * We rarely want to lock two inodes that do not have a parent/child
1333  * relationship (such as directory, child inode) simultaneously. The
1334  * vast majority of file systems should be able to get along fine
1335  * without this. Do not use these functions except as a last resort.
1336  */
1337 void inode_double_lock(struct inode *inode1, struct inode *inode2)
1338 {
1339 	if (inode1 == NULL || inode2 == NULL || inode1 == inode2) {
1340 		if (inode1)
1341 			mutex_lock(&inode1->i_mutex);
1342 		else if (inode2)
1343 			mutex_lock(&inode2->i_mutex);
1344 		return;
1345 	}
1346 
1347 	if (inode1 < inode2) {
1348 		mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
1349 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
1350 	} else {
1351 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_PARENT);
1352 		mutex_lock_nested(&inode1->i_mutex, I_MUTEX_CHILD);
1353 	}
1354 }
1355 EXPORT_SYMBOL(inode_double_lock);
1356 
1357 void inode_double_unlock(struct inode *inode1, struct inode *inode2)
1358 {
1359 	if (inode1)
1360 		mutex_unlock(&inode1->i_mutex);
1361 
1362 	if (inode2 && inode2 != inode1)
1363 		mutex_unlock(&inode2->i_mutex);
1364 }
1365 EXPORT_SYMBOL(inode_double_unlock);
1366 
1367 static __initdata unsigned long ihash_entries;
1368 static int __init set_ihash_entries(char *str)
1369 {
1370 	if (!str)
1371 		return 0;
1372 	ihash_entries = simple_strtoul(str, &str, 0);
1373 	return 1;
1374 }
1375 __setup("ihash_entries=", set_ihash_entries);
1376 
1377 /*
1378  * Initialize the waitqueues and inode hash table.
1379  */
1380 void __init inode_init_early(void)
1381 {
1382 	int loop;
1383 
1384 	/* If hashes are distributed across NUMA nodes, defer
1385 	 * hash allocation until vmalloc space is available.
1386 	 */
1387 	if (hashdist)
1388 		return;
1389 
1390 	inode_hashtable =
1391 		alloc_large_system_hash("Inode-cache",
1392 					sizeof(struct hlist_head),
1393 					ihash_entries,
1394 					14,
1395 					HASH_EARLY,
1396 					&i_hash_shift,
1397 					&i_hash_mask,
1398 					0);
1399 
1400 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1401 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1402 }
1403 
1404 void __init inode_init(void)
1405 {
1406 	int loop;
1407 
1408 	/* inode slab cache */
1409 	inode_cachep = kmem_cache_create("inode_cache",
1410 					 sizeof(struct inode),
1411 					 0,
1412 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1413 					 SLAB_MEM_SPREAD),
1414 					 init_once);
1415 	register_shrinker(&icache_shrinker);
1416 
1417 	/* Hash may have been set up in inode_init_early */
1418 	if (!hashdist)
1419 		return;
1420 
1421 	inode_hashtable =
1422 		alloc_large_system_hash("Inode-cache",
1423 					sizeof(struct hlist_head),
1424 					ihash_entries,
1425 					14,
1426 					0,
1427 					&i_hash_shift,
1428 					&i_hash_mask,
1429 					0);
1430 
1431 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1432 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1433 }
1434 
1435 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1436 {
1437 	inode->i_mode = mode;
1438 	if (S_ISCHR(mode)) {
1439 		inode->i_fop = &def_chr_fops;
1440 		inode->i_rdev = rdev;
1441 	} else if (S_ISBLK(mode)) {
1442 		inode->i_fop = &def_blk_fops;
1443 		inode->i_rdev = rdev;
1444 	} else if (S_ISFIFO(mode))
1445 		inode->i_fop = &def_fifo_fops;
1446 	else if (S_ISSOCK(mode))
1447 		inode->i_fop = &bad_sock_fops;
1448 	else
1449 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1450 		       mode);
1451 }
1452 EXPORT_SYMBOL(init_special_inode);
1453