1 /* 2 * (C) 1997 Linus Torvalds 3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 4 */ 5 #include <linux/export.h> 6 #include <linux/fs.h> 7 #include <linux/mm.h> 8 #include <linux/backing-dev.h> 9 #include <linux/hash.h> 10 #include <linux/swap.h> 11 #include <linux/security.h> 12 #include <linux/cdev.h> 13 #include <linux/bootmem.h> 14 #include <linux/fsnotify.h> 15 #include <linux/mount.h> 16 #include <linux/posix_acl.h> 17 #include <linux/prefetch.h> 18 #include <linux/buffer_head.h> /* for inode_has_buffers */ 19 #include <linux/ratelimit.h> 20 #include <linux/list_lru.h> 21 #include "internal.h" 22 23 /* 24 * Inode locking rules: 25 * 26 * inode->i_lock protects: 27 * inode->i_state, inode->i_hash, __iget() 28 * Inode LRU list locks protect: 29 * inode->i_sb->s_inode_lru, inode->i_lru 30 * inode_sb_list_lock protects: 31 * sb->s_inodes, inode->i_sb_list 32 * bdi->wb.list_lock protects: 33 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list 34 * inode_hash_lock protects: 35 * inode_hashtable, inode->i_hash 36 * 37 * Lock ordering: 38 * 39 * inode_sb_list_lock 40 * inode->i_lock 41 * Inode LRU list locks 42 * 43 * bdi->wb.list_lock 44 * inode->i_lock 45 * 46 * inode_hash_lock 47 * inode_sb_list_lock 48 * inode->i_lock 49 * 50 * iunique_lock 51 * inode_hash_lock 52 */ 53 54 static unsigned int i_hash_mask __read_mostly; 55 static unsigned int i_hash_shift __read_mostly; 56 static struct hlist_head *inode_hashtable __read_mostly; 57 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 58 59 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock); 60 61 /* 62 * Empty aops. Can be used for the cases where the user does not 63 * define any of the address_space operations. 64 */ 65 const struct address_space_operations empty_aops = { 66 }; 67 EXPORT_SYMBOL(empty_aops); 68 69 /* 70 * Statistics gathering.. 71 */ 72 struct inodes_stat_t inodes_stat; 73 74 static DEFINE_PER_CPU(unsigned long, nr_inodes); 75 static DEFINE_PER_CPU(unsigned long, nr_unused); 76 77 static struct kmem_cache *inode_cachep __read_mostly; 78 79 static long get_nr_inodes(void) 80 { 81 int i; 82 long sum = 0; 83 for_each_possible_cpu(i) 84 sum += per_cpu(nr_inodes, i); 85 return sum < 0 ? 0 : sum; 86 } 87 88 static inline long get_nr_inodes_unused(void) 89 { 90 int i; 91 long sum = 0; 92 for_each_possible_cpu(i) 93 sum += per_cpu(nr_unused, i); 94 return sum < 0 ? 0 : sum; 95 } 96 97 long get_nr_dirty_inodes(void) 98 { 99 /* not actually dirty inodes, but a wild approximation */ 100 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 101 return nr_dirty > 0 ? nr_dirty : 0; 102 } 103 104 /* 105 * Handle nr_inode sysctl 106 */ 107 #ifdef CONFIG_SYSCTL 108 int proc_nr_inodes(struct ctl_table *table, int write, 109 void __user *buffer, size_t *lenp, loff_t *ppos) 110 { 111 inodes_stat.nr_inodes = get_nr_inodes(); 112 inodes_stat.nr_unused = get_nr_inodes_unused(); 113 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 114 } 115 #endif 116 117 /** 118 * inode_init_always - perform inode structure intialisation 119 * @sb: superblock inode belongs to 120 * @inode: inode to initialise 121 * 122 * These are initializations that need to be done on every inode 123 * allocation as the fields are not initialised by slab allocation. 124 */ 125 int inode_init_always(struct super_block *sb, struct inode *inode) 126 { 127 static const struct inode_operations empty_iops; 128 static const struct file_operations empty_fops; 129 struct address_space *const mapping = &inode->i_data; 130 131 inode->i_sb = sb; 132 inode->i_blkbits = sb->s_blocksize_bits; 133 inode->i_flags = 0; 134 atomic_set(&inode->i_count, 1); 135 inode->i_op = &empty_iops; 136 inode->i_fop = &empty_fops; 137 inode->__i_nlink = 1; 138 inode->i_opflags = 0; 139 i_uid_write(inode, 0); 140 i_gid_write(inode, 0); 141 atomic_set(&inode->i_writecount, 0); 142 inode->i_size = 0; 143 inode->i_blocks = 0; 144 inode->i_bytes = 0; 145 inode->i_generation = 0; 146 #ifdef CONFIG_QUOTA 147 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 148 #endif 149 inode->i_pipe = NULL; 150 inode->i_bdev = NULL; 151 inode->i_cdev = NULL; 152 inode->i_rdev = 0; 153 inode->dirtied_when = 0; 154 155 if (security_inode_alloc(inode)) 156 goto out; 157 spin_lock_init(&inode->i_lock); 158 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 159 160 mutex_init(&inode->i_mutex); 161 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 162 163 atomic_set(&inode->i_dio_count, 0); 164 165 mapping->a_ops = &empty_aops; 166 mapping->host = inode; 167 mapping->flags = 0; 168 atomic_set(&mapping->i_mmap_writable, 0); 169 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 170 mapping->private_data = NULL; 171 mapping->backing_dev_info = &default_backing_dev_info; 172 mapping->writeback_index = 0; 173 174 /* 175 * If the block_device provides a backing_dev_info for client 176 * inodes then use that. Otherwise the inode share the bdev's 177 * backing_dev_info. 178 */ 179 if (sb->s_bdev) { 180 struct backing_dev_info *bdi; 181 182 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 183 mapping->backing_dev_info = bdi; 184 } 185 inode->i_private = NULL; 186 inode->i_mapping = mapping; 187 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 188 #ifdef CONFIG_FS_POSIX_ACL 189 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 190 #endif 191 192 #ifdef CONFIG_FSNOTIFY 193 inode->i_fsnotify_mask = 0; 194 #endif 195 196 this_cpu_inc(nr_inodes); 197 198 return 0; 199 out: 200 return -ENOMEM; 201 } 202 EXPORT_SYMBOL(inode_init_always); 203 204 static struct inode *alloc_inode(struct super_block *sb) 205 { 206 struct inode *inode; 207 208 if (sb->s_op->alloc_inode) 209 inode = sb->s_op->alloc_inode(sb); 210 else 211 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 212 213 if (!inode) 214 return NULL; 215 216 if (unlikely(inode_init_always(sb, inode))) { 217 if (inode->i_sb->s_op->destroy_inode) 218 inode->i_sb->s_op->destroy_inode(inode); 219 else 220 kmem_cache_free(inode_cachep, inode); 221 return NULL; 222 } 223 224 return inode; 225 } 226 227 void free_inode_nonrcu(struct inode *inode) 228 { 229 kmem_cache_free(inode_cachep, inode); 230 } 231 EXPORT_SYMBOL(free_inode_nonrcu); 232 233 void __destroy_inode(struct inode *inode) 234 { 235 BUG_ON(inode_has_buffers(inode)); 236 security_inode_free(inode); 237 fsnotify_inode_delete(inode); 238 if (!inode->i_nlink) { 239 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 240 atomic_long_dec(&inode->i_sb->s_remove_count); 241 } 242 243 #ifdef CONFIG_FS_POSIX_ACL 244 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED) 245 posix_acl_release(inode->i_acl); 246 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED) 247 posix_acl_release(inode->i_default_acl); 248 #endif 249 this_cpu_dec(nr_inodes); 250 } 251 EXPORT_SYMBOL(__destroy_inode); 252 253 static void i_callback(struct rcu_head *head) 254 { 255 struct inode *inode = container_of(head, struct inode, i_rcu); 256 kmem_cache_free(inode_cachep, inode); 257 } 258 259 static void destroy_inode(struct inode *inode) 260 { 261 BUG_ON(!list_empty(&inode->i_lru)); 262 __destroy_inode(inode); 263 if (inode->i_sb->s_op->destroy_inode) 264 inode->i_sb->s_op->destroy_inode(inode); 265 else 266 call_rcu(&inode->i_rcu, i_callback); 267 } 268 269 /** 270 * drop_nlink - directly drop an inode's link count 271 * @inode: inode 272 * 273 * This is a low-level filesystem helper to replace any 274 * direct filesystem manipulation of i_nlink. In cases 275 * where we are attempting to track writes to the 276 * filesystem, a decrement to zero means an imminent 277 * write when the file is truncated and actually unlinked 278 * on the filesystem. 279 */ 280 void drop_nlink(struct inode *inode) 281 { 282 WARN_ON(inode->i_nlink == 0); 283 inode->__i_nlink--; 284 if (!inode->i_nlink) 285 atomic_long_inc(&inode->i_sb->s_remove_count); 286 } 287 EXPORT_SYMBOL(drop_nlink); 288 289 /** 290 * clear_nlink - directly zero an inode's link count 291 * @inode: inode 292 * 293 * This is a low-level filesystem helper to replace any 294 * direct filesystem manipulation of i_nlink. See 295 * drop_nlink() for why we care about i_nlink hitting zero. 296 */ 297 void clear_nlink(struct inode *inode) 298 { 299 if (inode->i_nlink) { 300 inode->__i_nlink = 0; 301 atomic_long_inc(&inode->i_sb->s_remove_count); 302 } 303 } 304 EXPORT_SYMBOL(clear_nlink); 305 306 /** 307 * set_nlink - directly set an inode's link count 308 * @inode: inode 309 * @nlink: new nlink (should be non-zero) 310 * 311 * This is a low-level filesystem helper to replace any 312 * direct filesystem manipulation of i_nlink. 313 */ 314 void set_nlink(struct inode *inode, unsigned int nlink) 315 { 316 if (!nlink) { 317 clear_nlink(inode); 318 } else { 319 /* Yes, some filesystems do change nlink from zero to one */ 320 if (inode->i_nlink == 0) 321 atomic_long_dec(&inode->i_sb->s_remove_count); 322 323 inode->__i_nlink = nlink; 324 } 325 } 326 EXPORT_SYMBOL(set_nlink); 327 328 /** 329 * inc_nlink - directly increment an inode's link count 330 * @inode: inode 331 * 332 * This is a low-level filesystem helper to replace any 333 * direct filesystem manipulation of i_nlink. Currently, 334 * it is only here for parity with dec_nlink(). 335 */ 336 void inc_nlink(struct inode *inode) 337 { 338 if (unlikely(inode->i_nlink == 0)) { 339 WARN_ON(!(inode->i_state & I_LINKABLE)); 340 atomic_long_dec(&inode->i_sb->s_remove_count); 341 } 342 343 inode->__i_nlink++; 344 } 345 EXPORT_SYMBOL(inc_nlink); 346 347 void address_space_init_once(struct address_space *mapping) 348 { 349 memset(mapping, 0, sizeof(*mapping)); 350 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC); 351 spin_lock_init(&mapping->tree_lock); 352 mutex_init(&mapping->i_mmap_mutex); 353 INIT_LIST_HEAD(&mapping->private_list); 354 spin_lock_init(&mapping->private_lock); 355 mapping->i_mmap = RB_ROOT; 356 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear); 357 } 358 EXPORT_SYMBOL(address_space_init_once); 359 360 /* 361 * These are initializations that only need to be done 362 * once, because the fields are idempotent across use 363 * of the inode, so let the slab aware of that. 364 */ 365 void inode_init_once(struct inode *inode) 366 { 367 memset(inode, 0, sizeof(*inode)); 368 INIT_HLIST_NODE(&inode->i_hash); 369 INIT_LIST_HEAD(&inode->i_devices); 370 INIT_LIST_HEAD(&inode->i_wb_list); 371 INIT_LIST_HEAD(&inode->i_lru); 372 address_space_init_once(&inode->i_data); 373 i_size_ordered_init(inode); 374 #ifdef CONFIG_FSNOTIFY 375 INIT_HLIST_HEAD(&inode->i_fsnotify_marks); 376 #endif 377 } 378 EXPORT_SYMBOL(inode_init_once); 379 380 static void init_once(void *foo) 381 { 382 struct inode *inode = (struct inode *) foo; 383 384 inode_init_once(inode); 385 } 386 387 /* 388 * inode->i_lock must be held 389 */ 390 void __iget(struct inode *inode) 391 { 392 atomic_inc(&inode->i_count); 393 } 394 395 /* 396 * get additional reference to inode; caller must already hold one. 397 */ 398 void ihold(struct inode *inode) 399 { 400 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 401 } 402 EXPORT_SYMBOL(ihold); 403 404 static void inode_lru_list_add(struct inode *inode) 405 { 406 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) 407 this_cpu_inc(nr_unused); 408 } 409 410 /* 411 * Add inode to LRU if needed (inode is unused and clean). 412 * 413 * Needs inode->i_lock held. 414 */ 415 void inode_add_lru(struct inode *inode) 416 { 417 if (!(inode->i_state & (I_DIRTY | I_SYNC | I_FREEING | I_WILL_FREE)) && 418 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE) 419 inode_lru_list_add(inode); 420 } 421 422 423 static void inode_lru_list_del(struct inode *inode) 424 { 425 426 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) 427 this_cpu_dec(nr_unused); 428 } 429 430 /** 431 * inode_sb_list_add - add inode to the superblock list of inodes 432 * @inode: inode to add 433 */ 434 void inode_sb_list_add(struct inode *inode) 435 { 436 spin_lock(&inode_sb_list_lock); 437 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 438 spin_unlock(&inode_sb_list_lock); 439 } 440 EXPORT_SYMBOL_GPL(inode_sb_list_add); 441 442 static inline void inode_sb_list_del(struct inode *inode) 443 { 444 if (!list_empty(&inode->i_sb_list)) { 445 spin_lock(&inode_sb_list_lock); 446 list_del_init(&inode->i_sb_list); 447 spin_unlock(&inode_sb_list_lock); 448 } 449 } 450 451 static unsigned long hash(struct super_block *sb, unsigned long hashval) 452 { 453 unsigned long tmp; 454 455 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 456 L1_CACHE_BYTES; 457 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 458 return tmp & i_hash_mask; 459 } 460 461 /** 462 * __insert_inode_hash - hash an inode 463 * @inode: unhashed inode 464 * @hashval: unsigned long value used to locate this object in the 465 * inode_hashtable. 466 * 467 * Add an inode to the inode hash for this superblock. 468 */ 469 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 470 { 471 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 472 473 spin_lock(&inode_hash_lock); 474 spin_lock(&inode->i_lock); 475 hlist_add_head(&inode->i_hash, b); 476 spin_unlock(&inode->i_lock); 477 spin_unlock(&inode_hash_lock); 478 } 479 EXPORT_SYMBOL(__insert_inode_hash); 480 481 /** 482 * __remove_inode_hash - remove an inode from the hash 483 * @inode: inode to unhash 484 * 485 * Remove an inode from the superblock. 486 */ 487 void __remove_inode_hash(struct inode *inode) 488 { 489 spin_lock(&inode_hash_lock); 490 spin_lock(&inode->i_lock); 491 hlist_del_init(&inode->i_hash); 492 spin_unlock(&inode->i_lock); 493 spin_unlock(&inode_hash_lock); 494 } 495 EXPORT_SYMBOL(__remove_inode_hash); 496 497 void clear_inode(struct inode *inode) 498 { 499 might_sleep(); 500 /* 501 * We have to cycle tree_lock here because reclaim can be still in the 502 * process of removing the last page (in __delete_from_page_cache()) 503 * and we must not free mapping under it. 504 */ 505 spin_lock_irq(&inode->i_data.tree_lock); 506 BUG_ON(inode->i_data.nrpages); 507 BUG_ON(inode->i_data.nrshadows); 508 spin_unlock_irq(&inode->i_data.tree_lock); 509 BUG_ON(!list_empty(&inode->i_data.private_list)); 510 BUG_ON(!(inode->i_state & I_FREEING)); 511 BUG_ON(inode->i_state & I_CLEAR); 512 /* don't need i_lock here, no concurrent mods to i_state */ 513 inode->i_state = I_FREEING | I_CLEAR; 514 } 515 EXPORT_SYMBOL(clear_inode); 516 517 /* 518 * Free the inode passed in, removing it from the lists it is still connected 519 * to. We remove any pages still attached to the inode and wait for any IO that 520 * is still in progress before finally destroying the inode. 521 * 522 * An inode must already be marked I_FREEING so that we avoid the inode being 523 * moved back onto lists if we race with other code that manipulates the lists 524 * (e.g. writeback_single_inode). The caller is responsible for setting this. 525 * 526 * An inode must already be removed from the LRU list before being evicted from 527 * the cache. This should occur atomically with setting the I_FREEING state 528 * flag, so no inodes here should ever be on the LRU when being evicted. 529 */ 530 static void evict(struct inode *inode) 531 { 532 const struct super_operations *op = inode->i_sb->s_op; 533 534 BUG_ON(!(inode->i_state & I_FREEING)); 535 BUG_ON(!list_empty(&inode->i_lru)); 536 537 if (!list_empty(&inode->i_wb_list)) 538 inode_wb_list_del(inode); 539 540 inode_sb_list_del(inode); 541 542 /* 543 * Wait for flusher thread to be done with the inode so that filesystem 544 * does not start destroying it while writeback is still running. Since 545 * the inode has I_FREEING set, flusher thread won't start new work on 546 * the inode. We just have to wait for running writeback to finish. 547 */ 548 inode_wait_for_writeback(inode); 549 550 if (op->evict_inode) { 551 op->evict_inode(inode); 552 } else { 553 truncate_inode_pages_final(&inode->i_data); 554 clear_inode(inode); 555 } 556 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 557 bd_forget(inode); 558 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 559 cd_forget(inode); 560 561 remove_inode_hash(inode); 562 563 spin_lock(&inode->i_lock); 564 wake_up_bit(&inode->i_state, __I_NEW); 565 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 566 spin_unlock(&inode->i_lock); 567 568 destroy_inode(inode); 569 } 570 571 /* 572 * dispose_list - dispose of the contents of a local list 573 * @head: the head of the list to free 574 * 575 * Dispose-list gets a local list with local inodes in it, so it doesn't 576 * need to worry about list corruption and SMP locks. 577 */ 578 static void dispose_list(struct list_head *head) 579 { 580 while (!list_empty(head)) { 581 struct inode *inode; 582 583 inode = list_first_entry(head, struct inode, i_lru); 584 list_del_init(&inode->i_lru); 585 586 evict(inode); 587 } 588 } 589 590 /** 591 * evict_inodes - evict all evictable inodes for a superblock 592 * @sb: superblock to operate on 593 * 594 * Make sure that no inodes with zero refcount are retained. This is 595 * called by superblock shutdown after having MS_ACTIVE flag removed, 596 * so any inode reaching zero refcount during or after that call will 597 * be immediately evicted. 598 */ 599 void evict_inodes(struct super_block *sb) 600 { 601 struct inode *inode, *next; 602 LIST_HEAD(dispose); 603 604 spin_lock(&inode_sb_list_lock); 605 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 606 if (atomic_read(&inode->i_count)) 607 continue; 608 609 spin_lock(&inode->i_lock); 610 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 611 spin_unlock(&inode->i_lock); 612 continue; 613 } 614 615 inode->i_state |= I_FREEING; 616 inode_lru_list_del(inode); 617 spin_unlock(&inode->i_lock); 618 list_add(&inode->i_lru, &dispose); 619 } 620 spin_unlock(&inode_sb_list_lock); 621 622 dispose_list(&dispose); 623 } 624 625 /** 626 * invalidate_inodes - attempt to free all inodes on a superblock 627 * @sb: superblock to operate on 628 * @kill_dirty: flag to guide handling of dirty inodes 629 * 630 * Attempts to free all inodes for a given superblock. If there were any 631 * busy inodes return a non-zero value, else zero. 632 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 633 * them as busy. 634 */ 635 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 636 { 637 int busy = 0; 638 struct inode *inode, *next; 639 LIST_HEAD(dispose); 640 641 spin_lock(&inode_sb_list_lock); 642 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 643 spin_lock(&inode->i_lock); 644 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 645 spin_unlock(&inode->i_lock); 646 continue; 647 } 648 if (inode->i_state & I_DIRTY && !kill_dirty) { 649 spin_unlock(&inode->i_lock); 650 busy = 1; 651 continue; 652 } 653 if (atomic_read(&inode->i_count)) { 654 spin_unlock(&inode->i_lock); 655 busy = 1; 656 continue; 657 } 658 659 inode->i_state |= I_FREEING; 660 inode_lru_list_del(inode); 661 spin_unlock(&inode->i_lock); 662 list_add(&inode->i_lru, &dispose); 663 } 664 spin_unlock(&inode_sb_list_lock); 665 666 dispose_list(&dispose); 667 668 return busy; 669 } 670 671 /* 672 * Isolate the inode from the LRU in preparation for freeing it. 673 * 674 * Any inodes which are pinned purely because of attached pagecache have their 675 * pagecache removed. If the inode has metadata buffers attached to 676 * mapping->private_list then try to remove them. 677 * 678 * If the inode has the I_REFERENCED flag set, then it means that it has been 679 * used recently - the flag is set in iput_final(). When we encounter such an 680 * inode, clear the flag and move it to the back of the LRU so it gets another 681 * pass through the LRU before it gets reclaimed. This is necessary because of 682 * the fact we are doing lazy LRU updates to minimise lock contention so the 683 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 684 * with this flag set because they are the inodes that are out of order. 685 */ 686 static enum lru_status 687 inode_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg) 688 { 689 struct list_head *freeable = arg; 690 struct inode *inode = container_of(item, struct inode, i_lru); 691 692 /* 693 * we are inverting the lru lock/inode->i_lock here, so use a trylock. 694 * If we fail to get the lock, just skip it. 695 */ 696 if (!spin_trylock(&inode->i_lock)) 697 return LRU_SKIP; 698 699 /* 700 * Referenced or dirty inodes are still in use. Give them another pass 701 * through the LRU as we canot reclaim them now. 702 */ 703 if (atomic_read(&inode->i_count) || 704 (inode->i_state & ~I_REFERENCED)) { 705 list_del_init(&inode->i_lru); 706 spin_unlock(&inode->i_lock); 707 this_cpu_dec(nr_unused); 708 return LRU_REMOVED; 709 } 710 711 /* recently referenced inodes get one more pass */ 712 if (inode->i_state & I_REFERENCED) { 713 inode->i_state &= ~I_REFERENCED; 714 spin_unlock(&inode->i_lock); 715 return LRU_ROTATE; 716 } 717 718 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 719 __iget(inode); 720 spin_unlock(&inode->i_lock); 721 spin_unlock(lru_lock); 722 if (remove_inode_buffers(inode)) { 723 unsigned long reap; 724 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 725 if (current_is_kswapd()) 726 __count_vm_events(KSWAPD_INODESTEAL, reap); 727 else 728 __count_vm_events(PGINODESTEAL, reap); 729 if (current->reclaim_state) 730 current->reclaim_state->reclaimed_slab += reap; 731 } 732 iput(inode); 733 spin_lock(lru_lock); 734 return LRU_RETRY; 735 } 736 737 WARN_ON(inode->i_state & I_NEW); 738 inode->i_state |= I_FREEING; 739 list_move(&inode->i_lru, freeable); 740 spin_unlock(&inode->i_lock); 741 742 this_cpu_dec(nr_unused); 743 return LRU_REMOVED; 744 } 745 746 /* 747 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 748 * This is called from the superblock shrinker function with a number of inodes 749 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 750 * then are freed outside inode_lock by dispose_list(). 751 */ 752 long prune_icache_sb(struct super_block *sb, unsigned long nr_to_scan, 753 int nid) 754 { 755 LIST_HEAD(freeable); 756 long freed; 757 758 freed = list_lru_walk_node(&sb->s_inode_lru, nid, inode_lru_isolate, 759 &freeable, &nr_to_scan); 760 dispose_list(&freeable); 761 return freed; 762 } 763 764 static void __wait_on_freeing_inode(struct inode *inode); 765 /* 766 * Called with the inode lock held. 767 */ 768 static struct inode *find_inode(struct super_block *sb, 769 struct hlist_head *head, 770 int (*test)(struct inode *, void *), 771 void *data) 772 { 773 struct inode *inode = NULL; 774 775 repeat: 776 hlist_for_each_entry(inode, head, i_hash) { 777 if (inode->i_sb != sb) 778 continue; 779 if (!test(inode, data)) 780 continue; 781 spin_lock(&inode->i_lock); 782 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 783 __wait_on_freeing_inode(inode); 784 goto repeat; 785 } 786 __iget(inode); 787 spin_unlock(&inode->i_lock); 788 return inode; 789 } 790 return NULL; 791 } 792 793 /* 794 * find_inode_fast is the fast path version of find_inode, see the comment at 795 * iget_locked for details. 796 */ 797 static struct inode *find_inode_fast(struct super_block *sb, 798 struct hlist_head *head, unsigned long ino) 799 { 800 struct inode *inode = NULL; 801 802 repeat: 803 hlist_for_each_entry(inode, head, i_hash) { 804 if (inode->i_ino != ino) 805 continue; 806 if (inode->i_sb != sb) 807 continue; 808 spin_lock(&inode->i_lock); 809 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 810 __wait_on_freeing_inode(inode); 811 goto repeat; 812 } 813 __iget(inode); 814 spin_unlock(&inode->i_lock); 815 return inode; 816 } 817 return NULL; 818 } 819 820 /* 821 * Each cpu owns a range of LAST_INO_BATCH numbers. 822 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 823 * to renew the exhausted range. 824 * 825 * This does not significantly increase overflow rate because every CPU can 826 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 827 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 828 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 829 * overflow rate by 2x, which does not seem too significant. 830 * 831 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 832 * error if st_ino won't fit in target struct field. Use 32bit counter 833 * here to attempt to avoid that. 834 */ 835 #define LAST_INO_BATCH 1024 836 static DEFINE_PER_CPU(unsigned int, last_ino); 837 838 unsigned int get_next_ino(void) 839 { 840 unsigned int *p = &get_cpu_var(last_ino); 841 unsigned int res = *p; 842 843 #ifdef CONFIG_SMP 844 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 845 static atomic_t shared_last_ino; 846 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 847 848 res = next - LAST_INO_BATCH; 849 } 850 #endif 851 852 *p = ++res; 853 put_cpu_var(last_ino); 854 return res; 855 } 856 EXPORT_SYMBOL(get_next_ino); 857 858 /** 859 * new_inode_pseudo - obtain an inode 860 * @sb: superblock 861 * 862 * Allocates a new inode for given superblock. 863 * Inode wont be chained in superblock s_inodes list 864 * This means : 865 * - fs can't be unmount 866 * - quotas, fsnotify, writeback can't work 867 */ 868 struct inode *new_inode_pseudo(struct super_block *sb) 869 { 870 struct inode *inode = alloc_inode(sb); 871 872 if (inode) { 873 spin_lock(&inode->i_lock); 874 inode->i_state = 0; 875 spin_unlock(&inode->i_lock); 876 INIT_LIST_HEAD(&inode->i_sb_list); 877 } 878 return inode; 879 } 880 881 /** 882 * new_inode - obtain an inode 883 * @sb: superblock 884 * 885 * Allocates a new inode for given superblock. The default gfp_mask 886 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 887 * If HIGHMEM pages are unsuitable or it is known that pages allocated 888 * for the page cache are not reclaimable or migratable, 889 * mapping_set_gfp_mask() must be called with suitable flags on the 890 * newly created inode's mapping 891 * 892 */ 893 struct inode *new_inode(struct super_block *sb) 894 { 895 struct inode *inode; 896 897 spin_lock_prefetch(&inode_sb_list_lock); 898 899 inode = new_inode_pseudo(sb); 900 if (inode) 901 inode_sb_list_add(inode); 902 return inode; 903 } 904 EXPORT_SYMBOL(new_inode); 905 906 #ifdef CONFIG_DEBUG_LOCK_ALLOC 907 void lockdep_annotate_inode_mutex_key(struct inode *inode) 908 { 909 if (S_ISDIR(inode->i_mode)) { 910 struct file_system_type *type = inode->i_sb->s_type; 911 912 /* Set new key only if filesystem hasn't already changed it */ 913 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) { 914 /* 915 * ensure nobody is actually holding i_mutex 916 */ 917 mutex_destroy(&inode->i_mutex); 918 mutex_init(&inode->i_mutex); 919 lockdep_set_class(&inode->i_mutex, 920 &type->i_mutex_dir_key); 921 } 922 } 923 } 924 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 925 #endif 926 927 /** 928 * unlock_new_inode - clear the I_NEW state and wake up any waiters 929 * @inode: new inode to unlock 930 * 931 * Called when the inode is fully initialised to clear the new state of the 932 * inode and wake up anyone waiting for the inode to finish initialisation. 933 */ 934 void unlock_new_inode(struct inode *inode) 935 { 936 lockdep_annotate_inode_mutex_key(inode); 937 spin_lock(&inode->i_lock); 938 WARN_ON(!(inode->i_state & I_NEW)); 939 inode->i_state &= ~I_NEW; 940 smp_mb(); 941 wake_up_bit(&inode->i_state, __I_NEW); 942 spin_unlock(&inode->i_lock); 943 } 944 EXPORT_SYMBOL(unlock_new_inode); 945 946 /** 947 * lock_two_nondirectories - take two i_mutexes on non-directory objects 948 * 949 * Lock any non-NULL argument that is not a directory. 950 * Zero, one or two objects may be locked by this function. 951 * 952 * @inode1: first inode to lock 953 * @inode2: second inode to lock 954 */ 955 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 956 { 957 if (inode1 > inode2) 958 swap(inode1, inode2); 959 960 if (inode1 && !S_ISDIR(inode1->i_mode)) 961 mutex_lock(&inode1->i_mutex); 962 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 963 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_NONDIR2); 964 } 965 EXPORT_SYMBOL(lock_two_nondirectories); 966 967 /** 968 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 969 * @inode1: first inode to unlock 970 * @inode2: second inode to unlock 971 */ 972 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 973 { 974 if (inode1 && !S_ISDIR(inode1->i_mode)) 975 mutex_unlock(&inode1->i_mutex); 976 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 977 mutex_unlock(&inode2->i_mutex); 978 } 979 EXPORT_SYMBOL(unlock_two_nondirectories); 980 981 /** 982 * iget5_locked - obtain an inode from a mounted file system 983 * @sb: super block of file system 984 * @hashval: hash value (usually inode number) to get 985 * @test: callback used for comparisons between inodes 986 * @set: callback used to initialize a new struct inode 987 * @data: opaque data pointer to pass to @test and @set 988 * 989 * Search for the inode specified by @hashval and @data in the inode cache, 990 * and if present it is return it with an increased reference count. This is 991 * a generalized version of iget_locked() for file systems where the inode 992 * number is not sufficient for unique identification of an inode. 993 * 994 * If the inode is not in cache, allocate a new inode and return it locked, 995 * hashed, and with the I_NEW flag set. The file system gets to fill it in 996 * before unlocking it via unlock_new_inode(). 997 * 998 * Note both @test and @set are called with the inode_hash_lock held, so can't 999 * sleep. 1000 */ 1001 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1002 int (*test)(struct inode *, void *), 1003 int (*set)(struct inode *, void *), void *data) 1004 { 1005 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1006 struct inode *inode; 1007 1008 spin_lock(&inode_hash_lock); 1009 inode = find_inode(sb, head, test, data); 1010 spin_unlock(&inode_hash_lock); 1011 1012 if (inode) { 1013 wait_on_inode(inode); 1014 return inode; 1015 } 1016 1017 inode = alloc_inode(sb); 1018 if (inode) { 1019 struct inode *old; 1020 1021 spin_lock(&inode_hash_lock); 1022 /* We released the lock, so.. */ 1023 old = find_inode(sb, head, test, data); 1024 if (!old) { 1025 if (set(inode, data)) 1026 goto set_failed; 1027 1028 spin_lock(&inode->i_lock); 1029 inode->i_state = I_NEW; 1030 hlist_add_head(&inode->i_hash, head); 1031 spin_unlock(&inode->i_lock); 1032 inode_sb_list_add(inode); 1033 spin_unlock(&inode_hash_lock); 1034 1035 /* Return the locked inode with I_NEW set, the 1036 * caller is responsible for filling in the contents 1037 */ 1038 return inode; 1039 } 1040 1041 /* 1042 * Uhhuh, somebody else created the same inode under 1043 * us. Use the old inode instead of the one we just 1044 * allocated. 1045 */ 1046 spin_unlock(&inode_hash_lock); 1047 destroy_inode(inode); 1048 inode = old; 1049 wait_on_inode(inode); 1050 } 1051 return inode; 1052 1053 set_failed: 1054 spin_unlock(&inode_hash_lock); 1055 destroy_inode(inode); 1056 return NULL; 1057 } 1058 EXPORT_SYMBOL(iget5_locked); 1059 1060 /** 1061 * iget_locked - obtain an inode from a mounted file system 1062 * @sb: super block of file system 1063 * @ino: inode number to get 1064 * 1065 * Search for the inode specified by @ino in the inode cache and if present 1066 * return it with an increased reference count. This is for file systems 1067 * where the inode number is sufficient for unique identification of an inode. 1068 * 1069 * If the inode is not in cache, allocate a new inode and return it locked, 1070 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1071 * before unlocking it via unlock_new_inode(). 1072 */ 1073 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1074 { 1075 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1076 struct inode *inode; 1077 1078 spin_lock(&inode_hash_lock); 1079 inode = find_inode_fast(sb, head, ino); 1080 spin_unlock(&inode_hash_lock); 1081 if (inode) { 1082 wait_on_inode(inode); 1083 return inode; 1084 } 1085 1086 inode = alloc_inode(sb); 1087 if (inode) { 1088 struct inode *old; 1089 1090 spin_lock(&inode_hash_lock); 1091 /* We released the lock, so.. */ 1092 old = find_inode_fast(sb, head, ino); 1093 if (!old) { 1094 inode->i_ino = ino; 1095 spin_lock(&inode->i_lock); 1096 inode->i_state = I_NEW; 1097 hlist_add_head(&inode->i_hash, head); 1098 spin_unlock(&inode->i_lock); 1099 inode_sb_list_add(inode); 1100 spin_unlock(&inode_hash_lock); 1101 1102 /* Return the locked inode with I_NEW set, the 1103 * caller is responsible for filling in the contents 1104 */ 1105 return inode; 1106 } 1107 1108 /* 1109 * Uhhuh, somebody else created the same inode under 1110 * us. Use the old inode instead of the one we just 1111 * allocated. 1112 */ 1113 spin_unlock(&inode_hash_lock); 1114 destroy_inode(inode); 1115 inode = old; 1116 wait_on_inode(inode); 1117 } 1118 return inode; 1119 } 1120 EXPORT_SYMBOL(iget_locked); 1121 1122 /* 1123 * search the inode cache for a matching inode number. 1124 * If we find one, then the inode number we are trying to 1125 * allocate is not unique and so we should not use it. 1126 * 1127 * Returns 1 if the inode number is unique, 0 if it is not. 1128 */ 1129 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1130 { 1131 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1132 struct inode *inode; 1133 1134 spin_lock(&inode_hash_lock); 1135 hlist_for_each_entry(inode, b, i_hash) { 1136 if (inode->i_ino == ino && inode->i_sb == sb) { 1137 spin_unlock(&inode_hash_lock); 1138 return 0; 1139 } 1140 } 1141 spin_unlock(&inode_hash_lock); 1142 1143 return 1; 1144 } 1145 1146 /** 1147 * iunique - get a unique inode number 1148 * @sb: superblock 1149 * @max_reserved: highest reserved inode number 1150 * 1151 * Obtain an inode number that is unique on the system for a given 1152 * superblock. This is used by file systems that have no natural 1153 * permanent inode numbering system. An inode number is returned that 1154 * is higher than the reserved limit but unique. 1155 * 1156 * BUGS: 1157 * With a large number of inodes live on the file system this function 1158 * currently becomes quite slow. 1159 */ 1160 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1161 { 1162 /* 1163 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1164 * error if st_ino won't fit in target struct field. Use 32bit counter 1165 * here to attempt to avoid that. 1166 */ 1167 static DEFINE_SPINLOCK(iunique_lock); 1168 static unsigned int counter; 1169 ino_t res; 1170 1171 spin_lock(&iunique_lock); 1172 do { 1173 if (counter <= max_reserved) 1174 counter = max_reserved + 1; 1175 res = counter++; 1176 } while (!test_inode_iunique(sb, res)); 1177 spin_unlock(&iunique_lock); 1178 1179 return res; 1180 } 1181 EXPORT_SYMBOL(iunique); 1182 1183 struct inode *igrab(struct inode *inode) 1184 { 1185 spin_lock(&inode->i_lock); 1186 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1187 __iget(inode); 1188 spin_unlock(&inode->i_lock); 1189 } else { 1190 spin_unlock(&inode->i_lock); 1191 /* 1192 * Handle the case where s_op->clear_inode is not been 1193 * called yet, and somebody is calling igrab 1194 * while the inode is getting freed. 1195 */ 1196 inode = NULL; 1197 } 1198 return inode; 1199 } 1200 EXPORT_SYMBOL(igrab); 1201 1202 /** 1203 * ilookup5_nowait - search for an inode in the inode cache 1204 * @sb: super block of file system to search 1205 * @hashval: hash value (usually inode number) to search for 1206 * @test: callback used for comparisons between inodes 1207 * @data: opaque data pointer to pass to @test 1208 * 1209 * Search for the inode specified by @hashval and @data in the inode cache. 1210 * If the inode is in the cache, the inode is returned with an incremented 1211 * reference count. 1212 * 1213 * Note: I_NEW is not waited upon so you have to be very careful what you do 1214 * with the returned inode. You probably should be using ilookup5() instead. 1215 * 1216 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1217 */ 1218 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1219 int (*test)(struct inode *, void *), void *data) 1220 { 1221 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1222 struct inode *inode; 1223 1224 spin_lock(&inode_hash_lock); 1225 inode = find_inode(sb, head, test, data); 1226 spin_unlock(&inode_hash_lock); 1227 1228 return inode; 1229 } 1230 EXPORT_SYMBOL(ilookup5_nowait); 1231 1232 /** 1233 * ilookup5 - search for an inode in the inode cache 1234 * @sb: super block of file system to search 1235 * @hashval: hash value (usually inode number) to search for 1236 * @test: callback used for comparisons between inodes 1237 * @data: opaque data pointer to pass to @test 1238 * 1239 * Search for the inode specified by @hashval and @data in the inode cache, 1240 * and if the inode is in the cache, return the inode with an incremented 1241 * reference count. Waits on I_NEW before returning the inode. 1242 * returned with an incremented reference count. 1243 * 1244 * This is a generalized version of ilookup() for file systems where the 1245 * inode number is not sufficient for unique identification of an inode. 1246 * 1247 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1248 */ 1249 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1250 int (*test)(struct inode *, void *), void *data) 1251 { 1252 struct inode *inode = ilookup5_nowait(sb, hashval, test, data); 1253 1254 if (inode) 1255 wait_on_inode(inode); 1256 return inode; 1257 } 1258 EXPORT_SYMBOL(ilookup5); 1259 1260 /** 1261 * ilookup - search for an inode in the inode cache 1262 * @sb: super block of file system to search 1263 * @ino: inode number to search for 1264 * 1265 * Search for the inode @ino in the inode cache, and if the inode is in the 1266 * cache, the inode is returned with an incremented reference count. 1267 */ 1268 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1269 { 1270 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1271 struct inode *inode; 1272 1273 spin_lock(&inode_hash_lock); 1274 inode = find_inode_fast(sb, head, ino); 1275 spin_unlock(&inode_hash_lock); 1276 1277 if (inode) 1278 wait_on_inode(inode); 1279 return inode; 1280 } 1281 EXPORT_SYMBOL(ilookup); 1282 1283 int insert_inode_locked(struct inode *inode) 1284 { 1285 struct super_block *sb = inode->i_sb; 1286 ino_t ino = inode->i_ino; 1287 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1288 1289 while (1) { 1290 struct inode *old = NULL; 1291 spin_lock(&inode_hash_lock); 1292 hlist_for_each_entry(old, head, i_hash) { 1293 if (old->i_ino != ino) 1294 continue; 1295 if (old->i_sb != sb) 1296 continue; 1297 spin_lock(&old->i_lock); 1298 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1299 spin_unlock(&old->i_lock); 1300 continue; 1301 } 1302 break; 1303 } 1304 if (likely(!old)) { 1305 spin_lock(&inode->i_lock); 1306 inode->i_state |= I_NEW; 1307 hlist_add_head(&inode->i_hash, head); 1308 spin_unlock(&inode->i_lock); 1309 spin_unlock(&inode_hash_lock); 1310 return 0; 1311 } 1312 __iget(old); 1313 spin_unlock(&old->i_lock); 1314 spin_unlock(&inode_hash_lock); 1315 wait_on_inode(old); 1316 if (unlikely(!inode_unhashed(old))) { 1317 iput(old); 1318 return -EBUSY; 1319 } 1320 iput(old); 1321 } 1322 } 1323 EXPORT_SYMBOL(insert_inode_locked); 1324 1325 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1326 int (*test)(struct inode *, void *), void *data) 1327 { 1328 struct super_block *sb = inode->i_sb; 1329 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1330 1331 while (1) { 1332 struct inode *old = NULL; 1333 1334 spin_lock(&inode_hash_lock); 1335 hlist_for_each_entry(old, head, i_hash) { 1336 if (old->i_sb != sb) 1337 continue; 1338 if (!test(old, data)) 1339 continue; 1340 spin_lock(&old->i_lock); 1341 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1342 spin_unlock(&old->i_lock); 1343 continue; 1344 } 1345 break; 1346 } 1347 if (likely(!old)) { 1348 spin_lock(&inode->i_lock); 1349 inode->i_state |= I_NEW; 1350 hlist_add_head(&inode->i_hash, head); 1351 spin_unlock(&inode->i_lock); 1352 spin_unlock(&inode_hash_lock); 1353 return 0; 1354 } 1355 __iget(old); 1356 spin_unlock(&old->i_lock); 1357 spin_unlock(&inode_hash_lock); 1358 wait_on_inode(old); 1359 if (unlikely(!inode_unhashed(old))) { 1360 iput(old); 1361 return -EBUSY; 1362 } 1363 iput(old); 1364 } 1365 } 1366 EXPORT_SYMBOL(insert_inode_locked4); 1367 1368 1369 int generic_delete_inode(struct inode *inode) 1370 { 1371 return 1; 1372 } 1373 EXPORT_SYMBOL(generic_delete_inode); 1374 1375 /* 1376 * Called when we're dropping the last reference 1377 * to an inode. 1378 * 1379 * Call the FS "drop_inode()" function, defaulting to 1380 * the legacy UNIX filesystem behaviour. If it tells 1381 * us to evict inode, do so. Otherwise, retain inode 1382 * in cache if fs is alive, sync and evict if fs is 1383 * shutting down. 1384 */ 1385 static void iput_final(struct inode *inode) 1386 { 1387 struct super_block *sb = inode->i_sb; 1388 const struct super_operations *op = inode->i_sb->s_op; 1389 int drop; 1390 1391 WARN_ON(inode->i_state & I_NEW); 1392 1393 if (op->drop_inode) 1394 drop = op->drop_inode(inode); 1395 else 1396 drop = generic_drop_inode(inode); 1397 1398 if (!drop && (sb->s_flags & MS_ACTIVE)) { 1399 inode->i_state |= I_REFERENCED; 1400 inode_add_lru(inode); 1401 spin_unlock(&inode->i_lock); 1402 return; 1403 } 1404 1405 if (!drop) { 1406 inode->i_state |= I_WILL_FREE; 1407 spin_unlock(&inode->i_lock); 1408 write_inode_now(inode, 1); 1409 spin_lock(&inode->i_lock); 1410 WARN_ON(inode->i_state & I_NEW); 1411 inode->i_state &= ~I_WILL_FREE; 1412 } 1413 1414 inode->i_state |= I_FREEING; 1415 if (!list_empty(&inode->i_lru)) 1416 inode_lru_list_del(inode); 1417 spin_unlock(&inode->i_lock); 1418 1419 evict(inode); 1420 } 1421 1422 /** 1423 * iput - put an inode 1424 * @inode: inode to put 1425 * 1426 * Puts an inode, dropping its usage count. If the inode use count hits 1427 * zero, the inode is then freed and may also be destroyed. 1428 * 1429 * Consequently, iput() can sleep. 1430 */ 1431 void iput(struct inode *inode) 1432 { 1433 if (inode) { 1434 BUG_ON(inode->i_state & I_CLEAR); 1435 1436 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) 1437 iput_final(inode); 1438 } 1439 } 1440 EXPORT_SYMBOL(iput); 1441 1442 /** 1443 * bmap - find a block number in a file 1444 * @inode: inode of file 1445 * @block: block to find 1446 * 1447 * Returns the block number on the device holding the inode that 1448 * is the disk block number for the block of the file requested. 1449 * That is, asked for block 4 of inode 1 the function will return the 1450 * disk block relative to the disk start that holds that block of the 1451 * file. 1452 */ 1453 sector_t bmap(struct inode *inode, sector_t block) 1454 { 1455 sector_t res = 0; 1456 if (inode->i_mapping->a_ops->bmap) 1457 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1458 return res; 1459 } 1460 EXPORT_SYMBOL(bmap); 1461 1462 /* 1463 * With relative atime, only update atime if the previous atime is 1464 * earlier than either the ctime or mtime or if at least a day has 1465 * passed since the last atime update. 1466 */ 1467 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1468 struct timespec now) 1469 { 1470 1471 if (!(mnt->mnt_flags & MNT_RELATIME)) 1472 return 1; 1473 /* 1474 * Is mtime younger than atime? If yes, update atime: 1475 */ 1476 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1477 return 1; 1478 /* 1479 * Is ctime younger than atime? If yes, update atime: 1480 */ 1481 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1482 return 1; 1483 1484 /* 1485 * Is the previous atime value older than a day? If yes, 1486 * update atime: 1487 */ 1488 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1489 return 1; 1490 /* 1491 * Good, we can skip the atime update: 1492 */ 1493 return 0; 1494 } 1495 1496 /* 1497 * This does the actual work of updating an inodes time or version. Must have 1498 * had called mnt_want_write() before calling this. 1499 */ 1500 static int update_time(struct inode *inode, struct timespec *time, int flags) 1501 { 1502 if (inode->i_op->update_time) 1503 return inode->i_op->update_time(inode, time, flags); 1504 1505 if (flags & S_ATIME) 1506 inode->i_atime = *time; 1507 if (flags & S_VERSION) 1508 inode_inc_iversion(inode); 1509 if (flags & S_CTIME) 1510 inode->i_ctime = *time; 1511 if (flags & S_MTIME) 1512 inode->i_mtime = *time; 1513 mark_inode_dirty_sync(inode); 1514 return 0; 1515 } 1516 1517 /** 1518 * touch_atime - update the access time 1519 * @path: the &struct path to update 1520 * 1521 * Update the accessed time on an inode and mark it for writeback. 1522 * This function automatically handles read only file systems and media, 1523 * as well as the "noatime" flag and inode specific "noatime" markers. 1524 */ 1525 void touch_atime(const struct path *path) 1526 { 1527 struct vfsmount *mnt = path->mnt; 1528 struct inode *inode = path->dentry->d_inode; 1529 struct timespec now; 1530 1531 if (inode->i_flags & S_NOATIME) 1532 return; 1533 if (IS_NOATIME(inode)) 1534 return; 1535 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1536 return; 1537 1538 if (mnt->mnt_flags & MNT_NOATIME) 1539 return; 1540 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1541 return; 1542 1543 now = current_fs_time(inode->i_sb); 1544 1545 if (!relatime_need_update(mnt, inode, now)) 1546 return; 1547 1548 if (timespec_equal(&inode->i_atime, &now)) 1549 return; 1550 1551 if (!sb_start_write_trylock(inode->i_sb)) 1552 return; 1553 1554 if (__mnt_want_write(mnt)) 1555 goto skip_update; 1556 /* 1557 * File systems can error out when updating inodes if they need to 1558 * allocate new space to modify an inode (such is the case for 1559 * Btrfs), but since we touch atime while walking down the path we 1560 * really don't care if we failed to update the atime of the file, 1561 * so just ignore the return value. 1562 * We may also fail on filesystems that have the ability to make parts 1563 * of the fs read only, e.g. subvolumes in Btrfs. 1564 */ 1565 update_time(inode, &now, S_ATIME); 1566 __mnt_drop_write(mnt); 1567 skip_update: 1568 sb_end_write(inode->i_sb); 1569 } 1570 EXPORT_SYMBOL(touch_atime); 1571 1572 /* 1573 * The logic we want is 1574 * 1575 * if suid or (sgid and xgrp) 1576 * remove privs 1577 */ 1578 int should_remove_suid(struct dentry *dentry) 1579 { 1580 umode_t mode = dentry->d_inode->i_mode; 1581 int kill = 0; 1582 1583 /* suid always must be killed */ 1584 if (unlikely(mode & S_ISUID)) 1585 kill = ATTR_KILL_SUID; 1586 1587 /* 1588 * sgid without any exec bits is just a mandatory locking mark; leave 1589 * it alone. If some exec bits are set, it's a real sgid; kill it. 1590 */ 1591 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1592 kill |= ATTR_KILL_SGID; 1593 1594 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1595 return kill; 1596 1597 return 0; 1598 } 1599 EXPORT_SYMBOL(should_remove_suid); 1600 1601 static int __remove_suid(struct dentry *dentry, int kill) 1602 { 1603 struct iattr newattrs; 1604 1605 newattrs.ia_valid = ATTR_FORCE | kill; 1606 /* 1607 * Note we call this on write, so notify_change will not 1608 * encounter any conflicting delegations: 1609 */ 1610 return notify_change(dentry, &newattrs, NULL); 1611 } 1612 1613 int file_remove_suid(struct file *file) 1614 { 1615 struct dentry *dentry = file->f_path.dentry; 1616 struct inode *inode = dentry->d_inode; 1617 int killsuid; 1618 int killpriv; 1619 int error = 0; 1620 1621 /* Fast path for nothing security related */ 1622 if (IS_NOSEC(inode)) 1623 return 0; 1624 1625 killsuid = should_remove_suid(dentry); 1626 killpriv = security_inode_need_killpriv(dentry); 1627 1628 if (killpriv < 0) 1629 return killpriv; 1630 if (killpriv) 1631 error = security_inode_killpriv(dentry); 1632 if (!error && killsuid) 1633 error = __remove_suid(dentry, killsuid); 1634 if (!error && (inode->i_sb->s_flags & MS_NOSEC)) 1635 inode->i_flags |= S_NOSEC; 1636 1637 return error; 1638 } 1639 EXPORT_SYMBOL(file_remove_suid); 1640 1641 /** 1642 * file_update_time - update mtime and ctime time 1643 * @file: file accessed 1644 * 1645 * Update the mtime and ctime members of an inode and mark the inode 1646 * for writeback. Note that this function is meant exclusively for 1647 * usage in the file write path of filesystems, and filesystems may 1648 * choose to explicitly ignore update via this function with the 1649 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1650 * timestamps are handled by the server. This can return an error for 1651 * file systems who need to allocate space in order to update an inode. 1652 */ 1653 1654 int file_update_time(struct file *file) 1655 { 1656 struct inode *inode = file_inode(file); 1657 struct timespec now; 1658 int sync_it = 0; 1659 int ret; 1660 1661 /* First try to exhaust all avenues to not sync */ 1662 if (IS_NOCMTIME(inode)) 1663 return 0; 1664 1665 now = current_fs_time(inode->i_sb); 1666 if (!timespec_equal(&inode->i_mtime, &now)) 1667 sync_it = S_MTIME; 1668 1669 if (!timespec_equal(&inode->i_ctime, &now)) 1670 sync_it |= S_CTIME; 1671 1672 if (IS_I_VERSION(inode)) 1673 sync_it |= S_VERSION; 1674 1675 if (!sync_it) 1676 return 0; 1677 1678 /* Finally allowed to write? Takes lock. */ 1679 if (__mnt_want_write_file(file)) 1680 return 0; 1681 1682 ret = update_time(inode, &now, sync_it); 1683 __mnt_drop_write_file(file); 1684 1685 return ret; 1686 } 1687 EXPORT_SYMBOL(file_update_time); 1688 1689 int inode_needs_sync(struct inode *inode) 1690 { 1691 if (IS_SYNC(inode)) 1692 return 1; 1693 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1694 return 1; 1695 return 0; 1696 } 1697 EXPORT_SYMBOL(inode_needs_sync); 1698 1699 /* 1700 * If we try to find an inode in the inode hash while it is being 1701 * deleted, we have to wait until the filesystem completes its 1702 * deletion before reporting that it isn't found. This function waits 1703 * until the deletion _might_ have completed. Callers are responsible 1704 * to recheck inode state. 1705 * 1706 * It doesn't matter if I_NEW is not set initially, a call to 1707 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 1708 * will DTRT. 1709 */ 1710 static void __wait_on_freeing_inode(struct inode *inode) 1711 { 1712 wait_queue_head_t *wq; 1713 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 1714 wq = bit_waitqueue(&inode->i_state, __I_NEW); 1715 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1716 spin_unlock(&inode->i_lock); 1717 spin_unlock(&inode_hash_lock); 1718 schedule(); 1719 finish_wait(wq, &wait.wait); 1720 spin_lock(&inode_hash_lock); 1721 } 1722 1723 static __initdata unsigned long ihash_entries; 1724 static int __init set_ihash_entries(char *str) 1725 { 1726 if (!str) 1727 return 0; 1728 ihash_entries = simple_strtoul(str, &str, 0); 1729 return 1; 1730 } 1731 __setup("ihash_entries=", set_ihash_entries); 1732 1733 /* 1734 * Initialize the waitqueues and inode hash table. 1735 */ 1736 void __init inode_init_early(void) 1737 { 1738 unsigned int loop; 1739 1740 /* If hashes are distributed across NUMA nodes, defer 1741 * hash allocation until vmalloc space is available. 1742 */ 1743 if (hashdist) 1744 return; 1745 1746 inode_hashtable = 1747 alloc_large_system_hash("Inode-cache", 1748 sizeof(struct hlist_head), 1749 ihash_entries, 1750 14, 1751 HASH_EARLY, 1752 &i_hash_shift, 1753 &i_hash_mask, 1754 0, 1755 0); 1756 1757 for (loop = 0; loop < (1U << i_hash_shift); loop++) 1758 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1759 } 1760 1761 void __init inode_init(void) 1762 { 1763 unsigned int loop; 1764 1765 /* inode slab cache */ 1766 inode_cachep = kmem_cache_create("inode_cache", 1767 sizeof(struct inode), 1768 0, 1769 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1770 SLAB_MEM_SPREAD), 1771 init_once); 1772 1773 /* Hash may have been set up in inode_init_early */ 1774 if (!hashdist) 1775 return; 1776 1777 inode_hashtable = 1778 alloc_large_system_hash("Inode-cache", 1779 sizeof(struct hlist_head), 1780 ihash_entries, 1781 14, 1782 0, 1783 &i_hash_shift, 1784 &i_hash_mask, 1785 0, 1786 0); 1787 1788 for (loop = 0; loop < (1U << i_hash_shift); loop++) 1789 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1790 } 1791 1792 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1793 { 1794 inode->i_mode = mode; 1795 if (S_ISCHR(mode)) { 1796 inode->i_fop = &def_chr_fops; 1797 inode->i_rdev = rdev; 1798 } else if (S_ISBLK(mode)) { 1799 inode->i_fop = &def_blk_fops; 1800 inode->i_rdev = rdev; 1801 } else if (S_ISFIFO(mode)) 1802 inode->i_fop = &pipefifo_fops; 1803 else if (S_ISSOCK(mode)) 1804 inode->i_fop = &bad_sock_fops; 1805 else 1806 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 1807 " inode %s:%lu\n", mode, inode->i_sb->s_id, 1808 inode->i_ino); 1809 } 1810 EXPORT_SYMBOL(init_special_inode); 1811 1812 /** 1813 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 1814 * @inode: New inode 1815 * @dir: Directory inode 1816 * @mode: mode of the new inode 1817 */ 1818 void inode_init_owner(struct inode *inode, const struct inode *dir, 1819 umode_t mode) 1820 { 1821 inode->i_uid = current_fsuid(); 1822 if (dir && dir->i_mode & S_ISGID) { 1823 inode->i_gid = dir->i_gid; 1824 if (S_ISDIR(mode)) 1825 mode |= S_ISGID; 1826 } else 1827 inode->i_gid = current_fsgid(); 1828 inode->i_mode = mode; 1829 } 1830 EXPORT_SYMBOL(inode_init_owner); 1831 1832 /** 1833 * inode_owner_or_capable - check current task permissions to inode 1834 * @inode: inode being checked 1835 * 1836 * Return true if current either has CAP_FOWNER in a namespace with the 1837 * inode owner uid mapped, or owns the file. 1838 */ 1839 bool inode_owner_or_capable(const struct inode *inode) 1840 { 1841 struct user_namespace *ns; 1842 1843 if (uid_eq(current_fsuid(), inode->i_uid)) 1844 return true; 1845 1846 ns = current_user_ns(); 1847 if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid)) 1848 return true; 1849 return false; 1850 } 1851 EXPORT_SYMBOL(inode_owner_or_capable); 1852 1853 /* 1854 * Direct i/o helper functions 1855 */ 1856 static void __inode_dio_wait(struct inode *inode) 1857 { 1858 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 1859 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 1860 1861 do { 1862 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE); 1863 if (atomic_read(&inode->i_dio_count)) 1864 schedule(); 1865 } while (atomic_read(&inode->i_dio_count)); 1866 finish_wait(wq, &q.wait); 1867 } 1868 1869 /** 1870 * inode_dio_wait - wait for outstanding DIO requests to finish 1871 * @inode: inode to wait for 1872 * 1873 * Waits for all pending direct I/O requests to finish so that we can 1874 * proceed with a truncate or equivalent operation. 1875 * 1876 * Must be called under a lock that serializes taking new references 1877 * to i_dio_count, usually by inode->i_mutex. 1878 */ 1879 void inode_dio_wait(struct inode *inode) 1880 { 1881 if (atomic_read(&inode->i_dio_count)) 1882 __inode_dio_wait(inode); 1883 } 1884 EXPORT_SYMBOL(inode_dio_wait); 1885 1886 /* 1887 * inode_dio_done - signal finish of a direct I/O requests 1888 * @inode: inode the direct I/O happens on 1889 * 1890 * This is called once we've finished processing a direct I/O request, 1891 * and is used to wake up callers waiting for direct I/O to be quiesced. 1892 */ 1893 void inode_dio_done(struct inode *inode) 1894 { 1895 if (atomic_dec_and_test(&inode->i_dio_count)) 1896 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP); 1897 } 1898 EXPORT_SYMBOL(inode_dio_done); 1899 1900 /* 1901 * inode_set_flags - atomically set some inode flags 1902 * 1903 * Note: the caller should be holding i_mutex, or else be sure that 1904 * they have exclusive access to the inode structure (i.e., while the 1905 * inode is being instantiated). The reason for the cmpxchg() loop 1906 * --- which wouldn't be necessary if all code paths which modify 1907 * i_flags actually followed this rule, is that there is at least one 1908 * code path which doesn't today --- for example, 1909 * __generic_file_aio_write() calls file_remove_suid() without holding 1910 * i_mutex --- so we use cmpxchg() out of an abundance of caution. 1911 * 1912 * In the long run, i_mutex is overkill, and we should probably look 1913 * at using the i_lock spinlock to protect i_flags, and then make sure 1914 * it is so documented in include/linux/fs.h and that all code follows 1915 * the locking convention!! 1916 */ 1917 void inode_set_flags(struct inode *inode, unsigned int flags, 1918 unsigned int mask) 1919 { 1920 unsigned int old_flags, new_flags; 1921 1922 WARN_ON_ONCE(flags & ~mask); 1923 do { 1924 old_flags = ACCESS_ONCE(inode->i_flags); 1925 new_flags = (old_flags & ~mask) | flags; 1926 } while (unlikely(cmpxchg(&inode->i_flags, old_flags, 1927 new_flags) != old_flags)); 1928 } 1929 EXPORT_SYMBOL(inode_set_flags); 1930