xref: /openbmc/linux/fs/inode.c (revision 60772e48)
1 /*
2  * (C) 1997 Linus Torvalds
3  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4  */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <linux/iversion.h>
22 #include <trace/events/writeback.h>
23 #include "internal.h"
24 
25 /*
26  * Inode locking rules:
27  *
28  * inode->i_lock protects:
29  *   inode->i_state, inode->i_hash, __iget()
30  * Inode LRU list locks protect:
31  *   inode->i_sb->s_inode_lru, inode->i_lru
32  * inode->i_sb->s_inode_list_lock protects:
33  *   inode->i_sb->s_inodes, inode->i_sb_list
34  * bdi->wb.list_lock protects:
35  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
36  * inode_hash_lock protects:
37  *   inode_hashtable, inode->i_hash
38  *
39  * Lock ordering:
40  *
41  * inode->i_sb->s_inode_list_lock
42  *   inode->i_lock
43  *     Inode LRU list locks
44  *
45  * bdi->wb.list_lock
46  *   inode->i_lock
47  *
48  * inode_hash_lock
49  *   inode->i_sb->s_inode_list_lock
50  *   inode->i_lock
51  *
52  * iunique_lock
53  *   inode_hash_lock
54  */
55 
56 static unsigned int i_hash_mask __read_mostly;
57 static unsigned int i_hash_shift __read_mostly;
58 static struct hlist_head *inode_hashtable __read_mostly;
59 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
60 
61 /*
62  * Empty aops. Can be used for the cases where the user does not
63  * define any of the address_space operations.
64  */
65 const struct address_space_operations empty_aops = {
66 };
67 EXPORT_SYMBOL(empty_aops);
68 
69 /*
70  * Statistics gathering..
71  */
72 struct inodes_stat_t inodes_stat;
73 
74 static DEFINE_PER_CPU(unsigned long, nr_inodes);
75 static DEFINE_PER_CPU(unsigned long, nr_unused);
76 
77 static struct kmem_cache *inode_cachep __read_mostly;
78 
79 static long get_nr_inodes(void)
80 {
81 	int i;
82 	long sum = 0;
83 	for_each_possible_cpu(i)
84 		sum += per_cpu(nr_inodes, i);
85 	return sum < 0 ? 0 : sum;
86 }
87 
88 static inline long get_nr_inodes_unused(void)
89 {
90 	int i;
91 	long sum = 0;
92 	for_each_possible_cpu(i)
93 		sum += per_cpu(nr_unused, i);
94 	return sum < 0 ? 0 : sum;
95 }
96 
97 long get_nr_dirty_inodes(void)
98 {
99 	/* not actually dirty inodes, but a wild approximation */
100 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
101 	return nr_dirty > 0 ? nr_dirty : 0;
102 }
103 
104 /*
105  * Handle nr_inode sysctl
106  */
107 #ifdef CONFIG_SYSCTL
108 int proc_nr_inodes(struct ctl_table *table, int write,
109 		   void __user *buffer, size_t *lenp, loff_t *ppos)
110 {
111 	inodes_stat.nr_inodes = get_nr_inodes();
112 	inodes_stat.nr_unused = get_nr_inodes_unused();
113 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
114 }
115 #endif
116 
117 static int no_open(struct inode *inode, struct file *file)
118 {
119 	return -ENXIO;
120 }
121 
122 /**
123  * inode_init_always - perform inode structure initialisation
124  * @sb: superblock inode belongs to
125  * @inode: inode to initialise
126  *
127  * These are initializations that need to be done on every inode
128  * allocation as the fields are not initialised by slab allocation.
129  */
130 int inode_init_always(struct super_block *sb, struct inode *inode)
131 {
132 	static const struct inode_operations empty_iops;
133 	static const struct file_operations no_open_fops = {.open = no_open};
134 	struct address_space *const mapping = &inode->i_data;
135 
136 	inode->i_sb = sb;
137 	inode->i_blkbits = sb->s_blocksize_bits;
138 	inode->i_flags = 0;
139 	atomic_set(&inode->i_count, 1);
140 	inode->i_op = &empty_iops;
141 	inode->i_fop = &no_open_fops;
142 	inode->__i_nlink = 1;
143 	inode->i_opflags = 0;
144 	if (sb->s_xattr)
145 		inode->i_opflags |= IOP_XATTR;
146 	i_uid_write(inode, 0);
147 	i_gid_write(inode, 0);
148 	atomic_set(&inode->i_writecount, 0);
149 	inode->i_size = 0;
150 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
151 	inode->i_blocks = 0;
152 	inode->i_bytes = 0;
153 	inode->i_generation = 0;
154 	inode->i_pipe = NULL;
155 	inode->i_bdev = NULL;
156 	inode->i_cdev = NULL;
157 	inode->i_link = NULL;
158 	inode->i_dir_seq = 0;
159 	inode->i_rdev = 0;
160 	inode->dirtied_when = 0;
161 
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 	inode->i_wb_frn_winner = 0;
164 	inode->i_wb_frn_avg_time = 0;
165 	inode->i_wb_frn_history = 0;
166 #endif
167 
168 	if (security_inode_alloc(inode))
169 		goto out;
170 	spin_lock_init(&inode->i_lock);
171 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
172 
173 	init_rwsem(&inode->i_rwsem);
174 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
175 
176 	atomic_set(&inode->i_dio_count, 0);
177 
178 	mapping->a_ops = &empty_aops;
179 	mapping->host = inode;
180 	mapping->flags = 0;
181 	atomic_set(&mapping->i_mmap_writable, 0);
182 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
183 	mapping->private_data = NULL;
184 	mapping->writeback_index = 0;
185 	inode->i_private = NULL;
186 	inode->i_mapping = mapping;
187 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
188 #ifdef CONFIG_FS_POSIX_ACL
189 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
190 #endif
191 
192 #ifdef CONFIG_FSNOTIFY
193 	inode->i_fsnotify_mask = 0;
194 #endif
195 	inode->i_flctx = NULL;
196 	this_cpu_inc(nr_inodes);
197 
198 	return 0;
199 out:
200 	return -ENOMEM;
201 }
202 EXPORT_SYMBOL(inode_init_always);
203 
204 static struct inode *alloc_inode(struct super_block *sb)
205 {
206 	struct inode *inode;
207 
208 	if (sb->s_op->alloc_inode)
209 		inode = sb->s_op->alloc_inode(sb);
210 	else
211 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
212 
213 	if (!inode)
214 		return NULL;
215 
216 	if (unlikely(inode_init_always(sb, inode))) {
217 		if (inode->i_sb->s_op->destroy_inode)
218 			inode->i_sb->s_op->destroy_inode(inode);
219 		else
220 			kmem_cache_free(inode_cachep, inode);
221 		return NULL;
222 	}
223 
224 	return inode;
225 }
226 
227 void free_inode_nonrcu(struct inode *inode)
228 {
229 	kmem_cache_free(inode_cachep, inode);
230 }
231 EXPORT_SYMBOL(free_inode_nonrcu);
232 
233 void __destroy_inode(struct inode *inode)
234 {
235 	BUG_ON(inode_has_buffers(inode));
236 	inode_detach_wb(inode);
237 	security_inode_free(inode);
238 	fsnotify_inode_delete(inode);
239 	locks_free_lock_context(inode);
240 	if (!inode->i_nlink) {
241 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
242 		atomic_long_dec(&inode->i_sb->s_remove_count);
243 	}
244 
245 #ifdef CONFIG_FS_POSIX_ACL
246 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
247 		posix_acl_release(inode->i_acl);
248 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
249 		posix_acl_release(inode->i_default_acl);
250 #endif
251 	this_cpu_dec(nr_inodes);
252 }
253 EXPORT_SYMBOL(__destroy_inode);
254 
255 static void i_callback(struct rcu_head *head)
256 {
257 	struct inode *inode = container_of(head, struct inode, i_rcu);
258 	kmem_cache_free(inode_cachep, inode);
259 }
260 
261 static void destroy_inode(struct inode *inode)
262 {
263 	BUG_ON(!list_empty(&inode->i_lru));
264 	__destroy_inode(inode);
265 	if (inode->i_sb->s_op->destroy_inode)
266 		inode->i_sb->s_op->destroy_inode(inode);
267 	else
268 		call_rcu(&inode->i_rcu, i_callback);
269 }
270 
271 /**
272  * drop_nlink - directly drop an inode's link count
273  * @inode: inode
274  *
275  * This is a low-level filesystem helper to replace any
276  * direct filesystem manipulation of i_nlink.  In cases
277  * where we are attempting to track writes to the
278  * filesystem, a decrement to zero means an imminent
279  * write when the file is truncated and actually unlinked
280  * on the filesystem.
281  */
282 void drop_nlink(struct inode *inode)
283 {
284 	WARN_ON(inode->i_nlink == 0);
285 	inode->__i_nlink--;
286 	if (!inode->i_nlink)
287 		atomic_long_inc(&inode->i_sb->s_remove_count);
288 }
289 EXPORT_SYMBOL(drop_nlink);
290 
291 /**
292  * clear_nlink - directly zero an inode's link count
293  * @inode: inode
294  *
295  * This is a low-level filesystem helper to replace any
296  * direct filesystem manipulation of i_nlink.  See
297  * drop_nlink() for why we care about i_nlink hitting zero.
298  */
299 void clear_nlink(struct inode *inode)
300 {
301 	if (inode->i_nlink) {
302 		inode->__i_nlink = 0;
303 		atomic_long_inc(&inode->i_sb->s_remove_count);
304 	}
305 }
306 EXPORT_SYMBOL(clear_nlink);
307 
308 /**
309  * set_nlink - directly set an inode's link count
310  * @inode: inode
311  * @nlink: new nlink (should be non-zero)
312  *
313  * This is a low-level filesystem helper to replace any
314  * direct filesystem manipulation of i_nlink.
315  */
316 void set_nlink(struct inode *inode, unsigned int nlink)
317 {
318 	if (!nlink) {
319 		clear_nlink(inode);
320 	} else {
321 		/* Yes, some filesystems do change nlink from zero to one */
322 		if (inode->i_nlink == 0)
323 			atomic_long_dec(&inode->i_sb->s_remove_count);
324 
325 		inode->__i_nlink = nlink;
326 	}
327 }
328 EXPORT_SYMBOL(set_nlink);
329 
330 /**
331  * inc_nlink - directly increment an inode's link count
332  * @inode: inode
333  *
334  * This is a low-level filesystem helper to replace any
335  * direct filesystem manipulation of i_nlink.  Currently,
336  * it is only here for parity with dec_nlink().
337  */
338 void inc_nlink(struct inode *inode)
339 {
340 	if (unlikely(inode->i_nlink == 0)) {
341 		WARN_ON(!(inode->i_state & I_LINKABLE));
342 		atomic_long_dec(&inode->i_sb->s_remove_count);
343 	}
344 
345 	inode->__i_nlink++;
346 }
347 EXPORT_SYMBOL(inc_nlink);
348 
349 void address_space_init_once(struct address_space *mapping)
350 {
351 	memset(mapping, 0, sizeof(*mapping));
352 	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC | __GFP_ACCOUNT);
353 	spin_lock_init(&mapping->tree_lock);
354 	init_rwsem(&mapping->i_mmap_rwsem);
355 	INIT_LIST_HEAD(&mapping->private_list);
356 	spin_lock_init(&mapping->private_lock);
357 	mapping->i_mmap = RB_ROOT_CACHED;
358 }
359 EXPORT_SYMBOL(address_space_init_once);
360 
361 /*
362  * These are initializations that only need to be done
363  * once, because the fields are idempotent across use
364  * of the inode, so let the slab aware of that.
365  */
366 void inode_init_once(struct inode *inode)
367 {
368 	memset(inode, 0, sizeof(*inode));
369 	INIT_HLIST_NODE(&inode->i_hash);
370 	INIT_LIST_HEAD(&inode->i_devices);
371 	INIT_LIST_HEAD(&inode->i_io_list);
372 	INIT_LIST_HEAD(&inode->i_wb_list);
373 	INIT_LIST_HEAD(&inode->i_lru);
374 	address_space_init_once(&inode->i_data);
375 	i_size_ordered_init(inode);
376 }
377 EXPORT_SYMBOL(inode_init_once);
378 
379 static void init_once(void *foo)
380 {
381 	struct inode *inode = (struct inode *) foo;
382 
383 	inode_init_once(inode);
384 }
385 
386 /*
387  * inode->i_lock must be held
388  */
389 void __iget(struct inode *inode)
390 {
391 	atomic_inc(&inode->i_count);
392 }
393 
394 /*
395  * get additional reference to inode; caller must already hold one.
396  */
397 void ihold(struct inode *inode)
398 {
399 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
400 }
401 EXPORT_SYMBOL(ihold);
402 
403 static void inode_lru_list_add(struct inode *inode)
404 {
405 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
406 		this_cpu_inc(nr_unused);
407 	else
408 		inode->i_state |= I_REFERENCED;
409 }
410 
411 /*
412  * Add inode to LRU if needed (inode is unused and clean).
413  *
414  * Needs inode->i_lock held.
415  */
416 void inode_add_lru(struct inode *inode)
417 {
418 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
419 				I_FREEING | I_WILL_FREE)) &&
420 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
421 		inode_lru_list_add(inode);
422 }
423 
424 
425 static void inode_lru_list_del(struct inode *inode)
426 {
427 
428 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
429 		this_cpu_dec(nr_unused);
430 }
431 
432 /**
433  * inode_sb_list_add - add inode to the superblock list of inodes
434  * @inode: inode to add
435  */
436 void inode_sb_list_add(struct inode *inode)
437 {
438 	spin_lock(&inode->i_sb->s_inode_list_lock);
439 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
440 	spin_unlock(&inode->i_sb->s_inode_list_lock);
441 }
442 EXPORT_SYMBOL_GPL(inode_sb_list_add);
443 
444 static inline void inode_sb_list_del(struct inode *inode)
445 {
446 	if (!list_empty(&inode->i_sb_list)) {
447 		spin_lock(&inode->i_sb->s_inode_list_lock);
448 		list_del_init(&inode->i_sb_list);
449 		spin_unlock(&inode->i_sb->s_inode_list_lock);
450 	}
451 }
452 
453 static unsigned long hash(struct super_block *sb, unsigned long hashval)
454 {
455 	unsigned long tmp;
456 
457 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
458 			L1_CACHE_BYTES;
459 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
460 	return tmp & i_hash_mask;
461 }
462 
463 /**
464  *	__insert_inode_hash - hash an inode
465  *	@inode: unhashed inode
466  *	@hashval: unsigned long value used to locate this object in the
467  *		inode_hashtable.
468  *
469  *	Add an inode to the inode hash for this superblock.
470  */
471 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
472 {
473 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
474 
475 	spin_lock(&inode_hash_lock);
476 	spin_lock(&inode->i_lock);
477 	hlist_add_head(&inode->i_hash, b);
478 	spin_unlock(&inode->i_lock);
479 	spin_unlock(&inode_hash_lock);
480 }
481 EXPORT_SYMBOL(__insert_inode_hash);
482 
483 /**
484  *	__remove_inode_hash - remove an inode from the hash
485  *	@inode: inode to unhash
486  *
487  *	Remove an inode from the superblock.
488  */
489 void __remove_inode_hash(struct inode *inode)
490 {
491 	spin_lock(&inode_hash_lock);
492 	spin_lock(&inode->i_lock);
493 	hlist_del_init(&inode->i_hash);
494 	spin_unlock(&inode->i_lock);
495 	spin_unlock(&inode_hash_lock);
496 }
497 EXPORT_SYMBOL(__remove_inode_hash);
498 
499 void clear_inode(struct inode *inode)
500 {
501 	/*
502 	 * We have to cycle tree_lock here because reclaim can be still in the
503 	 * process of removing the last page (in __delete_from_page_cache())
504 	 * and we must not free mapping under it.
505 	 */
506 	spin_lock_irq(&inode->i_data.tree_lock);
507 	BUG_ON(inode->i_data.nrpages);
508 	BUG_ON(inode->i_data.nrexceptional);
509 	spin_unlock_irq(&inode->i_data.tree_lock);
510 	BUG_ON(!list_empty(&inode->i_data.private_list));
511 	BUG_ON(!(inode->i_state & I_FREEING));
512 	BUG_ON(inode->i_state & I_CLEAR);
513 	BUG_ON(!list_empty(&inode->i_wb_list));
514 	/* don't need i_lock here, no concurrent mods to i_state */
515 	inode->i_state = I_FREEING | I_CLEAR;
516 }
517 EXPORT_SYMBOL(clear_inode);
518 
519 /*
520  * Free the inode passed in, removing it from the lists it is still connected
521  * to. We remove any pages still attached to the inode and wait for any IO that
522  * is still in progress before finally destroying the inode.
523  *
524  * An inode must already be marked I_FREEING so that we avoid the inode being
525  * moved back onto lists if we race with other code that manipulates the lists
526  * (e.g. writeback_single_inode). The caller is responsible for setting this.
527  *
528  * An inode must already be removed from the LRU list before being evicted from
529  * the cache. This should occur atomically with setting the I_FREEING state
530  * flag, so no inodes here should ever be on the LRU when being evicted.
531  */
532 static void evict(struct inode *inode)
533 {
534 	const struct super_operations *op = inode->i_sb->s_op;
535 
536 	BUG_ON(!(inode->i_state & I_FREEING));
537 	BUG_ON(!list_empty(&inode->i_lru));
538 
539 	if (!list_empty(&inode->i_io_list))
540 		inode_io_list_del(inode);
541 
542 	inode_sb_list_del(inode);
543 
544 	/*
545 	 * Wait for flusher thread to be done with the inode so that filesystem
546 	 * does not start destroying it while writeback is still running. Since
547 	 * the inode has I_FREEING set, flusher thread won't start new work on
548 	 * the inode.  We just have to wait for running writeback to finish.
549 	 */
550 	inode_wait_for_writeback(inode);
551 
552 	if (op->evict_inode) {
553 		op->evict_inode(inode);
554 	} else {
555 		truncate_inode_pages_final(&inode->i_data);
556 		clear_inode(inode);
557 	}
558 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
559 		bd_forget(inode);
560 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
561 		cd_forget(inode);
562 
563 	remove_inode_hash(inode);
564 
565 	spin_lock(&inode->i_lock);
566 	wake_up_bit(&inode->i_state, __I_NEW);
567 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
568 	spin_unlock(&inode->i_lock);
569 
570 	destroy_inode(inode);
571 }
572 
573 /*
574  * dispose_list - dispose of the contents of a local list
575  * @head: the head of the list to free
576  *
577  * Dispose-list gets a local list with local inodes in it, so it doesn't
578  * need to worry about list corruption and SMP locks.
579  */
580 static void dispose_list(struct list_head *head)
581 {
582 	while (!list_empty(head)) {
583 		struct inode *inode;
584 
585 		inode = list_first_entry(head, struct inode, i_lru);
586 		list_del_init(&inode->i_lru);
587 
588 		evict(inode);
589 		cond_resched();
590 	}
591 }
592 
593 /**
594  * evict_inodes	- evict all evictable inodes for a superblock
595  * @sb:		superblock to operate on
596  *
597  * Make sure that no inodes with zero refcount are retained.  This is
598  * called by superblock shutdown after having SB_ACTIVE flag removed,
599  * so any inode reaching zero refcount during or after that call will
600  * be immediately evicted.
601  */
602 void evict_inodes(struct super_block *sb)
603 {
604 	struct inode *inode, *next;
605 	LIST_HEAD(dispose);
606 
607 again:
608 	spin_lock(&sb->s_inode_list_lock);
609 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
610 		if (atomic_read(&inode->i_count))
611 			continue;
612 
613 		spin_lock(&inode->i_lock);
614 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
615 			spin_unlock(&inode->i_lock);
616 			continue;
617 		}
618 
619 		inode->i_state |= I_FREEING;
620 		inode_lru_list_del(inode);
621 		spin_unlock(&inode->i_lock);
622 		list_add(&inode->i_lru, &dispose);
623 
624 		/*
625 		 * We can have a ton of inodes to evict at unmount time given
626 		 * enough memory, check to see if we need to go to sleep for a
627 		 * bit so we don't livelock.
628 		 */
629 		if (need_resched()) {
630 			spin_unlock(&sb->s_inode_list_lock);
631 			cond_resched();
632 			dispose_list(&dispose);
633 			goto again;
634 		}
635 	}
636 	spin_unlock(&sb->s_inode_list_lock);
637 
638 	dispose_list(&dispose);
639 }
640 EXPORT_SYMBOL_GPL(evict_inodes);
641 
642 /**
643  * invalidate_inodes	- attempt to free all inodes on a superblock
644  * @sb:		superblock to operate on
645  * @kill_dirty: flag to guide handling of dirty inodes
646  *
647  * Attempts to free all inodes for a given superblock.  If there were any
648  * busy inodes return a non-zero value, else zero.
649  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
650  * them as busy.
651  */
652 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
653 {
654 	int busy = 0;
655 	struct inode *inode, *next;
656 	LIST_HEAD(dispose);
657 
658 	spin_lock(&sb->s_inode_list_lock);
659 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
660 		spin_lock(&inode->i_lock);
661 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
662 			spin_unlock(&inode->i_lock);
663 			continue;
664 		}
665 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
666 			spin_unlock(&inode->i_lock);
667 			busy = 1;
668 			continue;
669 		}
670 		if (atomic_read(&inode->i_count)) {
671 			spin_unlock(&inode->i_lock);
672 			busy = 1;
673 			continue;
674 		}
675 
676 		inode->i_state |= I_FREEING;
677 		inode_lru_list_del(inode);
678 		spin_unlock(&inode->i_lock);
679 		list_add(&inode->i_lru, &dispose);
680 	}
681 	spin_unlock(&sb->s_inode_list_lock);
682 
683 	dispose_list(&dispose);
684 
685 	return busy;
686 }
687 
688 /*
689  * Isolate the inode from the LRU in preparation for freeing it.
690  *
691  * Any inodes which are pinned purely because of attached pagecache have their
692  * pagecache removed.  If the inode has metadata buffers attached to
693  * mapping->private_list then try to remove them.
694  *
695  * If the inode has the I_REFERENCED flag set, then it means that it has been
696  * used recently - the flag is set in iput_final(). When we encounter such an
697  * inode, clear the flag and move it to the back of the LRU so it gets another
698  * pass through the LRU before it gets reclaimed. This is necessary because of
699  * the fact we are doing lazy LRU updates to minimise lock contention so the
700  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
701  * with this flag set because they are the inodes that are out of order.
702  */
703 static enum lru_status inode_lru_isolate(struct list_head *item,
704 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
705 {
706 	struct list_head *freeable = arg;
707 	struct inode	*inode = container_of(item, struct inode, i_lru);
708 
709 	/*
710 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
711 	 * If we fail to get the lock, just skip it.
712 	 */
713 	if (!spin_trylock(&inode->i_lock))
714 		return LRU_SKIP;
715 
716 	/*
717 	 * Referenced or dirty inodes are still in use. Give them another pass
718 	 * through the LRU as we canot reclaim them now.
719 	 */
720 	if (atomic_read(&inode->i_count) ||
721 	    (inode->i_state & ~I_REFERENCED)) {
722 		list_lru_isolate(lru, &inode->i_lru);
723 		spin_unlock(&inode->i_lock);
724 		this_cpu_dec(nr_unused);
725 		return LRU_REMOVED;
726 	}
727 
728 	/* recently referenced inodes get one more pass */
729 	if (inode->i_state & I_REFERENCED) {
730 		inode->i_state &= ~I_REFERENCED;
731 		spin_unlock(&inode->i_lock);
732 		return LRU_ROTATE;
733 	}
734 
735 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
736 		__iget(inode);
737 		spin_unlock(&inode->i_lock);
738 		spin_unlock(lru_lock);
739 		if (remove_inode_buffers(inode)) {
740 			unsigned long reap;
741 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
742 			if (current_is_kswapd())
743 				__count_vm_events(KSWAPD_INODESTEAL, reap);
744 			else
745 				__count_vm_events(PGINODESTEAL, reap);
746 			if (current->reclaim_state)
747 				current->reclaim_state->reclaimed_slab += reap;
748 		}
749 		iput(inode);
750 		spin_lock(lru_lock);
751 		return LRU_RETRY;
752 	}
753 
754 	WARN_ON(inode->i_state & I_NEW);
755 	inode->i_state |= I_FREEING;
756 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
757 	spin_unlock(&inode->i_lock);
758 
759 	this_cpu_dec(nr_unused);
760 	return LRU_REMOVED;
761 }
762 
763 /*
764  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
765  * This is called from the superblock shrinker function with a number of inodes
766  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
767  * then are freed outside inode_lock by dispose_list().
768  */
769 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
770 {
771 	LIST_HEAD(freeable);
772 	long freed;
773 
774 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
775 				     inode_lru_isolate, &freeable);
776 	dispose_list(&freeable);
777 	return freed;
778 }
779 
780 static void __wait_on_freeing_inode(struct inode *inode);
781 /*
782  * Called with the inode lock held.
783  */
784 static struct inode *find_inode(struct super_block *sb,
785 				struct hlist_head *head,
786 				int (*test)(struct inode *, void *),
787 				void *data)
788 {
789 	struct inode *inode = NULL;
790 
791 repeat:
792 	hlist_for_each_entry(inode, head, i_hash) {
793 		if (inode->i_sb != sb)
794 			continue;
795 		if (!test(inode, data))
796 			continue;
797 		spin_lock(&inode->i_lock);
798 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
799 			__wait_on_freeing_inode(inode);
800 			goto repeat;
801 		}
802 		__iget(inode);
803 		spin_unlock(&inode->i_lock);
804 		return inode;
805 	}
806 	return NULL;
807 }
808 
809 /*
810  * find_inode_fast is the fast path version of find_inode, see the comment at
811  * iget_locked for details.
812  */
813 static struct inode *find_inode_fast(struct super_block *sb,
814 				struct hlist_head *head, unsigned long ino)
815 {
816 	struct inode *inode = NULL;
817 
818 repeat:
819 	hlist_for_each_entry(inode, head, i_hash) {
820 		if (inode->i_ino != ino)
821 			continue;
822 		if (inode->i_sb != sb)
823 			continue;
824 		spin_lock(&inode->i_lock);
825 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
826 			__wait_on_freeing_inode(inode);
827 			goto repeat;
828 		}
829 		__iget(inode);
830 		spin_unlock(&inode->i_lock);
831 		return inode;
832 	}
833 	return NULL;
834 }
835 
836 /*
837  * Each cpu owns a range of LAST_INO_BATCH numbers.
838  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
839  * to renew the exhausted range.
840  *
841  * This does not significantly increase overflow rate because every CPU can
842  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
843  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
844  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
845  * overflow rate by 2x, which does not seem too significant.
846  *
847  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
848  * error if st_ino won't fit in target struct field. Use 32bit counter
849  * here to attempt to avoid that.
850  */
851 #define LAST_INO_BATCH 1024
852 static DEFINE_PER_CPU(unsigned int, last_ino);
853 
854 unsigned int get_next_ino(void)
855 {
856 	unsigned int *p = &get_cpu_var(last_ino);
857 	unsigned int res = *p;
858 
859 #ifdef CONFIG_SMP
860 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
861 		static atomic_t shared_last_ino;
862 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
863 
864 		res = next - LAST_INO_BATCH;
865 	}
866 #endif
867 
868 	res++;
869 	/* get_next_ino should not provide a 0 inode number */
870 	if (unlikely(!res))
871 		res++;
872 	*p = res;
873 	put_cpu_var(last_ino);
874 	return res;
875 }
876 EXPORT_SYMBOL(get_next_ino);
877 
878 /**
879  *	new_inode_pseudo 	- obtain an inode
880  *	@sb: superblock
881  *
882  *	Allocates a new inode for given superblock.
883  *	Inode wont be chained in superblock s_inodes list
884  *	This means :
885  *	- fs can't be unmount
886  *	- quotas, fsnotify, writeback can't work
887  */
888 struct inode *new_inode_pseudo(struct super_block *sb)
889 {
890 	struct inode *inode = alloc_inode(sb);
891 
892 	if (inode) {
893 		spin_lock(&inode->i_lock);
894 		inode->i_state = 0;
895 		spin_unlock(&inode->i_lock);
896 		INIT_LIST_HEAD(&inode->i_sb_list);
897 	}
898 	return inode;
899 }
900 
901 /**
902  *	new_inode 	- obtain an inode
903  *	@sb: superblock
904  *
905  *	Allocates a new inode for given superblock. The default gfp_mask
906  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
907  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
908  *	for the page cache are not reclaimable or migratable,
909  *	mapping_set_gfp_mask() must be called with suitable flags on the
910  *	newly created inode's mapping
911  *
912  */
913 struct inode *new_inode(struct super_block *sb)
914 {
915 	struct inode *inode;
916 
917 	spin_lock_prefetch(&sb->s_inode_list_lock);
918 
919 	inode = new_inode_pseudo(sb);
920 	if (inode)
921 		inode_sb_list_add(inode);
922 	return inode;
923 }
924 EXPORT_SYMBOL(new_inode);
925 
926 #ifdef CONFIG_DEBUG_LOCK_ALLOC
927 void lockdep_annotate_inode_mutex_key(struct inode *inode)
928 {
929 	if (S_ISDIR(inode->i_mode)) {
930 		struct file_system_type *type = inode->i_sb->s_type;
931 
932 		/* Set new key only if filesystem hasn't already changed it */
933 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
934 			/*
935 			 * ensure nobody is actually holding i_mutex
936 			 */
937 			// mutex_destroy(&inode->i_mutex);
938 			init_rwsem(&inode->i_rwsem);
939 			lockdep_set_class(&inode->i_rwsem,
940 					  &type->i_mutex_dir_key);
941 		}
942 	}
943 }
944 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
945 #endif
946 
947 /**
948  * unlock_new_inode - clear the I_NEW state and wake up any waiters
949  * @inode:	new inode to unlock
950  *
951  * Called when the inode is fully initialised to clear the new state of the
952  * inode and wake up anyone waiting for the inode to finish initialisation.
953  */
954 void unlock_new_inode(struct inode *inode)
955 {
956 	lockdep_annotate_inode_mutex_key(inode);
957 	spin_lock(&inode->i_lock);
958 	WARN_ON(!(inode->i_state & I_NEW));
959 	inode->i_state &= ~I_NEW;
960 	smp_mb();
961 	wake_up_bit(&inode->i_state, __I_NEW);
962 	spin_unlock(&inode->i_lock);
963 }
964 EXPORT_SYMBOL(unlock_new_inode);
965 
966 /**
967  * lock_two_nondirectories - take two i_mutexes on non-directory objects
968  *
969  * Lock any non-NULL argument that is not a directory.
970  * Zero, one or two objects may be locked by this function.
971  *
972  * @inode1: first inode to lock
973  * @inode2: second inode to lock
974  */
975 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
976 {
977 	if (inode1 > inode2)
978 		swap(inode1, inode2);
979 
980 	if (inode1 && !S_ISDIR(inode1->i_mode))
981 		inode_lock(inode1);
982 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
983 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
984 }
985 EXPORT_SYMBOL(lock_two_nondirectories);
986 
987 /**
988  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
989  * @inode1: first inode to unlock
990  * @inode2: second inode to unlock
991  */
992 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
993 {
994 	if (inode1 && !S_ISDIR(inode1->i_mode))
995 		inode_unlock(inode1);
996 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
997 		inode_unlock(inode2);
998 }
999 EXPORT_SYMBOL(unlock_two_nondirectories);
1000 
1001 /**
1002  * iget5_locked - obtain an inode from a mounted file system
1003  * @sb:		super block of file system
1004  * @hashval:	hash value (usually inode number) to get
1005  * @test:	callback used for comparisons between inodes
1006  * @set:	callback used to initialize a new struct inode
1007  * @data:	opaque data pointer to pass to @test and @set
1008  *
1009  * Search for the inode specified by @hashval and @data in the inode cache,
1010  * and if present it is return it with an increased reference count. This is
1011  * a generalized version of iget_locked() for file systems where the inode
1012  * number is not sufficient for unique identification of an inode.
1013  *
1014  * If the inode is not in cache, allocate a new inode and return it locked,
1015  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1016  * before unlocking it via unlock_new_inode().
1017  *
1018  * Note both @test and @set are called with the inode_hash_lock held, so can't
1019  * sleep.
1020  */
1021 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1022 		int (*test)(struct inode *, void *),
1023 		int (*set)(struct inode *, void *), void *data)
1024 {
1025 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1026 	struct inode *inode;
1027 again:
1028 	spin_lock(&inode_hash_lock);
1029 	inode = find_inode(sb, head, test, data);
1030 	spin_unlock(&inode_hash_lock);
1031 
1032 	if (inode) {
1033 		wait_on_inode(inode);
1034 		if (unlikely(inode_unhashed(inode))) {
1035 			iput(inode);
1036 			goto again;
1037 		}
1038 		return inode;
1039 	}
1040 
1041 	inode = alloc_inode(sb);
1042 	if (inode) {
1043 		struct inode *old;
1044 
1045 		spin_lock(&inode_hash_lock);
1046 		/* We released the lock, so.. */
1047 		old = find_inode(sb, head, test, data);
1048 		if (!old) {
1049 			if (set(inode, data))
1050 				goto set_failed;
1051 
1052 			spin_lock(&inode->i_lock);
1053 			inode->i_state = I_NEW;
1054 			hlist_add_head(&inode->i_hash, head);
1055 			spin_unlock(&inode->i_lock);
1056 			inode_sb_list_add(inode);
1057 			spin_unlock(&inode_hash_lock);
1058 
1059 			/* Return the locked inode with I_NEW set, the
1060 			 * caller is responsible for filling in the contents
1061 			 */
1062 			return inode;
1063 		}
1064 
1065 		/*
1066 		 * Uhhuh, somebody else created the same inode under
1067 		 * us. Use the old inode instead of the one we just
1068 		 * allocated.
1069 		 */
1070 		spin_unlock(&inode_hash_lock);
1071 		destroy_inode(inode);
1072 		inode = old;
1073 		wait_on_inode(inode);
1074 		if (unlikely(inode_unhashed(inode))) {
1075 			iput(inode);
1076 			goto again;
1077 		}
1078 	}
1079 	return inode;
1080 
1081 set_failed:
1082 	spin_unlock(&inode_hash_lock);
1083 	destroy_inode(inode);
1084 	return NULL;
1085 }
1086 EXPORT_SYMBOL(iget5_locked);
1087 
1088 /**
1089  * iget_locked - obtain an inode from a mounted file system
1090  * @sb:		super block of file system
1091  * @ino:	inode number to get
1092  *
1093  * Search for the inode specified by @ino in the inode cache and if present
1094  * return it with an increased reference count. This is for file systems
1095  * where the inode number is sufficient for unique identification of an inode.
1096  *
1097  * If the inode is not in cache, allocate a new inode and return it locked,
1098  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1099  * before unlocking it via unlock_new_inode().
1100  */
1101 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1102 {
1103 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1104 	struct inode *inode;
1105 again:
1106 	spin_lock(&inode_hash_lock);
1107 	inode = find_inode_fast(sb, head, ino);
1108 	spin_unlock(&inode_hash_lock);
1109 	if (inode) {
1110 		wait_on_inode(inode);
1111 		if (unlikely(inode_unhashed(inode))) {
1112 			iput(inode);
1113 			goto again;
1114 		}
1115 		return inode;
1116 	}
1117 
1118 	inode = alloc_inode(sb);
1119 	if (inode) {
1120 		struct inode *old;
1121 
1122 		spin_lock(&inode_hash_lock);
1123 		/* We released the lock, so.. */
1124 		old = find_inode_fast(sb, head, ino);
1125 		if (!old) {
1126 			inode->i_ino = ino;
1127 			spin_lock(&inode->i_lock);
1128 			inode->i_state = I_NEW;
1129 			hlist_add_head(&inode->i_hash, head);
1130 			spin_unlock(&inode->i_lock);
1131 			inode_sb_list_add(inode);
1132 			spin_unlock(&inode_hash_lock);
1133 
1134 			/* Return the locked inode with I_NEW set, the
1135 			 * caller is responsible for filling in the contents
1136 			 */
1137 			return inode;
1138 		}
1139 
1140 		/*
1141 		 * Uhhuh, somebody else created the same inode under
1142 		 * us. Use the old inode instead of the one we just
1143 		 * allocated.
1144 		 */
1145 		spin_unlock(&inode_hash_lock);
1146 		destroy_inode(inode);
1147 		inode = old;
1148 		wait_on_inode(inode);
1149 		if (unlikely(inode_unhashed(inode))) {
1150 			iput(inode);
1151 			goto again;
1152 		}
1153 	}
1154 	return inode;
1155 }
1156 EXPORT_SYMBOL(iget_locked);
1157 
1158 /*
1159  * search the inode cache for a matching inode number.
1160  * If we find one, then the inode number we are trying to
1161  * allocate is not unique and so we should not use it.
1162  *
1163  * Returns 1 if the inode number is unique, 0 if it is not.
1164  */
1165 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1166 {
1167 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1168 	struct inode *inode;
1169 
1170 	spin_lock(&inode_hash_lock);
1171 	hlist_for_each_entry(inode, b, i_hash) {
1172 		if (inode->i_ino == ino && inode->i_sb == sb) {
1173 			spin_unlock(&inode_hash_lock);
1174 			return 0;
1175 		}
1176 	}
1177 	spin_unlock(&inode_hash_lock);
1178 
1179 	return 1;
1180 }
1181 
1182 /**
1183  *	iunique - get a unique inode number
1184  *	@sb: superblock
1185  *	@max_reserved: highest reserved inode number
1186  *
1187  *	Obtain an inode number that is unique on the system for a given
1188  *	superblock. This is used by file systems that have no natural
1189  *	permanent inode numbering system. An inode number is returned that
1190  *	is higher than the reserved limit but unique.
1191  *
1192  *	BUGS:
1193  *	With a large number of inodes live on the file system this function
1194  *	currently becomes quite slow.
1195  */
1196 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1197 {
1198 	/*
1199 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1200 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1201 	 * here to attempt to avoid that.
1202 	 */
1203 	static DEFINE_SPINLOCK(iunique_lock);
1204 	static unsigned int counter;
1205 	ino_t res;
1206 
1207 	spin_lock(&iunique_lock);
1208 	do {
1209 		if (counter <= max_reserved)
1210 			counter = max_reserved + 1;
1211 		res = counter++;
1212 	} while (!test_inode_iunique(sb, res));
1213 	spin_unlock(&iunique_lock);
1214 
1215 	return res;
1216 }
1217 EXPORT_SYMBOL(iunique);
1218 
1219 struct inode *igrab(struct inode *inode)
1220 {
1221 	spin_lock(&inode->i_lock);
1222 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1223 		__iget(inode);
1224 		spin_unlock(&inode->i_lock);
1225 	} else {
1226 		spin_unlock(&inode->i_lock);
1227 		/*
1228 		 * Handle the case where s_op->clear_inode is not been
1229 		 * called yet, and somebody is calling igrab
1230 		 * while the inode is getting freed.
1231 		 */
1232 		inode = NULL;
1233 	}
1234 	return inode;
1235 }
1236 EXPORT_SYMBOL(igrab);
1237 
1238 /**
1239  * ilookup5_nowait - search for an inode in the inode cache
1240  * @sb:		super block of file system to search
1241  * @hashval:	hash value (usually inode number) to search for
1242  * @test:	callback used for comparisons between inodes
1243  * @data:	opaque data pointer to pass to @test
1244  *
1245  * Search for the inode specified by @hashval and @data in the inode cache.
1246  * If the inode is in the cache, the inode is returned with an incremented
1247  * reference count.
1248  *
1249  * Note: I_NEW is not waited upon so you have to be very careful what you do
1250  * with the returned inode.  You probably should be using ilookup5() instead.
1251  *
1252  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1253  */
1254 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1255 		int (*test)(struct inode *, void *), void *data)
1256 {
1257 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1258 	struct inode *inode;
1259 
1260 	spin_lock(&inode_hash_lock);
1261 	inode = find_inode(sb, head, test, data);
1262 	spin_unlock(&inode_hash_lock);
1263 
1264 	return inode;
1265 }
1266 EXPORT_SYMBOL(ilookup5_nowait);
1267 
1268 /**
1269  * ilookup5 - search for an inode in the inode cache
1270  * @sb:		super block of file system to search
1271  * @hashval:	hash value (usually inode number) to search for
1272  * @test:	callback used for comparisons between inodes
1273  * @data:	opaque data pointer to pass to @test
1274  *
1275  * Search for the inode specified by @hashval and @data in the inode cache,
1276  * and if the inode is in the cache, return the inode with an incremented
1277  * reference count.  Waits on I_NEW before returning the inode.
1278  * returned with an incremented reference count.
1279  *
1280  * This is a generalized version of ilookup() for file systems where the
1281  * inode number is not sufficient for unique identification of an inode.
1282  *
1283  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1284  */
1285 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1286 		int (*test)(struct inode *, void *), void *data)
1287 {
1288 	struct inode *inode;
1289 again:
1290 	inode = ilookup5_nowait(sb, hashval, test, data);
1291 	if (inode) {
1292 		wait_on_inode(inode);
1293 		if (unlikely(inode_unhashed(inode))) {
1294 			iput(inode);
1295 			goto again;
1296 		}
1297 	}
1298 	return inode;
1299 }
1300 EXPORT_SYMBOL(ilookup5);
1301 
1302 /**
1303  * ilookup - search for an inode in the inode cache
1304  * @sb:		super block of file system to search
1305  * @ino:	inode number to search for
1306  *
1307  * Search for the inode @ino in the inode cache, and if the inode is in the
1308  * cache, the inode is returned with an incremented reference count.
1309  */
1310 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1311 {
1312 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1313 	struct inode *inode;
1314 again:
1315 	spin_lock(&inode_hash_lock);
1316 	inode = find_inode_fast(sb, head, ino);
1317 	spin_unlock(&inode_hash_lock);
1318 
1319 	if (inode) {
1320 		wait_on_inode(inode);
1321 		if (unlikely(inode_unhashed(inode))) {
1322 			iput(inode);
1323 			goto again;
1324 		}
1325 	}
1326 	return inode;
1327 }
1328 EXPORT_SYMBOL(ilookup);
1329 
1330 /**
1331  * find_inode_nowait - find an inode in the inode cache
1332  * @sb:		super block of file system to search
1333  * @hashval:	hash value (usually inode number) to search for
1334  * @match:	callback used for comparisons between inodes
1335  * @data:	opaque data pointer to pass to @match
1336  *
1337  * Search for the inode specified by @hashval and @data in the inode
1338  * cache, where the helper function @match will return 0 if the inode
1339  * does not match, 1 if the inode does match, and -1 if the search
1340  * should be stopped.  The @match function must be responsible for
1341  * taking the i_lock spin_lock and checking i_state for an inode being
1342  * freed or being initialized, and incrementing the reference count
1343  * before returning 1.  It also must not sleep, since it is called with
1344  * the inode_hash_lock spinlock held.
1345  *
1346  * This is a even more generalized version of ilookup5() when the
1347  * function must never block --- find_inode() can block in
1348  * __wait_on_freeing_inode() --- or when the caller can not increment
1349  * the reference count because the resulting iput() might cause an
1350  * inode eviction.  The tradeoff is that the @match funtion must be
1351  * very carefully implemented.
1352  */
1353 struct inode *find_inode_nowait(struct super_block *sb,
1354 				unsigned long hashval,
1355 				int (*match)(struct inode *, unsigned long,
1356 					     void *),
1357 				void *data)
1358 {
1359 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1360 	struct inode *inode, *ret_inode = NULL;
1361 	int mval;
1362 
1363 	spin_lock(&inode_hash_lock);
1364 	hlist_for_each_entry(inode, head, i_hash) {
1365 		if (inode->i_sb != sb)
1366 			continue;
1367 		mval = match(inode, hashval, data);
1368 		if (mval == 0)
1369 			continue;
1370 		if (mval == 1)
1371 			ret_inode = inode;
1372 		goto out;
1373 	}
1374 out:
1375 	spin_unlock(&inode_hash_lock);
1376 	return ret_inode;
1377 }
1378 EXPORT_SYMBOL(find_inode_nowait);
1379 
1380 int insert_inode_locked(struct inode *inode)
1381 {
1382 	struct super_block *sb = inode->i_sb;
1383 	ino_t ino = inode->i_ino;
1384 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1385 
1386 	while (1) {
1387 		struct inode *old = NULL;
1388 		spin_lock(&inode_hash_lock);
1389 		hlist_for_each_entry(old, head, i_hash) {
1390 			if (old->i_ino != ino)
1391 				continue;
1392 			if (old->i_sb != sb)
1393 				continue;
1394 			spin_lock(&old->i_lock);
1395 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1396 				spin_unlock(&old->i_lock);
1397 				continue;
1398 			}
1399 			break;
1400 		}
1401 		if (likely(!old)) {
1402 			spin_lock(&inode->i_lock);
1403 			inode->i_state |= I_NEW;
1404 			hlist_add_head(&inode->i_hash, head);
1405 			spin_unlock(&inode->i_lock);
1406 			spin_unlock(&inode_hash_lock);
1407 			return 0;
1408 		}
1409 		__iget(old);
1410 		spin_unlock(&old->i_lock);
1411 		spin_unlock(&inode_hash_lock);
1412 		wait_on_inode(old);
1413 		if (unlikely(!inode_unhashed(old))) {
1414 			iput(old);
1415 			return -EBUSY;
1416 		}
1417 		iput(old);
1418 	}
1419 }
1420 EXPORT_SYMBOL(insert_inode_locked);
1421 
1422 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1423 		int (*test)(struct inode *, void *), void *data)
1424 {
1425 	struct super_block *sb = inode->i_sb;
1426 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1427 
1428 	while (1) {
1429 		struct inode *old = NULL;
1430 
1431 		spin_lock(&inode_hash_lock);
1432 		hlist_for_each_entry(old, head, i_hash) {
1433 			if (old->i_sb != sb)
1434 				continue;
1435 			if (!test(old, data))
1436 				continue;
1437 			spin_lock(&old->i_lock);
1438 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1439 				spin_unlock(&old->i_lock);
1440 				continue;
1441 			}
1442 			break;
1443 		}
1444 		if (likely(!old)) {
1445 			spin_lock(&inode->i_lock);
1446 			inode->i_state |= I_NEW;
1447 			hlist_add_head(&inode->i_hash, head);
1448 			spin_unlock(&inode->i_lock);
1449 			spin_unlock(&inode_hash_lock);
1450 			return 0;
1451 		}
1452 		__iget(old);
1453 		spin_unlock(&old->i_lock);
1454 		spin_unlock(&inode_hash_lock);
1455 		wait_on_inode(old);
1456 		if (unlikely(!inode_unhashed(old))) {
1457 			iput(old);
1458 			return -EBUSY;
1459 		}
1460 		iput(old);
1461 	}
1462 }
1463 EXPORT_SYMBOL(insert_inode_locked4);
1464 
1465 
1466 int generic_delete_inode(struct inode *inode)
1467 {
1468 	return 1;
1469 }
1470 EXPORT_SYMBOL(generic_delete_inode);
1471 
1472 /*
1473  * Called when we're dropping the last reference
1474  * to an inode.
1475  *
1476  * Call the FS "drop_inode()" function, defaulting to
1477  * the legacy UNIX filesystem behaviour.  If it tells
1478  * us to evict inode, do so.  Otherwise, retain inode
1479  * in cache if fs is alive, sync and evict if fs is
1480  * shutting down.
1481  */
1482 static void iput_final(struct inode *inode)
1483 {
1484 	struct super_block *sb = inode->i_sb;
1485 	const struct super_operations *op = inode->i_sb->s_op;
1486 	int drop;
1487 
1488 	WARN_ON(inode->i_state & I_NEW);
1489 
1490 	if (op->drop_inode)
1491 		drop = op->drop_inode(inode);
1492 	else
1493 		drop = generic_drop_inode(inode);
1494 
1495 	if (!drop && (sb->s_flags & SB_ACTIVE)) {
1496 		inode_add_lru(inode);
1497 		spin_unlock(&inode->i_lock);
1498 		return;
1499 	}
1500 
1501 	if (!drop) {
1502 		inode->i_state |= I_WILL_FREE;
1503 		spin_unlock(&inode->i_lock);
1504 		write_inode_now(inode, 1);
1505 		spin_lock(&inode->i_lock);
1506 		WARN_ON(inode->i_state & I_NEW);
1507 		inode->i_state &= ~I_WILL_FREE;
1508 	}
1509 
1510 	inode->i_state |= I_FREEING;
1511 	if (!list_empty(&inode->i_lru))
1512 		inode_lru_list_del(inode);
1513 	spin_unlock(&inode->i_lock);
1514 
1515 	evict(inode);
1516 }
1517 
1518 /**
1519  *	iput	- put an inode
1520  *	@inode: inode to put
1521  *
1522  *	Puts an inode, dropping its usage count. If the inode use count hits
1523  *	zero, the inode is then freed and may also be destroyed.
1524  *
1525  *	Consequently, iput() can sleep.
1526  */
1527 void iput(struct inode *inode)
1528 {
1529 	if (!inode)
1530 		return;
1531 	BUG_ON(inode->i_state & I_CLEAR);
1532 retry:
1533 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1534 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1535 			atomic_inc(&inode->i_count);
1536 			inode->i_state &= ~I_DIRTY_TIME;
1537 			spin_unlock(&inode->i_lock);
1538 			trace_writeback_lazytime_iput(inode);
1539 			mark_inode_dirty_sync(inode);
1540 			goto retry;
1541 		}
1542 		iput_final(inode);
1543 	}
1544 }
1545 EXPORT_SYMBOL(iput);
1546 
1547 /**
1548  *	bmap	- find a block number in a file
1549  *	@inode: inode of file
1550  *	@block: block to find
1551  *
1552  *	Returns the block number on the device holding the inode that
1553  *	is the disk block number for the block of the file requested.
1554  *	That is, asked for block 4 of inode 1 the function will return the
1555  *	disk block relative to the disk start that holds that block of the
1556  *	file.
1557  */
1558 sector_t bmap(struct inode *inode, sector_t block)
1559 {
1560 	sector_t res = 0;
1561 	if (inode->i_mapping->a_ops->bmap)
1562 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1563 	return res;
1564 }
1565 EXPORT_SYMBOL(bmap);
1566 
1567 /*
1568  * Update times in overlayed inode from underlying real inode
1569  */
1570 static void update_ovl_inode_times(struct dentry *dentry, struct inode *inode,
1571 			       bool rcu)
1572 {
1573 	struct dentry *upperdentry;
1574 
1575 	/*
1576 	 * Nothing to do if in rcu or if non-overlayfs
1577 	 */
1578 	if (rcu || likely(!(dentry->d_flags & DCACHE_OP_REAL)))
1579 		return;
1580 
1581 	upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER);
1582 
1583 	/*
1584 	 * If file is on lower then we can't update atime, so no worries about
1585 	 * stale mtime/ctime.
1586 	 */
1587 	if (upperdentry) {
1588 		struct inode *realinode = d_inode(upperdentry);
1589 
1590 		if ((!timespec_equal(&inode->i_mtime, &realinode->i_mtime) ||
1591 		     !timespec_equal(&inode->i_ctime, &realinode->i_ctime))) {
1592 			inode->i_mtime = realinode->i_mtime;
1593 			inode->i_ctime = realinode->i_ctime;
1594 		}
1595 	}
1596 }
1597 
1598 /*
1599  * With relative atime, only update atime if the previous atime is
1600  * earlier than either the ctime or mtime or if at least a day has
1601  * passed since the last atime update.
1602  */
1603 static int relatime_need_update(const struct path *path, struct inode *inode,
1604 				struct timespec now, bool rcu)
1605 {
1606 
1607 	if (!(path->mnt->mnt_flags & MNT_RELATIME))
1608 		return 1;
1609 
1610 	update_ovl_inode_times(path->dentry, inode, rcu);
1611 	/*
1612 	 * Is mtime younger than atime? If yes, update atime:
1613 	 */
1614 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1615 		return 1;
1616 	/*
1617 	 * Is ctime younger than atime? If yes, update atime:
1618 	 */
1619 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1620 		return 1;
1621 
1622 	/*
1623 	 * Is the previous atime value older than a day? If yes,
1624 	 * update atime:
1625 	 */
1626 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1627 		return 1;
1628 	/*
1629 	 * Good, we can skip the atime update:
1630 	 */
1631 	return 0;
1632 }
1633 
1634 int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1635 {
1636 	int iflags = I_DIRTY_TIME;
1637 	bool dirty = false;
1638 
1639 	if (flags & S_ATIME)
1640 		inode->i_atime = *time;
1641 	if (flags & S_VERSION)
1642 		dirty = inode_maybe_inc_iversion(inode, false);
1643 	if (flags & S_CTIME)
1644 		inode->i_ctime = *time;
1645 	if (flags & S_MTIME)
1646 		inode->i_mtime = *time;
1647 	if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1648 	    !(inode->i_sb->s_flags & SB_LAZYTIME))
1649 		dirty = true;
1650 
1651 	if (dirty)
1652 		iflags |= I_DIRTY_SYNC;
1653 	__mark_inode_dirty(inode, iflags);
1654 	return 0;
1655 }
1656 EXPORT_SYMBOL(generic_update_time);
1657 
1658 /*
1659  * This does the actual work of updating an inodes time or version.  Must have
1660  * had called mnt_want_write() before calling this.
1661  */
1662 static int update_time(struct inode *inode, struct timespec *time, int flags)
1663 {
1664 	int (*update_time)(struct inode *, struct timespec *, int);
1665 
1666 	update_time = inode->i_op->update_time ? inode->i_op->update_time :
1667 		generic_update_time;
1668 
1669 	return update_time(inode, time, flags);
1670 }
1671 
1672 /**
1673  *	touch_atime	-	update the access time
1674  *	@path: the &struct path to update
1675  *	@inode: inode to update
1676  *
1677  *	Update the accessed time on an inode and mark it for writeback.
1678  *	This function automatically handles read only file systems and media,
1679  *	as well as the "noatime" flag and inode specific "noatime" markers.
1680  */
1681 bool __atime_needs_update(const struct path *path, struct inode *inode,
1682 			  bool rcu)
1683 {
1684 	struct vfsmount *mnt = path->mnt;
1685 	struct timespec now;
1686 
1687 	if (inode->i_flags & S_NOATIME)
1688 		return false;
1689 
1690 	/* Atime updates will likely cause i_uid and i_gid to be written
1691 	 * back improprely if their true value is unknown to the vfs.
1692 	 */
1693 	if (HAS_UNMAPPED_ID(inode))
1694 		return false;
1695 
1696 	if (IS_NOATIME(inode))
1697 		return false;
1698 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1699 		return false;
1700 
1701 	if (mnt->mnt_flags & MNT_NOATIME)
1702 		return false;
1703 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1704 		return false;
1705 
1706 	now = current_time(inode);
1707 
1708 	if (!relatime_need_update(path, inode, now, rcu))
1709 		return false;
1710 
1711 	if (timespec_equal(&inode->i_atime, &now))
1712 		return false;
1713 
1714 	return true;
1715 }
1716 
1717 void touch_atime(const struct path *path)
1718 {
1719 	struct vfsmount *mnt = path->mnt;
1720 	struct inode *inode = d_inode(path->dentry);
1721 	struct timespec now;
1722 
1723 	if (!__atime_needs_update(path, inode, false))
1724 		return;
1725 
1726 	if (!sb_start_write_trylock(inode->i_sb))
1727 		return;
1728 
1729 	if (__mnt_want_write(mnt) != 0)
1730 		goto skip_update;
1731 	/*
1732 	 * File systems can error out when updating inodes if they need to
1733 	 * allocate new space to modify an inode (such is the case for
1734 	 * Btrfs), but since we touch atime while walking down the path we
1735 	 * really don't care if we failed to update the atime of the file,
1736 	 * so just ignore the return value.
1737 	 * We may also fail on filesystems that have the ability to make parts
1738 	 * of the fs read only, e.g. subvolumes in Btrfs.
1739 	 */
1740 	now = current_time(inode);
1741 	update_time(inode, &now, S_ATIME);
1742 	__mnt_drop_write(mnt);
1743 skip_update:
1744 	sb_end_write(inode->i_sb);
1745 }
1746 EXPORT_SYMBOL(touch_atime);
1747 
1748 /*
1749  * The logic we want is
1750  *
1751  *	if suid or (sgid and xgrp)
1752  *		remove privs
1753  */
1754 int should_remove_suid(struct dentry *dentry)
1755 {
1756 	umode_t mode = d_inode(dentry)->i_mode;
1757 	int kill = 0;
1758 
1759 	/* suid always must be killed */
1760 	if (unlikely(mode & S_ISUID))
1761 		kill = ATTR_KILL_SUID;
1762 
1763 	/*
1764 	 * sgid without any exec bits is just a mandatory locking mark; leave
1765 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1766 	 */
1767 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1768 		kill |= ATTR_KILL_SGID;
1769 
1770 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1771 		return kill;
1772 
1773 	return 0;
1774 }
1775 EXPORT_SYMBOL(should_remove_suid);
1776 
1777 /*
1778  * Return mask of changes for notify_change() that need to be done as a
1779  * response to write or truncate. Return 0 if nothing has to be changed.
1780  * Negative value on error (change should be denied).
1781  */
1782 int dentry_needs_remove_privs(struct dentry *dentry)
1783 {
1784 	struct inode *inode = d_inode(dentry);
1785 	int mask = 0;
1786 	int ret;
1787 
1788 	if (IS_NOSEC(inode))
1789 		return 0;
1790 
1791 	mask = should_remove_suid(dentry);
1792 	ret = security_inode_need_killpriv(dentry);
1793 	if (ret < 0)
1794 		return ret;
1795 	if (ret)
1796 		mask |= ATTR_KILL_PRIV;
1797 	return mask;
1798 }
1799 
1800 static int __remove_privs(struct dentry *dentry, int kill)
1801 {
1802 	struct iattr newattrs;
1803 
1804 	newattrs.ia_valid = ATTR_FORCE | kill;
1805 	/*
1806 	 * Note we call this on write, so notify_change will not
1807 	 * encounter any conflicting delegations:
1808 	 */
1809 	return notify_change(dentry, &newattrs, NULL);
1810 }
1811 
1812 /*
1813  * Remove special file priviledges (suid, capabilities) when file is written
1814  * to or truncated.
1815  */
1816 int file_remove_privs(struct file *file)
1817 {
1818 	struct dentry *dentry = file_dentry(file);
1819 	struct inode *inode = file_inode(file);
1820 	int kill;
1821 	int error = 0;
1822 
1823 	/* Fast path for nothing security related */
1824 	if (IS_NOSEC(inode))
1825 		return 0;
1826 
1827 	kill = dentry_needs_remove_privs(dentry);
1828 	if (kill < 0)
1829 		return kill;
1830 	if (kill)
1831 		error = __remove_privs(dentry, kill);
1832 	if (!error)
1833 		inode_has_no_xattr(inode);
1834 
1835 	return error;
1836 }
1837 EXPORT_SYMBOL(file_remove_privs);
1838 
1839 /**
1840  *	file_update_time	-	update mtime and ctime time
1841  *	@file: file accessed
1842  *
1843  *	Update the mtime and ctime members of an inode and mark the inode
1844  *	for writeback.  Note that this function is meant exclusively for
1845  *	usage in the file write path of filesystems, and filesystems may
1846  *	choose to explicitly ignore update via this function with the
1847  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1848  *	timestamps are handled by the server.  This can return an error for
1849  *	file systems who need to allocate space in order to update an inode.
1850  */
1851 
1852 int file_update_time(struct file *file)
1853 {
1854 	struct inode *inode = file_inode(file);
1855 	struct timespec now;
1856 	int sync_it = 0;
1857 	int ret;
1858 
1859 	/* First try to exhaust all avenues to not sync */
1860 	if (IS_NOCMTIME(inode))
1861 		return 0;
1862 
1863 	now = current_time(inode);
1864 	if (!timespec_equal(&inode->i_mtime, &now))
1865 		sync_it = S_MTIME;
1866 
1867 	if (!timespec_equal(&inode->i_ctime, &now))
1868 		sync_it |= S_CTIME;
1869 
1870 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1871 		sync_it |= S_VERSION;
1872 
1873 	if (!sync_it)
1874 		return 0;
1875 
1876 	/* Finally allowed to write? Takes lock. */
1877 	if (__mnt_want_write_file(file))
1878 		return 0;
1879 
1880 	ret = update_time(inode, &now, sync_it);
1881 	__mnt_drop_write_file(file);
1882 
1883 	return ret;
1884 }
1885 EXPORT_SYMBOL(file_update_time);
1886 
1887 int inode_needs_sync(struct inode *inode)
1888 {
1889 	if (IS_SYNC(inode))
1890 		return 1;
1891 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1892 		return 1;
1893 	return 0;
1894 }
1895 EXPORT_SYMBOL(inode_needs_sync);
1896 
1897 /*
1898  * If we try to find an inode in the inode hash while it is being
1899  * deleted, we have to wait until the filesystem completes its
1900  * deletion before reporting that it isn't found.  This function waits
1901  * until the deletion _might_ have completed.  Callers are responsible
1902  * to recheck inode state.
1903  *
1904  * It doesn't matter if I_NEW is not set initially, a call to
1905  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1906  * will DTRT.
1907  */
1908 static void __wait_on_freeing_inode(struct inode *inode)
1909 {
1910 	wait_queue_head_t *wq;
1911 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1912 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1913 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1914 	spin_unlock(&inode->i_lock);
1915 	spin_unlock(&inode_hash_lock);
1916 	schedule();
1917 	finish_wait(wq, &wait.wq_entry);
1918 	spin_lock(&inode_hash_lock);
1919 }
1920 
1921 static __initdata unsigned long ihash_entries;
1922 static int __init set_ihash_entries(char *str)
1923 {
1924 	if (!str)
1925 		return 0;
1926 	ihash_entries = simple_strtoul(str, &str, 0);
1927 	return 1;
1928 }
1929 __setup("ihash_entries=", set_ihash_entries);
1930 
1931 /*
1932  * Initialize the waitqueues and inode hash table.
1933  */
1934 void __init inode_init_early(void)
1935 {
1936 	/* If hashes are distributed across NUMA nodes, defer
1937 	 * hash allocation until vmalloc space is available.
1938 	 */
1939 	if (hashdist)
1940 		return;
1941 
1942 	inode_hashtable =
1943 		alloc_large_system_hash("Inode-cache",
1944 					sizeof(struct hlist_head),
1945 					ihash_entries,
1946 					14,
1947 					HASH_EARLY | HASH_ZERO,
1948 					&i_hash_shift,
1949 					&i_hash_mask,
1950 					0,
1951 					0);
1952 }
1953 
1954 void __init inode_init(void)
1955 {
1956 	/* inode slab cache */
1957 	inode_cachep = kmem_cache_create("inode_cache",
1958 					 sizeof(struct inode),
1959 					 0,
1960 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1961 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1962 					 init_once);
1963 
1964 	/* Hash may have been set up in inode_init_early */
1965 	if (!hashdist)
1966 		return;
1967 
1968 	inode_hashtable =
1969 		alloc_large_system_hash("Inode-cache",
1970 					sizeof(struct hlist_head),
1971 					ihash_entries,
1972 					14,
1973 					HASH_ZERO,
1974 					&i_hash_shift,
1975 					&i_hash_mask,
1976 					0,
1977 					0);
1978 }
1979 
1980 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1981 {
1982 	inode->i_mode = mode;
1983 	if (S_ISCHR(mode)) {
1984 		inode->i_fop = &def_chr_fops;
1985 		inode->i_rdev = rdev;
1986 	} else if (S_ISBLK(mode)) {
1987 		inode->i_fop = &def_blk_fops;
1988 		inode->i_rdev = rdev;
1989 	} else if (S_ISFIFO(mode))
1990 		inode->i_fop = &pipefifo_fops;
1991 	else if (S_ISSOCK(mode))
1992 		;	/* leave it no_open_fops */
1993 	else
1994 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1995 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1996 				  inode->i_ino);
1997 }
1998 EXPORT_SYMBOL(init_special_inode);
1999 
2000 /**
2001  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2002  * @inode: New inode
2003  * @dir: Directory inode
2004  * @mode: mode of the new inode
2005  */
2006 void inode_init_owner(struct inode *inode, const struct inode *dir,
2007 			umode_t mode)
2008 {
2009 	inode->i_uid = current_fsuid();
2010 	if (dir && dir->i_mode & S_ISGID) {
2011 		inode->i_gid = dir->i_gid;
2012 		if (S_ISDIR(mode))
2013 			mode |= S_ISGID;
2014 	} else
2015 		inode->i_gid = current_fsgid();
2016 	inode->i_mode = mode;
2017 }
2018 EXPORT_SYMBOL(inode_init_owner);
2019 
2020 /**
2021  * inode_owner_or_capable - check current task permissions to inode
2022  * @inode: inode being checked
2023  *
2024  * Return true if current either has CAP_FOWNER in a namespace with the
2025  * inode owner uid mapped, or owns the file.
2026  */
2027 bool inode_owner_or_capable(const struct inode *inode)
2028 {
2029 	struct user_namespace *ns;
2030 
2031 	if (uid_eq(current_fsuid(), inode->i_uid))
2032 		return true;
2033 
2034 	ns = current_user_ns();
2035 	if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2036 		return true;
2037 	return false;
2038 }
2039 EXPORT_SYMBOL(inode_owner_or_capable);
2040 
2041 /*
2042  * Direct i/o helper functions
2043  */
2044 static void __inode_dio_wait(struct inode *inode)
2045 {
2046 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2047 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2048 
2049 	do {
2050 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2051 		if (atomic_read(&inode->i_dio_count))
2052 			schedule();
2053 	} while (atomic_read(&inode->i_dio_count));
2054 	finish_wait(wq, &q.wq_entry);
2055 }
2056 
2057 /**
2058  * inode_dio_wait - wait for outstanding DIO requests to finish
2059  * @inode: inode to wait for
2060  *
2061  * Waits for all pending direct I/O requests to finish so that we can
2062  * proceed with a truncate or equivalent operation.
2063  *
2064  * Must be called under a lock that serializes taking new references
2065  * to i_dio_count, usually by inode->i_mutex.
2066  */
2067 void inode_dio_wait(struct inode *inode)
2068 {
2069 	if (atomic_read(&inode->i_dio_count))
2070 		__inode_dio_wait(inode);
2071 }
2072 EXPORT_SYMBOL(inode_dio_wait);
2073 
2074 /*
2075  * inode_set_flags - atomically set some inode flags
2076  *
2077  * Note: the caller should be holding i_mutex, or else be sure that
2078  * they have exclusive access to the inode structure (i.e., while the
2079  * inode is being instantiated).  The reason for the cmpxchg() loop
2080  * --- which wouldn't be necessary if all code paths which modify
2081  * i_flags actually followed this rule, is that there is at least one
2082  * code path which doesn't today so we use cmpxchg() out of an abundance
2083  * of caution.
2084  *
2085  * In the long run, i_mutex is overkill, and we should probably look
2086  * at using the i_lock spinlock to protect i_flags, and then make sure
2087  * it is so documented in include/linux/fs.h and that all code follows
2088  * the locking convention!!
2089  */
2090 void inode_set_flags(struct inode *inode, unsigned int flags,
2091 		     unsigned int mask)
2092 {
2093 	unsigned int old_flags, new_flags;
2094 
2095 	WARN_ON_ONCE(flags & ~mask);
2096 	do {
2097 		old_flags = READ_ONCE(inode->i_flags);
2098 		new_flags = (old_flags & ~mask) | flags;
2099 	} while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2100 				  new_flags) != old_flags));
2101 }
2102 EXPORT_SYMBOL(inode_set_flags);
2103 
2104 void inode_nohighmem(struct inode *inode)
2105 {
2106 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2107 }
2108 EXPORT_SYMBOL(inode_nohighmem);
2109 
2110 /**
2111  * current_time - Return FS time
2112  * @inode: inode.
2113  *
2114  * Return the current time truncated to the time granularity supported by
2115  * the fs.
2116  *
2117  * Note that inode and inode->sb cannot be NULL.
2118  * Otherwise, the function warns and returns time without truncation.
2119  */
2120 struct timespec current_time(struct inode *inode)
2121 {
2122 	struct timespec now = current_kernel_time();
2123 
2124 	if (unlikely(!inode->i_sb)) {
2125 		WARN(1, "current_time() called with uninitialized super_block in the inode");
2126 		return now;
2127 	}
2128 
2129 	return timespec_trunc(now, inode->i_sb->s_time_gran);
2130 }
2131 EXPORT_SYMBOL(current_time);
2132