xref: /openbmc/linux/fs/inode.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fsnotify.h>
16 #include <linux/mount.h>
17 #include <linux/posix_acl.h>
18 #include <linux/prefetch.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <trace/events/writeback.h>
24 #include "internal.h"
25 
26 /*
27  * Inode locking rules:
28  *
29  * inode->i_lock protects:
30  *   inode->i_state, inode->i_hash, __iget()
31  * Inode LRU list locks protect:
32  *   inode->i_sb->s_inode_lru, inode->i_lru
33  * inode->i_sb->s_inode_list_lock protects:
34  *   inode->i_sb->s_inodes, inode->i_sb_list
35  * bdi->wb.list_lock protects:
36  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37  * inode_hash_lock protects:
38  *   inode_hashtable, inode->i_hash
39  *
40  * Lock ordering:
41  *
42  * inode->i_sb->s_inode_list_lock
43  *   inode->i_lock
44  *     Inode LRU list locks
45  *
46  * bdi->wb.list_lock
47  *   inode->i_lock
48  *
49  * inode_hash_lock
50  *   inode->i_sb->s_inode_list_lock
51  *   inode->i_lock
52  *
53  * iunique_lock
54  *   inode_hash_lock
55  */
56 
57 static unsigned int i_hash_mask __read_mostly;
58 static unsigned int i_hash_shift __read_mostly;
59 static struct hlist_head *inode_hashtable __read_mostly;
60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61 
62 /*
63  * Empty aops. Can be used for the cases where the user does not
64  * define any of the address_space operations.
65  */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69 
70 /*
71  * Statistics gathering..
72  */
73 struct inodes_stat_t inodes_stat;
74 
75 static DEFINE_PER_CPU(unsigned long, nr_inodes);
76 static DEFINE_PER_CPU(unsigned long, nr_unused);
77 
78 static struct kmem_cache *inode_cachep __read_mostly;
79 
80 static long get_nr_inodes(void)
81 {
82 	int i;
83 	long sum = 0;
84 	for_each_possible_cpu(i)
85 		sum += per_cpu(nr_inodes, i);
86 	return sum < 0 ? 0 : sum;
87 }
88 
89 static inline long get_nr_inodes_unused(void)
90 {
91 	int i;
92 	long sum = 0;
93 	for_each_possible_cpu(i)
94 		sum += per_cpu(nr_unused, i);
95 	return sum < 0 ? 0 : sum;
96 }
97 
98 long get_nr_dirty_inodes(void)
99 {
100 	/* not actually dirty inodes, but a wild approximation */
101 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
102 	return nr_dirty > 0 ? nr_dirty : 0;
103 }
104 
105 /*
106  * Handle nr_inode sysctl
107  */
108 #ifdef CONFIG_SYSCTL
109 int proc_nr_inodes(struct ctl_table *table, int write,
110 		   void __user *buffer, size_t *lenp, loff_t *ppos)
111 {
112 	inodes_stat.nr_inodes = get_nr_inodes();
113 	inodes_stat.nr_unused = get_nr_inodes_unused();
114 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116 #endif
117 
118 static int no_open(struct inode *inode, struct file *file)
119 {
120 	return -ENXIO;
121 }
122 
123 /**
124  * inode_init_always - perform inode structure initialisation
125  * @sb: superblock inode belongs to
126  * @inode: inode to initialise
127  *
128  * These are initializations that need to be done on every inode
129  * allocation as the fields are not initialised by slab allocation.
130  */
131 int inode_init_always(struct super_block *sb, struct inode *inode)
132 {
133 	static const struct inode_operations empty_iops;
134 	static const struct file_operations no_open_fops = {.open = no_open};
135 	struct address_space *const mapping = &inode->i_data;
136 
137 	inode->i_sb = sb;
138 	inode->i_blkbits = sb->s_blocksize_bits;
139 	inode->i_flags = 0;
140 	atomic_set(&inode->i_count, 1);
141 	inode->i_op = &empty_iops;
142 	inode->i_fop = &no_open_fops;
143 	inode->__i_nlink = 1;
144 	inode->i_opflags = 0;
145 	if (sb->s_xattr)
146 		inode->i_opflags |= IOP_XATTR;
147 	i_uid_write(inode, 0);
148 	i_gid_write(inode, 0);
149 	atomic_set(&inode->i_writecount, 0);
150 	inode->i_size = 0;
151 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
152 	inode->i_blocks = 0;
153 	inode->i_bytes = 0;
154 	inode->i_generation = 0;
155 	inode->i_pipe = NULL;
156 	inode->i_bdev = NULL;
157 	inode->i_cdev = NULL;
158 	inode->i_link = NULL;
159 	inode->i_dir_seq = 0;
160 	inode->i_rdev = 0;
161 	inode->dirtied_when = 0;
162 
163 #ifdef CONFIG_CGROUP_WRITEBACK
164 	inode->i_wb_frn_winner = 0;
165 	inode->i_wb_frn_avg_time = 0;
166 	inode->i_wb_frn_history = 0;
167 #endif
168 
169 	if (security_inode_alloc(inode))
170 		goto out;
171 	spin_lock_init(&inode->i_lock);
172 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
173 
174 	init_rwsem(&inode->i_rwsem);
175 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
176 
177 	atomic_set(&inode->i_dio_count, 0);
178 
179 	mapping->a_ops = &empty_aops;
180 	mapping->host = inode;
181 	mapping->flags = 0;
182 	mapping->wb_err = 0;
183 	atomic_set(&mapping->i_mmap_writable, 0);
184 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
185 	mapping->private_data = NULL;
186 	mapping->writeback_index = 0;
187 	inode->i_private = NULL;
188 	inode->i_mapping = mapping;
189 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
190 #ifdef CONFIG_FS_POSIX_ACL
191 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
192 #endif
193 
194 #ifdef CONFIG_FSNOTIFY
195 	inode->i_fsnotify_mask = 0;
196 #endif
197 	inode->i_flctx = NULL;
198 	this_cpu_inc(nr_inodes);
199 
200 	return 0;
201 out:
202 	return -ENOMEM;
203 }
204 EXPORT_SYMBOL(inode_init_always);
205 
206 void free_inode_nonrcu(struct inode *inode)
207 {
208 	kmem_cache_free(inode_cachep, inode);
209 }
210 EXPORT_SYMBOL(free_inode_nonrcu);
211 
212 static void i_callback(struct rcu_head *head)
213 {
214 	struct inode *inode = container_of(head, struct inode, i_rcu);
215 	if (inode->free_inode)
216 		inode->free_inode(inode);
217 	else
218 		free_inode_nonrcu(inode);
219 }
220 
221 static struct inode *alloc_inode(struct super_block *sb)
222 {
223 	const struct super_operations *ops = sb->s_op;
224 	struct inode *inode;
225 
226 	if (ops->alloc_inode)
227 		inode = ops->alloc_inode(sb);
228 	else
229 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
230 
231 	if (!inode)
232 		return NULL;
233 
234 	if (unlikely(inode_init_always(sb, inode))) {
235 		if (ops->destroy_inode) {
236 			ops->destroy_inode(inode);
237 			if (!ops->free_inode)
238 				return NULL;
239 		}
240 		inode->free_inode = ops->free_inode;
241 		i_callback(&inode->i_rcu);
242 		return NULL;
243 	}
244 
245 	return inode;
246 }
247 
248 void __destroy_inode(struct inode *inode)
249 {
250 	BUG_ON(inode_has_buffers(inode));
251 	inode_detach_wb(inode);
252 	security_inode_free(inode);
253 	fsnotify_inode_delete(inode);
254 	locks_free_lock_context(inode);
255 	if (!inode->i_nlink) {
256 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
257 		atomic_long_dec(&inode->i_sb->s_remove_count);
258 	}
259 
260 #ifdef CONFIG_FS_POSIX_ACL
261 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
262 		posix_acl_release(inode->i_acl);
263 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
264 		posix_acl_release(inode->i_default_acl);
265 #endif
266 	this_cpu_dec(nr_inodes);
267 }
268 EXPORT_SYMBOL(__destroy_inode);
269 
270 static void destroy_inode(struct inode *inode)
271 {
272 	const struct super_operations *ops = inode->i_sb->s_op;
273 
274 	BUG_ON(!list_empty(&inode->i_lru));
275 	__destroy_inode(inode);
276 	if (ops->destroy_inode) {
277 		ops->destroy_inode(inode);
278 		if (!ops->free_inode)
279 			return;
280 	}
281 	inode->free_inode = ops->free_inode;
282 	call_rcu(&inode->i_rcu, i_callback);
283 }
284 
285 /**
286  * drop_nlink - directly drop an inode's link count
287  * @inode: inode
288  *
289  * This is a low-level filesystem helper to replace any
290  * direct filesystem manipulation of i_nlink.  In cases
291  * where we are attempting to track writes to the
292  * filesystem, a decrement to zero means an imminent
293  * write when the file is truncated and actually unlinked
294  * on the filesystem.
295  */
296 void drop_nlink(struct inode *inode)
297 {
298 	WARN_ON(inode->i_nlink == 0);
299 	inode->__i_nlink--;
300 	if (!inode->i_nlink)
301 		atomic_long_inc(&inode->i_sb->s_remove_count);
302 }
303 EXPORT_SYMBOL(drop_nlink);
304 
305 /**
306  * clear_nlink - directly zero an inode's link count
307  * @inode: inode
308  *
309  * This is a low-level filesystem helper to replace any
310  * direct filesystem manipulation of i_nlink.  See
311  * drop_nlink() for why we care about i_nlink hitting zero.
312  */
313 void clear_nlink(struct inode *inode)
314 {
315 	if (inode->i_nlink) {
316 		inode->__i_nlink = 0;
317 		atomic_long_inc(&inode->i_sb->s_remove_count);
318 	}
319 }
320 EXPORT_SYMBOL(clear_nlink);
321 
322 /**
323  * set_nlink - directly set an inode's link count
324  * @inode: inode
325  * @nlink: new nlink (should be non-zero)
326  *
327  * This is a low-level filesystem helper to replace any
328  * direct filesystem manipulation of i_nlink.
329  */
330 void set_nlink(struct inode *inode, unsigned int nlink)
331 {
332 	if (!nlink) {
333 		clear_nlink(inode);
334 	} else {
335 		/* Yes, some filesystems do change nlink from zero to one */
336 		if (inode->i_nlink == 0)
337 			atomic_long_dec(&inode->i_sb->s_remove_count);
338 
339 		inode->__i_nlink = nlink;
340 	}
341 }
342 EXPORT_SYMBOL(set_nlink);
343 
344 /**
345  * inc_nlink - directly increment an inode's link count
346  * @inode: inode
347  *
348  * This is a low-level filesystem helper to replace any
349  * direct filesystem manipulation of i_nlink.  Currently,
350  * it is only here for parity with dec_nlink().
351  */
352 void inc_nlink(struct inode *inode)
353 {
354 	if (unlikely(inode->i_nlink == 0)) {
355 		WARN_ON(!(inode->i_state & I_LINKABLE));
356 		atomic_long_dec(&inode->i_sb->s_remove_count);
357 	}
358 
359 	inode->__i_nlink++;
360 }
361 EXPORT_SYMBOL(inc_nlink);
362 
363 static void __address_space_init_once(struct address_space *mapping)
364 {
365 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ);
366 	init_rwsem(&mapping->i_mmap_rwsem);
367 	INIT_LIST_HEAD(&mapping->private_list);
368 	spin_lock_init(&mapping->private_lock);
369 	mapping->i_mmap = RB_ROOT_CACHED;
370 }
371 
372 void address_space_init_once(struct address_space *mapping)
373 {
374 	memset(mapping, 0, sizeof(*mapping));
375 	__address_space_init_once(mapping);
376 }
377 EXPORT_SYMBOL(address_space_init_once);
378 
379 /*
380  * These are initializations that only need to be done
381  * once, because the fields are idempotent across use
382  * of the inode, so let the slab aware of that.
383  */
384 void inode_init_once(struct inode *inode)
385 {
386 	memset(inode, 0, sizeof(*inode));
387 	INIT_HLIST_NODE(&inode->i_hash);
388 	INIT_LIST_HEAD(&inode->i_devices);
389 	INIT_LIST_HEAD(&inode->i_io_list);
390 	INIT_LIST_HEAD(&inode->i_wb_list);
391 	INIT_LIST_HEAD(&inode->i_lru);
392 	__address_space_init_once(&inode->i_data);
393 	i_size_ordered_init(inode);
394 }
395 EXPORT_SYMBOL(inode_init_once);
396 
397 static void init_once(void *foo)
398 {
399 	struct inode *inode = (struct inode *) foo;
400 
401 	inode_init_once(inode);
402 }
403 
404 /*
405  * inode->i_lock must be held
406  */
407 void __iget(struct inode *inode)
408 {
409 	atomic_inc(&inode->i_count);
410 }
411 
412 /*
413  * get additional reference to inode; caller must already hold one.
414  */
415 void ihold(struct inode *inode)
416 {
417 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
418 }
419 EXPORT_SYMBOL(ihold);
420 
421 static void inode_lru_list_add(struct inode *inode)
422 {
423 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
424 		this_cpu_inc(nr_unused);
425 	else
426 		inode->i_state |= I_REFERENCED;
427 }
428 
429 /*
430  * Add inode to LRU if needed (inode is unused and clean).
431  *
432  * Needs inode->i_lock held.
433  */
434 void inode_add_lru(struct inode *inode)
435 {
436 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
437 				I_FREEING | I_WILL_FREE)) &&
438 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
439 		inode_lru_list_add(inode);
440 }
441 
442 
443 static void inode_lru_list_del(struct inode *inode)
444 {
445 
446 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
447 		this_cpu_dec(nr_unused);
448 }
449 
450 /**
451  * inode_sb_list_add - add inode to the superblock list of inodes
452  * @inode: inode to add
453  */
454 void inode_sb_list_add(struct inode *inode)
455 {
456 	spin_lock(&inode->i_sb->s_inode_list_lock);
457 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
458 	spin_unlock(&inode->i_sb->s_inode_list_lock);
459 }
460 EXPORT_SYMBOL_GPL(inode_sb_list_add);
461 
462 static inline void inode_sb_list_del(struct inode *inode)
463 {
464 	if (!list_empty(&inode->i_sb_list)) {
465 		spin_lock(&inode->i_sb->s_inode_list_lock);
466 		list_del_init(&inode->i_sb_list);
467 		spin_unlock(&inode->i_sb->s_inode_list_lock);
468 	}
469 }
470 
471 static unsigned long hash(struct super_block *sb, unsigned long hashval)
472 {
473 	unsigned long tmp;
474 
475 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
476 			L1_CACHE_BYTES;
477 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
478 	return tmp & i_hash_mask;
479 }
480 
481 /**
482  *	__insert_inode_hash - hash an inode
483  *	@inode: unhashed inode
484  *	@hashval: unsigned long value used to locate this object in the
485  *		inode_hashtable.
486  *
487  *	Add an inode to the inode hash for this superblock.
488  */
489 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
490 {
491 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
492 
493 	spin_lock(&inode_hash_lock);
494 	spin_lock(&inode->i_lock);
495 	hlist_add_head(&inode->i_hash, b);
496 	spin_unlock(&inode->i_lock);
497 	spin_unlock(&inode_hash_lock);
498 }
499 EXPORT_SYMBOL(__insert_inode_hash);
500 
501 /**
502  *	__remove_inode_hash - remove an inode from the hash
503  *	@inode: inode to unhash
504  *
505  *	Remove an inode from the superblock.
506  */
507 void __remove_inode_hash(struct inode *inode)
508 {
509 	spin_lock(&inode_hash_lock);
510 	spin_lock(&inode->i_lock);
511 	hlist_del_init(&inode->i_hash);
512 	spin_unlock(&inode->i_lock);
513 	spin_unlock(&inode_hash_lock);
514 }
515 EXPORT_SYMBOL(__remove_inode_hash);
516 
517 void clear_inode(struct inode *inode)
518 {
519 	/*
520 	 * We have to cycle the i_pages lock here because reclaim can be in the
521 	 * process of removing the last page (in __delete_from_page_cache())
522 	 * and we must not free the mapping under it.
523 	 */
524 	xa_lock_irq(&inode->i_data.i_pages);
525 	BUG_ON(inode->i_data.nrpages);
526 	BUG_ON(inode->i_data.nrexceptional);
527 	xa_unlock_irq(&inode->i_data.i_pages);
528 	BUG_ON(!list_empty(&inode->i_data.private_list));
529 	BUG_ON(!(inode->i_state & I_FREEING));
530 	BUG_ON(inode->i_state & I_CLEAR);
531 	BUG_ON(!list_empty(&inode->i_wb_list));
532 	/* don't need i_lock here, no concurrent mods to i_state */
533 	inode->i_state = I_FREEING | I_CLEAR;
534 }
535 EXPORT_SYMBOL(clear_inode);
536 
537 /*
538  * Free the inode passed in, removing it from the lists it is still connected
539  * to. We remove any pages still attached to the inode and wait for any IO that
540  * is still in progress before finally destroying the inode.
541  *
542  * An inode must already be marked I_FREEING so that we avoid the inode being
543  * moved back onto lists if we race with other code that manipulates the lists
544  * (e.g. writeback_single_inode). The caller is responsible for setting this.
545  *
546  * An inode must already be removed from the LRU list before being evicted from
547  * the cache. This should occur atomically with setting the I_FREEING state
548  * flag, so no inodes here should ever be on the LRU when being evicted.
549  */
550 static void evict(struct inode *inode)
551 {
552 	const struct super_operations *op = inode->i_sb->s_op;
553 
554 	BUG_ON(!(inode->i_state & I_FREEING));
555 	BUG_ON(!list_empty(&inode->i_lru));
556 
557 	if (!list_empty(&inode->i_io_list))
558 		inode_io_list_del(inode);
559 
560 	inode_sb_list_del(inode);
561 
562 	/*
563 	 * Wait for flusher thread to be done with the inode so that filesystem
564 	 * does not start destroying it while writeback is still running. Since
565 	 * the inode has I_FREEING set, flusher thread won't start new work on
566 	 * the inode.  We just have to wait for running writeback to finish.
567 	 */
568 	inode_wait_for_writeback(inode);
569 
570 	if (op->evict_inode) {
571 		op->evict_inode(inode);
572 	} else {
573 		truncate_inode_pages_final(&inode->i_data);
574 		clear_inode(inode);
575 	}
576 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
577 		bd_forget(inode);
578 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
579 		cd_forget(inode);
580 
581 	remove_inode_hash(inode);
582 
583 	spin_lock(&inode->i_lock);
584 	wake_up_bit(&inode->i_state, __I_NEW);
585 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
586 	spin_unlock(&inode->i_lock);
587 
588 	destroy_inode(inode);
589 }
590 
591 /*
592  * dispose_list - dispose of the contents of a local list
593  * @head: the head of the list to free
594  *
595  * Dispose-list gets a local list with local inodes in it, so it doesn't
596  * need to worry about list corruption and SMP locks.
597  */
598 static void dispose_list(struct list_head *head)
599 {
600 	while (!list_empty(head)) {
601 		struct inode *inode;
602 
603 		inode = list_first_entry(head, struct inode, i_lru);
604 		list_del_init(&inode->i_lru);
605 
606 		evict(inode);
607 		cond_resched();
608 	}
609 }
610 
611 /**
612  * evict_inodes	- evict all evictable inodes for a superblock
613  * @sb:		superblock to operate on
614  *
615  * Make sure that no inodes with zero refcount are retained.  This is
616  * called by superblock shutdown after having SB_ACTIVE flag removed,
617  * so any inode reaching zero refcount during or after that call will
618  * be immediately evicted.
619  */
620 void evict_inodes(struct super_block *sb)
621 {
622 	struct inode *inode, *next;
623 	LIST_HEAD(dispose);
624 
625 again:
626 	spin_lock(&sb->s_inode_list_lock);
627 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
628 		if (atomic_read(&inode->i_count))
629 			continue;
630 
631 		spin_lock(&inode->i_lock);
632 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
633 			spin_unlock(&inode->i_lock);
634 			continue;
635 		}
636 
637 		inode->i_state |= I_FREEING;
638 		inode_lru_list_del(inode);
639 		spin_unlock(&inode->i_lock);
640 		list_add(&inode->i_lru, &dispose);
641 
642 		/*
643 		 * We can have a ton of inodes to evict at unmount time given
644 		 * enough memory, check to see if we need to go to sleep for a
645 		 * bit so we don't livelock.
646 		 */
647 		if (need_resched()) {
648 			spin_unlock(&sb->s_inode_list_lock);
649 			cond_resched();
650 			dispose_list(&dispose);
651 			goto again;
652 		}
653 	}
654 	spin_unlock(&sb->s_inode_list_lock);
655 
656 	dispose_list(&dispose);
657 }
658 EXPORT_SYMBOL_GPL(evict_inodes);
659 
660 /**
661  * invalidate_inodes	- attempt to free all inodes on a superblock
662  * @sb:		superblock to operate on
663  * @kill_dirty: flag to guide handling of dirty inodes
664  *
665  * Attempts to free all inodes for a given superblock.  If there were any
666  * busy inodes return a non-zero value, else zero.
667  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
668  * them as busy.
669  */
670 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
671 {
672 	int busy = 0;
673 	struct inode *inode, *next;
674 	LIST_HEAD(dispose);
675 
676 	spin_lock(&sb->s_inode_list_lock);
677 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
678 		spin_lock(&inode->i_lock);
679 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
680 			spin_unlock(&inode->i_lock);
681 			continue;
682 		}
683 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
684 			spin_unlock(&inode->i_lock);
685 			busy = 1;
686 			continue;
687 		}
688 		if (atomic_read(&inode->i_count)) {
689 			spin_unlock(&inode->i_lock);
690 			busy = 1;
691 			continue;
692 		}
693 
694 		inode->i_state |= I_FREEING;
695 		inode_lru_list_del(inode);
696 		spin_unlock(&inode->i_lock);
697 		list_add(&inode->i_lru, &dispose);
698 	}
699 	spin_unlock(&sb->s_inode_list_lock);
700 
701 	dispose_list(&dispose);
702 
703 	return busy;
704 }
705 
706 /*
707  * Isolate the inode from the LRU in preparation for freeing it.
708  *
709  * Any inodes which are pinned purely because of attached pagecache have their
710  * pagecache removed.  If the inode has metadata buffers attached to
711  * mapping->private_list then try to remove them.
712  *
713  * If the inode has the I_REFERENCED flag set, then it means that it has been
714  * used recently - the flag is set in iput_final(). When we encounter such an
715  * inode, clear the flag and move it to the back of the LRU so it gets another
716  * pass through the LRU before it gets reclaimed. This is necessary because of
717  * the fact we are doing lazy LRU updates to minimise lock contention so the
718  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
719  * with this flag set because they are the inodes that are out of order.
720  */
721 static enum lru_status inode_lru_isolate(struct list_head *item,
722 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
723 {
724 	struct list_head *freeable = arg;
725 	struct inode	*inode = container_of(item, struct inode, i_lru);
726 
727 	/*
728 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
729 	 * If we fail to get the lock, just skip it.
730 	 */
731 	if (!spin_trylock(&inode->i_lock))
732 		return LRU_SKIP;
733 
734 	/*
735 	 * Referenced or dirty inodes are still in use. Give them another pass
736 	 * through the LRU as we canot reclaim them now.
737 	 */
738 	if (atomic_read(&inode->i_count) ||
739 	    (inode->i_state & ~I_REFERENCED)) {
740 		list_lru_isolate(lru, &inode->i_lru);
741 		spin_unlock(&inode->i_lock);
742 		this_cpu_dec(nr_unused);
743 		return LRU_REMOVED;
744 	}
745 
746 	/* recently referenced inodes get one more pass */
747 	if (inode->i_state & I_REFERENCED) {
748 		inode->i_state &= ~I_REFERENCED;
749 		spin_unlock(&inode->i_lock);
750 		return LRU_ROTATE;
751 	}
752 
753 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
754 		__iget(inode);
755 		spin_unlock(&inode->i_lock);
756 		spin_unlock(lru_lock);
757 		if (remove_inode_buffers(inode)) {
758 			unsigned long reap;
759 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
760 			if (current_is_kswapd())
761 				__count_vm_events(KSWAPD_INODESTEAL, reap);
762 			else
763 				__count_vm_events(PGINODESTEAL, reap);
764 			if (current->reclaim_state)
765 				current->reclaim_state->reclaimed_slab += reap;
766 		}
767 		iput(inode);
768 		spin_lock(lru_lock);
769 		return LRU_RETRY;
770 	}
771 
772 	WARN_ON(inode->i_state & I_NEW);
773 	inode->i_state |= I_FREEING;
774 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
775 	spin_unlock(&inode->i_lock);
776 
777 	this_cpu_dec(nr_unused);
778 	return LRU_REMOVED;
779 }
780 
781 /*
782  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
783  * This is called from the superblock shrinker function with a number of inodes
784  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
785  * then are freed outside inode_lock by dispose_list().
786  */
787 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
788 {
789 	LIST_HEAD(freeable);
790 	long freed;
791 
792 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
793 				     inode_lru_isolate, &freeable);
794 	dispose_list(&freeable);
795 	return freed;
796 }
797 
798 static void __wait_on_freeing_inode(struct inode *inode);
799 /*
800  * Called with the inode lock held.
801  */
802 static struct inode *find_inode(struct super_block *sb,
803 				struct hlist_head *head,
804 				int (*test)(struct inode *, void *),
805 				void *data)
806 {
807 	struct inode *inode = NULL;
808 
809 repeat:
810 	hlist_for_each_entry(inode, head, i_hash) {
811 		if (inode->i_sb != sb)
812 			continue;
813 		if (!test(inode, data))
814 			continue;
815 		spin_lock(&inode->i_lock);
816 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
817 			__wait_on_freeing_inode(inode);
818 			goto repeat;
819 		}
820 		if (unlikely(inode->i_state & I_CREATING)) {
821 			spin_unlock(&inode->i_lock);
822 			return ERR_PTR(-ESTALE);
823 		}
824 		__iget(inode);
825 		spin_unlock(&inode->i_lock);
826 		return inode;
827 	}
828 	return NULL;
829 }
830 
831 /*
832  * find_inode_fast is the fast path version of find_inode, see the comment at
833  * iget_locked for details.
834  */
835 static struct inode *find_inode_fast(struct super_block *sb,
836 				struct hlist_head *head, unsigned long ino)
837 {
838 	struct inode *inode = NULL;
839 
840 repeat:
841 	hlist_for_each_entry(inode, head, i_hash) {
842 		if (inode->i_ino != ino)
843 			continue;
844 		if (inode->i_sb != sb)
845 			continue;
846 		spin_lock(&inode->i_lock);
847 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
848 			__wait_on_freeing_inode(inode);
849 			goto repeat;
850 		}
851 		if (unlikely(inode->i_state & I_CREATING)) {
852 			spin_unlock(&inode->i_lock);
853 			return ERR_PTR(-ESTALE);
854 		}
855 		__iget(inode);
856 		spin_unlock(&inode->i_lock);
857 		return inode;
858 	}
859 	return NULL;
860 }
861 
862 /*
863  * Each cpu owns a range of LAST_INO_BATCH numbers.
864  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
865  * to renew the exhausted range.
866  *
867  * This does not significantly increase overflow rate because every CPU can
868  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
869  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
870  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
871  * overflow rate by 2x, which does not seem too significant.
872  *
873  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
874  * error if st_ino won't fit in target struct field. Use 32bit counter
875  * here to attempt to avoid that.
876  */
877 #define LAST_INO_BATCH 1024
878 static DEFINE_PER_CPU(unsigned int, last_ino);
879 
880 unsigned int get_next_ino(void)
881 {
882 	unsigned int *p = &get_cpu_var(last_ino);
883 	unsigned int res = *p;
884 
885 #ifdef CONFIG_SMP
886 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
887 		static atomic_t shared_last_ino;
888 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
889 
890 		res = next - LAST_INO_BATCH;
891 	}
892 #endif
893 
894 	res++;
895 	/* get_next_ino should not provide a 0 inode number */
896 	if (unlikely(!res))
897 		res++;
898 	*p = res;
899 	put_cpu_var(last_ino);
900 	return res;
901 }
902 EXPORT_SYMBOL(get_next_ino);
903 
904 /**
905  *	new_inode_pseudo 	- obtain an inode
906  *	@sb: superblock
907  *
908  *	Allocates a new inode for given superblock.
909  *	Inode wont be chained in superblock s_inodes list
910  *	This means :
911  *	- fs can't be unmount
912  *	- quotas, fsnotify, writeback can't work
913  */
914 struct inode *new_inode_pseudo(struct super_block *sb)
915 {
916 	struct inode *inode = alloc_inode(sb);
917 
918 	if (inode) {
919 		spin_lock(&inode->i_lock);
920 		inode->i_state = 0;
921 		spin_unlock(&inode->i_lock);
922 		INIT_LIST_HEAD(&inode->i_sb_list);
923 	}
924 	return inode;
925 }
926 
927 /**
928  *	new_inode 	- obtain an inode
929  *	@sb: superblock
930  *
931  *	Allocates a new inode for given superblock. The default gfp_mask
932  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
933  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
934  *	for the page cache are not reclaimable or migratable,
935  *	mapping_set_gfp_mask() must be called with suitable flags on the
936  *	newly created inode's mapping
937  *
938  */
939 struct inode *new_inode(struct super_block *sb)
940 {
941 	struct inode *inode;
942 
943 	spin_lock_prefetch(&sb->s_inode_list_lock);
944 
945 	inode = new_inode_pseudo(sb);
946 	if (inode)
947 		inode_sb_list_add(inode);
948 	return inode;
949 }
950 EXPORT_SYMBOL(new_inode);
951 
952 #ifdef CONFIG_DEBUG_LOCK_ALLOC
953 void lockdep_annotate_inode_mutex_key(struct inode *inode)
954 {
955 	if (S_ISDIR(inode->i_mode)) {
956 		struct file_system_type *type = inode->i_sb->s_type;
957 
958 		/* Set new key only if filesystem hasn't already changed it */
959 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
960 			/*
961 			 * ensure nobody is actually holding i_mutex
962 			 */
963 			// mutex_destroy(&inode->i_mutex);
964 			init_rwsem(&inode->i_rwsem);
965 			lockdep_set_class(&inode->i_rwsem,
966 					  &type->i_mutex_dir_key);
967 		}
968 	}
969 }
970 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
971 #endif
972 
973 /**
974  * unlock_new_inode - clear the I_NEW state and wake up any waiters
975  * @inode:	new inode to unlock
976  *
977  * Called when the inode is fully initialised to clear the new state of the
978  * inode and wake up anyone waiting for the inode to finish initialisation.
979  */
980 void unlock_new_inode(struct inode *inode)
981 {
982 	lockdep_annotate_inode_mutex_key(inode);
983 	spin_lock(&inode->i_lock);
984 	WARN_ON(!(inode->i_state & I_NEW));
985 	inode->i_state &= ~I_NEW & ~I_CREATING;
986 	smp_mb();
987 	wake_up_bit(&inode->i_state, __I_NEW);
988 	spin_unlock(&inode->i_lock);
989 }
990 EXPORT_SYMBOL(unlock_new_inode);
991 
992 void discard_new_inode(struct inode *inode)
993 {
994 	lockdep_annotate_inode_mutex_key(inode);
995 	spin_lock(&inode->i_lock);
996 	WARN_ON(!(inode->i_state & I_NEW));
997 	inode->i_state &= ~I_NEW;
998 	smp_mb();
999 	wake_up_bit(&inode->i_state, __I_NEW);
1000 	spin_unlock(&inode->i_lock);
1001 	iput(inode);
1002 }
1003 EXPORT_SYMBOL(discard_new_inode);
1004 
1005 /**
1006  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1007  *
1008  * Lock any non-NULL argument that is not a directory.
1009  * Zero, one or two objects may be locked by this function.
1010  *
1011  * @inode1: first inode to lock
1012  * @inode2: second inode to lock
1013  */
1014 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1015 {
1016 	if (inode1 > inode2)
1017 		swap(inode1, inode2);
1018 
1019 	if (inode1 && !S_ISDIR(inode1->i_mode))
1020 		inode_lock(inode1);
1021 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1022 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1023 }
1024 EXPORT_SYMBOL(lock_two_nondirectories);
1025 
1026 /**
1027  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1028  * @inode1: first inode to unlock
1029  * @inode2: second inode to unlock
1030  */
1031 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1032 {
1033 	if (inode1 && !S_ISDIR(inode1->i_mode))
1034 		inode_unlock(inode1);
1035 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1036 		inode_unlock(inode2);
1037 }
1038 EXPORT_SYMBOL(unlock_two_nondirectories);
1039 
1040 /**
1041  * inode_insert5 - obtain an inode from a mounted file system
1042  * @inode:	pre-allocated inode to use for insert to cache
1043  * @hashval:	hash value (usually inode number) to get
1044  * @test:	callback used for comparisons between inodes
1045  * @set:	callback used to initialize a new struct inode
1046  * @data:	opaque data pointer to pass to @test and @set
1047  *
1048  * Search for the inode specified by @hashval and @data in the inode cache,
1049  * and if present it is return it with an increased reference count. This is
1050  * a variant of iget5_locked() for callers that don't want to fail on memory
1051  * allocation of inode.
1052  *
1053  * If the inode is not in cache, insert the pre-allocated inode to cache and
1054  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1055  * to fill it in before unlocking it via unlock_new_inode().
1056  *
1057  * Note both @test and @set are called with the inode_hash_lock held, so can't
1058  * sleep.
1059  */
1060 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1061 			    int (*test)(struct inode *, void *),
1062 			    int (*set)(struct inode *, void *), void *data)
1063 {
1064 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1065 	struct inode *old;
1066 	bool creating = inode->i_state & I_CREATING;
1067 
1068 again:
1069 	spin_lock(&inode_hash_lock);
1070 	old = find_inode(inode->i_sb, head, test, data);
1071 	if (unlikely(old)) {
1072 		/*
1073 		 * Uhhuh, somebody else created the same inode under us.
1074 		 * Use the old inode instead of the preallocated one.
1075 		 */
1076 		spin_unlock(&inode_hash_lock);
1077 		if (IS_ERR(old))
1078 			return NULL;
1079 		wait_on_inode(old);
1080 		if (unlikely(inode_unhashed(old))) {
1081 			iput(old);
1082 			goto again;
1083 		}
1084 		return old;
1085 	}
1086 
1087 	if (set && unlikely(set(inode, data))) {
1088 		inode = NULL;
1089 		goto unlock;
1090 	}
1091 
1092 	/*
1093 	 * Return the locked inode with I_NEW set, the
1094 	 * caller is responsible for filling in the contents
1095 	 */
1096 	spin_lock(&inode->i_lock);
1097 	inode->i_state |= I_NEW;
1098 	hlist_add_head(&inode->i_hash, head);
1099 	spin_unlock(&inode->i_lock);
1100 	if (!creating)
1101 		inode_sb_list_add(inode);
1102 unlock:
1103 	spin_unlock(&inode_hash_lock);
1104 
1105 	return inode;
1106 }
1107 EXPORT_SYMBOL(inode_insert5);
1108 
1109 /**
1110  * iget5_locked - obtain an inode from a mounted file system
1111  * @sb:		super block of file system
1112  * @hashval:	hash value (usually inode number) to get
1113  * @test:	callback used for comparisons between inodes
1114  * @set:	callback used to initialize a new struct inode
1115  * @data:	opaque data pointer to pass to @test and @set
1116  *
1117  * Search for the inode specified by @hashval and @data in the inode cache,
1118  * and if present it is return it with an increased reference count. This is
1119  * a generalized version of iget_locked() for file systems where the inode
1120  * number is not sufficient for unique identification of an inode.
1121  *
1122  * If the inode is not in cache, allocate a new inode and return it locked,
1123  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1124  * before unlocking it via unlock_new_inode().
1125  *
1126  * Note both @test and @set are called with the inode_hash_lock held, so can't
1127  * sleep.
1128  */
1129 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1130 		int (*test)(struct inode *, void *),
1131 		int (*set)(struct inode *, void *), void *data)
1132 {
1133 	struct inode *inode = ilookup5(sb, hashval, test, data);
1134 
1135 	if (!inode) {
1136 		struct inode *new = alloc_inode(sb);
1137 
1138 		if (new) {
1139 			new->i_state = 0;
1140 			inode = inode_insert5(new, hashval, test, set, data);
1141 			if (unlikely(inode != new))
1142 				destroy_inode(new);
1143 		}
1144 	}
1145 	return inode;
1146 }
1147 EXPORT_SYMBOL(iget5_locked);
1148 
1149 /**
1150  * iget_locked - obtain an inode from a mounted file system
1151  * @sb:		super block of file system
1152  * @ino:	inode number to get
1153  *
1154  * Search for the inode specified by @ino in the inode cache and if present
1155  * return it with an increased reference count. This is for file systems
1156  * where the inode number is sufficient for unique identification of an inode.
1157  *
1158  * If the inode is not in cache, allocate a new inode and return it locked,
1159  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1160  * before unlocking it via unlock_new_inode().
1161  */
1162 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1163 {
1164 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1165 	struct inode *inode;
1166 again:
1167 	spin_lock(&inode_hash_lock);
1168 	inode = find_inode_fast(sb, head, ino);
1169 	spin_unlock(&inode_hash_lock);
1170 	if (inode) {
1171 		if (IS_ERR(inode))
1172 			return NULL;
1173 		wait_on_inode(inode);
1174 		if (unlikely(inode_unhashed(inode))) {
1175 			iput(inode);
1176 			goto again;
1177 		}
1178 		return inode;
1179 	}
1180 
1181 	inode = alloc_inode(sb);
1182 	if (inode) {
1183 		struct inode *old;
1184 
1185 		spin_lock(&inode_hash_lock);
1186 		/* We released the lock, so.. */
1187 		old = find_inode_fast(sb, head, ino);
1188 		if (!old) {
1189 			inode->i_ino = ino;
1190 			spin_lock(&inode->i_lock);
1191 			inode->i_state = I_NEW;
1192 			hlist_add_head(&inode->i_hash, head);
1193 			spin_unlock(&inode->i_lock);
1194 			inode_sb_list_add(inode);
1195 			spin_unlock(&inode_hash_lock);
1196 
1197 			/* Return the locked inode with I_NEW set, the
1198 			 * caller is responsible for filling in the contents
1199 			 */
1200 			return inode;
1201 		}
1202 
1203 		/*
1204 		 * Uhhuh, somebody else created the same inode under
1205 		 * us. Use the old inode instead of the one we just
1206 		 * allocated.
1207 		 */
1208 		spin_unlock(&inode_hash_lock);
1209 		destroy_inode(inode);
1210 		if (IS_ERR(old))
1211 			return NULL;
1212 		inode = old;
1213 		wait_on_inode(inode);
1214 		if (unlikely(inode_unhashed(inode))) {
1215 			iput(inode);
1216 			goto again;
1217 		}
1218 	}
1219 	return inode;
1220 }
1221 EXPORT_SYMBOL(iget_locked);
1222 
1223 /*
1224  * search the inode cache for a matching inode number.
1225  * If we find one, then the inode number we are trying to
1226  * allocate is not unique and so we should not use it.
1227  *
1228  * Returns 1 if the inode number is unique, 0 if it is not.
1229  */
1230 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1231 {
1232 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1233 	struct inode *inode;
1234 
1235 	spin_lock(&inode_hash_lock);
1236 	hlist_for_each_entry(inode, b, i_hash) {
1237 		if (inode->i_ino == ino && inode->i_sb == sb) {
1238 			spin_unlock(&inode_hash_lock);
1239 			return 0;
1240 		}
1241 	}
1242 	spin_unlock(&inode_hash_lock);
1243 
1244 	return 1;
1245 }
1246 
1247 /**
1248  *	iunique - get a unique inode number
1249  *	@sb: superblock
1250  *	@max_reserved: highest reserved inode number
1251  *
1252  *	Obtain an inode number that is unique on the system for a given
1253  *	superblock. This is used by file systems that have no natural
1254  *	permanent inode numbering system. An inode number is returned that
1255  *	is higher than the reserved limit but unique.
1256  *
1257  *	BUGS:
1258  *	With a large number of inodes live on the file system this function
1259  *	currently becomes quite slow.
1260  */
1261 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1262 {
1263 	/*
1264 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1265 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1266 	 * here to attempt to avoid that.
1267 	 */
1268 	static DEFINE_SPINLOCK(iunique_lock);
1269 	static unsigned int counter;
1270 	ino_t res;
1271 
1272 	spin_lock(&iunique_lock);
1273 	do {
1274 		if (counter <= max_reserved)
1275 			counter = max_reserved + 1;
1276 		res = counter++;
1277 	} while (!test_inode_iunique(sb, res));
1278 	spin_unlock(&iunique_lock);
1279 
1280 	return res;
1281 }
1282 EXPORT_SYMBOL(iunique);
1283 
1284 struct inode *igrab(struct inode *inode)
1285 {
1286 	spin_lock(&inode->i_lock);
1287 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1288 		__iget(inode);
1289 		spin_unlock(&inode->i_lock);
1290 	} else {
1291 		spin_unlock(&inode->i_lock);
1292 		/*
1293 		 * Handle the case where s_op->clear_inode is not been
1294 		 * called yet, and somebody is calling igrab
1295 		 * while the inode is getting freed.
1296 		 */
1297 		inode = NULL;
1298 	}
1299 	return inode;
1300 }
1301 EXPORT_SYMBOL(igrab);
1302 
1303 /**
1304  * ilookup5_nowait - search for an inode in the inode cache
1305  * @sb:		super block of file system to search
1306  * @hashval:	hash value (usually inode number) to search for
1307  * @test:	callback used for comparisons between inodes
1308  * @data:	opaque data pointer to pass to @test
1309  *
1310  * Search for the inode specified by @hashval and @data in the inode cache.
1311  * If the inode is in the cache, the inode is returned with an incremented
1312  * reference count.
1313  *
1314  * Note: I_NEW is not waited upon so you have to be very careful what you do
1315  * with the returned inode.  You probably should be using ilookup5() instead.
1316  *
1317  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1318  */
1319 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1320 		int (*test)(struct inode *, void *), void *data)
1321 {
1322 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1323 	struct inode *inode;
1324 
1325 	spin_lock(&inode_hash_lock);
1326 	inode = find_inode(sb, head, test, data);
1327 	spin_unlock(&inode_hash_lock);
1328 
1329 	return IS_ERR(inode) ? NULL : inode;
1330 }
1331 EXPORT_SYMBOL(ilookup5_nowait);
1332 
1333 /**
1334  * ilookup5 - search for an inode in the inode cache
1335  * @sb:		super block of file system to search
1336  * @hashval:	hash value (usually inode number) to search for
1337  * @test:	callback used for comparisons between inodes
1338  * @data:	opaque data pointer to pass to @test
1339  *
1340  * Search for the inode specified by @hashval and @data in the inode cache,
1341  * and if the inode is in the cache, return the inode with an incremented
1342  * reference count.  Waits on I_NEW before returning the inode.
1343  * returned with an incremented reference count.
1344  *
1345  * This is a generalized version of ilookup() for file systems where the
1346  * inode number is not sufficient for unique identification of an inode.
1347  *
1348  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1349  */
1350 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1351 		int (*test)(struct inode *, void *), void *data)
1352 {
1353 	struct inode *inode;
1354 again:
1355 	inode = ilookup5_nowait(sb, hashval, test, data);
1356 	if (inode) {
1357 		wait_on_inode(inode);
1358 		if (unlikely(inode_unhashed(inode))) {
1359 			iput(inode);
1360 			goto again;
1361 		}
1362 	}
1363 	return inode;
1364 }
1365 EXPORT_SYMBOL(ilookup5);
1366 
1367 /**
1368  * ilookup - search for an inode in the inode cache
1369  * @sb:		super block of file system to search
1370  * @ino:	inode number to search for
1371  *
1372  * Search for the inode @ino in the inode cache, and if the inode is in the
1373  * cache, the inode is returned with an incremented reference count.
1374  */
1375 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1376 {
1377 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1378 	struct inode *inode;
1379 again:
1380 	spin_lock(&inode_hash_lock);
1381 	inode = find_inode_fast(sb, head, ino);
1382 	spin_unlock(&inode_hash_lock);
1383 
1384 	if (inode) {
1385 		if (IS_ERR(inode))
1386 			return NULL;
1387 		wait_on_inode(inode);
1388 		if (unlikely(inode_unhashed(inode))) {
1389 			iput(inode);
1390 			goto again;
1391 		}
1392 	}
1393 	return inode;
1394 }
1395 EXPORT_SYMBOL(ilookup);
1396 
1397 /**
1398  * find_inode_nowait - find an inode in the inode cache
1399  * @sb:		super block of file system to search
1400  * @hashval:	hash value (usually inode number) to search for
1401  * @match:	callback used for comparisons between inodes
1402  * @data:	opaque data pointer to pass to @match
1403  *
1404  * Search for the inode specified by @hashval and @data in the inode
1405  * cache, where the helper function @match will return 0 if the inode
1406  * does not match, 1 if the inode does match, and -1 if the search
1407  * should be stopped.  The @match function must be responsible for
1408  * taking the i_lock spin_lock and checking i_state for an inode being
1409  * freed or being initialized, and incrementing the reference count
1410  * before returning 1.  It also must not sleep, since it is called with
1411  * the inode_hash_lock spinlock held.
1412  *
1413  * This is a even more generalized version of ilookup5() when the
1414  * function must never block --- find_inode() can block in
1415  * __wait_on_freeing_inode() --- or when the caller can not increment
1416  * the reference count because the resulting iput() might cause an
1417  * inode eviction.  The tradeoff is that the @match funtion must be
1418  * very carefully implemented.
1419  */
1420 struct inode *find_inode_nowait(struct super_block *sb,
1421 				unsigned long hashval,
1422 				int (*match)(struct inode *, unsigned long,
1423 					     void *),
1424 				void *data)
1425 {
1426 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1427 	struct inode *inode, *ret_inode = NULL;
1428 	int mval;
1429 
1430 	spin_lock(&inode_hash_lock);
1431 	hlist_for_each_entry(inode, head, i_hash) {
1432 		if (inode->i_sb != sb)
1433 			continue;
1434 		mval = match(inode, hashval, data);
1435 		if (mval == 0)
1436 			continue;
1437 		if (mval == 1)
1438 			ret_inode = inode;
1439 		goto out;
1440 	}
1441 out:
1442 	spin_unlock(&inode_hash_lock);
1443 	return ret_inode;
1444 }
1445 EXPORT_SYMBOL(find_inode_nowait);
1446 
1447 int insert_inode_locked(struct inode *inode)
1448 {
1449 	struct super_block *sb = inode->i_sb;
1450 	ino_t ino = inode->i_ino;
1451 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1452 
1453 	while (1) {
1454 		struct inode *old = NULL;
1455 		spin_lock(&inode_hash_lock);
1456 		hlist_for_each_entry(old, head, i_hash) {
1457 			if (old->i_ino != ino)
1458 				continue;
1459 			if (old->i_sb != sb)
1460 				continue;
1461 			spin_lock(&old->i_lock);
1462 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1463 				spin_unlock(&old->i_lock);
1464 				continue;
1465 			}
1466 			break;
1467 		}
1468 		if (likely(!old)) {
1469 			spin_lock(&inode->i_lock);
1470 			inode->i_state |= I_NEW | I_CREATING;
1471 			hlist_add_head(&inode->i_hash, head);
1472 			spin_unlock(&inode->i_lock);
1473 			spin_unlock(&inode_hash_lock);
1474 			return 0;
1475 		}
1476 		if (unlikely(old->i_state & I_CREATING)) {
1477 			spin_unlock(&old->i_lock);
1478 			spin_unlock(&inode_hash_lock);
1479 			return -EBUSY;
1480 		}
1481 		__iget(old);
1482 		spin_unlock(&old->i_lock);
1483 		spin_unlock(&inode_hash_lock);
1484 		wait_on_inode(old);
1485 		if (unlikely(!inode_unhashed(old))) {
1486 			iput(old);
1487 			return -EBUSY;
1488 		}
1489 		iput(old);
1490 	}
1491 }
1492 EXPORT_SYMBOL(insert_inode_locked);
1493 
1494 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1495 		int (*test)(struct inode *, void *), void *data)
1496 {
1497 	struct inode *old;
1498 
1499 	inode->i_state |= I_CREATING;
1500 	old = inode_insert5(inode, hashval, test, NULL, data);
1501 
1502 	if (old != inode) {
1503 		iput(old);
1504 		return -EBUSY;
1505 	}
1506 	return 0;
1507 }
1508 EXPORT_SYMBOL(insert_inode_locked4);
1509 
1510 
1511 int generic_delete_inode(struct inode *inode)
1512 {
1513 	return 1;
1514 }
1515 EXPORT_SYMBOL(generic_delete_inode);
1516 
1517 /*
1518  * Called when we're dropping the last reference
1519  * to an inode.
1520  *
1521  * Call the FS "drop_inode()" function, defaulting to
1522  * the legacy UNIX filesystem behaviour.  If it tells
1523  * us to evict inode, do so.  Otherwise, retain inode
1524  * in cache if fs is alive, sync and evict if fs is
1525  * shutting down.
1526  */
1527 static void iput_final(struct inode *inode)
1528 {
1529 	struct super_block *sb = inode->i_sb;
1530 	const struct super_operations *op = inode->i_sb->s_op;
1531 	int drop;
1532 
1533 	WARN_ON(inode->i_state & I_NEW);
1534 
1535 	if (op->drop_inode)
1536 		drop = op->drop_inode(inode);
1537 	else
1538 		drop = generic_drop_inode(inode);
1539 
1540 	if (!drop && (sb->s_flags & SB_ACTIVE)) {
1541 		inode_add_lru(inode);
1542 		spin_unlock(&inode->i_lock);
1543 		return;
1544 	}
1545 
1546 	if (!drop) {
1547 		inode->i_state |= I_WILL_FREE;
1548 		spin_unlock(&inode->i_lock);
1549 		write_inode_now(inode, 1);
1550 		spin_lock(&inode->i_lock);
1551 		WARN_ON(inode->i_state & I_NEW);
1552 		inode->i_state &= ~I_WILL_FREE;
1553 	}
1554 
1555 	inode->i_state |= I_FREEING;
1556 	if (!list_empty(&inode->i_lru))
1557 		inode_lru_list_del(inode);
1558 	spin_unlock(&inode->i_lock);
1559 
1560 	evict(inode);
1561 }
1562 
1563 /**
1564  *	iput	- put an inode
1565  *	@inode: inode to put
1566  *
1567  *	Puts an inode, dropping its usage count. If the inode use count hits
1568  *	zero, the inode is then freed and may also be destroyed.
1569  *
1570  *	Consequently, iput() can sleep.
1571  */
1572 void iput(struct inode *inode)
1573 {
1574 	if (!inode)
1575 		return;
1576 	BUG_ON(inode->i_state & I_CLEAR);
1577 retry:
1578 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1579 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1580 			atomic_inc(&inode->i_count);
1581 			spin_unlock(&inode->i_lock);
1582 			trace_writeback_lazytime_iput(inode);
1583 			mark_inode_dirty_sync(inode);
1584 			goto retry;
1585 		}
1586 		iput_final(inode);
1587 	}
1588 }
1589 EXPORT_SYMBOL(iput);
1590 
1591 /**
1592  *	bmap	- find a block number in a file
1593  *	@inode: inode of file
1594  *	@block: block to find
1595  *
1596  *	Returns the block number on the device holding the inode that
1597  *	is the disk block number for the block of the file requested.
1598  *	That is, asked for block 4 of inode 1 the function will return the
1599  *	disk block relative to the disk start that holds that block of the
1600  *	file.
1601  */
1602 sector_t bmap(struct inode *inode, sector_t block)
1603 {
1604 	sector_t res = 0;
1605 	if (inode->i_mapping->a_ops->bmap)
1606 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1607 	return res;
1608 }
1609 EXPORT_SYMBOL(bmap);
1610 
1611 /*
1612  * With relative atime, only update atime if the previous atime is
1613  * earlier than either the ctime or mtime or if at least a day has
1614  * passed since the last atime update.
1615  */
1616 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1617 			     struct timespec64 now)
1618 {
1619 
1620 	if (!(mnt->mnt_flags & MNT_RELATIME))
1621 		return 1;
1622 	/*
1623 	 * Is mtime younger than atime? If yes, update atime:
1624 	 */
1625 	if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1626 		return 1;
1627 	/*
1628 	 * Is ctime younger than atime? If yes, update atime:
1629 	 */
1630 	if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1631 		return 1;
1632 
1633 	/*
1634 	 * Is the previous atime value older than a day? If yes,
1635 	 * update atime:
1636 	 */
1637 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1638 		return 1;
1639 	/*
1640 	 * Good, we can skip the atime update:
1641 	 */
1642 	return 0;
1643 }
1644 
1645 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1646 {
1647 	int iflags = I_DIRTY_TIME;
1648 	bool dirty = false;
1649 
1650 	if (flags & S_ATIME)
1651 		inode->i_atime = *time;
1652 	if (flags & S_VERSION)
1653 		dirty = inode_maybe_inc_iversion(inode, false);
1654 	if (flags & S_CTIME)
1655 		inode->i_ctime = *time;
1656 	if (flags & S_MTIME)
1657 		inode->i_mtime = *time;
1658 	if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1659 	    !(inode->i_sb->s_flags & SB_LAZYTIME))
1660 		dirty = true;
1661 
1662 	if (dirty)
1663 		iflags |= I_DIRTY_SYNC;
1664 	__mark_inode_dirty(inode, iflags);
1665 	return 0;
1666 }
1667 EXPORT_SYMBOL(generic_update_time);
1668 
1669 /*
1670  * This does the actual work of updating an inodes time or version.  Must have
1671  * had called mnt_want_write() before calling this.
1672  */
1673 static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1674 {
1675 	int (*update_time)(struct inode *, struct timespec64 *, int);
1676 
1677 	update_time = inode->i_op->update_time ? inode->i_op->update_time :
1678 		generic_update_time;
1679 
1680 	return update_time(inode, time, flags);
1681 }
1682 
1683 /**
1684  *	touch_atime	-	update the access time
1685  *	@path: the &struct path to update
1686  *	@inode: inode to update
1687  *
1688  *	Update the accessed time on an inode and mark it for writeback.
1689  *	This function automatically handles read only file systems and media,
1690  *	as well as the "noatime" flag and inode specific "noatime" markers.
1691  */
1692 bool atime_needs_update(const struct path *path, struct inode *inode)
1693 {
1694 	struct vfsmount *mnt = path->mnt;
1695 	struct timespec64 now;
1696 
1697 	if (inode->i_flags & S_NOATIME)
1698 		return false;
1699 
1700 	/* Atime updates will likely cause i_uid and i_gid to be written
1701 	 * back improprely if their true value is unknown to the vfs.
1702 	 */
1703 	if (HAS_UNMAPPED_ID(inode))
1704 		return false;
1705 
1706 	if (IS_NOATIME(inode))
1707 		return false;
1708 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1709 		return false;
1710 
1711 	if (mnt->mnt_flags & MNT_NOATIME)
1712 		return false;
1713 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1714 		return false;
1715 
1716 	now = current_time(inode);
1717 
1718 	if (!relatime_need_update(mnt, inode, now))
1719 		return false;
1720 
1721 	if (timespec64_equal(&inode->i_atime, &now))
1722 		return false;
1723 
1724 	return true;
1725 }
1726 
1727 void touch_atime(const struct path *path)
1728 {
1729 	struct vfsmount *mnt = path->mnt;
1730 	struct inode *inode = d_inode(path->dentry);
1731 	struct timespec64 now;
1732 
1733 	if (!atime_needs_update(path, inode))
1734 		return;
1735 
1736 	if (!sb_start_write_trylock(inode->i_sb))
1737 		return;
1738 
1739 	if (__mnt_want_write(mnt) != 0)
1740 		goto skip_update;
1741 	/*
1742 	 * File systems can error out when updating inodes if they need to
1743 	 * allocate new space to modify an inode (such is the case for
1744 	 * Btrfs), but since we touch atime while walking down the path we
1745 	 * really don't care if we failed to update the atime of the file,
1746 	 * so just ignore the return value.
1747 	 * We may also fail on filesystems that have the ability to make parts
1748 	 * of the fs read only, e.g. subvolumes in Btrfs.
1749 	 */
1750 	now = current_time(inode);
1751 	update_time(inode, &now, S_ATIME);
1752 	__mnt_drop_write(mnt);
1753 skip_update:
1754 	sb_end_write(inode->i_sb);
1755 }
1756 EXPORT_SYMBOL(touch_atime);
1757 
1758 /*
1759  * The logic we want is
1760  *
1761  *	if suid or (sgid and xgrp)
1762  *		remove privs
1763  */
1764 int should_remove_suid(struct dentry *dentry)
1765 {
1766 	umode_t mode = d_inode(dentry)->i_mode;
1767 	int kill = 0;
1768 
1769 	/* suid always must be killed */
1770 	if (unlikely(mode & S_ISUID))
1771 		kill = ATTR_KILL_SUID;
1772 
1773 	/*
1774 	 * sgid without any exec bits is just a mandatory locking mark; leave
1775 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1776 	 */
1777 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1778 		kill |= ATTR_KILL_SGID;
1779 
1780 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1781 		return kill;
1782 
1783 	return 0;
1784 }
1785 EXPORT_SYMBOL(should_remove_suid);
1786 
1787 /*
1788  * Return mask of changes for notify_change() that need to be done as a
1789  * response to write or truncate. Return 0 if nothing has to be changed.
1790  * Negative value on error (change should be denied).
1791  */
1792 int dentry_needs_remove_privs(struct dentry *dentry)
1793 {
1794 	struct inode *inode = d_inode(dentry);
1795 	int mask = 0;
1796 	int ret;
1797 
1798 	if (IS_NOSEC(inode))
1799 		return 0;
1800 
1801 	mask = should_remove_suid(dentry);
1802 	ret = security_inode_need_killpriv(dentry);
1803 	if (ret < 0)
1804 		return ret;
1805 	if (ret)
1806 		mask |= ATTR_KILL_PRIV;
1807 	return mask;
1808 }
1809 
1810 static int __remove_privs(struct dentry *dentry, int kill)
1811 {
1812 	struct iattr newattrs;
1813 
1814 	newattrs.ia_valid = ATTR_FORCE | kill;
1815 	/*
1816 	 * Note we call this on write, so notify_change will not
1817 	 * encounter any conflicting delegations:
1818 	 */
1819 	return notify_change(dentry, &newattrs, NULL);
1820 }
1821 
1822 /*
1823  * Remove special file priviledges (suid, capabilities) when file is written
1824  * to or truncated.
1825  */
1826 int file_remove_privs(struct file *file)
1827 {
1828 	struct dentry *dentry = file_dentry(file);
1829 	struct inode *inode = file_inode(file);
1830 	int kill;
1831 	int error = 0;
1832 
1833 	/*
1834 	 * Fast path for nothing security related.
1835 	 * As well for non-regular files, e.g. blkdev inodes.
1836 	 * For example, blkdev_write_iter() might get here
1837 	 * trying to remove privs which it is not allowed to.
1838 	 */
1839 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1840 		return 0;
1841 
1842 	kill = dentry_needs_remove_privs(dentry);
1843 	if (kill < 0)
1844 		return kill;
1845 	if (kill)
1846 		error = __remove_privs(dentry, kill);
1847 	if (!error)
1848 		inode_has_no_xattr(inode);
1849 
1850 	return error;
1851 }
1852 EXPORT_SYMBOL(file_remove_privs);
1853 
1854 /**
1855  *	file_update_time	-	update mtime and ctime time
1856  *	@file: file accessed
1857  *
1858  *	Update the mtime and ctime members of an inode and mark the inode
1859  *	for writeback.  Note that this function is meant exclusively for
1860  *	usage in the file write path of filesystems, and filesystems may
1861  *	choose to explicitly ignore update via this function with the
1862  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1863  *	timestamps are handled by the server.  This can return an error for
1864  *	file systems who need to allocate space in order to update an inode.
1865  */
1866 
1867 int file_update_time(struct file *file)
1868 {
1869 	struct inode *inode = file_inode(file);
1870 	struct timespec64 now;
1871 	int sync_it = 0;
1872 	int ret;
1873 
1874 	/* First try to exhaust all avenues to not sync */
1875 	if (IS_NOCMTIME(inode))
1876 		return 0;
1877 
1878 	now = current_time(inode);
1879 	if (!timespec64_equal(&inode->i_mtime, &now))
1880 		sync_it = S_MTIME;
1881 
1882 	if (!timespec64_equal(&inode->i_ctime, &now))
1883 		sync_it |= S_CTIME;
1884 
1885 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1886 		sync_it |= S_VERSION;
1887 
1888 	if (!sync_it)
1889 		return 0;
1890 
1891 	/* Finally allowed to write? Takes lock. */
1892 	if (__mnt_want_write_file(file))
1893 		return 0;
1894 
1895 	ret = update_time(inode, &now, sync_it);
1896 	__mnt_drop_write_file(file);
1897 
1898 	return ret;
1899 }
1900 EXPORT_SYMBOL(file_update_time);
1901 
1902 int inode_needs_sync(struct inode *inode)
1903 {
1904 	if (IS_SYNC(inode))
1905 		return 1;
1906 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1907 		return 1;
1908 	return 0;
1909 }
1910 EXPORT_SYMBOL(inode_needs_sync);
1911 
1912 /*
1913  * If we try to find an inode in the inode hash while it is being
1914  * deleted, we have to wait until the filesystem completes its
1915  * deletion before reporting that it isn't found.  This function waits
1916  * until the deletion _might_ have completed.  Callers are responsible
1917  * to recheck inode state.
1918  *
1919  * It doesn't matter if I_NEW is not set initially, a call to
1920  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1921  * will DTRT.
1922  */
1923 static void __wait_on_freeing_inode(struct inode *inode)
1924 {
1925 	wait_queue_head_t *wq;
1926 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1927 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1928 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1929 	spin_unlock(&inode->i_lock);
1930 	spin_unlock(&inode_hash_lock);
1931 	schedule();
1932 	finish_wait(wq, &wait.wq_entry);
1933 	spin_lock(&inode_hash_lock);
1934 }
1935 
1936 static __initdata unsigned long ihash_entries;
1937 static int __init set_ihash_entries(char *str)
1938 {
1939 	if (!str)
1940 		return 0;
1941 	ihash_entries = simple_strtoul(str, &str, 0);
1942 	return 1;
1943 }
1944 __setup("ihash_entries=", set_ihash_entries);
1945 
1946 /*
1947  * Initialize the waitqueues and inode hash table.
1948  */
1949 void __init inode_init_early(void)
1950 {
1951 	/* If hashes are distributed across NUMA nodes, defer
1952 	 * hash allocation until vmalloc space is available.
1953 	 */
1954 	if (hashdist)
1955 		return;
1956 
1957 	inode_hashtable =
1958 		alloc_large_system_hash("Inode-cache",
1959 					sizeof(struct hlist_head),
1960 					ihash_entries,
1961 					14,
1962 					HASH_EARLY | HASH_ZERO,
1963 					&i_hash_shift,
1964 					&i_hash_mask,
1965 					0,
1966 					0);
1967 }
1968 
1969 void __init inode_init(void)
1970 {
1971 	/* inode slab cache */
1972 	inode_cachep = kmem_cache_create("inode_cache",
1973 					 sizeof(struct inode),
1974 					 0,
1975 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1976 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1977 					 init_once);
1978 
1979 	/* Hash may have been set up in inode_init_early */
1980 	if (!hashdist)
1981 		return;
1982 
1983 	inode_hashtable =
1984 		alloc_large_system_hash("Inode-cache",
1985 					sizeof(struct hlist_head),
1986 					ihash_entries,
1987 					14,
1988 					HASH_ZERO,
1989 					&i_hash_shift,
1990 					&i_hash_mask,
1991 					0,
1992 					0);
1993 }
1994 
1995 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1996 {
1997 	inode->i_mode = mode;
1998 	if (S_ISCHR(mode)) {
1999 		inode->i_fop = &def_chr_fops;
2000 		inode->i_rdev = rdev;
2001 	} else if (S_ISBLK(mode)) {
2002 		inode->i_fop = &def_blk_fops;
2003 		inode->i_rdev = rdev;
2004 	} else if (S_ISFIFO(mode))
2005 		inode->i_fop = &pipefifo_fops;
2006 	else if (S_ISSOCK(mode))
2007 		;	/* leave it no_open_fops */
2008 	else
2009 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2010 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2011 				  inode->i_ino);
2012 }
2013 EXPORT_SYMBOL(init_special_inode);
2014 
2015 /**
2016  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2017  * @inode: New inode
2018  * @dir: Directory inode
2019  * @mode: mode of the new inode
2020  */
2021 void inode_init_owner(struct inode *inode, const struct inode *dir,
2022 			umode_t mode)
2023 {
2024 	inode->i_uid = current_fsuid();
2025 	if (dir && dir->i_mode & S_ISGID) {
2026 		inode->i_gid = dir->i_gid;
2027 
2028 		/* Directories are special, and always inherit S_ISGID */
2029 		if (S_ISDIR(mode))
2030 			mode |= S_ISGID;
2031 		else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2032 			 !in_group_p(inode->i_gid) &&
2033 			 !capable_wrt_inode_uidgid(dir, CAP_FSETID))
2034 			mode &= ~S_ISGID;
2035 	} else
2036 		inode->i_gid = current_fsgid();
2037 	inode->i_mode = mode;
2038 }
2039 EXPORT_SYMBOL(inode_init_owner);
2040 
2041 /**
2042  * inode_owner_or_capable - check current task permissions to inode
2043  * @inode: inode being checked
2044  *
2045  * Return true if current either has CAP_FOWNER in a namespace with the
2046  * inode owner uid mapped, or owns the file.
2047  */
2048 bool inode_owner_or_capable(const struct inode *inode)
2049 {
2050 	struct user_namespace *ns;
2051 
2052 	if (uid_eq(current_fsuid(), inode->i_uid))
2053 		return true;
2054 
2055 	ns = current_user_ns();
2056 	if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2057 		return true;
2058 	return false;
2059 }
2060 EXPORT_SYMBOL(inode_owner_or_capable);
2061 
2062 /*
2063  * Direct i/o helper functions
2064  */
2065 static void __inode_dio_wait(struct inode *inode)
2066 {
2067 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2068 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2069 
2070 	do {
2071 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2072 		if (atomic_read(&inode->i_dio_count))
2073 			schedule();
2074 	} while (atomic_read(&inode->i_dio_count));
2075 	finish_wait(wq, &q.wq_entry);
2076 }
2077 
2078 /**
2079  * inode_dio_wait - wait for outstanding DIO requests to finish
2080  * @inode: inode to wait for
2081  *
2082  * Waits for all pending direct I/O requests to finish so that we can
2083  * proceed with a truncate or equivalent operation.
2084  *
2085  * Must be called under a lock that serializes taking new references
2086  * to i_dio_count, usually by inode->i_mutex.
2087  */
2088 void inode_dio_wait(struct inode *inode)
2089 {
2090 	if (atomic_read(&inode->i_dio_count))
2091 		__inode_dio_wait(inode);
2092 }
2093 EXPORT_SYMBOL(inode_dio_wait);
2094 
2095 /*
2096  * inode_set_flags - atomically set some inode flags
2097  *
2098  * Note: the caller should be holding i_mutex, or else be sure that
2099  * they have exclusive access to the inode structure (i.e., while the
2100  * inode is being instantiated).  The reason for the cmpxchg() loop
2101  * --- which wouldn't be necessary if all code paths which modify
2102  * i_flags actually followed this rule, is that there is at least one
2103  * code path which doesn't today so we use cmpxchg() out of an abundance
2104  * of caution.
2105  *
2106  * In the long run, i_mutex is overkill, and we should probably look
2107  * at using the i_lock spinlock to protect i_flags, and then make sure
2108  * it is so documented in include/linux/fs.h and that all code follows
2109  * the locking convention!!
2110  */
2111 void inode_set_flags(struct inode *inode, unsigned int flags,
2112 		     unsigned int mask)
2113 {
2114 	WARN_ON_ONCE(flags & ~mask);
2115 	set_mask_bits(&inode->i_flags, mask, flags);
2116 }
2117 EXPORT_SYMBOL(inode_set_flags);
2118 
2119 void inode_nohighmem(struct inode *inode)
2120 {
2121 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2122 }
2123 EXPORT_SYMBOL(inode_nohighmem);
2124 
2125 /**
2126  * timespec64_trunc - Truncate timespec64 to a granularity
2127  * @t: Timespec64
2128  * @gran: Granularity in ns.
2129  *
2130  * Truncate a timespec64 to a granularity. Always rounds down. gran must
2131  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2132  */
2133 struct timespec64 timespec64_trunc(struct timespec64 t, unsigned gran)
2134 {
2135 	/* Avoid division in the common cases 1 ns and 1 s. */
2136 	if (gran == 1) {
2137 		/* nothing */
2138 	} else if (gran == NSEC_PER_SEC) {
2139 		t.tv_nsec = 0;
2140 	} else if (gran > 1 && gran < NSEC_PER_SEC) {
2141 		t.tv_nsec -= t.tv_nsec % gran;
2142 	} else {
2143 		WARN(1, "illegal file time granularity: %u", gran);
2144 	}
2145 	return t;
2146 }
2147 EXPORT_SYMBOL(timespec64_trunc);
2148 
2149 /**
2150  * current_time - Return FS time
2151  * @inode: inode.
2152  *
2153  * Return the current time truncated to the time granularity supported by
2154  * the fs.
2155  *
2156  * Note that inode and inode->sb cannot be NULL.
2157  * Otherwise, the function warns and returns time without truncation.
2158  */
2159 struct timespec64 current_time(struct inode *inode)
2160 {
2161 	struct timespec64 now;
2162 
2163 	ktime_get_coarse_real_ts64(&now);
2164 
2165 	if (unlikely(!inode->i_sb)) {
2166 		WARN(1, "current_time() called with uninitialized super_block in the inode");
2167 		return now;
2168 	}
2169 
2170 	return timespec64_trunc(now, inode->i_sb->s_time_gran);
2171 }
2172 EXPORT_SYMBOL(current_time);
2173