1 /* 2 * (C) 1997 Linus Torvalds 3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 4 */ 5 #include <linux/export.h> 6 #include <linux/fs.h> 7 #include <linux/mm.h> 8 #include <linux/backing-dev.h> 9 #include <linux/hash.h> 10 #include <linux/swap.h> 11 #include <linux/security.h> 12 #include <linux/cdev.h> 13 #include <linux/bootmem.h> 14 #include <linux/fsnotify.h> 15 #include <linux/mount.h> 16 #include <linux/posix_acl.h> 17 #include <linux/prefetch.h> 18 #include <linux/buffer_head.h> /* for inode_has_buffers */ 19 #include <linux/ratelimit.h> 20 #include <linux/list_lru.h> 21 #include <linux/iversion.h> 22 #include <trace/events/writeback.h> 23 #include "internal.h" 24 25 /* 26 * Inode locking rules: 27 * 28 * inode->i_lock protects: 29 * inode->i_state, inode->i_hash, __iget() 30 * Inode LRU list locks protect: 31 * inode->i_sb->s_inode_lru, inode->i_lru 32 * inode->i_sb->s_inode_list_lock protects: 33 * inode->i_sb->s_inodes, inode->i_sb_list 34 * bdi->wb.list_lock protects: 35 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 36 * inode_hash_lock protects: 37 * inode_hashtable, inode->i_hash 38 * 39 * Lock ordering: 40 * 41 * inode->i_sb->s_inode_list_lock 42 * inode->i_lock 43 * Inode LRU list locks 44 * 45 * bdi->wb.list_lock 46 * inode->i_lock 47 * 48 * inode_hash_lock 49 * inode->i_sb->s_inode_list_lock 50 * inode->i_lock 51 * 52 * iunique_lock 53 * inode_hash_lock 54 */ 55 56 static unsigned int i_hash_mask __read_mostly; 57 static unsigned int i_hash_shift __read_mostly; 58 static struct hlist_head *inode_hashtable __read_mostly; 59 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 60 61 /* 62 * Empty aops. Can be used for the cases where the user does not 63 * define any of the address_space operations. 64 */ 65 const struct address_space_operations empty_aops = { 66 }; 67 EXPORT_SYMBOL(empty_aops); 68 69 /* 70 * Statistics gathering.. 71 */ 72 struct inodes_stat_t inodes_stat; 73 74 static DEFINE_PER_CPU(unsigned long, nr_inodes); 75 static DEFINE_PER_CPU(unsigned long, nr_unused); 76 77 static struct kmem_cache *inode_cachep __read_mostly; 78 79 static long get_nr_inodes(void) 80 { 81 int i; 82 long sum = 0; 83 for_each_possible_cpu(i) 84 sum += per_cpu(nr_inodes, i); 85 return sum < 0 ? 0 : sum; 86 } 87 88 static inline long get_nr_inodes_unused(void) 89 { 90 int i; 91 long sum = 0; 92 for_each_possible_cpu(i) 93 sum += per_cpu(nr_unused, i); 94 return sum < 0 ? 0 : sum; 95 } 96 97 long get_nr_dirty_inodes(void) 98 { 99 /* not actually dirty inodes, but a wild approximation */ 100 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 101 return nr_dirty > 0 ? nr_dirty : 0; 102 } 103 104 /* 105 * Handle nr_inode sysctl 106 */ 107 #ifdef CONFIG_SYSCTL 108 int proc_nr_inodes(struct ctl_table *table, int write, 109 void __user *buffer, size_t *lenp, loff_t *ppos) 110 { 111 inodes_stat.nr_inodes = get_nr_inodes(); 112 inodes_stat.nr_unused = get_nr_inodes_unused(); 113 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 114 } 115 #endif 116 117 static int no_open(struct inode *inode, struct file *file) 118 { 119 return -ENXIO; 120 } 121 122 /** 123 * inode_init_always - perform inode structure initialisation 124 * @sb: superblock inode belongs to 125 * @inode: inode to initialise 126 * 127 * These are initializations that need to be done on every inode 128 * allocation as the fields are not initialised by slab allocation. 129 */ 130 int inode_init_always(struct super_block *sb, struct inode *inode) 131 { 132 static const struct inode_operations empty_iops; 133 static const struct file_operations no_open_fops = {.open = no_open}; 134 struct address_space *const mapping = &inode->i_data; 135 136 inode->i_sb = sb; 137 inode->i_blkbits = sb->s_blocksize_bits; 138 inode->i_flags = 0; 139 atomic_set(&inode->i_count, 1); 140 inode->i_op = &empty_iops; 141 inode->i_fop = &no_open_fops; 142 inode->__i_nlink = 1; 143 inode->i_opflags = 0; 144 if (sb->s_xattr) 145 inode->i_opflags |= IOP_XATTR; 146 i_uid_write(inode, 0); 147 i_gid_write(inode, 0); 148 atomic_set(&inode->i_writecount, 0); 149 inode->i_size = 0; 150 inode->i_write_hint = WRITE_LIFE_NOT_SET; 151 inode->i_blocks = 0; 152 inode->i_bytes = 0; 153 inode->i_generation = 0; 154 inode->i_pipe = NULL; 155 inode->i_bdev = NULL; 156 inode->i_cdev = NULL; 157 inode->i_link = NULL; 158 inode->i_dir_seq = 0; 159 inode->i_rdev = 0; 160 inode->dirtied_when = 0; 161 162 #ifdef CONFIG_CGROUP_WRITEBACK 163 inode->i_wb_frn_winner = 0; 164 inode->i_wb_frn_avg_time = 0; 165 inode->i_wb_frn_history = 0; 166 #endif 167 168 if (security_inode_alloc(inode)) 169 goto out; 170 spin_lock_init(&inode->i_lock); 171 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 172 173 init_rwsem(&inode->i_rwsem); 174 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 175 176 atomic_set(&inode->i_dio_count, 0); 177 178 mapping->a_ops = &empty_aops; 179 mapping->host = inode; 180 mapping->flags = 0; 181 atomic_set(&mapping->i_mmap_writable, 0); 182 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 183 mapping->private_data = NULL; 184 mapping->writeback_index = 0; 185 inode->i_private = NULL; 186 inode->i_mapping = mapping; 187 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 188 #ifdef CONFIG_FS_POSIX_ACL 189 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 190 #endif 191 192 #ifdef CONFIG_FSNOTIFY 193 inode->i_fsnotify_mask = 0; 194 #endif 195 inode->i_flctx = NULL; 196 this_cpu_inc(nr_inodes); 197 198 return 0; 199 out: 200 return -ENOMEM; 201 } 202 EXPORT_SYMBOL(inode_init_always); 203 204 static struct inode *alloc_inode(struct super_block *sb) 205 { 206 struct inode *inode; 207 208 if (sb->s_op->alloc_inode) 209 inode = sb->s_op->alloc_inode(sb); 210 else 211 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 212 213 if (!inode) 214 return NULL; 215 216 if (unlikely(inode_init_always(sb, inode))) { 217 if (inode->i_sb->s_op->destroy_inode) 218 inode->i_sb->s_op->destroy_inode(inode); 219 else 220 kmem_cache_free(inode_cachep, inode); 221 return NULL; 222 } 223 224 return inode; 225 } 226 227 void free_inode_nonrcu(struct inode *inode) 228 { 229 kmem_cache_free(inode_cachep, inode); 230 } 231 EXPORT_SYMBOL(free_inode_nonrcu); 232 233 void __destroy_inode(struct inode *inode) 234 { 235 BUG_ON(inode_has_buffers(inode)); 236 inode_detach_wb(inode); 237 security_inode_free(inode); 238 fsnotify_inode_delete(inode); 239 locks_free_lock_context(inode); 240 if (!inode->i_nlink) { 241 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 242 atomic_long_dec(&inode->i_sb->s_remove_count); 243 } 244 245 #ifdef CONFIG_FS_POSIX_ACL 246 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 247 posix_acl_release(inode->i_acl); 248 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 249 posix_acl_release(inode->i_default_acl); 250 #endif 251 this_cpu_dec(nr_inodes); 252 } 253 EXPORT_SYMBOL(__destroy_inode); 254 255 static void i_callback(struct rcu_head *head) 256 { 257 struct inode *inode = container_of(head, struct inode, i_rcu); 258 kmem_cache_free(inode_cachep, inode); 259 } 260 261 static void destroy_inode(struct inode *inode) 262 { 263 BUG_ON(!list_empty(&inode->i_lru)); 264 __destroy_inode(inode); 265 if (inode->i_sb->s_op->destroy_inode) 266 inode->i_sb->s_op->destroy_inode(inode); 267 else 268 call_rcu(&inode->i_rcu, i_callback); 269 } 270 271 /** 272 * drop_nlink - directly drop an inode's link count 273 * @inode: inode 274 * 275 * This is a low-level filesystem helper to replace any 276 * direct filesystem manipulation of i_nlink. In cases 277 * where we are attempting to track writes to the 278 * filesystem, a decrement to zero means an imminent 279 * write when the file is truncated and actually unlinked 280 * on the filesystem. 281 */ 282 void drop_nlink(struct inode *inode) 283 { 284 WARN_ON(inode->i_nlink == 0); 285 inode->__i_nlink--; 286 if (!inode->i_nlink) 287 atomic_long_inc(&inode->i_sb->s_remove_count); 288 } 289 EXPORT_SYMBOL(drop_nlink); 290 291 /** 292 * clear_nlink - directly zero an inode's link count 293 * @inode: inode 294 * 295 * This is a low-level filesystem helper to replace any 296 * direct filesystem manipulation of i_nlink. See 297 * drop_nlink() for why we care about i_nlink hitting zero. 298 */ 299 void clear_nlink(struct inode *inode) 300 { 301 if (inode->i_nlink) { 302 inode->__i_nlink = 0; 303 atomic_long_inc(&inode->i_sb->s_remove_count); 304 } 305 } 306 EXPORT_SYMBOL(clear_nlink); 307 308 /** 309 * set_nlink - directly set an inode's link count 310 * @inode: inode 311 * @nlink: new nlink (should be non-zero) 312 * 313 * This is a low-level filesystem helper to replace any 314 * direct filesystem manipulation of i_nlink. 315 */ 316 void set_nlink(struct inode *inode, unsigned int nlink) 317 { 318 if (!nlink) { 319 clear_nlink(inode); 320 } else { 321 /* Yes, some filesystems do change nlink from zero to one */ 322 if (inode->i_nlink == 0) 323 atomic_long_dec(&inode->i_sb->s_remove_count); 324 325 inode->__i_nlink = nlink; 326 } 327 } 328 EXPORT_SYMBOL(set_nlink); 329 330 /** 331 * inc_nlink - directly increment an inode's link count 332 * @inode: inode 333 * 334 * This is a low-level filesystem helper to replace any 335 * direct filesystem manipulation of i_nlink. Currently, 336 * it is only here for parity with dec_nlink(). 337 */ 338 void inc_nlink(struct inode *inode) 339 { 340 if (unlikely(inode->i_nlink == 0)) { 341 WARN_ON(!(inode->i_state & I_LINKABLE)); 342 atomic_long_dec(&inode->i_sb->s_remove_count); 343 } 344 345 inode->__i_nlink++; 346 } 347 EXPORT_SYMBOL(inc_nlink); 348 349 static void __address_space_init_once(struct address_space *mapping) 350 { 351 INIT_RADIX_TREE(&mapping->i_pages, GFP_ATOMIC | __GFP_ACCOUNT); 352 init_rwsem(&mapping->i_mmap_rwsem); 353 INIT_LIST_HEAD(&mapping->private_list); 354 spin_lock_init(&mapping->private_lock); 355 mapping->i_mmap = RB_ROOT_CACHED; 356 } 357 358 void address_space_init_once(struct address_space *mapping) 359 { 360 memset(mapping, 0, sizeof(*mapping)); 361 __address_space_init_once(mapping); 362 } 363 EXPORT_SYMBOL(address_space_init_once); 364 365 /* 366 * These are initializations that only need to be done 367 * once, because the fields are idempotent across use 368 * of the inode, so let the slab aware of that. 369 */ 370 void inode_init_once(struct inode *inode) 371 { 372 memset(inode, 0, sizeof(*inode)); 373 INIT_HLIST_NODE(&inode->i_hash); 374 INIT_LIST_HEAD(&inode->i_devices); 375 INIT_LIST_HEAD(&inode->i_io_list); 376 INIT_LIST_HEAD(&inode->i_wb_list); 377 INIT_LIST_HEAD(&inode->i_lru); 378 __address_space_init_once(&inode->i_data); 379 i_size_ordered_init(inode); 380 } 381 EXPORT_SYMBOL(inode_init_once); 382 383 static void init_once(void *foo) 384 { 385 struct inode *inode = (struct inode *) foo; 386 387 inode_init_once(inode); 388 } 389 390 /* 391 * inode->i_lock must be held 392 */ 393 void __iget(struct inode *inode) 394 { 395 atomic_inc(&inode->i_count); 396 } 397 398 /* 399 * get additional reference to inode; caller must already hold one. 400 */ 401 void ihold(struct inode *inode) 402 { 403 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 404 } 405 EXPORT_SYMBOL(ihold); 406 407 static void inode_lru_list_add(struct inode *inode) 408 { 409 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) 410 this_cpu_inc(nr_unused); 411 else 412 inode->i_state |= I_REFERENCED; 413 } 414 415 /* 416 * Add inode to LRU if needed (inode is unused and clean). 417 * 418 * Needs inode->i_lock held. 419 */ 420 void inode_add_lru(struct inode *inode) 421 { 422 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC | 423 I_FREEING | I_WILL_FREE)) && 424 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE) 425 inode_lru_list_add(inode); 426 } 427 428 429 static void inode_lru_list_del(struct inode *inode) 430 { 431 432 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) 433 this_cpu_dec(nr_unused); 434 } 435 436 /** 437 * inode_sb_list_add - add inode to the superblock list of inodes 438 * @inode: inode to add 439 */ 440 void inode_sb_list_add(struct inode *inode) 441 { 442 spin_lock(&inode->i_sb->s_inode_list_lock); 443 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 444 spin_unlock(&inode->i_sb->s_inode_list_lock); 445 } 446 EXPORT_SYMBOL_GPL(inode_sb_list_add); 447 448 static inline void inode_sb_list_del(struct inode *inode) 449 { 450 if (!list_empty(&inode->i_sb_list)) { 451 spin_lock(&inode->i_sb->s_inode_list_lock); 452 list_del_init(&inode->i_sb_list); 453 spin_unlock(&inode->i_sb->s_inode_list_lock); 454 } 455 } 456 457 static unsigned long hash(struct super_block *sb, unsigned long hashval) 458 { 459 unsigned long tmp; 460 461 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 462 L1_CACHE_BYTES; 463 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 464 return tmp & i_hash_mask; 465 } 466 467 /** 468 * __insert_inode_hash - hash an inode 469 * @inode: unhashed inode 470 * @hashval: unsigned long value used to locate this object in the 471 * inode_hashtable. 472 * 473 * Add an inode to the inode hash for this superblock. 474 */ 475 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 476 { 477 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 478 479 spin_lock(&inode_hash_lock); 480 spin_lock(&inode->i_lock); 481 hlist_add_head(&inode->i_hash, b); 482 spin_unlock(&inode->i_lock); 483 spin_unlock(&inode_hash_lock); 484 } 485 EXPORT_SYMBOL(__insert_inode_hash); 486 487 /** 488 * __remove_inode_hash - remove an inode from the hash 489 * @inode: inode to unhash 490 * 491 * Remove an inode from the superblock. 492 */ 493 void __remove_inode_hash(struct inode *inode) 494 { 495 spin_lock(&inode_hash_lock); 496 spin_lock(&inode->i_lock); 497 hlist_del_init(&inode->i_hash); 498 spin_unlock(&inode->i_lock); 499 spin_unlock(&inode_hash_lock); 500 } 501 EXPORT_SYMBOL(__remove_inode_hash); 502 503 void clear_inode(struct inode *inode) 504 { 505 /* 506 * We have to cycle the i_pages lock here because reclaim can be in the 507 * process of removing the last page (in __delete_from_page_cache()) 508 * and we must not free the mapping under it. 509 */ 510 xa_lock_irq(&inode->i_data.i_pages); 511 BUG_ON(inode->i_data.nrpages); 512 BUG_ON(inode->i_data.nrexceptional); 513 xa_unlock_irq(&inode->i_data.i_pages); 514 BUG_ON(!list_empty(&inode->i_data.private_list)); 515 BUG_ON(!(inode->i_state & I_FREEING)); 516 BUG_ON(inode->i_state & I_CLEAR); 517 BUG_ON(!list_empty(&inode->i_wb_list)); 518 /* don't need i_lock here, no concurrent mods to i_state */ 519 inode->i_state = I_FREEING | I_CLEAR; 520 } 521 EXPORT_SYMBOL(clear_inode); 522 523 /* 524 * Free the inode passed in, removing it from the lists it is still connected 525 * to. We remove any pages still attached to the inode and wait for any IO that 526 * is still in progress before finally destroying the inode. 527 * 528 * An inode must already be marked I_FREEING so that we avoid the inode being 529 * moved back onto lists if we race with other code that manipulates the lists 530 * (e.g. writeback_single_inode). The caller is responsible for setting this. 531 * 532 * An inode must already be removed from the LRU list before being evicted from 533 * the cache. This should occur atomically with setting the I_FREEING state 534 * flag, so no inodes here should ever be on the LRU when being evicted. 535 */ 536 static void evict(struct inode *inode) 537 { 538 const struct super_operations *op = inode->i_sb->s_op; 539 540 BUG_ON(!(inode->i_state & I_FREEING)); 541 BUG_ON(!list_empty(&inode->i_lru)); 542 543 if (!list_empty(&inode->i_io_list)) 544 inode_io_list_del(inode); 545 546 inode_sb_list_del(inode); 547 548 /* 549 * Wait for flusher thread to be done with the inode so that filesystem 550 * does not start destroying it while writeback is still running. Since 551 * the inode has I_FREEING set, flusher thread won't start new work on 552 * the inode. We just have to wait for running writeback to finish. 553 */ 554 inode_wait_for_writeback(inode); 555 556 if (op->evict_inode) { 557 op->evict_inode(inode); 558 } else { 559 truncate_inode_pages_final(&inode->i_data); 560 clear_inode(inode); 561 } 562 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 563 bd_forget(inode); 564 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 565 cd_forget(inode); 566 567 remove_inode_hash(inode); 568 569 spin_lock(&inode->i_lock); 570 wake_up_bit(&inode->i_state, __I_NEW); 571 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 572 spin_unlock(&inode->i_lock); 573 574 destroy_inode(inode); 575 } 576 577 /* 578 * dispose_list - dispose of the contents of a local list 579 * @head: the head of the list to free 580 * 581 * Dispose-list gets a local list with local inodes in it, so it doesn't 582 * need to worry about list corruption and SMP locks. 583 */ 584 static void dispose_list(struct list_head *head) 585 { 586 while (!list_empty(head)) { 587 struct inode *inode; 588 589 inode = list_first_entry(head, struct inode, i_lru); 590 list_del_init(&inode->i_lru); 591 592 evict(inode); 593 cond_resched(); 594 } 595 } 596 597 /** 598 * evict_inodes - evict all evictable inodes for a superblock 599 * @sb: superblock to operate on 600 * 601 * Make sure that no inodes with zero refcount are retained. This is 602 * called by superblock shutdown after having SB_ACTIVE flag removed, 603 * so any inode reaching zero refcount during or after that call will 604 * be immediately evicted. 605 */ 606 void evict_inodes(struct super_block *sb) 607 { 608 struct inode *inode, *next; 609 LIST_HEAD(dispose); 610 611 again: 612 spin_lock(&sb->s_inode_list_lock); 613 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 614 if (atomic_read(&inode->i_count)) 615 continue; 616 617 spin_lock(&inode->i_lock); 618 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 619 spin_unlock(&inode->i_lock); 620 continue; 621 } 622 623 inode->i_state |= I_FREEING; 624 inode_lru_list_del(inode); 625 spin_unlock(&inode->i_lock); 626 list_add(&inode->i_lru, &dispose); 627 628 /* 629 * We can have a ton of inodes to evict at unmount time given 630 * enough memory, check to see if we need to go to sleep for a 631 * bit so we don't livelock. 632 */ 633 if (need_resched()) { 634 spin_unlock(&sb->s_inode_list_lock); 635 cond_resched(); 636 dispose_list(&dispose); 637 goto again; 638 } 639 } 640 spin_unlock(&sb->s_inode_list_lock); 641 642 dispose_list(&dispose); 643 } 644 EXPORT_SYMBOL_GPL(evict_inodes); 645 646 /** 647 * invalidate_inodes - attempt to free all inodes on a superblock 648 * @sb: superblock to operate on 649 * @kill_dirty: flag to guide handling of dirty inodes 650 * 651 * Attempts to free all inodes for a given superblock. If there were any 652 * busy inodes return a non-zero value, else zero. 653 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 654 * them as busy. 655 */ 656 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 657 { 658 int busy = 0; 659 struct inode *inode, *next; 660 LIST_HEAD(dispose); 661 662 spin_lock(&sb->s_inode_list_lock); 663 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 664 spin_lock(&inode->i_lock); 665 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 666 spin_unlock(&inode->i_lock); 667 continue; 668 } 669 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) { 670 spin_unlock(&inode->i_lock); 671 busy = 1; 672 continue; 673 } 674 if (atomic_read(&inode->i_count)) { 675 spin_unlock(&inode->i_lock); 676 busy = 1; 677 continue; 678 } 679 680 inode->i_state |= I_FREEING; 681 inode_lru_list_del(inode); 682 spin_unlock(&inode->i_lock); 683 list_add(&inode->i_lru, &dispose); 684 } 685 spin_unlock(&sb->s_inode_list_lock); 686 687 dispose_list(&dispose); 688 689 return busy; 690 } 691 692 /* 693 * Isolate the inode from the LRU in preparation for freeing it. 694 * 695 * Any inodes which are pinned purely because of attached pagecache have their 696 * pagecache removed. If the inode has metadata buffers attached to 697 * mapping->private_list then try to remove them. 698 * 699 * If the inode has the I_REFERENCED flag set, then it means that it has been 700 * used recently - the flag is set in iput_final(). When we encounter such an 701 * inode, clear the flag and move it to the back of the LRU so it gets another 702 * pass through the LRU before it gets reclaimed. This is necessary because of 703 * the fact we are doing lazy LRU updates to minimise lock contention so the 704 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 705 * with this flag set because they are the inodes that are out of order. 706 */ 707 static enum lru_status inode_lru_isolate(struct list_head *item, 708 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 709 { 710 struct list_head *freeable = arg; 711 struct inode *inode = container_of(item, struct inode, i_lru); 712 713 /* 714 * we are inverting the lru lock/inode->i_lock here, so use a trylock. 715 * If we fail to get the lock, just skip it. 716 */ 717 if (!spin_trylock(&inode->i_lock)) 718 return LRU_SKIP; 719 720 /* 721 * Referenced or dirty inodes are still in use. Give them another pass 722 * through the LRU as we canot reclaim them now. 723 */ 724 if (atomic_read(&inode->i_count) || 725 (inode->i_state & ~I_REFERENCED)) { 726 list_lru_isolate(lru, &inode->i_lru); 727 spin_unlock(&inode->i_lock); 728 this_cpu_dec(nr_unused); 729 return LRU_REMOVED; 730 } 731 732 /* recently referenced inodes get one more pass */ 733 if (inode->i_state & I_REFERENCED) { 734 inode->i_state &= ~I_REFERENCED; 735 spin_unlock(&inode->i_lock); 736 return LRU_ROTATE; 737 } 738 739 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 740 __iget(inode); 741 spin_unlock(&inode->i_lock); 742 spin_unlock(lru_lock); 743 if (remove_inode_buffers(inode)) { 744 unsigned long reap; 745 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 746 if (current_is_kswapd()) 747 __count_vm_events(KSWAPD_INODESTEAL, reap); 748 else 749 __count_vm_events(PGINODESTEAL, reap); 750 if (current->reclaim_state) 751 current->reclaim_state->reclaimed_slab += reap; 752 } 753 iput(inode); 754 spin_lock(lru_lock); 755 return LRU_RETRY; 756 } 757 758 WARN_ON(inode->i_state & I_NEW); 759 inode->i_state |= I_FREEING; 760 list_lru_isolate_move(lru, &inode->i_lru, freeable); 761 spin_unlock(&inode->i_lock); 762 763 this_cpu_dec(nr_unused); 764 return LRU_REMOVED; 765 } 766 767 /* 768 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 769 * This is called from the superblock shrinker function with a number of inodes 770 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 771 * then are freed outside inode_lock by dispose_list(). 772 */ 773 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 774 { 775 LIST_HEAD(freeable); 776 long freed; 777 778 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 779 inode_lru_isolate, &freeable); 780 dispose_list(&freeable); 781 return freed; 782 } 783 784 static void __wait_on_freeing_inode(struct inode *inode); 785 /* 786 * Called with the inode lock held. 787 */ 788 static struct inode *find_inode(struct super_block *sb, 789 struct hlist_head *head, 790 int (*test)(struct inode *, void *), 791 void *data) 792 { 793 struct inode *inode = NULL; 794 795 repeat: 796 hlist_for_each_entry(inode, head, i_hash) { 797 if (inode->i_sb != sb) 798 continue; 799 if (!test(inode, data)) 800 continue; 801 spin_lock(&inode->i_lock); 802 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 803 __wait_on_freeing_inode(inode); 804 goto repeat; 805 } 806 __iget(inode); 807 spin_unlock(&inode->i_lock); 808 return inode; 809 } 810 return NULL; 811 } 812 813 /* 814 * find_inode_fast is the fast path version of find_inode, see the comment at 815 * iget_locked for details. 816 */ 817 static struct inode *find_inode_fast(struct super_block *sb, 818 struct hlist_head *head, unsigned long ino) 819 { 820 struct inode *inode = NULL; 821 822 repeat: 823 hlist_for_each_entry(inode, head, i_hash) { 824 if (inode->i_ino != ino) 825 continue; 826 if (inode->i_sb != sb) 827 continue; 828 spin_lock(&inode->i_lock); 829 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 830 __wait_on_freeing_inode(inode); 831 goto repeat; 832 } 833 __iget(inode); 834 spin_unlock(&inode->i_lock); 835 return inode; 836 } 837 return NULL; 838 } 839 840 /* 841 * Each cpu owns a range of LAST_INO_BATCH numbers. 842 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 843 * to renew the exhausted range. 844 * 845 * This does not significantly increase overflow rate because every CPU can 846 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 847 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 848 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 849 * overflow rate by 2x, which does not seem too significant. 850 * 851 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 852 * error if st_ino won't fit in target struct field. Use 32bit counter 853 * here to attempt to avoid that. 854 */ 855 #define LAST_INO_BATCH 1024 856 static DEFINE_PER_CPU(unsigned int, last_ino); 857 858 unsigned int get_next_ino(void) 859 { 860 unsigned int *p = &get_cpu_var(last_ino); 861 unsigned int res = *p; 862 863 #ifdef CONFIG_SMP 864 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 865 static atomic_t shared_last_ino; 866 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 867 868 res = next - LAST_INO_BATCH; 869 } 870 #endif 871 872 res++; 873 /* get_next_ino should not provide a 0 inode number */ 874 if (unlikely(!res)) 875 res++; 876 *p = res; 877 put_cpu_var(last_ino); 878 return res; 879 } 880 EXPORT_SYMBOL(get_next_ino); 881 882 /** 883 * new_inode_pseudo - obtain an inode 884 * @sb: superblock 885 * 886 * Allocates a new inode for given superblock. 887 * Inode wont be chained in superblock s_inodes list 888 * This means : 889 * - fs can't be unmount 890 * - quotas, fsnotify, writeback can't work 891 */ 892 struct inode *new_inode_pseudo(struct super_block *sb) 893 { 894 struct inode *inode = alloc_inode(sb); 895 896 if (inode) { 897 spin_lock(&inode->i_lock); 898 inode->i_state = 0; 899 spin_unlock(&inode->i_lock); 900 INIT_LIST_HEAD(&inode->i_sb_list); 901 } 902 return inode; 903 } 904 905 /** 906 * new_inode - obtain an inode 907 * @sb: superblock 908 * 909 * Allocates a new inode for given superblock. The default gfp_mask 910 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 911 * If HIGHMEM pages are unsuitable or it is known that pages allocated 912 * for the page cache are not reclaimable or migratable, 913 * mapping_set_gfp_mask() must be called with suitable flags on the 914 * newly created inode's mapping 915 * 916 */ 917 struct inode *new_inode(struct super_block *sb) 918 { 919 struct inode *inode; 920 921 spin_lock_prefetch(&sb->s_inode_list_lock); 922 923 inode = new_inode_pseudo(sb); 924 if (inode) 925 inode_sb_list_add(inode); 926 return inode; 927 } 928 EXPORT_SYMBOL(new_inode); 929 930 #ifdef CONFIG_DEBUG_LOCK_ALLOC 931 void lockdep_annotate_inode_mutex_key(struct inode *inode) 932 { 933 if (S_ISDIR(inode->i_mode)) { 934 struct file_system_type *type = inode->i_sb->s_type; 935 936 /* Set new key only if filesystem hasn't already changed it */ 937 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 938 /* 939 * ensure nobody is actually holding i_mutex 940 */ 941 // mutex_destroy(&inode->i_mutex); 942 init_rwsem(&inode->i_rwsem); 943 lockdep_set_class(&inode->i_rwsem, 944 &type->i_mutex_dir_key); 945 } 946 } 947 } 948 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 949 #endif 950 951 /** 952 * unlock_new_inode - clear the I_NEW state and wake up any waiters 953 * @inode: new inode to unlock 954 * 955 * Called when the inode is fully initialised to clear the new state of the 956 * inode and wake up anyone waiting for the inode to finish initialisation. 957 */ 958 void unlock_new_inode(struct inode *inode) 959 { 960 lockdep_annotate_inode_mutex_key(inode); 961 spin_lock(&inode->i_lock); 962 WARN_ON(!(inode->i_state & I_NEW)); 963 inode->i_state &= ~I_NEW; 964 smp_mb(); 965 wake_up_bit(&inode->i_state, __I_NEW); 966 spin_unlock(&inode->i_lock); 967 } 968 EXPORT_SYMBOL(unlock_new_inode); 969 970 /** 971 * lock_two_nondirectories - take two i_mutexes on non-directory objects 972 * 973 * Lock any non-NULL argument that is not a directory. 974 * Zero, one or two objects may be locked by this function. 975 * 976 * @inode1: first inode to lock 977 * @inode2: second inode to lock 978 */ 979 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 980 { 981 if (inode1 > inode2) 982 swap(inode1, inode2); 983 984 if (inode1 && !S_ISDIR(inode1->i_mode)) 985 inode_lock(inode1); 986 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 987 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 988 } 989 EXPORT_SYMBOL(lock_two_nondirectories); 990 991 /** 992 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 993 * @inode1: first inode to unlock 994 * @inode2: second inode to unlock 995 */ 996 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 997 { 998 if (inode1 && !S_ISDIR(inode1->i_mode)) 999 inode_unlock(inode1); 1000 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 1001 inode_unlock(inode2); 1002 } 1003 EXPORT_SYMBOL(unlock_two_nondirectories); 1004 1005 /** 1006 * iget5_locked - obtain an inode from a mounted file system 1007 * @sb: super block of file system 1008 * @hashval: hash value (usually inode number) to get 1009 * @test: callback used for comparisons between inodes 1010 * @set: callback used to initialize a new struct inode 1011 * @data: opaque data pointer to pass to @test and @set 1012 * 1013 * Search for the inode specified by @hashval and @data in the inode cache, 1014 * and if present it is return it with an increased reference count. This is 1015 * a generalized version of iget_locked() for file systems where the inode 1016 * number is not sufficient for unique identification of an inode. 1017 * 1018 * If the inode is not in cache, allocate a new inode and return it locked, 1019 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1020 * before unlocking it via unlock_new_inode(). 1021 * 1022 * Note both @test and @set are called with the inode_hash_lock held, so can't 1023 * sleep. 1024 */ 1025 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1026 int (*test)(struct inode *, void *), 1027 int (*set)(struct inode *, void *), void *data) 1028 { 1029 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1030 struct inode *inode; 1031 again: 1032 spin_lock(&inode_hash_lock); 1033 inode = find_inode(sb, head, test, data); 1034 spin_unlock(&inode_hash_lock); 1035 1036 if (inode) { 1037 wait_on_inode(inode); 1038 if (unlikely(inode_unhashed(inode))) { 1039 iput(inode); 1040 goto again; 1041 } 1042 return inode; 1043 } 1044 1045 inode = alloc_inode(sb); 1046 if (inode) { 1047 struct inode *old; 1048 1049 spin_lock(&inode_hash_lock); 1050 /* We released the lock, so.. */ 1051 old = find_inode(sb, head, test, data); 1052 if (!old) { 1053 if (set(inode, data)) 1054 goto set_failed; 1055 1056 spin_lock(&inode->i_lock); 1057 inode->i_state = I_NEW; 1058 hlist_add_head(&inode->i_hash, head); 1059 spin_unlock(&inode->i_lock); 1060 inode_sb_list_add(inode); 1061 spin_unlock(&inode_hash_lock); 1062 1063 /* Return the locked inode with I_NEW set, the 1064 * caller is responsible for filling in the contents 1065 */ 1066 return inode; 1067 } 1068 1069 /* 1070 * Uhhuh, somebody else created the same inode under 1071 * us. Use the old inode instead of the one we just 1072 * allocated. 1073 */ 1074 spin_unlock(&inode_hash_lock); 1075 destroy_inode(inode); 1076 inode = old; 1077 wait_on_inode(inode); 1078 if (unlikely(inode_unhashed(inode))) { 1079 iput(inode); 1080 goto again; 1081 } 1082 } 1083 return inode; 1084 1085 set_failed: 1086 spin_unlock(&inode_hash_lock); 1087 destroy_inode(inode); 1088 return NULL; 1089 } 1090 EXPORT_SYMBOL(iget5_locked); 1091 1092 /** 1093 * iget_locked - obtain an inode from a mounted file system 1094 * @sb: super block of file system 1095 * @ino: inode number to get 1096 * 1097 * Search for the inode specified by @ino in the inode cache and if present 1098 * return it with an increased reference count. This is for file systems 1099 * where the inode number is sufficient for unique identification of an inode. 1100 * 1101 * If the inode is not in cache, allocate a new inode and return it locked, 1102 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1103 * before unlocking it via unlock_new_inode(). 1104 */ 1105 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1106 { 1107 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1108 struct inode *inode; 1109 again: 1110 spin_lock(&inode_hash_lock); 1111 inode = find_inode_fast(sb, head, ino); 1112 spin_unlock(&inode_hash_lock); 1113 if (inode) { 1114 wait_on_inode(inode); 1115 if (unlikely(inode_unhashed(inode))) { 1116 iput(inode); 1117 goto again; 1118 } 1119 return inode; 1120 } 1121 1122 inode = alloc_inode(sb); 1123 if (inode) { 1124 struct inode *old; 1125 1126 spin_lock(&inode_hash_lock); 1127 /* We released the lock, so.. */ 1128 old = find_inode_fast(sb, head, ino); 1129 if (!old) { 1130 inode->i_ino = ino; 1131 spin_lock(&inode->i_lock); 1132 inode->i_state = I_NEW; 1133 hlist_add_head(&inode->i_hash, head); 1134 spin_unlock(&inode->i_lock); 1135 inode_sb_list_add(inode); 1136 spin_unlock(&inode_hash_lock); 1137 1138 /* Return the locked inode with I_NEW set, the 1139 * caller is responsible for filling in the contents 1140 */ 1141 return inode; 1142 } 1143 1144 /* 1145 * Uhhuh, somebody else created the same inode under 1146 * us. Use the old inode instead of the one we just 1147 * allocated. 1148 */ 1149 spin_unlock(&inode_hash_lock); 1150 destroy_inode(inode); 1151 inode = old; 1152 wait_on_inode(inode); 1153 if (unlikely(inode_unhashed(inode))) { 1154 iput(inode); 1155 goto again; 1156 } 1157 } 1158 return inode; 1159 } 1160 EXPORT_SYMBOL(iget_locked); 1161 1162 /* 1163 * search the inode cache for a matching inode number. 1164 * If we find one, then the inode number we are trying to 1165 * allocate is not unique and so we should not use it. 1166 * 1167 * Returns 1 if the inode number is unique, 0 if it is not. 1168 */ 1169 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1170 { 1171 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1172 struct inode *inode; 1173 1174 spin_lock(&inode_hash_lock); 1175 hlist_for_each_entry(inode, b, i_hash) { 1176 if (inode->i_ino == ino && inode->i_sb == sb) { 1177 spin_unlock(&inode_hash_lock); 1178 return 0; 1179 } 1180 } 1181 spin_unlock(&inode_hash_lock); 1182 1183 return 1; 1184 } 1185 1186 /** 1187 * iunique - get a unique inode number 1188 * @sb: superblock 1189 * @max_reserved: highest reserved inode number 1190 * 1191 * Obtain an inode number that is unique on the system for a given 1192 * superblock. This is used by file systems that have no natural 1193 * permanent inode numbering system. An inode number is returned that 1194 * is higher than the reserved limit but unique. 1195 * 1196 * BUGS: 1197 * With a large number of inodes live on the file system this function 1198 * currently becomes quite slow. 1199 */ 1200 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1201 { 1202 /* 1203 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1204 * error if st_ino won't fit in target struct field. Use 32bit counter 1205 * here to attempt to avoid that. 1206 */ 1207 static DEFINE_SPINLOCK(iunique_lock); 1208 static unsigned int counter; 1209 ino_t res; 1210 1211 spin_lock(&iunique_lock); 1212 do { 1213 if (counter <= max_reserved) 1214 counter = max_reserved + 1; 1215 res = counter++; 1216 } while (!test_inode_iunique(sb, res)); 1217 spin_unlock(&iunique_lock); 1218 1219 return res; 1220 } 1221 EXPORT_SYMBOL(iunique); 1222 1223 struct inode *igrab(struct inode *inode) 1224 { 1225 spin_lock(&inode->i_lock); 1226 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1227 __iget(inode); 1228 spin_unlock(&inode->i_lock); 1229 } else { 1230 spin_unlock(&inode->i_lock); 1231 /* 1232 * Handle the case where s_op->clear_inode is not been 1233 * called yet, and somebody is calling igrab 1234 * while the inode is getting freed. 1235 */ 1236 inode = NULL; 1237 } 1238 return inode; 1239 } 1240 EXPORT_SYMBOL(igrab); 1241 1242 /** 1243 * ilookup5_nowait - search for an inode in the inode cache 1244 * @sb: super block of file system to search 1245 * @hashval: hash value (usually inode number) to search for 1246 * @test: callback used for comparisons between inodes 1247 * @data: opaque data pointer to pass to @test 1248 * 1249 * Search for the inode specified by @hashval and @data in the inode cache. 1250 * If the inode is in the cache, the inode is returned with an incremented 1251 * reference count. 1252 * 1253 * Note: I_NEW is not waited upon so you have to be very careful what you do 1254 * with the returned inode. You probably should be using ilookup5() instead. 1255 * 1256 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1257 */ 1258 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1259 int (*test)(struct inode *, void *), void *data) 1260 { 1261 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1262 struct inode *inode; 1263 1264 spin_lock(&inode_hash_lock); 1265 inode = find_inode(sb, head, test, data); 1266 spin_unlock(&inode_hash_lock); 1267 1268 return inode; 1269 } 1270 EXPORT_SYMBOL(ilookup5_nowait); 1271 1272 /** 1273 * ilookup5 - search for an inode in the inode cache 1274 * @sb: super block of file system to search 1275 * @hashval: hash value (usually inode number) to search for 1276 * @test: callback used for comparisons between inodes 1277 * @data: opaque data pointer to pass to @test 1278 * 1279 * Search for the inode specified by @hashval and @data in the inode cache, 1280 * and if the inode is in the cache, return the inode with an incremented 1281 * reference count. Waits on I_NEW before returning the inode. 1282 * returned with an incremented reference count. 1283 * 1284 * This is a generalized version of ilookup() for file systems where the 1285 * inode number is not sufficient for unique identification of an inode. 1286 * 1287 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1288 */ 1289 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1290 int (*test)(struct inode *, void *), void *data) 1291 { 1292 struct inode *inode; 1293 again: 1294 inode = ilookup5_nowait(sb, hashval, test, data); 1295 if (inode) { 1296 wait_on_inode(inode); 1297 if (unlikely(inode_unhashed(inode))) { 1298 iput(inode); 1299 goto again; 1300 } 1301 } 1302 return inode; 1303 } 1304 EXPORT_SYMBOL(ilookup5); 1305 1306 /** 1307 * ilookup - search for an inode in the inode cache 1308 * @sb: super block of file system to search 1309 * @ino: inode number to search for 1310 * 1311 * Search for the inode @ino in the inode cache, and if the inode is in the 1312 * cache, the inode is returned with an incremented reference count. 1313 */ 1314 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1315 { 1316 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1317 struct inode *inode; 1318 again: 1319 spin_lock(&inode_hash_lock); 1320 inode = find_inode_fast(sb, head, ino); 1321 spin_unlock(&inode_hash_lock); 1322 1323 if (inode) { 1324 wait_on_inode(inode); 1325 if (unlikely(inode_unhashed(inode))) { 1326 iput(inode); 1327 goto again; 1328 } 1329 } 1330 return inode; 1331 } 1332 EXPORT_SYMBOL(ilookup); 1333 1334 /** 1335 * find_inode_nowait - find an inode in the inode cache 1336 * @sb: super block of file system to search 1337 * @hashval: hash value (usually inode number) to search for 1338 * @match: callback used for comparisons between inodes 1339 * @data: opaque data pointer to pass to @match 1340 * 1341 * Search for the inode specified by @hashval and @data in the inode 1342 * cache, where the helper function @match will return 0 if the inode 1343 * does not match, 1 if the inode does match, and -1 if the search 1344 * should be stopped. The @match function must be responsible for 1345 * taking the i_lock spin_lock and checking i_state for an inode being 1346 * freed or being initialized, and incrementing the reference count 1347 * before returning 1. It also must not sleep, since it is called with 1348 * the inode_hash_lock spinlock held. 1349 * 1350 * This is a even more generalized version of ilookup5() when the 1351 * function must never block --- find_inode() can block in 1352 * __wait_on_freeing_inode() --- or when the caller can not increment 1353 * the reference count because the resulting iput() might cause an 1354 * inode eviction. The tradeoff is that the @match funtion must be 1355 * very carefully implemented. 1356 */ 1357 struct inode *find_inode_nowait(struct super_block *sb, 1358 unsigned long hashval, 1359 int (*match)(struct inode *, unsigned long, 1360 void *), 1361 void *data) 1362 { 1363 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1364 struct inode *inode, *ret_inode = NULL; 1365 int mval; 1366 1367 spin_lock(&inode_hash_lock); 1368 hlist_for_each_entry(inode, head, i_hash) { 1369 if (inode->i_sb != sb) 1370 continue; 1371 mval = match(inode, hashval, data); 1372 if (mval == 0) 1373 continue; 1374 if (mval == 1) 1375 ret_inode = inode; 1376 goto out; 1377 } 1378 out: 1379 spin_unlock(&inode_hash_lock); 1380 return ret_inode; 1381 } 1382 EXPORT_SYMBOL(find_inode_nowait); 1383 1384 int insert_inode_locked(struct inode *inode) 1385 { 1386 struct super_block *sb = inode->i_sb; 1387 ino_t ino = inode->i_ino; 1388 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1389 1390 while (1) { 1391 struct inode *old = NULL; 1392 spin_lock(&inode_hash_lock); 1393 hlist_for_each_entry(old, head, i_hash) { 1394 if (old->i_ino != ino) 1395 continue; 1396 if (old->i_sb != sb) 1397 continue; 1398 spin_lock(&old->i_lock); 1399 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1400 spin_unlock(&old->i_lock); 1401 continue; 1402 } 1403 break; 1404 } 1405 if (likely(!old)) { 1406 spin_lock(&inode->i_lock); 1407 inode->i_state |= I_NEW; 1408 hlist_add_head(&inode->i_hash, head); 1409 spin_unlock(&inode->i_lock); 1410 spin_unlock(&inode_hash_lock); 1411 return 0; 1412 } 1413 __iget(old); 1414 spin_unlock(&old->i_lock); 1415 spin_unlock(&inode_hash_lock); 1416 wait_on_inode(old); 1417 if (unlikely(!inode_unhashed(old))) { 1418 iput(old); 1419 return -EBUSY; 1420 } 1421 iput(old); 1422 } 1423 } 1424 EXPORT_SYMBOL(insert_inode_locked); 1425 1426 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1427 int (*test)(struct inode *, void *), void *data) 1428 { 1429 struct super_block *sb = inode->i_sb; 1430 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1431 1432 while (1) { 1433 struct inode *old = NULL; 1434 1435 spin_lock(&inode_hash_lock); 1436 hlist_for_each_entry(old, head, i_hash) { 1437 if (old->i_sb != sb) 1438 continue; 1439 if (!test(old, data)) 1440 continue; 1441 spin_lock(&old->i_lock); 1442 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1443 spin_unlock(&old->i_lock); 1444 continue; 1445 } 1446 break; 1447 } 1448 if (likely(!old)) { 1449 spin_lock(&inode->i_lock); 1450 inode->i_state |= I_NEW; 1451 hlist_add_head(&inode->i_hash, head); 1452 spin_unlock(&inode->i_lock); 1453 spin_unlock(&inode_hash_lock); 1454 return 0; 1455 } 1456 __iget(old); 1457 spin_unlock(&old->i_lock); 1458 spin_unlock(&inode_hash_lock); 1459 wait_on_inode(old); 1460 if (unlikely(!inode_unhashed(old))) { 1461 iput(old); 1462 return -EBUSY; 1463 } 1464 iput(old); 1465 } 1466 } 1467 EXPORT_SYMBOL(insert_inode_locked4); 1468 1469 1470 int generic_delete_inode(struct inode *inode) 1471 { 1472 return 1; 1473 } 1474 EXPORT_SYMBOL(generic_delete_inode); 1475 1476 /* 1477 * Called when we're dropping the last reference 1478 * to an inode. 1479 * 1480 * Call the FS "drop_inode()" function, defaulting to 1481 * the legacy UNIX filesystem behaviour. If it tells 1482 * us to evict inode, do so. Otherwise, retain inode 1483 * in cache if fs is alive, sync and evict if fs is 1484 * shutting down. 1485 */ 1486 static void iput_final(struct inode *inode) 1487 { 1488 struct super_block *sb = inode->i_sb; 1489 const struct super_operations *op = inode->i_sb->s_op; 1490 int drop; 1491 1492 WARN_ON(inode->i_state & I_NEW); 1493 1494 if (op->drop_inode) 1495 drop = op->drop_inode(inode); 1496 else 1497 drop = generic_drop_inode(inode); 1498 1499 if (!drop && (sb->s_flags & SB_ACTIVE)) { 1500 inode_add_lru(inode); 1501 spin_unlock(&inode->i_lock); 1502 return; 1503 } 1504 1505 if (!drop) { 1506 inode->i_state |= I_WILL_FREE; 1507 spin_unlock(&inode->i_lock); 1508 write_inode_now(inode, 1); 1509 spin_lock(&inode->i_lock); 1510 WARN_ON(inode->i_state & I_NEW); 1511 inode->i_state &= ~I_WILL_FREE; 1512 } 1513 1514 inode->i_state |= I_FREEING; 1515 if (!list_empty(&inode->i_lru)) 1516 inode_lru_list_del(inode); 1517 spin_unlock(&inode->i_lock); 1518 1519 evict(inode); 1520 } 1521 1522 /** 1523 * iput - put an inode 1524 * @inode: inode to put 1525 * 1526 * Puts an inode, dropping its usage count. If the inode use count hits 1527 * zero, the inode is then freed and may also be destroyed. 1528 * 1529 * Consequently, iput() can sleep. 1530 */ 1531 void iput(struct inode *inode) 1532 { 1533 if (!inode) 1534 return; 1535 BUG_ON(inode->i_state & I_CLEAR); 1536 retry: 1537 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1538 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1539 atomic_inc(&inode->i_count); 1540 spin_unlock(&inode->i_lock); 1541 trace_writeback_lazytime_iput(inode); 1542 mark_inode_dirty_sync(inode); 1543 goto retry; 1544 } 1545 iput_final(inode); 1546 } 1547 } 1548 EXPORT_SYMBOL(iput); 1549 1550 /** 1551 * bmap - find a block number in a file 1552 * @inode: inode of file 1553 * @block: block to find 1554 * 1555 * Returns the block number on the device holding the inode that 1556 * is the disk block number for the block of the file requested. 1557 * That is, asked for block 4 of inode 1 the function will return the 1558 * disk block relative to the disk start that holds that block of the 1559 * file. 1560 */ 1561 sector_t bmap(struct inode *inode, sector_t block) 1562 { 1563 sector_t res = 0; 1564 if (inode->i_mapping->a_ops->bmap) 1565 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1566 return res; 1567 } 1568 EXPORT_SYMBOL(bmap); 1569 1570 /* 1571 * Update times in overlayed inode from underlying real inode 1572 */ 1573 static void update_ovl_inode_times(struct dentry *dentry, struct inode *inode, 1574 bool rcu) 1575 { 1576 struct dentry *upperdentry; 1577 1578 /* 1579 * Nothing to do if in rcu or if non-overlayfs 1580 */ 1581 if (rcu || likely(!(dentry->d_flags & DCACHE_OP_REAL))) 1582 return; 1583 1584 upperdentry = d_real(dentry, NULL, 0, D_REAL_UPPER); 1585 1586 /* 1587 * If file is on lower then we can't update atime, so no worries about 1588 * stale mtime/ctime. 1589 */ 1590 if (upperdentry) { 1591 struct inode *realinode = d_inode(upperdentry); 1592 1593 if ((!timespec_equal(&inode->i_mtime, &realinode->i_mtime) || 1594 !timespec_equal(&inode->i_ctime, &realinode->i_ctime))) { 1595 inode->i_mtime = realinode->i_mtime; 1596 inode->i_ctime = realinode->i_ctime; 1597 } 1598 } 1599 } 1600 1601 /* 1602 * With relative atime, only update atime if the previous atime is 1603 * earlier than either the ctime or mtime or if at least a day has 1604 * passed since the last atime update. 1605 */ 1606 static int relatime_need_update(const struct path *path, struct inode *inode, 1607 struct timespec now, bool rcu) 1608 { 1609 1610 if (!(path->mnt->mnt_flags & MNT_RELATIME)) 1611 return 1; 1612 1613 update_ovl_inode_times(path->dentry, inode, rcu); 1614 /* 1615 * Is mtime younger than atime? If yes, update atime: 1616 */ 1617 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1618 return 1; 1619 /* 1620 * Is ctime younger than atime? If yes, update atime: 1621 */ 1622 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1623 return 1; 1624 1625 /* 1626 * Is the previous atime value older than a day? If yes, 1627 * update atime: 1628 */ 1629 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1630 return 1; 1631 /* 1632 * Good, we can skip the atime update: 1633 */ 1634 return 0; 1635 } 1636 1637 int generic_update_time(struct inode *inode, struct timespec *time, int flags) 1638 { 1639 int iflags = I_DIRTY_TIME; 1640 bool dirty = false; 1641 1642 if (flags & S_ATIME) 1643 inode->i_atime = *time; 1644 if (flags & S_VERSION) 1645 dirty = inode_maybe_inc_iversion(inode, false); 1646 if (flags & S_CTIME) 1647 inode->i_ctime = *time; 1648 if (flags & S_MTIME) 1649 inode->i_mtime = *time; 1650 if ((flags & (S_ATIME | S_CTIME | S_MTIME)) && 1651 !(inode->i_sb->s_flags & SB_LAZYTIME)) 1652 dirty = true; 1653 1654 if (dirty) 1655 iflags |= I_DIRTY_SYNC; 1656 __mark_inode_dirty(inode, iflags); 1657 return 0; 1658 } 1659 EXPORT_SYMBOL(generic_update_time); 1660 1661 /* 1662 * This does the actual work of updating an inodes time or version. Must have 1663 * had called mnt_want_write() before calling this. 1664 */ 1665 static int update_time(struct inode *inode, struct timespec *time, int flags) 1666 { 1667 int (*update_time)(struct inode *, struct timespec *, int); 1668 1669 update_time = inode->i_op->update_time ? inode->i_op->update_time : 1670 generic_update_time; 1671 1672 return update_time(inode, time, flags); 1673 } 1674 1675 /** 1676 * touch_atime - update the access time 1677 * @path: the &struct path to update 1678 * @inode: inode to update 1679 * 1680 * Update the accessed time on an inode and mark it for writeback. 1681 * This function automatically handles read only file systems and media, 1682 * as well as the "noatime" flag and inode specific "noatime" markers. 1683 */ 1684 bool __atime_needs_update(const struct path *path, struct inode *inode, 1685 bool rcu) 1686 { 1687 struct vfsmount *mnt = path->mnt; 1688 struct timespec now; 1689 1690 if (inode->i_flags & S_NOATIME) 1691 return false; 1692 1693 /* Atime updates will likely cause i_uid and i_gid to be written 1694 * back improprely if their true value is unknown to the vfs. 1695 */ 1696 if (HAS_UNMAPPED_ID(inode)) 1697 return false; 1698 1699 if (IS_NOATIME(inode)) 1700 return false; 1701 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 1702 return false; 1703 1704 if (mnt->mnt_flags & MNT_NOATIME) 1705 return false; 1706 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1707 return false; 1708 1709 now = current_time(inode); 1710 1711 if (!relatime_need_update(path, inode, now, rcu)) 1712 return false; 1713 1714 if (timespec_equal(&inode->i_atime, &now)) 1715 return false; 1716 1717 return true; 1718 } 1719 1720 void touch_atime(const struct path *path) 1721 { 1722 struct vfsmount *mnt = path->mnt; 1723 struct inode *inode = d_inode(path->dentry); 1724 struct timespec now; 1725 1726 if (!__atime_needs_update(path, inode, false)) 1727 return; 1728 1729 if (!sb_start_write_trylock(inode->i_sb)) 1730 return; 1731 1732 if (__mnt_want_write(mnt) != 0) 1733 goto skip_update; 1734 /* 1735 * File systems can error out when updating inodes if they need to 1736 * allocate new space to modify an inode (such is the case for 1737 * Btrfs), but since we touch atime while walking down the path we 1738 * really don't care if we failed to update the atime of the file, 1739 * so just ignore the return value. 1740 * We may also fail on filesystems that have the ability to make parts 1741 * of the fs read only, e.g. subvolumes in Btrfs. 1742 */ 1743 now = current_time(inode); 1744 update_time(inode, &now, S_ATIME); 1745 __mnt_drop_write(mnt); 1746 skip_update: 1747 sb_end_write(inode->i_sb); 1748 } 1749 EXPORT_SYMBOL(touch_atime); 1750 1751 /* 1752 * The logic we want is 1753 * 1754 * if suid or (sgid and xgrp) 1755 * remove privs 1756 */ 1757 int should_remove_suid(struct dentry *dentry) 1758 { 1759 umode_t mode = d_inode(dentry)->i_mode; 1760 int kill = 0; 1761 1762 /* suid always must be killed */ 1763 if (unlikely(mode & S_ISUID)) 1764 kill = ATTR_KILL_SUID; 1765 1766 /* 1767 * sgid without any exec bits is just a mandatory locking mark; leave 1768 * it alone. If some exec bits are set, it's a real sgid; kill it. 1769 */ 1770 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1771 kill |= ATTR_KILL_SGID; 1772 1773 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1774 return kill; 1775 1776 return 0; 1777 } 1778 EXPORT_SYMBOL(should_remove_suid); 1779 1780 /* 1781 * Return mask of changes for notify_change() that need to be done as a 1782 * response to write or truncate. Return 0 if nothing has to be changed. 1783 * Negative value on error (change should be denied). 1784 */ 1785 int dentry_needs_remove_privs(struct dentry *dentry) 1786 { 1787 struct inode *inode = d_inode(dentry); 1788 int mask = 0; 1789 int ret; 1790 1791 if (IS_NOSEC(inode)) 1792 return 0; 1793 1794 mask = should_remove_suid(dentry); 1795 ret = security_inode_need_killpriv(dentry); 1796 if (ret < 0) 1797 return ret; 1798 if (ret) 1799 mask |= ATTR_KILL_PRIV; 1800 return mask; 1801 } 1802 1803 static int __remove_privs(struct dentry *dentry, int kill) 1804 { 1805 struct iattr newattrs; 1806 1807 newattrs.ia_valid = ATTR_FORCE | kill; 1808 /* 1809 * Note we call this on write, so notify_change will not 1810 * encounter any conflicting delegations: 1811 */ 1812 return notify_change(dentry, &newattrs, NULL); 1813 } 1814 1815 /* 1816 * Remove special file priviledges (suid, capabilities) when file is written 1817 * to or truncated. 1818 */ 1819 int file_remove_privs(struct file *file) 1820 { 1821 struct dentry *dentry = file_dentry(file); 1822 struct inode *inode = file_inode(file); 1823 int kill; 1824 int error = 0; 1825 1826 /* Fast path for nothing security related */ 1827 if (IS_NOSEC(inode)) 1828 return 0; 1829 1830 kill = dentry_needs_remove_privs(dentry); 1831 if (kill < 0) 1832 return kill; 1833 if (kill) 1834 error = __remove_privs(dentry, kill); 1835 if (!error) 1836 inode_has_no_xattr(inode); 1837 1838 return error; 1839 } 1840 EXPORT_SYMBOL(file_remove_privs); 1841 1842 /** 1843 * file_update_time - update mtime and ctime time 1844 * @file: file accessed 1845 * 1846 * Update the mtime and ctime members of an inode and mark the inode 1847 * for writeback. Note that this function is meant exclusively for 1848 * usage in the file write path of filesystems, and filesystems may 1849 * choose to explicitly ignore update via this function with the 1850 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1851 * timestamps are handled by the server. This can return an error for 1852 * file systems who need to allocate space in order to update an inode. 1853 */ 1854 1855 int file_update_time(struct file *file) 1856 { 1857 struct inode *inode = file_inode(file); 1858 struct timespec now; 1859 int sync_it = 0; 1860 int ret; 1861 1862 /* First try to exhaust all avenues to not sync */ 1863 if (IS_NOCMTIME(inode)) 1864 return 0; 1865 1866 now = current_time(inode); 1867 if (!timespec_equal(&inode->i_mtime, &now)) 1868 sync_it = S_MTIME; 1869 1870 if (!timespec_equal(&inode->i_ctime, &now)) 1871 sync_it |= S_CTIME; 1872 1873 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 1874 sync_it |= S_VERSION; 1875 1876 if (!sync_it) 1877 return 0; 1878 1879 /* Finally allowed to write? Takes lock. */ 1880 if (__mnt_want_write_file(file)) 1881 return 0; 1882 1883 ret = update_time(inode, &now, sync_it); 1884 __mnt_drop_write_file(file); 1885 1886 return ret; 1887 } 1888 EXPORT_SYMBOL(file_update_time); 1889 1890 int inode_needs_sync(struct inode *inode) 1891 { 1892 if (IS_SYNC(inode)) 1893 return 1; 1894 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1895 return 1; 1896 return 0; 1897 } 1898 EXPORT_SYMBOL(inode_needs_sync); 1899 1900 /* 1901 * If we try to find an inode in the inode hash while it is being 1902 * deleted, we have to wait until the filesystem completes its 1903 * deletion before reporting that it isn't found. This function waits 1904 * until the deletion _might_ have completed. Callers are responsible 1905 * to recheck inode state. 1906 * 1907 * It doesn't matter if I_NEW is not set initially, a call to 1908 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 1909 * will DTRT. 1910 */ 1911 static void __wait_on_freeing_inode(struct inode *inode) 1912 { 1913 wait_queue_head_t *wq; 1914 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 1915 wq = bit_waitqueue(&inode->i_state, __I_NEW); 1916 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 1917 spin_unlock(&inode->i_lock); 1918 spin_unlock(&inode_hash_lock); 1919 schedule(); 1920 finish_wait(wq, &wait.wq_entry); 1921 spin_lock(&inode_hash_lock); 1922 } 1923 1924 static __initdata unsigned long ihash_entries; 1925 static int __init set_ihash_entries(char *str) 1926 { 1927 if (!str) 1928 return 0; 1929 ihash_entries = simple_strtoul(str, &str, 0); 1930 return 1; 1931 } 1932 __setup("ihash_entries=", set_ihash_entries); 1933 1934 /* 1935 * Initialize the waitqueues and inode hash table. 1936 */ 1937 void __init inode_init_early(void) 1938 { 1939 /* If hashes are distributed across NUMA nodes, defer 1940 * hash allocation until vmalloc space is available. 1941 */ 1942 if (hashdist) 1943 return; 1944 1945 inode_hashtable = 1946 alloc_large_system_hash("Inode-cache", 1947 sizeof(struct hlist_head), 1948 ihash_entries, 1949 14, 1950 HASH_EARLY | HASH_ZERO, 1951 &i_hash_shift, 1952 &i_hash_mask, 1953 0, 1954 0); 1955 } 1956 1957 void __init inode_init(void) 1958 { 1959 /* inode slab cache */ 1960 inode_cachep = kmem_cache_create("inode_cache", 1961 sizeof(struct inode), 1962 0, 1963 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1964 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 1965 init_once); 1966 1967 /* Hash may have been set up in inode_init_early */ 1968 if (!hashdist) 1969 return; 1970 1971 inode_hashtable = 1972 alloc_large_system_hash("Inode-cache", 1973 sizeof(struct hlist_head), 1974 ihash_entries, 1975 14, 1976 HASH_ZERO, 1977 &i_hash_shift, 1978 &i_hash_mask, 1979 0, 1980 0); 1981 } 1982 1983 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1984 { 1985 inode->i_mode = mode; 1986 if (S_ISCHR(mode)) { 1987 inode->i_fop = &def_chr_fops; 1988 inode->i_rdev = rdev; 1989 } else if (S_ISBLK(mode)) { 1990 inode->i_fop = &def_blk_fops; 1991 inode->i_rdev = rdev; 1992 } else if (S_ISFIFO(mode)) 1993 inode->i_fop = &pipefifo_fops; 1994 else if (S_ISSOCK(mode)) 1995 ; /* leave it no_open_fops */ 1996 else 1997 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 1998 " inode %s:%lu\n", mode, inode->i_sb->s_id, 1999 inode->i_ino); 2000 } 2001 EXPORT_SYMBOL(init_special_inode); 2002 2003 /** 2004 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2005 * @inode: New inode 2006 * @dir: Directory inode 2007 * @mode: mode of the new inode 2008 */ 2009 void inode_init_owner(struct inode *inode, const struct inode *dir, 2010 umode_t mode) 2011 { 2012 inode->i_uid = current_fsuid(); 2013 if (dir && dir->i_mode & S_ISGID) { 2014 inode->i_gid = dir->i_gid; 2015 if (S_ISDIR(mode)) 2016 mode |= S_ISGID; 2017 } else 2018 inode->i_gid = current_fsgid(); 2019 inode->i_mode = mode; 2020 } 2021 EXPORT_SYMBOL(inode_init_owner); 2022 2023 /** 2024 * inode_owner_or_capable - check current task permissions to inode 2025 * @inode: inode being checked 2026 * 2027 * Return true if current either has CAP_FOWNER in a namespace with the 2028 * inode owner uid mapped, or owns the file. 2029 */ 2030 bool inode_owner_or_capable(const struct inode *inode) 2031 { 2032 struct user_namespace *ns; 2033 2034 if (uid_eq(current_fsuid(), inode->i_uid)) 2035 return true; 2036 2037 ns = current_user_ns(); 2038 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER)) 2039 return true; 2040 return false; 2041 } 2042 EXPORT_SYMBOL(inode_owner_or_capable); 2043 2044 /* 2045 * Direct i/o helper functions 2046 */ 2047 static void __inode_dio_wait(struct inode *inode) 2048 { 2049 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2050 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2051 2052 do { 2053 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); 2054 if (atomic_read(&inode->i_dio_count)) 2055 schedule(); 2056 } while (atomic_read(&inode->i_dio_count)); 2057 finish_wait(wq, &q.wq_entry); 2058 } 2059 2060 /** 2061 * inode_dio_wait - wait for outstanding DIO requests to finish 2062 * @inode: inode to wait for 2063 * 2064 * Waits for all pending direct I/O requests to finish so that we can 2065 * proceed with a truncate or equivalent operation. 2066 * 2067 * Must be called under a lock that serializes taking new references 2068 * to i_dio_count, usually by inode->i_mutex. 2069 */ 2070 void inode_dio_wait(struct inode *inode) 2071 { 2072 if (atomic_read(&inode->i_dio_count)) 2073 __inode_dio_wait(inode); 2074 } 2075 EXPORT_SYMBOL(inode_dio_wait); 2076 2077 /* 2078 * inode_set_flags - atomically set some inode flags 2079 * 2080 * Note: the caller should be holding i_mutex, or else be sure that 2081 * they have exclusive access to the inode structure (i.e., while the 2082 * inode is being instantiated). The reason for the cmpxchg() loop 2083 * --- which wouldn't be necessary if all code paths which modify 2084 * i_flags actually followed this rule, is that there is at least one 2085 * code path which doesn't today so we use cmpxchg() out of an abundance 2086 * of caution. 2087 * 2088 * In the long run, i_mutex is overkill, and we should probably look 2089 * at using the i_lock spinlock to protect i_flags, and then make sure 2090 * it is so documented in include/linux/fs.h and that all code follows 2091 * the locking convention!! 2092 */ 2093 void inode_set_flags(struct inode *inode, unsigned int flags, 2094 unsigned int mask) 2095 { 2096 unsigned int old_flags, new_flags; 2097 2098 WARN_ON_ONCE(flags & ~mask); 2099 do { 2100 old_flags = READ_ONCE(inode->i_flags); 2101 new_flags = (old_flags & ~mask) | flags; 2102 } while (unlikely(cmpxchg(&inode->i_flags, old_flags, 2103 new_flags) != old_flags)); 2104 } 2105 EXPORT_SYMBOL(inode_set_flags); 2106 2107 void inode_nohighmem(struct inode *inode) 2108 { 2109 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2110 } 2111 EXPORT_SYMBOL(inode_nohighmem); 2112 2113 /** 2114 * current_time - Return FS time 2115 * @inode: inode. 2116 * 2117 * Return the current time truncated to the time granularity supported by 2118 * the fs. 2119 * 2120 * Note that inode and inode->sb cannot be NULL. 2121 * Otherwise, the function warns and returns time without truncation. 2122 */ 2123 struct timespec current_time(struct inode *inode) 2124 { 2125 struct timespec now = current_kernel_time(); 2126 2127 if (unlikely(!inode->i_sb)) { 2128 WARN(1, "current_time() called with uninitialized super_block in the inode"); 2129 return now; 2130 } 2131 2132 return timespec_trunc(now, inode->i_sb->s_time_gran); 2133 } 2134 EXPORT_SYMBOL(current_time); 2135