1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) 1997 Linus Torvalds 4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 5 */ 6 #include <linux/export.h> 7 #include <linux/fs.h> 8 #include <linux/mm.h> 9 #include <linux/backing-dev.h> 10 #include <linux/hash.h> 11 #include <linux/swap.h> 12 #include <linux/security.h> 13 #include <linux/cdev.h> 14 #include <linux/memblock.h> 15 #include <linux/fsnotify.h> 16 #include <linux/mount.h> 17 #include <linux/posix_acl.h> 18 #include <linux/prefetch.h> 19 #include <linux/buffer_head.h> /* for inode_has_buffers */ 20 #include <linux/ratelimit.h> 21 #include <linux/list_lru.h> 22 #include <linux/iversion.h> 23 #include <trace/events/writeback.h> 24 #include "internal.h" 25 26 /* 27 * Inode locking rules: 28 * 29 * inode->i_lock protects: 30 * inode->i_state, inode->i_hash, __iget() 31 * Inode LRU list locks protect: 32 * inode->i_sb->s_inode_lru, inode->i_lru 33 * inode->i_sb->s_inode_list_lock protects: 34 * inode->i_sb->s_inodes, inode->i_sb_list 35 * bdi->wb.list_lock protects: 36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 37 * inode_hash_lock protects: 38 * inode_hashtable, inode->i_hash 39 * 40 * Lock ordering: 41 * 42 * inode->i_sb->s_inode_list_lock 43 * inode->i_lock 44 * Inode LRU list locks 45 * 46 * bdi->wb.list_lock 47 * inode->i_lock 48 * 49 * inode_hash_lock 50 * inode->i_sb->s_inode_list_lock 51 * inode->i_lock 52 * 53 * iunique_lock 54 * inode_hash_lock 55 */ 56 57 static unsigned int i_hash_mask __read_mostly; 58 static unsigned int i_hash_shift __read_mostly; 59 static struct hlist_head *inode_hashtable __read_mostly; 60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 61 62 /* 63 * Empty aops. Can be used for the cases where the user does not 64 * define any of the address_space operations. 65 */ 66 const struct address_space_operations empty_aops = { 67 }; 68 EXPORT_SYMBOL(empty_aops); 69 70 /* 71 * Statistics gathering.. 72 */ 73 struct inodes_stat_t inodes_stat; 74 75 static DEFINE_PER_CPU(unsigned long, nr_inodes); 76 static DEFINE_PER_CPU(unsigned long, nr_unused); 77 78 static struct kmem_cache *inode_cachep __read_mostly; 79 80 static long get_nr_inodes(void) 81 { 82 int i; 83 long sum = 0; 84 for_each_possible_cpu(i) 85 sum += per_cpu(nr_inodes, i); 86 return sum < 0 ? 0 : sum; 87 } 88 89 static inline long get_nr_inodes_unused(void) 90 { 91 int i; 92 long sum = 0; 93 for_each_possible_cpu(i) 94 sum += per_cpu(nr_unused, i); 95 return sum < 0 ? 0 : sum; 96 } 97 98 long get_nr_dirty_inodes(void) 99 { 100 /* not actually dirty inodes, but a wild approximation */ 101 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 102 return nr_dirty > 0 ? nr_dirty : 0; 103 } 104 105 /* 106 * Handle nr_inode sysctl 107 */ 108 #ifdef CONFIG_SYSCTL 109 int proc_nr_inodes(struct ctl_table *table, int write, 110 void __user *buffer, size_t *lenp, loff_t *ppos) 111 { 112 inodes_stat.nr_inodes = get_nr_inodes(); 113 inodes_stat.nr_unused = get_nr_inodes_unused(); 114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 115 } 116 #endif 117 118 static int no_open(struct inode *inode, struct file *file) 119 { 120 return -ENXIO; 121 } 122 123 /** 124 * inode_init_always - perform inode structure initialisation 125 * @sb: superblock inode belongs to 126 * @inode: inode to initialise 127 * 128 * These are initializations that need to be done on every inode 129 * allocation as the fields are not initialised by slab allocation. 130 */ 131 int inode_init_always(struct super_block *sb, struct inode *inode) 132 { 133 static const struct inode_operations empty_iops; 134 static const struct file_operations no_open_fops = {.open = no_open}; 135 struct address_space *const mapping = &inode->i_data; 136 137 inode->i_sb = sb; 138 inode->i_blkbits = sb->s_blocksize_bits; 139 inode->i_flags = 0; 140 atomic_set(&inode->i_count, 1); 141 inode->i_op = &empty_iops; 142 inode->i_fop = &no_open_fops; 143 inode->__i_nlink = 1; 144 inode->i_opflags = 0; 145 if (sb->s_xattr) 146 inode->i_opflags |= IOP_XATTR; 147 i_uid_write(inode, 0); 148 i_gid_write(inode, 0); 149 atomic_set(&inode->i_writecount, 0); 150 inode->i_size = 0; 151 inode->i_write_hint = WRITE_LIFE_NOT_SET; 152 inode->i_blocks = 0; 153 inode->i_bytes = 0; 154 inode->i_generation = 0; 155 inode->i_pipe = NULL; 156 inode->i_bdev = NULL; 157 inode->i_cdev = NULL; 158 inode->i_link = NULL; 159 inode->i_dir_seq = 0; 160 inode->i_rdev = 0; 161 inode->dirtied_when = 0; 162 163 #ifdef CONFIG_CGROUP_WRITEBACK 164 inode->i_wb_frn_winner = 0; 165 inode->i_wb_frn_avg_time = 0; 166 inode->i_wb_frn_history = 0; 167 #endif 168 169 if (security_inode_alloc(inode)) 170 goto out; 171 spin_lock_init(&inode->i_lock); 172 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 173 174 init_rwsem(&inode->i_rwsem); 175 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 176 177 atomic_set(&inode->i_dio_count, 0); 178 179 mapping->a_ops = &empty_aops; 180 mapping->host = inode; 181 mapping->flags = 0; 182 mapping->wb_err = 0; 183 atomic_set(&mapping->i_mmap_writable, 0); 184 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 185 mapping->private_data = NULL; 186 mapping->writeback_index = 0; 187 inode->i_private = NULL; 188 inode->i_mapping = mapping; 189 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 190 #ifdef CONFIG_FS_POSIX_ACL 191 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 192 #endif 193 194 #ifdef CONFIG_FSNOTIFY 195 inode->i_fsnotify_mask = 0; 196 #endif 197 inode->i_flctx = NULL; 198 this_cpu_inc(nr_inodes); 199 200 return 0; 201 out: 202 return -ENOMEM; 203 } 204 EXPORT_SYMBOL(inode_init_always); 205 206 void free_inode_nonrcu(struct inode *inode) 207 { 208 kmem_cache_free(inode_cachep, inode); 209 } 210 EXPORT_SYMBOL(free_inode_nonrcu); 211 212 static void i_callback(struct rcu_head *head) 213 { 214 struct inode *inode = container_of(head, struct inode, i_rcu); 215 if (inode->free_inode) 216 inode->free_inode(inode); 217 else 218 free_inode_nonrcu(inode); 219 } 220 221 static struct inode *alloc_inode(struct super_block *sb) 222 { 223 const struct super_operations *ops = sb->s_op; 224 struct inode *inode; 225 226 if (ops->alloc_inode) 227 inode = ops->alloc_inode(sb); 228 else 229 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 230 231 if (!inode) 232 return NULL; 233 234 if (unlikely(inode_init_always(sb, inode))) { 235 if (ops->destroy_inode) { 236 ops->destroy_inode(inode); 237 if (!ops->free_inode) 238 return NULL; 239 } 240 inode->free_inode = ops->free_inode; 241 i_callback(&inode->i_rcu); 242 return NULL; 243 } 244 245 return inode; 246 } 247 248 void __destroy_inode(struct inode *inode) 249 { 250 BUG_ON(inode_has_buffers(inode)); 251 inode_detach_wb(inode); 252 security_inode_free(inode); 253 fsnotify_inode_delete(inode); 254 locks_free_lock_context(inode); 255 if (!inode->i_nlink) { 256 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 257 atomic_long_dec(&inode->i_sb->s_remove_count); 258 } 259 260 #ifdef CONFIG_FS_POSIX_ACL 261 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 262 posix_acl_release(inode->i_acl); 263 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 264 posix_acl_release(inode->i_default_acl); 265 #endif 266 this_cpu_dec(nr_inodes); 267 } 268 EXPORT_SYMBOL(__destroy_inode); 269 270 static void destroy_inode(struct inode *inode) 271 { 272 const struct super_operations *ops = inode->i_sb->s_op; 273 274 BUG_ON(!list_empty(&inode->i_lru)); 275 __destroy_inode(inode); 276 if (ops->destroy_inode) { 277 ops->destroy_inode(inode); 278 if (!ops->free_inode) 279 return; 280 } 281 inode->free_inode = ops->free_inode; 282 call_rcu(&inode->i_rcu, i_callback); 283 } 284 285 /** 286 * drop_nlink - directly drop an inode's link count 287 * @inode: inode 288 * 289 * This is a low-level filesystem helper to replace any 290 * direct filesystem manipulation of i_nlink. In cases 291 * where we are attempting to track writes to the 292 * filesystem, a decrement to zero means an imminent 293 * write when the file is truncated and actually unlinked 294 * on the filesystem. 295 */ 296 void drop_nlink(struct inode *inode) 297 { 298 WARN_ON(inode->i_nlink == 0); 299 inode->__i_nlink--; 300 if (!inode->i_nlink) 301 atomic_long_inc(&inode->i_sb->s_remove_count); 302 } 303 EXPORT_SYMBOL(drop_nlink); 304 305 /** 306 * clear_nlink - directly zero an inode's link count 307 * @inode: inode 308 * 309 * This is a low-level filesystem helper to replace any 310 * direct filesystem manipulation of i_nlink. See 311 * drop_nlink() for why we care about i_nlink hitting zero. 312 */ 313 void clear_nlink(struct inode *inode) 314 { 315 if (inode->i_nlink) { 316 inode->__i_nlink = 0; 317 atomic_long_inc(&inode->i_sb->s_remove_count); 318 } 319 } 320 EXPORT_SYMBOL(clear_nlink); 321 322 /** 323 * set_nlink - directly set an inode's link count 324 * @inode: inode 325 * @nlink: new nlink (should be non-zero) 326 * 327 * This is a low-level filesystem helper to replace any 328 * direct filesystem manipulation of i_nlink. 329 */ 330 void set_nlink(struct inode *inode, unsigned int nlink) 331 { 332 if (!nlink) { 333 clear_nlink(inode); 334 } else { 335 /* Yes, some filesystems do change nlink from zero to one */ 336 if (inode->i_nlink == 0) 337 atomic_long_dec(&inode->i_sb->s_remove_count); 338 339 inode->__i_nlink = nlink; 340 } 341 } 342 EXPORT_SYMBOL(set_nlink); 343 344 /** 345 * inc_nlink - directly increment an inode's link count 346 * @inode: inode 347 * 348 * This is a low-level filesystem helper to replace any 349 * direct filesystem manipulation of i_nlink. Currently, 350 * it is only here for parity with dec_nlink(). 351 */ 352 void inc_nlink(struct inode *inode) 353 { 354 if (unlikely(inode->i_nlink == 0)) { 355 WARN_ON(!(inode->i_state & I_LINKABLE)); 356 atomic_long_dec(&inode->i_sb->s_remove_count); 357 } 358 359 inode->__i_nlink++; 360 } 361 EXPORT_SYMBOL(inc_nlink); 362 363 static void __address_space_init_once(struct address_space *mapping) 364 { 365 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ); 366 init_rwsem(&mapping->i_mmap_rwsem); 367 INIT_LIST_HEAD(&mapping->private_list); 368 spin_lock_init(&mapping->private_lock); 369 mapping->i_mmap = RB_ROOT_CACHED; 370 } 371 372 void address_space_init_once(struct address_space *mapping) 373 { 374 memset(mapping, 0, sizeof(*mapping)); 375 __address_space_init_once(mapping); 376 } 377 EXPORT_SYMBOL(address_space_init_once); 378 379 /* 380 * These are initializations that only need to be done 381 * once, because the fields are idempotent across use 382 * of the inode, so let the slab aware of that. 383 */ 384 void inode_init_once(struct inode *inode) 385 { 386 memset(inode, 0, sizeof(*inode)); 387 INIT_HLIST_NODE(&inode->i_hash); 388 INIT_LIST_HEAD(&inode->i_devices); 389 INIT_LIST_HEAD(&inode->i_io_list); 390 INIT_LIST_HEAD(&inode->i_wb_list); 391 INIT_LIST_HEAD(&inode->i_lru); 392 __address_space_init_once(&inode->i_data); 393 i_size_ordered_init(inode); 394 } 395 EXPORT_SYMBOL(inode_init_once); 396 397 static void init_once(void *foo) 398 { 399 struct inode *inode = (struct inode *) foo; 400 401 inode_init_once(inode); 402 } 403 404 /* 405 * inode->i_lock must be held 406 */ 407 void __iget(struct inode *inode) 408 { 409 atomic_inc(&inode->i_count); 410 } 411 412 /* 413 * get additional reference to inode; caller must already hold one. 414 */ 415 void ihold(struct inode *inode) 416 { 417 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 418 } 419 EXPORT_SYMBOL(ihold); 420 421 static void inode_lru_list_add(struct inode *inode) 422 { 423 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) 424 this_cpu_inc(nr_unused); 425 else 426 inode->i_state |= I_REFERENCED; 427 } 428 429 /* 430 * Add inode to LRU if needed (inode is unused and clean). 431 * 432 * Needs inode->i_lock held. 433 */ 434 void inode_add_lru(struct inode *inode) 435 { 436 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC | 437 I_FREEING | I_WILL_FREE)) && 438 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE) 439 inode_lru_list_add(inode); 440 } 441 442 443 static void inode_lru_list_del(struct inode *inode) 444 { 445 446 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) 447 this_cpu_dec(nr_unused); 448 } 449 450 /** 451 * inode_sb_list_add - add inode to the superblock list of inodes 452 * @inode: inode to add 453 */ 454 void inode_sb_list_add(struct inode *inode) 455 { 456 spin_lock(&inode->i_sb->s_inode_list_lock); 457 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 458 spin_unlock(&inode->i_sb->s_inode_list_lock); 459 } 460 EXPORT_SYMBOL_GPL(inode_sb_list_add); 461 462 static inline void inode_sb_list_del(struct inode *inode) 463 { 464 if (!list_empty(&inode->i_sb_list)) { 465 spin_lock(&inode->i_sb->s_inode_list_lock); 466 list_del_init(&inode->i_sb_list); 467 spin_unlock(&inode->i_sb->s_inode_list_lock); 468 } 469 } 470 471 static unsigned long hash(struct super_block *sb, unsigned long hashval) 472 { 473 unsigned long tmp; 474 475 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 476 L1_CACHE_BYTES; 477 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 478 return tmp & i_hash_mask; 479 } 480 481 /** 482 * __insert_inode_hash - hash an inode 483 * @inode: unhashed inode 484 * @hashval: unsigned long value used to locate this object in the 485 * inode_hashtable. 486 * 487 * Add an inode to the inode hash for this superblock. 488 */ 489 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 490 { 491 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 492 493 spin_lock(&inode_hash_lock); 494 spin_lock(&inode->i_lock); 495 hlist_add_head(&inode->i_hash, b); 496 spin_unlock(&inode->i_lock); 497 spin_unlock(&inode_hash_lock); 498 } 499 EXPORT_SYMBOL(__insert_inode_hash); 500 501 /** 502 * __remove_inode_hash - remove an inode from the hash 503 * @inode: inode to unhash 504 * 505 * Remove an inode from the superblock. 506 */ 507 void __remove_inode_hash(struct inode *inode) 508 { 509 spin_lock(&inode_hash_lock); 510 spin_lock(&inode->i_lock); 511 hlist_del_init(&inode->i_hash); 512 spin_unlock(&inode->i_lock); 513 spin_unlock(&inode_hash_lock); 514 } 515 EXPORT_SYMBOL(__remove_inode_hash); 516 517 void clear_inode(struct inode *inode) 518 { 519 /* 520 * We have to cycle the i_pages lock here because reclaim can be in the 521 * process of removing the last page (in __delete_from_page_cache()) 522 * and we must not free the mapping under it. 523 */ 524 xa_lock_irq(&inode->i_data.i_pages); 525 BUG_ON(inode->i_data.nrpages); 526 BUG_ON(inode->i_data.nrexceptional); 527 xa_unlock_irq(&inode->i_data.i_pages); 528 BUG_ON(!list_empty(&inode->i_data.private_list)); 529 BUG_ON(!(inode->i_state & I_FREEING)); 530 BUG_ON(inode->i_state & I_CLEAR); 531 BUG_ON(!list_empty(&inode->i_wb_list)); 532 /* don't need i_lock here, no concurrent mods to i_state */ 533 inode->i_state = I_FREEING | I_CLEAR; 534 } 535 EXPORT_SYMBOL(clear_inode); 536 537 /* 538 * Free the inode passed in, removing it from the lists it is still connected 539 * to. We remove any pages still attached to the inode and wait for any IO that 540 * is still in progress before finally destroying the inode. 541 * 542 * An inode must already be marked I_FREEING so that we avoid the inode being 543 * moved back onto lists if we race with other code that manipulates the lists 544 * (e.g. writeback_single_inode). The caller is responsible for setting this. 545 * 546 * An inode must already be removed from the LRU list before being evicted from 547 * the cache. This should occur atomically with setting the I_FREEING state 548 * flag, so no inodes here should ever be on the LRU when being evicted. 549 */ 550 static void evict(struct inode *inode) 551 { 552 const struct super_operations *op = inode->i_sb->s_op; 553 554 BUG_ON(!(inode->i_state & I_FREEING)); 555 BUG_ON(!list_empty(&inode->i_lru)); 556 557 if (!list_empty(&inode->i_io_list)) 558 inode_io_list_del(inode); 559 560 inode_sb_list_del(inode); 561 562 /* 563 * Wait for flusher thread to be done with the inode so that filesystem 564 * does not start destroying it while writeback is still running. Since 565 * the inode has I_FREEING set, flusher thread won't start new work on 566 * the inode. We just have to wait for running writeback to finish. 567 */ 568 inode_wait_for_writeback(inode); 569 570 if (op->evict_inode) { 571 op->evict_inode(inode); 572 } else { 573 truncate_inode_pages_final(&inode->i_data); 574 clear_inode(inode); 575 } 576 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 577 bd_forget(inode); 578 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 579 cd_forget(inode); 580 581 remove_inode_hash(inode); 582 583 spin_lock(&inode->i_lock); 584 wake_up_bit(&inode->i_state, __I_NEW); 585 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 586 spin_unlock(&inode->i_lock); 587 588 destroy_inode(inode); 589 } 590 591 /* 592 * dispose_list - dispose of the contents of a local list 593 * @head: the head of the list to free 594 * 595 * Dispose-list gets a local list with local inodes in it, so it doesn't 596 * need to worry about list corruption and SMP locks. 597 */ 598 static void dispose_list(struct list_head *head) 599 { 600 while (!list_empty(head)) { 601 struct inode *inode; 602 603 inode = list_first_entry(head, struct inode, i_lru); 604 list_del_init(&inode->i_lru); 605 606 evict(inode); 607 cond_resched(); 608 } 609 } 610 611 /** 612 * evict_inodes - evict all evictable inodes for a superblock 613 * @sb: superblock to operate on 614 * 615 * Make sure that no inodes with zero refcount are retained. This is 616 * called by superblock shutdown after having SB_ACTIVE flag removed, 617 * so any inode reaching zero refcount during or after that call will 618 * be immediately evicted. 619 */ 620 void evict_inodes(struct super_block *sb) 621 { 622 struct inode *inode, *next; 623 LIST_HEAD(dispose); 624 625 again: 626 spin_lock(&sb->s_inode_list_lock); 627 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 628 if (atomic_read(&inode->i_count)) 629 continue; 630 631 spin_lock(&inode->i_lock); 632 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 633 spin_unlock(&inode->i_lock); 634 continue; 635 } 636 637 inode->i_state |= I_FREEING; 638 inode_lru_list_del(inode); 639 spin_unlock(&inode->i_lock); 640 list_add(&inode->i_lru, &dispose); 641 642 /* 643 * We can have a ton of inodes to evict at unmount time given 644 * enough memory, check to see if we need to go to sleep for a 645 * bit so we don't livelock. 646 */ 647 if (need_resched()) { 648 spin_unlock(&sb->s_inode_list_lock); 649 cond_resched(); 650 dispose_list(&dispose); 651 goto again; 652 } 653 } 654 spin_unlock(&sb->s_inode_list_lock); 655 656 dispose_list(&dispose); 657 } 658 EXPORT_SYMBOL_GPL(evict_inodes); 659 660 /** 661 * invalidate_inodes - attempt to free all inodes on a superblock 662 * @sb: superblock to operate on 663 * @kill_dirty: flag to guide handling of dirty inodes 664 * 665 * Attempts to free all inodes for a given superblock. If there were any 666 * busy inodes return a non-zero value, else zero. 667 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 668 * them as busy. 669 */ 670 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 671 { 672 int busy = 0; 673 struct inode *inode, *next; 674 LIST_HEAD(dispose); 675 676 spin_lock(&sb->s_inode_list_lock); 677 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 678 spin_lock(&inode->i_lock); 679 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 680 spin_unlock(&inode->i_lock); 681 continue; 682 } 683 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) { 684 spin_unlock(&inode->i_lock); 685 busy = 1; 686 continue; 687 } 688 if (atomic_read(&inode->i_count)) { 689 spin_unlock(&inode->i_lock); 690 busy = 1; 691 continue; 692 } 693 694 inode->i_state |= I_FREEING; 695 inode_lru_list_del(inode); 696 spin_unlock(&inode->i_lock); 697 list_add(&inode->i_lru, &dispose); 698 } 699 spin_unlock(&sb->s_inode_list_lock); 700 701 dispose_list(&dispose); 702 703 return busy; 704 } 705 706 /* 707 * Isolate the inode from the LRU in preparation for freeing it. 708 * 709 * Any inodes which are pinned purely because of attached pagecache have their 710 * pagecache removed. If the inode has metadata buffers attached to 711 * mapping->private_list then try to remove them. 712 * 713 * If the inode has the I_REFERENCED flag set, then it means that it has been 714 * used recently - the flag is set in iput_final(). When we encounter such an 715 * inode, clear the flag and move it to the back of the LRU so it gets another 716 * pass through the LRU before it gets reclaimed. This is necessary because of 717 * the fact we are doing lazy LRU updates to minimise lock contention so the 718 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 719 * with this flag set because they are the inodes that are out of order. 720 */ 721 static enum lru_status inode_lru_isolate(struct list_head *item, 722 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 723 { 724 struct list_head *freeable = arg; 725 struct inode *inode = container_of(item, struct inode, i_lru); 726 727 /* 728 * we are inverting the lru lock/inode->i_lock here, so use a trylock. 729 * If we fail to get the lock, just skip it. 730 */ 731 if (!spin_trylock(&inode->i_lock)) 732 return LRU_SKIP; 733 734 /* 735 * Referenced or dirty inodes are still in use. Give them another pass 736 * through the LRU as we canot reclaim them now. 737 */ 738 if (atomic_read(&inode->i_count) || 739 (inode->i_state & ~I_REFERENCED)) { 740 list_lru_isolate(lru, &inode->i_lru); 741 spin_unlock(&inode->i_lock); 742 this_cpu_dec(nr_unused); 743 return LRU_REMOVED; 744 } 745 746 /* recently referenced inodes get one more pass */ 747 if (inode->i_state & I_REFERENCED) { 748 inode->i_state &= ~I_REFERENCED; 749 spin_unlock(&inode->i_lock); 750 return LRU_ROTATE; 751 } 752 753 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 754 __iget(inode); 755 spin_unlock(&inode->i_lock); 756 spin_unlock(lru_lock); 757 if (remove_inode_buffers(inode)) { 758 unsigned long reap; 759 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 760 if (current_is_kswapd()) 761 __count_vm_events(KSWAPD_INODESTEAL, reap); 762 else 763 __count_vm_events(PGINODESTEAL, reap); 764 if (current->reclaim_state) 765 current->reclaim_state->reclaimed_slab += reap; 766 } 767 iput(inode); 768 spin_lock(lru_lock); 769 return LRU_RETRY; 770 } 771 772 WARN_ON(inode->i_state & I_NEW); 773 inode->i_state |= I_FREEING; 774 list_lru_isolate_move(lru, &inode->i_lru, freeable); 775 spin_unlock(&inode->i_lock); 776 777 this_cpu_dec(nr_unused); 778 return LRU_REMOVED; 779 } 780 781 /* 782 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 783 * This is called from the superblock shrinker function with a number of inodes 784 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 785 * then are freed outside inode_lock by dispose_list(). 786 */ 787 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 788 { 789 LIST_HEAD(freeable); 790 long freed; 791 792 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 793 inode_lru_isolate, &freeable); 794 dispose_list(&freeable); 795 return freed; 796 } 797 798 static void __wait_on_freeing_inode(struct inode *inode); 799 /* 800 * Called with the inode lock held. 801 */ 802 static struct inode *find_inode(struct super_block *sb, 803 struct hlist_head *head, 804 int (*test)(struct inode *, void *), 805 void *data) 806 { 807 struct inode *inode = NULL; 808 809 repeat: 810 hlist_for_each_entry(inode, head, i_hash) { 811 if (inode->i_sb != sb) 812 continue; 813 if (!test(inode, data)) 814 continue; 815 spin_lock(&inode->i_lock); 816 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 817 __wait_on_freeing_inode(inode); 818 goto repeat; 819 } 820 if (unlikely(inode->i_state & I_CREATING)) { 821 spin_unlock(&inode->i_lock); 822 return ERR_PTR(-ESTALE); 823 } 824 __iget(inode); 825 spin_unlock(&inode->i_lock); 826 return inode; 827 } 828 return NULL; 829 } 830 831 /* 832 * find_inode_fast is the fast path version of find_inode, see the comment at 833 * iget_locked for details. 834 */ 835 static struct inode *find_inode_fast(struct super_block *sb, 836 struct hlist_head *head, unsigned long ino) 837 { 838 struct inode *inode = NULL; 839 840 repeat: 841 hlist_for_each_entry(inode, head, i_hash) { 842 if (inode->i_ino != ino) 843 continue; 844 if (inode->i_sb != sb) 845 continue; 846 spin_lock(&inode->i_lock); 847 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 848 __wait_on_freeing_inode(inode); 849 goto repeat; 850 } 851 if (unlikely(inode->i_state & I_CREATING)) { 852 spin_unlock(&inode->i_lock); 853 return ERR_PTR(-ESTALE); 854 } 855 __iget(inode); 856 spin_unlock(&inode->i_lock); 857 return inode; 858 } 859 return NULL; 860 } 861 862 /* 863 * Each cpu owns a range of LAST_INO_BATCH numbers. 864 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 865 * to renew the exhausted range. 866 * 867 * This does not significantly increase overflow rate because every CPU can 868 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 869 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 870 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 871 * overflow rate by 2x, which does not seem too significant. 872 * 873 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 874 * error if st_ino won't fit in target struct field. Use 32bit counter 875 * here to attempt to avoid that. 876 */ 877 #define LAST_INO_BATCH 1024 878 static DEFINE_PER_CPU(unsigned int, last_ino); 879 880 unsigned int get_next_ino(void) 881 { 882 unsigned int *p = &get_cpu_var(last_ino); 883 unsigned int res = *p; 884 885 #ifdef CONFIG_SMP 886 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 887 static atomic_t shared_last_ino; 888 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 889 890 res = next - LAST_INO_BATCH; 891 } 892 #endif 893 894 res++; 895 /* get_next_ino should not provide a 0 inode number */ 896 if (unlikely(!res)) 897 res++; 898 *p = res; 899 put_cpu_var(last_ino); 900 return res; 901 } 902 EXPORT_SYMBOL(get_next_ino); 903 904 /** 905 * new_inode_pseudo - obtain an inode 906 * @sb: superblock 907 * 908 * Allocates a new inode for given superblock. 909 * Inode wont be chained in superblock s_inodes list 910 * This means : 911 * - fs can't be unmount 912 * - quotas, fsnotify, writeback can't work 913 */ 914 struct inode *new_inode_pseudo(struct super_block *sb) 915 { 916 struct inode *inode = alloc_inode(sb); 917 918 if (inode) { 919 spin_lock(&inode->i_lock); 920 inode->i_state = 0; 921 spin_unlock(&inode->i_lock); 922 INIT_LIST_HEAD(&inode->i_sb_list); 923 } 924 return inode; 925 } 926 927 /** 928 * new_inode - obtain an inode 929 * @sb: superblock 930 * 931 * Allocates a new inode for given superblock. The default gfp_mask 932 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 933 * If HIGHMEM pages are unsuitable or it is known that pages allocated 934 * for the page cache are not reclaimable or migratable, 935 * mapping_set_gfp_mask() must be called with suitable flags on the 936 * newly created inode's mapping 937 * 938 */ 939 struct inode *new_inode(struct super_block *sb) 940 { 941 struct inode *inode; 942 943 spin_lock_prefetch(&sb->s_inode_list_lock); 944 945 inode = new_inode_pseudo(sb); 946 if (inode) 947 inode_sb_list_add(inode); 948 return inode; 949 } 950 EXPORT_SYMBOL(new_inode); 951 952 #ifdef CONFIG_DEBUG_LOCK_ALLOC 953 void lockdep_annotate_inode_mutex_key(struct inode *inode) 954 { 955 if (S_ISDIR(inode->i_mode)) { 956 struct file_system_type *type = inode->i_sb->s_type; 957 958 /* Set new key only if filesystem hasn't already changed it */ 959 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 960 /* 961 * ensure nobody is actually holding i_mutex 962 */ 963 // mutex_destroy(&inode->i_mutex); 964 init_rwsem(&inode->i_rwsem); 965 lockdep_set_class(&inode->i_rwsem, 966 &type->i_mutex_dir_key); 967 } 968 } 969 } 970 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 971 #endif 972 973 /** 974 * unlock_new_inode - clear the I_NEW state and wake up any waiters 975 * @inode: new inode to unlock 976 * 977 * Called when the inode is fully initialised to clear the new state of the 978 * inode and wake up anyone waiting for the inode to finish initialisation. 979 */ 980 void unlock_new_inode(struct inode *inode) 981 { 982 lockdep_annotate_inode_mutex_key(inode); 983 spin_lock(&inode->i_lock); 984 WARN_ON(!(inode->i_state & I_NEW)); 985 inode->i_state &= ~I_NEW & ~I_CREATING; 986 smp_mb(); 987 wake_up_bit(&inode->i_state, __I_NEW); 988 spin_unlock(&inode->i_lock); 989 } 990 EXPORT_SYMBOL(unlock_new_inode); 991 992 void discard_new_inode(struct inode *inode) 993 { 994 lockdep_annotate_inode_mutex_key(inode); 995 spin_lock(&inode->i_lock); 996 WARN_ON(!(inode->i_state & I_NEW)); 997 inode->i_state &= ~I_NEW; 998 smp_mb(); 999 wake_up_bit(&inode->i_state, __I_NEW); 1000 spin_unlock(&inode->i_lock); 1001 iput(inode); 1002 } 1003 EXPORT_SYMBOL(discard_new_inode); 1004 1005 /** 1006 * lock_two_nondirectories - take two i_mutexes on non-directory objects 1007 * 1008 * Lock any non-NULL argument that is not a directory. 1009 * Zero, one or two objects may be locked by this function. 1010 * 1011 * @inode1: first inode to lock 1012 * @inode2: second inode to lock 1013 */ 1014 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1015 { 1016 if (inode1 > inode2) 1017 swap(inode1, inode2); 1018 1019 if (inode1 && !S_ISDIR(inode1->i_mode)) 1020 inode_lock(inode1); 1021 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 1022 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 1023 } 1024 EXPORT_SYMBOL(lock_two_nondirectories); 1025 1026 /** 1027 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1028 * @inode1: first inode to unlock 1029 * @inode2: second inode to unlock 1030 */ 1031 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1032 { 1033 if (inode1 && !S_ISDIR(inode1->i_mode)) 1034 inode_unlock(inode1); 1035 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 1036 inode_unlock(inode2); 1037 } 1038 EXPORT_SYMBOL(unlock_two_nondirectories); 1039 1040 /** 1041 * inode_insert5 - obtain an inode from a mounted file system 1042 * @inode: pre-allocated inode to use for insert to cache 1043 * @hashval: hash value (usually inode number) to get 1044 * @test: callback used for comparisons between inodes 1045 * @set: callback used to initialize a new struct inode 1046 * @data: opaque data pointer to pass to @test and @set 1047 * 1048 * Search for the inode specified by @hashval and @data in the inode cache, 1049 * and if present it is return it with an increased reference count. This is 1050 * a variant of iget5_locked() for callers that don't want to fail on memory 1051 * allocation of inode. 1052 * 1053 * If the inode is not in cache, insert the pre-allocated inode to cache and 1054 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1055 * to fill it in before unlocking it via unlock_new_inode(). 1056 * 1057 * Note both @test and @set are called with the inode_hash_lock held, so can't 1058 * sleep. 1059 */ 1060 struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1061 int (*test)(struct inode *, void *), 1062 int (*set)(struct inode *, void *), void *data) 1063 { 1064 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1065 struct inode *old; 1066 bool creating = inode->i_state & I_CREATING; 1067 1068 again: 1069 spin_lock(&inode_hash_lock); 1070 old = find_inode(inode->i_sb, head, test, data); 1071 if (unlikely(old)) { 1072 /* 1073 * Uhhuh, somebody else created the same inode under us. 1074 * Use the old inode instead of the preallocated one. 1075 */ 1076 spin_unlock(&inode_hash_lock); 1077 if (IS_ERR(old)) 1078 return NULL; 1079 wait_on_inode(old); 1080 if (unlikely(inode_unhashed(old))) { 1081 iput(old); 1082 goto again; 1083 } 1084 return old; 1085 } 1086 1087 if (set && unlikely(set(inode, data))) { 1088 inode = NULL; 1089 goto unlock; 1090 } 1091 1092 /* 1093 * Return the locked inode with I_NEW set, the 1094 * caller is responsible for filling in the contents 1095 */ 1096 spin_lock(&inode->i_lock); 1097 inode->i_state |= I_NEW; 1098 hlist_add_head(&inode->i_hash, head); 1099 spin_unlock(&inode->i_lock); 1100 if (!creating) 1101 inode_sb_list_add(inode); 1102 unlock: 1103 spin_unlock(&inode_hash_lock); 1104 1105 return inode; 1106 } 1107 EXPORT_SYMBOL(inode_insert5); 1108 1109 /** 1110 * iget5_locked - obtain an inode from a mounted file system 1111 * @sb: super block of file system 1112 * @hashval: hash value (usually inode number) to get 1113 * @test: callback used for comparisons between inodes 1114 * @set: callback used to initialize a new struct inode 1115 * @data: opaque data pointer to pass to @test and @set 1116 * 1117 * Search for the inode specified by @hashval and @data in the inode cache, 1118 * and if present it is return it with an increased reference count. This is 1119 * a generalized version of iget_locked() for file systems where the inode 1120 * number is not sufficient for unique identification of an inode. 1121 * 1122 * If the inode is not in cache, allocate a new inode and return it locked, 1123 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1124 * before unlocking it via unlock_new_inode(). 1125 * 1126 * Note both @test and @set are called with the inode_hash_lock held, so can't 1127 * sleep. 1128 */ 1129 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1130 int (*test)(struct inode *, void *), 1131 int (*set)(struct inode *, void *), void *data) 1132 { 1133 struct inode *inode = ilookup5(sb, hashval, test, data); 1134 1135 if (!inode) { 1136 struct inode *new = alloc_inode(sb); 1137 1138 if (new) { 1139 new->i_state = 0; 1140 inode = inode_insert5(new, hashval, test, set, data); 1141 if (unlikely(inode != new)) 1142 destroy_inode(new); 1143 } 1144 } 1145 return inode; 1146 } 1147 EXPORT_SYMBOL(iget5_locked); 1148 1149 /** 1150 * iget_locked - obtain an inode from a mounted file system 1151 * @sb: super block of file system 1152 * @ino: inode number to get 1153 * 1154 * Search for the inode specified by @ino in the inode cache and if present 1155 * return it with an increased reference count. This is for file systems 1156 * where the inode number is sufficient for unique identification of an inode. 1157 * 1158 * If the inode is not in cache, allocate a new inode and return it locked, 1159 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1160 * before unlocking it via unlock_new_inode(). 1161 */ 1162 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1163 { 1164 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1165 struct inode *inode; 1166 again: 1167 spin_lock(&inode_hash_lock); 1168 inode = find_inode_fast(sb, head, ino); 1169 spin_unlock(&inode_hash_lock); 1170 if (inode) { 1171 if (IS_ERR(inode)) 1172 return NULL; 1173 wait_on_inode(inode); 1174 if (unlikely(inode_unhashed(inode))) { 1175 iput(inode); 1176 goto again; 1177 } 1178 return inode; 1179 } 1180 1181 inode = alloc_inode(sb); 1182 if (inode) { 1183 struct inode *old; 1184 1185 spin_lock(&inode_hash_lock); 1186 /* We released the lock, so.. */ 1187 old = find_inode_fast(sb, head, ino); 1188 if (!old) { 1189 inode->i_ino = ino; 1190 spin_lock(&inode->i_lock); 1191 inode->i_state = I_NEW; 1192 hlist_add_head(&inode->i_hash, head); 1193 spin_unlock(&inode->i_lock); 1194 inode_sb_list_add(inode); 1195 spin_unlock(&inode_hash_lock); 1196 1197 /* Return the locked inode with I_NEW set, the 1198 * caller is responsible for filling in the contents 1199 */ 1200 return inode; 1201 } 1202 1203 /* 1204 * Uhhuh, somebody else created the same inode under 1205 * us. Use the old inode instead of the one we just 1206 * allocated. 1207 */ 1208 spin_unlock(&inode_hash_lock); 1209 destroy_inode(inode); 1210 if (IS_ERR(old)) 1211 return NULL; 1212 inode = old; 1213 wait_on_inode(inode); 1214 if (unlikely(inode_unhashed(inode))) { 1215 iput(inode); 1216 goto again; 1217 } 1218 } 1219 return inode; 1220 } 1221 EXPORT_SYMBOL(iget_locked); 1222 1223 /* 1224 * search the inode cache for a matching inode number. 1225 * If we find one, then the inode number we are trying to 1226 * allocate is not unique and so we should not use it. 1227 * 1228 * Returns 1 if the inode number is unique, 0 if it is not. 1229 */ 1230 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1231 { 1232 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1233 struct inode *inode; 1234 1235 spin_lock(&inode_hash_lock); 1236 hlist_for_each_entry(inode, b, i_hash) { 1237 if (inode->i_ino == ino && inode->i_sb == sb) { 1238 spin_unlock(&inode_hash_lock); 1239 return 0; 1240 } 1241 } 1242 spin_unlock(&inode_hash_lock); 1243 1244 return 1; 1245 } 1246 1247 /** 1248 * iunique - get a unique inode number 1249 * @sb: superblock 1250 * @max_reserved: highest reserved inode number 1251 * 1252 * Obtain an inode number that is unique on the system for a given 1253 * superblock. This is used by file systems that have no natural 1254 * permanent inode numbering system. An inode number is returned that 1255 * is higher than the reserved limit but unique. 1256 * 1257 * BUGS: 1258 * With a large number of inodes live on the file system this function 1259 * currently becomes quite slow. 1260 */ 1261 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1262 { 1263 /* 1264 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1265 * error if st_ino won't fit in target struct field. Use 32bit counter 1266 * here to attempt to avoid that. 1267 */ 1268 static DEFINE_SPINLOCK(iunique_lock); 1269 static unsigned int counter; 1270 ino_t res; 1271 1272 spin_lock(&iunique_lock); 1273 do { 1274 if (counter <= max_reserved) 1275 counter = max_reserved + 1; 1276 res = counter++; 1277 } while (!test_inode_iunique(sb, res)); 1278 spin_unlock(&iunique_lock); 1279 1280 return res; 1281 } 1282 EXPORT_SYMBOL(iunique); 1283 1284 struct inode *igrab(struct inode *inode) 1285 { 1286 spin_lock(&inode->i_lock); 1287 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1288 __iget(inode); 1289 spin_unlock(&inode->i_lock); 1290 } else { 1291 spin_unlock(&inode->i_lock); 1292 /* 1293 * Handle the case where s_op->clear_inode is not been 1294 * called yet, and somebody is calling igrab 1295 * while the inode is getting freed. 1296 */ 1297 inode = NULL; 1298 } 1299 return inode; 1300 } 1301 EXPORT_SYMBOL(igrab); 1302 1303 /** 1304 * ilookup5_nowait - search for an inode in the inode cache 1305 * @sb: super block of file system to search 1306 * @hashval: hash value (usually inode number) to search for 1307 * @test: callback used for comparisons between inodes 1308 * @data: opaque data pointer to pass to @test 1309 * 1310 * Search for the inode specified by @hashval and @data in the inode cache. 1311 * If the inode is in the cache, the inode is returned with an incremented 1312 * reference count. 1313 * 1314 * Note: I_NEW is not waited upon so you have to be very careful what you do 1315 * with the returned inode. You probably should be using ilookup5() instead. 1316 * 1317 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1318 */ 1319 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1320 int (*test)(struct inode *, void *), void *data) 1321 { 1322 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1323 struct inode *inode; 1324 1325 spin_lock(&inode_hash_lock); 1326 inode = find_inode(sb, head, test, data); 1327 spin_unlock(&inode_hash_lock); 1328 1329 return IS_ERR(inode) ? NULL : inode; 1330 } 1331 EXPORT_SYMBOL(ilookup5_nowait); 1332 1333 /** 1334 * ilookup5 - search for an inode in the inode cache 1335 * @sb: super block of file system to search 1336 * @hashval: hash value (usually inode number) to search for 1337 * @test: callback used for comparisons between inodes 1338 * @data: opaque data pointer to pass to @test 1339 * 1340 * Search for the inode specified by @hashval and @data in the inode cache, 1341 * and if the inode is in the cache, return the inode with an incremented 1342 * reference count. Waits on I_NEW before returning the inode. 1343 * returned with an incremented reference count. 1344 * 1345 * This is a generalized version of ilookup() for file systems where the 1346 * inode number is not sufficient for unique identification of an inode. 1347 * 1348 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1349 */ 1350 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1351 int (*test)(struct inode *, void *), void *data) 1352 { 1353 struct inode *inode; 1354 again: 1355 inode = ilookup5_nowait(sb, hashval, test, data); 1356 if (inode) { 1357 wait_on_inode(inode); 1358 if (unlikely(inode_unhashed(inode))) { 1359 iput(inode); 1360 goto again; 1361 } 1362 } 1363 return inode; 1364 } 1365 EXPORT_SYMBOL(ilookup5); 1366 1367 /** 1368 * ilookup - search for an inode in the inode cache 1369 * @sb: super block of file system to search 1370 * @ino: inode number to search for 1371 * 1372 * Search for the inode @ino in the inode cache, and if the inode is in the 1373 * cache, the inode is returned with an incremented reference count. 1374 */ 1375 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1376 { 1377 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1378 struct inode *inode; 1379 again: 1380 spin_lock(&inode_hash_lock); 1381 inode = find_inode_fast(sb, head, ino); 1382 spin_unlock(&inode_hash_lock); 1383 1384 if (inode) { 1385 if (IS_ERR(inode)) 1386 return NULL; 1387 wait_on_inode(inode); 1388 if (unlikely(inode_unhashed(inode))) { 1389 iput(inode); 1390 goto again; 1391 } 1392 } 1393 return inode; 1394 } 1395 EXPORT_SYMBOL(ilookup); 1396 1397 /** 1398 * find_inode_nowait - find an inode in the inode cache 1399 * @sb: super block of file system to search 1400 * @hashval: hash value (usually inode number) to search for 1401 * @match: callback used for comparisons between inodes 1402 * @data: opaque data pointer to pass to @match 1403 * 1404 * Search for the inode specified by @hashval and @data in the inode 1405 * cache, where the helper function @match will return 0 if the inode 1406 * does not match, 1 if the inode does match, and -1 if the search 1407 * should be stopped. The @match function must be responsible for 1408 * taking the i_lock spin_lock and checking i_state for an inode being 1409 * freed or being initialized, and incrementing the reference count 1410 * before returning 1. It also must not sleep, since it is called with 1411 * the inode_hash_lock spinlock held. 1412 * 1413 * This is a even more generalized version of ilookup5() when the 1414 * function must never block --- find_inode() can block in 1415 * __wait_on_freeing_inode() --- or when the caller can not increment 1416 * the reference count because the resulting iput() might cause an 1417 * inode eviction. The tradeoff is that the @match funtion must be 1418 * very carefully implemented. 1419 */ 1420 struct inode *find_inode_nowait(struct super_block *sb, 1421 unsigned long hashval, 1422 int (*match)(struct inode *, unsigned long, 1423 void *), 1424 void *data) 1425 { 1426 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1427 struct inode *inode, *ret_inode = NULL; 1428 int mval; 1429 1430 spin_lock(&inode_hash_lock); 1431 hlist_for_each_entry(inode, head, i_hash) { 1432 if (inode->i_sb != sb) 1433 continue; 1434 mval = match(inode, hashval, data); 1435 if (mval == 0) 1436 continue; 1437 if (mval == 1) 1438 ret_inode = inode; 1439 goto out; 1440 } 1441 out: 1442 spin_unlock(&inode_hash_lock); 1443 return ret_inode; 1444 } 1445 EXPORT_SYMBOL(find_inode_nowait); 1446 1447 int insert_inode_locked(struct inode *inode) 1448 { 1449 struct super_block *sb = inode->i_sb; 1450 ino_t ino = inode->i_ino; 1451 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1452 1453 while (1) { 1454 struct inode *old = NULL; 1455 spin_lock(&inode_hash_lock); 1456 hlist_for_each_entry(old, head, i_hash) { 1457 if (old->i_ino != ino) 1458 continue; 1459 if (old->i_sb != sb) 1460 continue; 1461 spin_lock(&old->i_lock); 1462 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1463 spin_unlock(&old->i_lock); 1464 continue; 1465 } 1466 break; 1467 } 1468 if (likely(!old)) { 1469 spin_lock(&inode->i_lock); 1470 inode->i_state |= I_NEW | I_CREATING; 1471 hlist_add_head(&inode->i_hash, head); 1472 spin_unlock(&inode->i_lock); 1473 spin_unlock(&inode_hash_lock); 1474 return 0; 1475 } 1476 if (unlikely(old->i_state & I_CREATING)) { 1477 spin_unlock(&old->i_lock); 1478 spin_unlock(&inode_hash_lock); 1479 return -EBUSY; 1480 } 1481 __iget(old); 1482 spin_unlock(&old->i_lock); 1483 spin_unlock(&inode_hash_lock); 1484 wait_on_inode(old); 1485 if (unlikely(!inode_unhashed(old))) { 1486 iput(old); 1487 return -EBUSY; 1488 } 1489 iput(old); 1490 } 1491 } 1492 EXPORT_SYMBOL(insert_inode_locked); 1493 1494 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1495 int (*test)(struct inode *, void *), void *data) 1496 { 1497 struct inode *old; 1498 1499 inode->i_state |= I_CREATING; 1500 old = inode_insert5(inode, hashval, test, NULL, data); 1501 1502 if (old != inode) { 1503 iput(old); 1504 return -EBUSY; 1505 } 1506 return 0; 1507 } 1508 EXPORT_SYMBOL(insert_inode_locked4); 1509 1510 1511 int generic_delete_inode(struct inode *inode) 1512 { 1513 return 1; 1514 } 1515 EXPORT_SYMBOL(generic_delete_inode); 1516 1517 /* 1518 * Called when we're dropping the last reference 1519 * to an inode. 1520 * 1521 * Call the FS "drop_inode()" function, defaulting to 1522 * the legacy UNIX filesystem behaviour. If it tells 1523 * us to evict inode, do so. Otherwise, retain inode 1524 * in cache if fs is alive, sync and evict if fs is 1525 * shutting down. 1526 */ 1527 static void iput_final(struct inode *inode) 1528 { 1529 struct super_block *sb = inode->i_sb; 1530 const struct super_operations *op = inode->i_sb->s_op; 1531 int drop; 1532 1533 WARN_ON(inode->i_state & I_NEW); 1534 1535 if (op->drop_inode) 1536 drop = op->drop_inode(inode); 1537 else 1538 drop = generic_drop_inode(inode); 1539 1540 if (!drop && (sb->s_flags & SB_ACTIVE)) { 1541 inode_add_lru(inode); 1542 spin_unlock(&inode->i_lock); 1543 return; 1544 } 1545 1546 if (!drop) { 1547 inode->i_state |= I_WILL_FREE; 1548 spin_unlock(&inode->i_lock); 1549 write_inode_now(inode, 1); 1550 spin_lock(&inode->i_lock); 1551 WARN_ON(inode->i_state & I_NEW); 1552 inode->i_state &= ~I_WILL_FREE; 1553 } 1554 1555 inode->i_state |= I_FREEING; 1556 if (!list_empty(&inode->i_lru)) 1557 inode_lru_list_del(inode); 1558 spin_unlock(&inode->i_lock); 1559 1560 evict(inode); 1561 } 1562 1563 /** 1564 * iput - put an inode 1565 * @inode: inode to put 1566 * 1567 * Puts an inode, dropping its usage count. If the inode use count hits 1568 * zero, the inode is then freed and may also be destroyed. 1569 * 1570 * Consequently, iput() can sleep. 1571 */ 1572 void iput(struct inode *inode) 1573 { 1574 if (!inode) 1575 return; 1576 BUG_ON(inode->i_state & I_CLEAR); 1577 retry: 1578 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1579 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1580 atomic_inc(&inode->i_count); 1581 spin_unlock(&inode->i_lock); 1582 trace_writeback_lazytime_iput(inode); 1583 mark_inode_dirty_sync(inode); 1584 goto retry; 1585 } 1586 iput_final(inode); 1587 } 1588 } 1589 EXPORT_SYMBOL(iput); 1590 1591 /** 1592 * bmap - find a block number in a file 1593 * @inode: inode of file 1594 * @block: block to find 1595 * 1596 * Returns the block number on the device holding the inode that 1597 * is the disk block number for the block of the file requested. 1598 * That is, asked for block 4 of inode 1 the function will return the 1599 * disk block relative to the disk start that holds that block of the 1600 * file. 1601 */ 1602 sector_t bmap(struct inode *inode, sector_t block) 1603 { 1604 sector_t res = 0; 1605 if (inode->i_mapping->a_ops->bmap) 1606 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1607 return res; 1608 } 1609 EXPORT_SYMBOL(bmap); 1610 1611 /* 1612 * With relative atime, only update atime if the previous atime is 1613 * earlier than either the ctime or mtime or if at least a day has 1614 * passed since the last atime update. 1615 */ 1616 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1617 struct timespec64 now) 1618 { 1619 1620 if (!(mnt->mnt_flags & MNT_RELATIME)) 1621 return 1; 1622 /* 1623 * Is mtime younger than atime? If yes, update atime: 1624 */ 1625 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1626 return 1; 1627 /* 1628 * Is ctime younger than atime? If yes, update atime: 1629 */ 1630 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1631 return 1; 1632 1633 /* 1634 * Is the previous atime value older than a day? If yes, 1635 * update atime: 1636 */ 1637 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1638 return 1; 1639 /* 1640 * Good, we can skip the atime update: 1641 */ 1642 return 0; 1643 } 1644 1645 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags) 1646 { 1647 int iflags = I_DIRTY_TIME; 1648 bool dirty = false; 1649 1650 if (flags & S_ATIME) 1651 inode->i_atime = *time; 1652 if (flags & S_VERSION) 1653 dirty = inode_maybe_inc_iversion(inode, false); 1654 if (flags & S_CTIME) 1655 inode->i_ctime = *time; 1656 if (flags & S_MTIME) 1657 inode->i_mtime = *time; 1658 if ((flags & (S_ATIME | S_CTIME | S_MTIME)) && 1659 !(inode->i_sb->s_flags & SB_LAZYTIME)) 1660 dirty = true; 1661 1662 if (dirty) 1663 iflags |= I_DIRTY_SYNC; 1664 __mark_inode_dirty(inode, iflags); 1665 return 0; 1666 } 1667 EXPORT_SYMBOL(generic_update_time); 1668 1669 /* 1670 * This does the actual work of updating an inodes time or version. Must have 1671 * had called mnt_want_write() before calling this. 1672 */ 1673 static int update_time(struct inode *inode, struct timespec64 *time, int flags) 1674 { 1675 int (*update_time)(struct inode *, struct timespec64 *, int); 1676 1677 update_time = inode->i_op->update_time ? inode->i_op->update_time : 1678 generic_update_time; 1679 1680 return update_time(inode, time, flags); 1681 } 1682 1683 /** 1684 * touch_atime - update the access time 1685 * @path: the &struct path to update 1686 * @inode: inode to update 1687 * 1688 * Update the accessed time on an inode and mark it for writeback. 1689 * This function automatically handles read only file systems and media, 1690 * as well as the "noatime" flag and inode specific "noatime" markers. 1691 */ 1692 bool atime_needs_update(const struct path *path, struct inode *inode) 1693 { 1694 struct vfsmount *mnt = path->mnt; 1695 struct timespec64 now; 1696 1697 if (inode->i_flags & S_NOATIME) 1698 return false; 1699 1700 /* Atime updates will likely cause i_uid and i_gid to be written 1701 * back improprely if their true value is unknown to the vfs. 1702 */ 1703 if (HAS_UNMAPPED_ID(inode)) 1704 return false; 1705 1706 if (IS_NOATIME(inode)) 1707 return false; 1708 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 1709 return false; 1710 1711 if (mnt->mnt_flags & MNT_NOATIME) 1712 return false; 1713 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1714 return false; 1715 1716 now = current_time(inode); 1717 1718 if (!relatime_need_update(mnt, inode, now)) 1719 return false; 1720 1721 if (timespec64_equal(&inode->i_atime, &now)) 1722 return false; 1723 1724 return true; 1725 } 1726 1727 void touch_atime(const struct path *path) 1728 { 1729 struct vfsmount *mnt = path->mnt; 1730 struct inode *inode = d_inode(path->dentry); 1731 struct timespec64 now; 1732 1733 if (!atime_needs_update(path, inode)) 1734 return; 1735 1736 if (!sb_start_write_trylock(inode->i_sb)) 1737 return; 1738 1739 if (__mnt_want_write(mnt) != 0) 1740 goto skip_update; 1741 /* 1742 * File systems can error out when updating inodes if they need to 1743 * allocate new space to modify an inode (such is the case for 1744 * Btrfs), but since we touch atime while walking down the path we 1745 * really don't care if we failed to update the atime of the file, 1746 * so just ignore the return value. 1747 * We may also fail on filesystems that have the ability to make parts 1748 * of the fs read only, e.g. subvolumes in Btrfs. 1749 */ 1750 now = current_time(inode); 1751 update_time(inode, &now, S_ATIME); 1752 __mnt_drop_write(mnt); 1753 skip_update: 1754 sb_end_write(inode->i_sb); 1755 } 1756 EXPORT_SYMBOL(touch_atime); 1757 1758 /* 1759 * The logic we want is 1760 * 1761 * if suid or (sgid and xgrp) 1762 * remove privs 1763 */ 1764 int should_remove_suid(struct dentry *dentry) 1765 { 1766 umode_t mode = d_inode(dentry)->i_mode; 1767 int kill = 0; 1768 1769 /* suid always must be killed */ 1770 if (unlikely(mode & S_ISUID)) 1771 kill = ATTR_KILL_SUID; 1772 1773 /* 1774 * sgid without any exec bits is just a mandatory locking mark; leave 1775 * it alone. If some exec bits are set, it's a real sgid; kill it. 1776 */ 1777 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1778 kill |= ATTR_KILL_SGID; 1779 1780 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1781 return kill; 1782 1783 return 0; 1784 } 1785 EXPORT_SYMBOL(should_remove_suid); 1786 1787 /* 1788 * Return mask of changes for notify_change() that need to be done as a 1789 * response to write or truncate. Return 0 if nothing has to be changed. 1790 * Negative value on error (change should be denied). 1791 */ 1792 int dentry_needs_remove_privs(struct dentry *dentry) 1793 { 1794 struct inode *inode = d_inode(dentry); 1795 int mask = 0; 1796 int ret; 1797 1798 if (IS_NOSEC(inode)) 1799 return 0; 1800 1801 mask = should_remove_suid(dentry); 1802 ret = security_inode_need_killpriv(dentry); 1803 if (ret < 0) 1804 return ret; 1805 if (ret) 1806 mask |= ATTR_KILL_PRIV; 1807 return mask; 1808 } 1809 1810 static int __remove_privs(struct dentry *dentry, int kill) 1811 { 1812 struct iattr newattrs; 1813 1814 newattrs.ia_valid = ATTR_FORCE | kill; 1815 /* 1816 * Note we call this on write, so notify_change will not 1817 * encounter any conflicting delegations: 1818 */ 1819 return notify_change(dentry, &newattrs, NULL); 1820 } 1821 1822 /* 1823 * Remove special file priviledges (suid, capabilities) when file is written 1824 * to or truncated. 1825 */ 1826 int file_remove_privs(struct file *file) 1827 { 1828 struct dentry *dentry = file_dentry(file); 1829 struct inode *inode = file_inode(file); 1830 int kill; 1831 int error = 0; 1832 1833 /* 1834 * Fast path for nothing security related. 1835 * As well for non-regular files, e.g. blkdev inodes. 1836 * For example, blkdev_write_iter() might get here 1837 * trying to remove privs which it is not allowed to. 1838 */ 1839 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) 1840 return 0; 1841 1842 kill = dentry_needs_remove_privs(dentry); 1843 if (kill < 0) 1844 return kill; 1845 if (kill) 1846 error = __remove_privs(dentry, kill); 1847 if (!error) 1848 inode_has_no_xattr(inode); 1849 1850 return error; 1851 } 1852 EXPORT_SYMBOL(file_remove_privs); 1853 1854 /** 1855 * file_update_time - update mtime and ctime time 1856 * @file: file accessed 1857 * 1858 * Update the mtime and ctime members of an inode and mark the inode 1859 * for writeback. Note that this function is meant exclusively for 1860 * usage in the file write path of filesystems, and filesystems may 1861 * choose to explicitly ignore update via this function with the 1862 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1863 * timestamps are handled by the server. This can return an error for 1864 * file systems who need to allocate space in order to update an inode. 1865 */ 1866 1867 int file_update_time(struct file *file) 1868 { 1869 struct inode *inode = file_inode(file); 1870 struct timespec64 now; 1871 int sync_it = 0; 1872 int ret; 1873 1874 /* First try to exhaust all avenues to not sync */ 1875 if (IS_NOCMTIME(inode)) 1876 return 0; 1877 1878 now = current_time(inode); 1879 if (!timespec64_equal(&inode->i_mtime, &now)) 1880 sync_it = S_MTIME; 1881 1882 if (!timespec64_equal(&inode->i_ctime, &now)) 1883 sync_it |= S_CTIME; 1884 1885 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 1886 sync_it |= S_VERSION; 1887 1888 if (!sync_it) 1889 return 0; 1890 1891 /* Finally allowed to write? Takes lock. */ 1892 if (__mnt_want_write_file(file)) 1893 return 0; 1894 1895 ret = update_time(inode, &now, sync_it); 1896 __mnt_drop_write_file(file); 1897 1898 return ret; 1899 } 1900 EXPORT_SYMBOL(file_update_time); 1901 1902 int inode_needs_sync(struct inode *inode) 1903 { 1904 if (IS_SYNC(inode)) 1905 return 1; 1906 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1907 return 1; 1908 return 0; 1909 } 1910 EXPORT_SYMBOL(inode_needs_sync); 1911 1912 /* 1913 * If we try to find an inode in the inode hash while it is being 1914 * deleted, we have to wait until the filesystem completes its 1915 * deletion before reporting that it isn't found. This function waits 1916 * until the deletion _might_ have completed. Callers are responsible 1917 * to recheck inode state. 1918 * 1919 * It doesn't matter if I_NEW is not set initially, a call to 1920 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 1921 * will DTRT. 1922 */ 1923 static void __wait_on_freeing_inode(struct inode *inode) 1924 { 1925 wait_queue_head_t *wq; 1926 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 1927 wq = bit_waitqueue(&inode->i_state, __I_NEW); 1928 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 1929 spin_unlock(&inode->i_lock); 1930 spin_unlock(&inode_hash_lock); 1931 schedule(); 1932 finish_wait(wq, &wait.wq_entry); 1933 spin_lock(&inode_hash_lock); 1934 } 1935 1936 static __initdata unsigned long ihash_entries; 1937 static int __init set_ihash_entries(char *str) 1938 { 1939 if (!str) 1940 return 0; 1941 ihash_entries = simple_strtoul(str, &str, 0); 1942 return 1; 1943 } 1944 __setup("ihash_entries=", set_ihash_entries); 1945 1946 /* 1947 * Initialize the waitqueues and inode hash table. 1948 */ 1949 void __init inode_init_early(void) 1950 { 1951 /* If hashes are distributed across NUMA nodes, defer 1952 * hash allocation until vmalloc space is available. 1953 */ 1954 if (hashdist) 1955 return; 1956 1957 inode_hashtable = 1958 alloc_large_system_hash("Inode-cache", 1959 sizeof(struct hlist_head), 1960 ihash_entries, 1961 14, 1962 HASH_EARLY | HASH_ZERO, 1963 &i_hash_shift, 1964 &i_hash_mask, 1965 0, 1966 0); 1967 } 1968 1969 void __init inode_init(void) 1970 { 1971 /* inode slab cache */ 1972 inode_cachep = kmem_cache_create("inode_cache", 1973 sizeof(struct inode), 1974 0, 1975 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1976 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 1977 init_once); 1978 1979 /* Hash may have been set up in inode_init_early */ 1980 if (!hashdist) 1981 return; 1982 1983 inode_hashtable = 1984 alloc_large_system_hash("Inode-cache", 1985 sizeof(struct hlist_head), 1986 ihash_entries, 1987 14, 1988 HASH_ZERO, 1989 &i_hash_shift, 1990 &i_hash_mask, 1991 0, 1992 0); 1993 } 1994 1995 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1996 { 1997 inode->i_mode = mode; 1998 if (S_ISCHR(mode)) { 1999 inode->i_fop = &def_chr_fops; 2000 inode->i_rdev = rdev; 2001 } else if (S_ISBLK(mode)) { 2002 inode->i_fop = &def_blk_fops; 2003 inode->i_rdev = rdev; 2004 } else if (S_ISFIFO(mode)) 2005 inode->i_fop = &pipefifo_fops; 2006 else if (S_ISSOCK(mode)) 2007 ; /* leave it no_open_fops */ 2008 else 2009 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 2010 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2011 inode->i_ino); 2012 } 2013 EXPORT_SYMBOL(init_special_inode); 2014 2015 /** 2016 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2017 * @inode: New inode 2018 * @dir: Directory inode 2019 * @mode: mode of the new inode 2020 */ 2021 void inode_init_owner(struct inode *inode, const struct inode *dir, 2022 umode_t mode) 2023 { 2024 inode->i_uid = current_fsuid(); 2025 if (dir && dir->i_mode & S_ISGID) { 2026 inode->i_gid = dir->i_gid; 2027 2028 /* Directories are special, and always inherit S_ISGID */ 2029 if (S_ISDIR(mode)) 2030 mode |= S_ISGID; 2031 else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) && 2032 !in_group_p(inode->i_gid) && 2033 !capable_wrt_inode_uidgid(dir, CAP_FSETID)) 2034 mode &= ~S_ISGID; 2035 } else 2036 inode->i_gid = current_fsgid(); 2037 inode->i_mode = mode; 2038 } 2039 EXPORT_SYMBOL(inode_init_owner); 2040 2041 /** 2042 * inode_owner_or_capable - check current task permissions to inode 2043 * @inode: inode being checked 2044 * 2045 * Return true if current either has CAP_FOWNER in a namespace with the 2046 * inode owner uid mapped, or owns the file. 2047 */ 2048 bool inode_owner_or_capable(const struct inode *inode) 2049 { 2050 struct user_namespace *ns; 2051 2052 if (uid_eq(current_fsuid(), inode->i_uid)) 2053 return true; 2054 2055 ns = current_user_ns(); 2056 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER)) 2057 return true; 2058 return false; 2059 } 2060 EXPORT_SYMBOL(inode_owner_or_capable); 2061 2062 /* 2063 * Direct i/o helper functions 2064 */ 2065 static void __inode_dio_wait(struct inode *inode) 2066 { 2067 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2068 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2069 2070 do { 2071 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); 2072 if (atomic_read(&inode->i_dio_count)) 2073 schedule(); 2074 } while (atomic_read(&inode->i_dio_count)); 2075 finish_wait(wq, &q.wq_entry); 2076 } 2077 2078 /** 2079 * inode_dio_wait - wait for outstanding DIO requests to finish 2080 * @inode: inode to wait for 2081 * 2082 * Waits for all pending direct I/O requests to finish so that we can 2083 * proceed with a truncate or equivalent operation. 2084 * 2085 * Must be called under a lock that serializes taking new references 2086 * to i_dio_count, usually by inode->i_mutex. 2087 */ 2088 void inode_dio_wait(struct inode *inode) 2089 { 2090 if (atomic_read(&inode->i_dio_count)) 2091 __inode_dio_wait(inode); 2092 } 2093 EXPORT_SYMBOL(inode_dio_wait); 2094 2095 /* 2096 * inode_set_flags - atomically set some inode flags 2097 * 2098 * Note: the caller should be holding i_mutex, or else be sure that 2099 * they have exclusive access to the inode structure (i.e., while the 2100 * inode is being instantiated). The reason for the cmpxchg() loop 2101 * --- which wouldn't be necessary if all code paths which modify 2102 * i_flags actually followed this rule, is that there is at least one 2103 * code path which doesn't today so we use cmpxchg() out of an abundance 2104 * of caution. 2105 * 2106 * In the long run, i_mutex is overkill, and we should probably look 2107 * at using the i_lock spinlock to protect i_flags, and then make sure 2108 * it is so documented in include/linux/fs.h and that all code follows 2109 * the locking convention!! 2110 */ 2111 void inode_set_flags(struct inode *inode, unsigned int flags, 2112 unsigned int mask) 2113 { 2114 WARN_ON_ONCE(flags & ~mask); 2115 set_mask_bits(&inode->i_flags, mask, flags); 2116 } 2117 EXPORT_SYMBOL(inode_set_flags); 2118 2119 void inode_nohighmem(struct inode *inode) 2120 { 2121 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2122 } 2123 EXPORT_SYMBOL(inode_nohighmem); 2124 2125 /** 2126 * timespec64_trunc - Truncate timespec64 to a granularity 2127 * @t: Timespec64 2128 * @gran: Granularity in ns. 2129 * 2130 * Truncate a timespec64 to a granularity. Always rounds down. gran must 2131 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2132 */ 2133 struct timespec64 timespec64_trunc(struct timespec64 t, unsigned gran) 2134 { 2135 /* Avoid division in the common cases 1 ns and 1 s. */ 2136 if (gran == 1) { 2137 /* nothing */ 2138 } else if (gran == NSEC_PER_SEC) { 2139 t.tv_nsec = 0; 2140 } else if (gran > 1 && gran < NSEC_PER_SEC) { 2141 t.tv_nsec -= t.tv_nsec % gran; 2142 } else { 2143 WARN(1, "illegal file time granularity: %u", gran); 2144 } 2145 return t; 2146 } 2147 EXPORT_SYMBOL(timespec64_trunc); 2148 2149 /** 2150 * current_time - Return FS time 2151 * @inode: inode. 2152 * 2153 * Return the current time truncated to the time granularity supported by 2154 * the fs. 2155 * 2156 * Note that inode and inode->sb cannot be NULL. 2157 * Otherwise, the function warns and returns time without truncation. 2158 */ 2159 struct timespec64 current_time(struct inode *inode) 2160 { 2161 struct timespec64 now; 2162 2163 ktime_get_coarse_real_ts64(&now); 2164 2165 if (unlikely(!inode->i_sb)) { 2166 WARN(1, "current_time() called with uninitialized super_block in the inode"); 2167 return now; 2168 } 2169 2170 return timespec64_trunc(now, inode->i_sb->s_time_gran); 2171 } 2172 EXPORT_SYMBOL(current_time); 2173