xref: /openbmc/linux/fs/inode.c (revision 45471cd98decae5fced8b38e46c223f54a924814)
1 /*
2  * (C) 1997 Linus Torvalds
3  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4  */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <trace/events/writeback.h>
22 #include "internal.h"
23 
24 /*
25  * Inode locking rules:
26  *
27  * inode->i_lock protects:
28  *   inode->i_state, inode->i_hash, __iget()
29  * Inode LRU list locks protect:
30  *   inode->i_sb->s_inode_lru, inode->i_lru
31  * inode_sb_list_lock protects:
32  *   sb->s_inodes, inode->i_sb_list
33  * bdi->wb.list_lock protects:
34  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_wb_list
35  * inode_hash_lock protects:
36  *   inode_hashtable, inode->i_hash
37  *
38  * Lock ordering:
39  *
40  * inode_sb_list_lock
41  *   inode->i_lock
42  *     Inode LRU list locks
43  *
44  * bdi->wb.list_lock
45  *   inode->i_lock
46  *
47  * inode_hash_lock
48  *   inode_sb_list_lock
49  *   inode->i_lock
50  *
51  * iunique_lock
52  *   inode_hash_lock
53  */
54 
55 static unsigned int i_hash_mask __read_mostly;
56 static unsigned int i_hash_shift __read_mostly;
57 static struct hlist_head *inode_hashtable __read_mostly;
58 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
59 
60 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
61 
62 /*
63  * Empty aops. Can be used for the cases where the user does not
64  * define any of the address_space operations.
65  */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69 
70 /*
71  * Statistics gathering..
72  */
73 struct inodes_stat_t inodes_stat;
74 
75 static DEFINE_PER_CPU(unsigned long, nr_inodes);
76 static DEFINE_PER_CPU(unsigned long, nr_unused);
77 
78 static struct kmem_cache *inode_cachep __read_mostly;
79 
80 static long get_nr_inodes(void)
81 {
82 	int i;
83 	long sum = 0;
84 	for_each_possible_cpu(i)
85 		sum += per_cpu(nr_inodes, i);
86 	return sum < 0 ? 0 : sum;
87 }
88 
89 static inline long get_nr_inodes_unused(void)
90 {
91 	int i;
92 	long sum = 0;
93 	for_each_possible_cpu(i)
94 		sum += per_cpu(nr_unused, i);
95 	return sum < 0 ? 0 : sum;
96 }
97 
98 long get_nr_dirty_inodes(void)
99 {
100 	/* not actually dirty inodes, but a wild approximation */
101 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
102 	return nr_dirty > 0 ? nr_dirty : 0;
103 }
104 
105 /*
106  * Handle nr_inode sysctl
107  */
108 #ifdef CONFIG_SYSCTL
109 int proc_nr_inodes(struct ctl_table *table, int write,
110 		   void __user *buffer, size_t *lenp, loff_t *ppos)
111 {
112 	inodes_stat.nr_inodes = get_nr_inodes();
113 	inodes_stat.nr_unused = get_nr_inodes_unused();
114 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116 #endif
117 
118 static int no_open(struct inode *inode, struct file *file)
119 {
120 	return -ENXIO;
121 }
122 
123 /**
124  * inode_init_always - perform inode structure intialisation
125  * @sb: superblock inode belongs to
126  * @inode: inode to initialise
127  *
128  * These are initializations that need to be done on every inode
129  * allocation as the fields are not initialised by slab allocation.
130  */
131 int inode_init_always(struct super_block *sb, struct inode *inode)
132 {
133 	static const struct inode_operations empty_iops;
134 	static const struct file_operations no_open_fops = {.open = no_open};
135 	struct address_space *const mapping = &inode->i_data;
136 
137 	inode->i_sb = sb;
138 	inode->i_blkbits = sb->s_blocksize_bits;
139 	inode->i_flags = 0;
140 	atomic_set(&inode->i_count, 1);
141 	inode->i_op = &empty_iops;
142 	inode->i_fop = &no_open_fops;
143 	inode->__i_nlink = 1;
144 	inode->i_opflags = 0;
145 	i_uid_write(inode, 0);
146 	i_gid_write(inode, 0);
147 	atomic_set(&inode->i_writecount, 0);
148 	inode->i_size = 0;
149 	inode->i_blocks = 0;
150 	inode->i_bytes = 0;
151 	inode->i_generation = 0;
152 	inode->i_pipe = NULL;
153 	inode->i_bdev = NULL;
154 	inode->i_cdev = NULL;
155 	inode->i_link = NULL;
156 	inode->i_rdev = 0;
157 	inode->dirtied_when = 0;
158 
159 	if (security_inode_alloc(inode))
160 		goto out;
161 	spin_lock_init(&inode->i_lock);
162 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
163 
164 	mutex_init(&inode->i_mutex);
165 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
166 
167 	atomic_set(&inode->i_dio_count, 0);
168 
169 	mapping->a_ops = &empty_aops;
170 	mapping->host = inode;
171 	mapping->flags = 0;
172 	atomic_set(&mapping->i_mmap_writable, 0);
173 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
174 	mapping->private_data = NULL;
175 	mapping->writeback_index = 0;
176 	inode->i_private = NULL;
177 	inode->i_mapping = mapping;
178 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
179 #ifdef CONFIG_FS_POSIX_ACL
180 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
181 #endif
182 
183 #ifdef CONFIG_FSNOTIFY
184 	inode->i_fsnotify_mask = 0;
185 #endif
186 	inode->i_flctx = NULL;
187 	this_cpu_inc(nr_inodes);
188 
189 	return 0;
190 out:
191 	return -ENOMEM;
192 }
193 EXPORT_SYMBOL(inode_init_always);
194 
195 static struct inode *alloc_inode(struct super_block *sb)
196 {
197 	struct inode *inode;
198 
199 	if (sb->s_op->alloc_inode)
200 		inode = sb->s_op->alloc_inode(sb);
201 	else
202 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
203 
204 	if (!inode)
205 		return NULL;
206 
207 	if (unlikely(inode_init_always(sb, inode))) {
208 		if (inode->i_sb->s_op->destroy_inode)
209 			inode->i_sb->s_op->destroy_inode(inode);
210 		else
211 			kmem_cache_free(inode_cachep, inode);
212 		return NULL;
213 	}
214 
215 	return inode;
216 }
217 
218 void free_inode_nonrcu(struct inode *inode)
219 {
220 	kmem_cache_free(inode_cachep, inode);
221 }
222 EXPORT_SYMBOL(free_inode_nonrcu);
223 
224 void __destroy_inode(struct inode *inode)
225 {
226 	BUG_ON(inode_has_buffers(inode));
227 	security_inode_free(inode);
228 	fsnotify_inode_delete(inode);
229 	locks_free_lock_context(inode->i_flctx);
230 	if (!inode->i_nlink) {
231 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
232 		atomic_long_dec(&inode->i_sb->s_remove_count);
233 	}
234 
235 #ifdef CONFIG_FS_POSIX_ACL
236 	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
237 		posix_acl_release(inode->i_acl);
238 	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
239 		posix_acl_release(inode->i_default_acl);
240 #endif
241 	this_cpu_dec(nr_inodes);
242 }
243 EXPORT_SYMBOL(__destroy_inode);
244 
245 static void i_callback(struct rcu_head *head)
246 {
247 	struct inode *inode = container_of(head, struct inode, i_rcu);
248 	kmem_cache_free(inode_cachep, inode);
249 }
250 
251 static void destroy_inode(struct inode *inode)
252 {
253 	BUG_ON(!list_empty(&inode->i_lru));
254 	__destroy_inode(inode);
255 	if (inode->i_sb->s_op->destroy_inode)
256 		inode->i_sb->s_op->destroy_inode(inode);
257 	else
258 		call_rcu(&inode->i_rcu, i_callback);
259 }
260 
261 /**
262  * drop_nlink - directly drop an inode's link count
263  * @inode: inode
264  *
265  * This is a low-level filesystem helper to replace any
266  * direct filesystem manipulation of i_nlink.  In cases
267  * where we are attempting to track writes to the
268  * filesystem, a decrement to zero means an imminent
269  * write when the file is truncated and actually unlinked
270  * on the filesystem.
271  */
272 void drop_nlink(struct inode *inode)
273 {
274 	WARN_ON(inode->i_nlink == 0);
275 	inode->__i_nlink--;
276 	if (!inode->i_nlink)
277 		atomic_long_inc(&inode->i_sb->s_remove_count);
278 }
279 EXPORT_SYMBOL(drop_nlink);
280 
281 /**
282  * clear_nlink - directly zero an inode's link count
283  * @inode: inode
284  *
285  * This is a low-level filesystem helper to replace any
286  * direct filesystem manipulation of i_nlink.  See
287  * drop_nlink() for why we care about i_nlink hitting zero.
288  */
289 void clear_nlink(struct inode *inode)
290 {
291 	if (inode->i_nlink) {
292 		inode->__i_nlink = 0;
293 		atomic_long_inc(&inode->i_sb->s_remove_count);
294 	}
295 }
296 EXPORT_SYMBOL(clear_nlink);
297 
298 /**
299  * set_nlink - directly set an inode's link count
300  * @inode: inode
301  * @nlink: new nlink (should be non-zero)
302  *
303  * This is a low-level filesystem helper to replace any
304  * direct filesystem manipulation of i_nlink.
305  */
306 void set_nlink(struct inode *inode, unsigned int nlink)
307 {
308 	if (!nlink) {
309 		clear_nlink(inode);
310 	} else {
311 		/* Yes, some filesystems do change nlink from zero to one */
312 		if (inode->i_nlink == 0)
313 			atomic_long_dec(&inode->i_sb->s_remove_count);
314 
315 		inode->__i_nlink = nlink;
316 	}
317 }
318 EXPORT_SYMBOL(set_nlink);
319 
320 /**
321  * inc_nlink - directly increment an inode's link count
322  * @inode: inode
323  *
324  * This is a low-level filesystem helper to replace any
325  * direct filesystem manipulation of i_nlink.  Currently,
326  * it is only here for parity with dec_nlink().
327  */
328 void inc_nlink(struct inode *inode)
329 {
330 	if (unlikely(inode->i_nlink == 0)) {
331 		WARN_ON(!(inode->i_state & I_LINKABLE));
332 		atomic_long_dec(&inode->i_sb->s_remove_count);
333 	}
334 
335 	inode->__i_nlink++;
336 }
337 EXPORT_SYMBOL(inc_nlink);
338 
339 void address_space_init_once(struct address_space *mapping)
340 {
341 	memset(mapping, 0, sizeof(*mapping));
342 	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
343 	spin_lock_init(&mapping->tree_lock);
344 	init_rwsem(&mapping->i_mmap_rwsem);
345 	INIT_LIST_HEAD(&mapping->private_list);
346 	spin_lock_init(&mapping->private_lock);
347 	mapping->i_mmap = RB_ROOT;
348 }
349 EXPORT_SYMBOL(address_space_init_once);
350 
351 /*
352  * These are initializations that only need to be done
353  * once, because the fields are idempotent across use
354  * of the inode, so let the slab aware of that.
355  */
356 void inode_init_once(struct inode *inode)
357 {
358 	memset(inode, 0, sizeof(*inode));
359 	INIT_HLIST_NODE(&inode->i_hash);
360 	INIT_LIST_HEAD(&inode->i_devices);
361 	INIT_LIST_HEAD(&inode->i_wb_list);
362 	INIT_LIST_HEAD(&inode->i_lru);
363 	address_space_init_once(&inode->i_data);
364 	i_size_ordered_init(inode);
365 #ifdef CONFIG_FSNOTIFY
366 	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
367 #endif
368 }
369 EXPORT_SYMBOL(inode_init_once);
370 
371 static void init_once(void *foo)
372 {
373 	struct inode *inode = (struct inode *) foo;
374 
375 	inode_init_once(inode);
376 }
377 
378 /*
379  * inode->i_lock must be held
380  */
381 void __iget(struct inode *inode)
382 {
383 	atomic_inc(&inode->i_count);
384 }
385 
386 /*
387  * get additional reference to inode; caller must already hold one.
388  */
389 void ihold(struct inode *inode)
390 {
391 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
392 }
393 EXPORT_SYMBOL(ihold);
394 
395 static void inode_lru_list_add(struct inode *inode)
396 {
397 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
398 		this_cpu_inc(nr_unused);
399 }
400 
401 /*
402  * Add inode to LRU if needed (inode is unused and clean).
403  *
404  * Needs inode->i_lock held.
405  */
406 void inode_add_lru(struct inode *inode)
407 {
408 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
409 				I_FREEING | I_WILL_FREE)) &&
410 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
411 		inode_lru_list_add(inode);
412 }
413 
414 
415 static void inode_lru_list_del(struct inode *inode)
416 {
417 
418 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
419 		this_cpu_dec(nr_unused);
420 }
421 
422 /**
423  * inode_sb_list_add - add inode to the superblock list of inodes
424  * @inode: inode to add
425  */
426 void inode_sb_list_add(struct inode *inode)
427 {
428 	spin_lock(&inode_sb_list_lock);
429 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
430 	spin_unlock(&inode_sb_list_lock);
431 }
432 EXPORT_SYMBOL_GPL(inode_sb_list_add);
433 
434 static inline void inode_sb_list_del(struct inode *inode)
435 {
436 	if (!list_empty(&inode->i_sb_list)) {
437 		spin_lock(&inode_sb_list_lock);
438 		list_del_init(&inode->i_sb_list);
439 		spin_unlock(&inode_sb_list_lock);
440 	}
441 }
442 
443 static unsigned long hash(struct super_block *sb, unsigned long hashval)
444 {
445 	unsigned long tmp;
446 
447 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
448 			L1_CACHE_BYTES;
449 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
450 	return tmp & i_hash_mask;
451 }
452 
453 /**
454  *	__insert_inode_hash - hash an inode
455  *	@inode: unhashed inode
456  *	@hashval: unsigned long value used to locate this object in the
457  *		inode_hashtable.
458  *
459  *	Add an inode to the inode hash for this superblock.
460  */
461 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
462 {
463 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
464 
465 	spin_lock(&inode_hash_lock);
466 	spin_lock(&inode->i_lock);
467 	hlist_add_head(&inode->i_hash, b);
468 	spin_unlock(&inode->i_lock);
469 	spin_unlock(&inode_hash_lock);
470 }
471 EXPORT_SYMBOL(__insert_inode_hash);
472 
473 /**
474  *	__remove_inode_hash - remove an inode from the hash
475  *	@inode: inode to unhash
476  *
477  *	Remove an inode from the superblock.
478  */
479 void __remove_inode_hash(struct inode *inode)
480 {
481 	spin_lock(&inode_hash_lock);
482 	spin_lock(&inode->i_lock);
483 	hlist_del_init(&inode->i_hash);
484 	spin_unlock(&inode->i_lock);
485 	spin_unlock(&inode_hash_lock);
486 }
487 EXPORT_SYMBOL(__remove_inode_hash);
488 
489 void clear_inode(struct inode *inode)
490 {
491 	might_sleep();
492 	/*
493 	 * We have to cycle tree_lock here because reclaim can be still in the
494 	 * process of removing the last page (in __delete_from_page_cache())
495 	 * and we must not free mapping under it.
496 	 */
497 	spin_lock_irq(&inode->i_data.tree_lock);
498 	BUG_ON(inode->i_data.nrpages);
499 	BUG_ON(inode->i_data.nrshadows);
500 	spin_unlock_irq(&inode->i_data.tree_lock);
501 	BUG_ON(!list_empty(&inode->i_data.private_list));
502 	BUG_ON(!(inode->i_state & I_FREEING));
503 	BUG_ON(inode->i_state & I_CLEAR);
504 	/* don't need i_lock here, no concurrent mods to i_state */
505 	inode->i_state = I_FREEING | I_CLEAR;
506 }
507 EXPORT_SYMBOL(clear_inode);
508 
509 /*
510  * Free the inode passed in, removing it from the lists it is still connected
511  * to. We remove any pages still attached to the inode and wait for any IO that
512  * is still in progress before finally destroying the inode.
513  *
514  * An inode must already be marked I_FREEING so that we avoid the inode being
515  * moved back onto lists if we race with other code that manipulates the lists
516  * (e.g. writeback_single_inode). The caller is responsible for setting this.
517  *
518  * An inode must already be removed from the LRU list before being evicted from
519  * the cache. This should occur atomically with setting the I_FREEING state
520  * flag, so no inodes here should ever be on the LRU when being evicted.
521  */
522 static void evict(struct inode *inode)
523 {
524 	const struct super_operations *op = inode->i_sb->s_op;
525 
526 	BUG_ON(!(inode->i_state & I_FREEING));
527 	BUG_ON(!list_empty(&inode->i_lru));
528 
529 	if (!list_empty(&inode->i_wb_list))
530 		inode_wb_list_del(inode);
531 
532 	inode_sb_list_del(inode);
533 
534 	/*
535 	 * Wait for flusher thread to be done with the inode so that filesystem
536 	 * does not start destroying it while writeback is still running. Since
537 	 * the inode has I_FREEING set, flusher thread won't start new work on
538 	 * the inode.  We just have to wait for running writeback to finish.
539 	 */
540 	inode_wait_for_writeback(inode);
541 
542 	if (op->evict_inode) {
543 		op->evict_inode(inode);
544 	} else {
545 		truncate_inode_pages_final(&inode->i_data);
546 		clear_inode(inode);
547 	}
548 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
549 		bd_forget(inode);
550 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
551 		cd_forget(inode);
552 
553 	remove_inode_hash(inode);
554 
555 	spin_lock(&inode->i_lock);
556 	wake_up_bit(&inode->i_state, __I_NEW);
557 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
558 	spin_unlock(&inode->i_lock);
559 
560 	destroy_inode(inode);
561 }
562 
563 /*
564  * dispose_list - dispose of the contents of a local list
565  * @head: the head of the list to free
566  *
567  * Dispose-list gets a local list with local inodes in it, so it doesn't
568  * need to worry about list corruption and SMP locks.
569  */
570 static void dispose_list(struct list_head *head)
571 {
572 	while (!list_empty(head)) {
573 		struct inode *inode;
574 
575 		inode = list_first_entry(head, struct inode, i_lru);
576 		list_del_init(&inode->i_lru);
577 
578 		evict(inode);
579 	}
580 }
581 
582 /**
583  * evict_inodes	- evict all evictable inodes for a superblock
584  * @sb:		superblock to operate on
585  *
586  * Make sure that no inodes with zero refcount are retained.  This is
587  * called by superblock shutdown after having MS_ACTIVE flag removed,
588  * so any inode reaching zero refcount during or after that call will
589  * be immediately evicted.
590  */
591 void evict_inodes(struct super_block *sb)
592 {
593 	struct inode *inode, *next;
594 	LIST_HEAD(dispose);
595 
596 	spin_lock(&inode_sb_list_lock);
597 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
598 		if (atomic_read(&inode->i_count))
599 			continue;
600 
601 		spin_lock(&inode->i_lock);
602 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
603 			spin_unlock(&inode->i_lock);
604 			continue;
605 		}
606 
607 		inode->i_state |= I_FREEING;
608 		inode_lru_list_del(inode);
609 		spin_unlock(&inode->i_lock);
610 		list_add(&inode->i_lru, &dispose);
611 	}
612 	spin_unlock(&inode_sb_list_lock);
613 
614 	dispose_list(&dispose);
615 }
616 
617 /**
618  * invalidate_inodes	- attempt to free all inodes on a superblock
619  * @sb:		superblock to operate on
620  * @kill_dirty: flag to guide handling of dirty inodes
621  *
622  * Attempts to free all inodes for a given superblock.  If there were any
623  * busy inodes return a non-zero value, else zero.
624  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
625  * them as busy.
626  */
627 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
628 {
629 	int busy = 0;
630 	struct inode *inode, *next;
631 	LIST_HEAD(dispose);
632 
633 	spin_lock(&inode_sb_list_lock);
634 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
635 		spin_lock(&inode->i_lock);
636 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
637 			spin_unlock(&inode->i_lock);
638 			continue;
639 		}
640 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
641 			spin_unlock(&inode->i_lock);
642 			busy = 1;
643 			continue;
644 		}
645 		if (atomic_read(&inode->i_count)) {
646 			spin_unlock(&inode->i_lock);
647 			busy = 1;
648 			continue;
649 		}
650 
651 		inode->i_state |= I_FREEING;
652 		inode_lru_list_del(inode);
653 		spin_unlock(&inode->i_lock);
654 		list_add(&inode->i_lru, &dispose);
655 	}
656 	spin_unlock(&inode_sb_list_lock);
657 
658 	dispose_list(&dispose);
659 
660 	return busy;
661 }
662 
663 /*
664  * Isolate the inode from the LRU in preparation for freeing it.
665  *
666  * Any inodes which are pinned purely because of attached pagecache have their
667  * pagecache removed.  If the inode has metadata buffers attached to
668  * mapping->private_list then try to remove them.
669  *
670  * If the inode has the I_REFERENCED flag set, then it means that it has been
671  * used recently - the flag is set in iput_final(). When we encounter such an
672  * inode, clear the flag and move it to the back of the LRU so it gets another
673  * pass through the LRU before it gets reclaimed. This is necessary because of
674  * the fact we are doing lazy LRU updates to minimise lock contention so the
675  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
676  * with this flag set because they are the inodes that are out of order.
677  */
678 static enum lru_status inode_lru_isolate(struct list_head *item,
679 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
680 {
681 	struct list_head *freeable = arg;
682 	struct inode	*inode = container_of(item, struct inode, i_lru);
683 
684 	/*
685 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
686 	 * If we fail to get the lock, just skip it.
687 	 */
688 	if (!spin_trylock(&inode->i_lock))
689 		return LRU_SKIP;
690 
691 	/*
692 	 * Referenced or dirty inodes are still in use. Give them another pass
693 	 * through the LRU as we canot reclaim them now.
694 	 */
695 	if (atomic_read(&inode->i_count) ||
696 	    (inode->i_state & ~I_REFERENCED)) {
697 		list_lru_isolate(lru, &inode->i_lru);
698 		spin_unlock(&inode->i_lock);
699 		this_cpu_dec(nr_unused);
700 		return LRU_REMOVED;
701 	}
702 
703 	/* recently referenced inodes get one more pass */
704 	if (inode->i_state & I_REFERENCED) {
705 		inode->i_state &= ~I_REFERENCED;
706 		spin_unlock(&inode->i_lock);
707 		return LRU_ROTATE;
708 	}
709 
710 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
711 		__iget(inode);
712 		spin_unlock(&inode->i_lock);
713 		spin_unlock(lru_lock);
714 		if (remove_inode_buffers(inode)) {
715 			unsigned long reap;
716 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
717 			if (current_is_kswapd())
718 				__count_vm_events(KSWAPD_INODESTEAL, reap);
719 			else
720 				__count_vm_events(PGINODESTEAL, reap);
721 			if (current->reclaim_state)
722 				current->reclaim_state->reclaimed_slab += reap;
723 		}
724 		iput(inode);
725 		spin_lock(lru_lock);
726 		return LRU_RETRY;
727 	}
728 
729 	WARN_ON(inode->i_state & I_NEW);
730 	inode->i_state |= I_FREEING;
731 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
732 	spin_unlock(&inode->i_lock);
733 
734 	this_cpu_dec(nr_unused);
735 	return LRU_REMOVED;
736 }
737 
738 /*
739  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
740  * This is called from the superblock shrinker function with a number of inodes
741  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
742  * then are freed outside inode_lock by dispose_list().
743  */
744 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
745 {
746 	LIST_HEAD(freeable);
747 	long freed;
748 
749 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
750 				     inode_lru_isolate, &freeable);
751 	dispose_list(&freeable);
752 	return freed;
753 }
754 
755 static void __wait_on_freeing_inode(struct inode *inode);
756 /*
757  * Called with the inode lock held.
758  */
759 static struct inode *find_inode(struct super_block *sb,
760 				struct hlist_head *head,
761 				int (*test)(struct inode *, void *),
762 				void *data)
763 {
764 	struct inode *inode = NULL;
765 
766 repeat:
767 	hlist_for_each_entry(inode, head, i_hash) {
768 		if (inode->i_sb != sb)
769 			continue;
770 		if (!test(inode, data))
771 			continue;
772 		spin_lock(&inode->i_lock);
773 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
774 			__wait_on_freeing_inode(inode);
775 			goto repeat;
776 		}
777 		__iget(inode);
778 		spin_unlock(&inode->i_lock);
779 		return inode;
780 	}
781 	return NULL;
782 }
783 
784 /*
785  * find_inode_fast is the fast path version of find_inode, see the comment at
786  * iget_locked for details.
787  */
788 static struct inode *find_inode_fast(struct super_block *sb,
789 				struct hlist_head *head, unsigned long ino)
790 {
791 	struct inode *inode = NULL;
792 
793 repeat:
794 	hlist_for_each_entry(inode, head, i_hash) {
795 		if (inode->i_ino != ino)
796 			continue;
797 		if (inode->i_sb != sb)
798 			continue;
799 		spin_lock(&inode->i_lock);
800 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
801 			__wait_on_freeing_inode(inode);
802 			goto repeat;
803 		}
804 		__iget(inode);
805 		spin_unlock(&inode->i_lock);
806 		return inode;
807 	}
808 	return NULL;
809 }
810 
811 /*
812  * Each cpu owns a range of LAST_INO_BATCH numbers.
813  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
814  * to renew the exhausted range.
815  *
816  * This does not significantly increase overflow rate because every CPU can
817  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
818  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
819  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
820  * overflow rate by 2x, which does not seem too significant.
821  *
822  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
823  * error if st_ino won't fit in target struct field. Use 32bit counter
824  * here to attempt to avoid that.
825  */
826 #define LAST_INO_BATCH 1024
827 static DEFINE_PER_CPU(unsigned int, last_ino);
828 
829 unsigned int get_next_ino(void)
830 {
831 	unsigned int *p = &get_cpu_var(last_ino);
832 	unsigned int res = *p;
833 
834 #ifdef CONFIG_SMP
835 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
836 		static atomic_t shared_last_ino;
837 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
838 
839 		res = next - LAST_INO_BATCH;
840 	}
841 #endif
842 
843 	*p = ++res;
844 	put_cpu_var(last_ino);
845 	return res;
846 }
847 EXPORT_SYMBOL(get_next_ino);
848 
849 /**
850  *	new_inode_pseudo 	- obtain an inode
851  *	@sb: superblock
852  *
853  *	Allocates a new inode for given superblock.
854  *	Inode wont be chained in superblock s_inodes list
855  *	This means :
856  *	- fs can't be unmount
857  *	- quotas, fsnotify, writeback can't work
858  */
859 struct inode *new_inode_pseudo(struct super_block *sb)
860 {
861 	struct inode *inode = alloc_inode(sb);
862 
863 	if (inode) {
864 		spin_lock(&inode->i_lock);
865 		inode->i_state = 0;
866 		spin_unlock(&inode->i_lock);
867 		INIT_LIST_HEAD(&inode->i_sb_list);
868 	}
869 	return inode;
870 }
871 
872 /**
873  *	new_inode 	- obtain an inode
874  *	@sb: superblock
875  *
876  *	Allocates a new inode for given superblock. The default gfp_mask
877  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
878  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
879  *	for the page cache are not reclaimable or migratable,
880  *	mapping_set_gfp_mask() must be called with suitable flags on the
881  *	newly created inode's mapping
882  *
883  */
884 struct inode *new_inode(struct super_block *sb)
885 {
886 	struct inode *inode;
887 
888 	spin_lock_prefetch(&inode_sb_list_lock);
889 
890 	inode = new_inode_pseudo(sb);
891 	if (inode)
892 		inode_sb_list_add(inode);
893 	return inode;
894 }
895 EXPORT_SYMBOL(new_inode);
896 
897 #ifdef CONFIG_DEBUG_LOCK_ALLOC
898 void lockdep_annotate_inode_mutex_key(struct inode *inode)
899 {
900 	if (S_ISDIR(inode->i_mode)) {
901 		struct file_system_type *type = inode->i_sb->s_type;
902 
903 		/* Set new key only if filesystem hasn't already changed it */
904 		if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
905 			/*
906 			 * ensure nobody is actually holding i_mutex
907 			 */
908 			mutex_destroy(&inode->i_mutex);
909 			mutex_init(&inode->i_mutex);
910 			lockdep_set_class(&inode->i_mutex,
911 					  &type->i_mutex_dir_key);
912 		}
913 	}
914 }
915 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
916 #endif
917 
918 /**
919  * unlock_new_inode - clear the I_NEW state and wake up any waiters
920  * @inode:	new inode to unlock
921  *
922  * Called when the inode is fully initialised to clear the new state of the
923  * inode and wake up anyone waiting for the inode to finish initialisation.
924  */
925 void unlock_new_inode(struct inode *inode)
926 {
927 	lockdep_annotate_inode_mutex_key(inode);
928 	spin_lock(&inode->i_lock);
929 	WARN_ON(!(inode->i_state & I_NEW));
930 	inode->i_state &= ~I_NEW;
931 	smp_mb();
932 	wake_up_bit(&inode->i_state, __I_NEW);
933 	spin_unlock(&inode->i_lock);
934 }
935 EXPORT_SYMBOL(unlock_new_inode);
936 
937 /**
938  * lock_two_nondirectories - take two i_mutexes on non-directory objects
939  *
940  * Lock any non-NULL argument that is not a directory.
941  * Zero, one or two objects may be locked by this function.
942  *
943  * @inode1: first inode to lock
944  * @inode2: second inode to lock
945  */
946 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
947 {
948 	if (inode1 > inode2)
949 		swap(inode1, inode2);
950 
951 	if (inode1 && !S_ISDIR(inode1->i_mode))
952 		mutex_lock(&inode1->i_mutex);
953 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
954 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_NONDIR2);
955 }
956 EXPORT_SYMBOL(lock_two_nondirectories);
957 
958 /**
959  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
960  * @inode1: first inode to unlock
961  * @inode2: second inode to unlock
962  */
963 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
964 {
965 	if (inode1 && !S_ISDIR(inode1->i_mode))
966 		mutex_unlock(&inode1->i_mutex);
967 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
968 		mutex_unlock(&inode2->i_mutex);
969 }
970 EXPORT_SYMBOL(unlock_two_nondirectories);
971 
972 /**
973  * iget5_locked - obtain an inode from a mounted file system
974  * @sb:		super block of file system
975  * @hashval:	hash value (usually inode number) to get
976  * @test:	callback used for comparisons between inodes
977  * @set:	callback used to initialize a new struct inode
978  * @data:	opaque data pointer to pass to @test and @set
979  *
980  * Search for the inode specified by @hashval and @data in the inode cache,
981  * and if present it is return it with an increased reference count. This is
982  * a generalized version of iget_locked() for file systems where the inode
983  * number is not sufficient for unique identification of an inode.
984  *
985  * If the inode is not in cache, allocate a new inode and return it locked,
986  * hashed, and with the I_NEW flag set. The file system gets to fill it in
987  * before unlocking it via unlock_new_inode().
988  *
989  * Note both @test and @set are called with the inode_hash_lock held, so can't
990  * sleep.
991  */
992 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
993 		int (*test)(struct inode *, void *),
994 		int (*set)(struct inode *, void *), void *data)
995 {
996 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
997 	struct inode *inode;
998 
999 	spin_lock(&inode_hash_lock);
1000 	inode = find_inode(sb, head, test, data);
1001 	spin_unlock(&inode_hash_lock);
1002 
1003 	if (inode) {
1004 		wait_on_inode(inode);
1005 		return inode;
1006 	}
1007 
1008 	inode = alloc_inode(sb);
1009 	if (inode) {
1010 		struct inode *old;
1011 
1012 		spin_lock(&inode_hash_lock);
1013 		/* We released the lock, so.. */
1014 		old = find_inode(sb, head, test, data);
1015 		if (!old) {
1016 			if (set(inode, data))
1017 				goto set_failed;
1018 
1019 			spin_lock(&inode->i_lock);
1020 			inode->i_state = I_NEW;
1021 			hlist_add_head(&inode->i_hash, head);
1022 			spin_unlock(&inode->i_lock);
1023 			inode_sb_list_add(inode);
1024 			spin_unlock(&inode_hash_lock);
1025 
1026 			/* Return the locked inode with I_NEW set, the
1027 			 * caller is responsible for filling in the contents
1028 			 */
1029 			return inode;
1030 		}
1031 
1032 		/*
1033 		 * Uhhuh, somebody else created the same inode under
1034 		 * us. Use the old inode instead of the one we just
1035 		 * allocated.
1036 		 */
1037 		spin_unlock(&inode_hash_lock);
1038 		destroy_inode(inode);
1039 		inode = old;
1040 		wait_on_inode(inode);
1041 	}
1042 	return inode;
1043 
1044 set_failed:
1045 	spin_unlock(&inode_hash_lock);
1046 	destroy_inode(inode);
1047 	return NULL;
1048 }
1049 EXPORT_SYMBOL(iget5_locked);
1050 
1051 /**
1052  * iget_locked - obtain an inode from a mounted file system
1053  * @sb:		super block of file system
1054  * @ino:	inode number to get
1055  *
1056  * Search for the inode specified by @ino in the inode cache and if present
1057  * return it with an increased reference count. This is for file systems
1058  * where the inode number is sufficient for unique identification of an inode.
1059  *
1060  * If the inode is not in cache, allocate a new inode and return it locked,
1061  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1062  * before unlocking it via unlock_new_inode().
1063  */
1064 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1065 {
1066 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1067 	struct inode *inode;
1068 
1069 	spin_lock(&inode_hash_lock);
1070 	inode = find_inode_fast(sb, head, ino);
1071 	spin_unlock(&inode_hash_lock);
1072 	if (inode) {
1073 		wait_on_inode(inode);
1074 		return inode;
1075 	}
1076 
1077 	inode = alloc_inode(sb);
1078 	if (inode) {
1079 		struct inode *old;
1080 
1081 		spin_lock(&inode_hash_lock);
1082 		/* We released the lock, so.. */
1083 		old = find_inode_fast(sb, head, ino);
1084 		if (!old) {
1085 			inode->i_ino = ino;
1086 			spin_lock(&inode->i_lock);
1087 			inode->i_state = I_NEW;
1088 			hlist_add_head(&inode->i_hash, head);
1089 			spin_unlock(&inode->i_lock);
1090 			inode_sb_list_add(inode);
1091 			spin_unlock(&inode_hash_lock);
1092 
1093 			/* Return the locked inode with I_NEW set, the
1094 			 * caller is responsible for filling in the contents
1095 			 */
1096 			return inode;
1097 		}
1098 
1099 		/*
1100 		 * Uhhuh, somebody else created the same inode under
1101 		 * us. Use the old inode instead of the one we just
1102 		 * allocated.
1103 		 */
1104 		spin_unlock(&inode_hash_lock);
1105 		destroy_inode(inode);
1106 		inode = old;
1107 		wait_on_inode(inode);
1108 	}
1109 	return inode;
1110 }
1111 EXPORT_SYMBOL(iget_locked);
1112 
1113 /*
1114  * search the inode cache for a matching inode number.
1115  * If we find one, then the inode number we are trying to
1116  * allocate is not unique and so we should not use it.
1117  *
1118  * Returns 1 if the inode number is unique, 0 if it is not.
1119  */
1120 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1121 {
1122 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1123 	struct inode *inode;
1124 
1125 	spin_lock(&inode_hash_lock);
1126 	hlist_for_each_entry(inode, b, i_hash) {
1127 		if (inode->i_ino == ino && inode->i_sb == sb) {
1128 			spin_unlock(&inode_hash_lock);
1129 			return 0;
1130 		}
1131 	}
1132 	spin_unlock(&inode_hash_lock);
1133 
1134 	return 1;
1135 }
1136 
1137 /**
1138  *	iunique - get a unique inode number
1139  *	@sb: superblock
1140  *	@max_reserved: highest reserved inode number
1141  *
1142  *	Obtain an inode number that is unique on the system for a given
1143  *	superblock. This is used by file systems that have no natural
1144  *	permanent inode numbering system. An inode number is returned that
1145  *	is higher than the reserved limit but unique.
1146  *
1147  *	BUGS:
1148  *	With a large number of inodes live on the file system this function
1149  *	currently becomes quite slow.
1150  */
1151 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1152 {
1153 	/*
1154 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1155 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1156 	 * here to attempt to avoid that.
1157 	 */
1158 	static DEFINE_SPINLOCK(iunique_lock);
1159 	static unsigned int counter;
1160 	ino_t res;
1161 
1162 	spin_lock(&iunique_lock);
1163 	do {
1164 		if (counter <= max_reserved)
1165 			counter = max_reserved + 1;
1166 		res = counter++;
1167 	} while (!test_inode_iunique(sb, res));
1168 	spin_unlock(&iunique_lock);
1169 
1170 	return res;
1171 }
1172 EXPORT_SYMBOL(iunique);
1173 
1174 struct inode *igrab(struct inode *inode)
1175 {
1176 	spin_lock(&inode->i_lock);
1177 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1178 		__iget(inode);
1179 		spin_unlock(&inode->i_lock);
1180 	} else {
1181 		spin_unlock(&inode->i_lock);
1182 		/*
1183 		 * Handle the case where s_op->clear_inode is not been
1184 		 * called yet, and somebody is calling igrab
1185 		 * while the inode is getting freed.
1186 		 */
1187 		inode = NULL;
1188 	}
1189 	return inode;
1190 }
1191 EXPORT_SYMBOL(igrab);
1192 
1193 /**
1194  * ilookup5_nowait - search for an inode in the inode cache
1195  * @sb:		super block of file system to search
1196  * @hashval:	hash value (usually inode number) to search for
1197  * @test:	callback used for comparisons between inodes
1198  * @data:	opaque data pointer to pass to @test
1199  *
1200  * Search for the inode specified by @hashval and @data in the inode cache.
1201  * If the inode is in the cache, the inode is returned with an incremented
1202  * reference count.
1203  *
1204  * Note: I_NEW is not waited upon so you have to be very careful what you do
1205  * with the returned inode.  You probably should be using ilookup5() instead.
1206  *
1207  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1208  */
1209 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1210 		int (*test)(struct inode *, void *), void *data)
1211 {
1212 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1213 	struct inode *inode;
1214 
1215 	spin_lock(&inode_hash_lock);
1216 	inode = find_inode(sb, head, test, data);
1217 	spin_unlock(&inode_hash_lock);
1218 
1219 	return inode;
1220 }
1221 EXPORT_SYMBOL(ilookup5_nowait);
1222 
1223 /**
1224  * ilookup5 - search for an inode in the inode cache
1225  * @sb:		super block of file system to search
1226  * @hashval:	hash value (usually inode number) to search for
1227  * @test:	callback used for comparisons between inodes
1228  * @data:	opaque data pointer to pass to @test
1229  *
1230  * Search for the inode specified by @hashval and @data in the inode cache,
1231  * and if the inode is in the cache, return the inode with an incremented
1232  * reference count.  Waits on I_NEW before returning the inode.
1233  * returned with an incremented reference count.
1234  *
1235  * This is a generalized version of ilookup() for file systems where the
1236  * inode number is not sufficient for unique identification of an inode.
1237  *
1238  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1239  */
1240 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1241 		int (*test)(struct inode *, void *), void *data)
1242 {
1243 	struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1244 
1245 	if (inode)
1246 		wait_on_inode(inode);
1247 	return inode;
1248 }
1249 EXPORT_SYMBOL(ilookup5);
1250 
1251 /**
1252  * ilookup - search for an inode in the inode cache
1253  * @sb:		super block of file system to search
1254  * @ino:	inode number to search for
1255  *
1256  * Search for the inode @ino in the inode cache, and if the inode is in the
1257  * cache, the inode is returned with an incremented reference count.
1258  */
1259 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1260 {
1261 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1262 	struct inode *inode;
1263 
1264 	spin_lock(&inode_hash_lock);
1265 	inode = find_inode_fast(sb, head, ino);
1266 	spin_unlock(&inode_hash_lock);
1267 
1268 	if (inode)
1269 		wait_on_inode(inode);
1270 	return inode;
1271 }
1272 EXPORT_SYMBOL(ilookup);
1273 
1274 /**
1275  * find_inode_nowait - find an inode in the inode cache
1276  * @sb:		super block of file system to search
1277  * @hashval:	hash value (usually inode number) to search for
1278  * @match:	callback used for comparisons between inodes
1279  * @data:	opaque data pointer to pass to @match
1280  *
1281  * Search for the inode specified by @hashval and @data in the inode
1282  * cache, where the helper function @match will return 0 if the inode
1283  * does not match, 1 if the inode does match, and -1 if the search
1284  * should be stopped.  The @match function must be responsible for
1285  * taking the i_lock spin_lock and checking i_state for an inode being
1286  * freed or being initialized, and incrementing the reference count
1287  * before returning 1.  It also must not sleep, since it is called with
1288  * the inode_hash_lock spinlock held.
1289  *
1290  * This is a even more generalized version of ilookup5() when the
1291  * function must never block --- find_inode() can block in
1292  * __wait_on_freeing_inode() --- or when the caller can not increment
1293  * the reference count because the resulting iput() might cause an
1294  * inode eviction.  The tradeoff is that the @match funtion must be
1295  * very carefully implemented.
1296  */
1297 struct inode *find_inode_nowait(struct super_block *sb,
1298 				unsigned long hashval,
1299 				int (*match)(struct inode *, unsigned long,
1300 					     void *),
1301 				void *data)
1302 {
1303 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1304 	struct inode *inode, *ret_inode = NULL;
1305 	int mval;
1306 
1307 	spin_lock(&inode_hash_lock);
1308 	hlist_for_each_entry(inode, head, i_hash) {
1309 		if (inode->i_sb != sb)
1310 			continue;
1311 		mval = match(inode, hashval, data);
1312 		if (mval == 0)
1313 			continue;
1314 		if (mval == 1)
1315 			ret_inode = inode;
1316 		goto out;
1317 	}
1318 out:
1319 	spin_unlock(&inode_hash_lock);
1320 	return ret_inode;
1321 }
1322 EXPORT_SYMBOL(find_inode_nowait);
1323 
1324 int insert_inode_locked(struct inode *inode)
1325 {
1326 	struct super_block *sb = inode->i_sb;
1327 	ino_t ino = inode->i_ino;
1328 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1329 
1330 	while (1) {
1331 		struct inode *old = NULL;
1332 		spin_lock(&inode_hash_lock);
1333 		hlist_for_each_entry(old, head, i_hash) {
1334 			if (old->i_ino != ino)
1335 				continue;
1336 			if (old->i_sb != sb)
1337 				continue;
1338 			spin_lock(&old->i_lock);
1339 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1340 				spin_unlock(&old->i_lock);
1341 				continue;
1342 			}
1343 			break;
1344 		}
1345 		if (likely(!old)) {
1346 			spin_lock(&inode->i_lock);
1347 			inode->i_state |= I_NEW;
1348 			hlist_add_head(&inode->i_hash, head);
1349 			spin_unlock(&inode->i_lock);
1350 			spin_unlock(&inode_hash_lock);
1351 			return 0;
1352 		}
1353 		__iget(old);
1354 		spin_unlock(&old->i_lock);
1355 		spin_unlock(&inode_hash_lock);
1356 		wait_on_inode(old);
1357 		if (unlikely(!inode_unhashed(old))) {
1358 			iput(old);
1359 			return -EBUSY;
1360 		}
1361 		iput(old);
1362 	}
1363 }
1364 EXPORT_SYMBOL(insert_inode_locked);
1365 
1366 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1367 		int (*test)(struct inode *, void *), void *data)
1368 {
1369 	struct super_block *sb = inode->i_sb;
1370 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1371 
1372 	while (1) {
1373 		struct inode *old = NULL;
1374 
1375 		spin_lock(&inode_hash_lock);
1376 		hlist_for_each_entry(old, head, i_hash) {
1377 			if (old->i_sb != sb)
1378 				continue;
1379 			if (!test(old, data))
1380 				continue;
1381 			spin_lock(&old->i_lock);
1382 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1383 				spin_unlock(&old->i_lock);
1384 				continue;
1385 			}
1386 			break;
1387 		}
1388 		if (likely(!old)) {
1389 			spin_lock(&inode->i_lock);
1390 			inode->i_state |= I_NEW;
1391 			hlist_add_head(&inode->i_hash, head);
1392 			spin_unlock(&inode->i_lock);
1393 			spin_unlock(&inode_hash_lock);
1394 			return 0;
1395 		}
1396 		__iget(old);
1397 		spin_unlock(&old->i_lock);
1398 		spin_unlock(&inode_hash_lock);
1399 		wait_on_inode(old);
1400 		if (unlikely(!inode_unhashed(old))) {
1401 			iput(old);
1402 			return -EBUSY;
1403 		}
1404 		iput(old);
1405 	}
1406 }
1407 EXPORT_SYMBOL(insert_inode_locked4);
1408 
1409 
1410 int generic_delete_inode(struct inode *inode)
1411 {
1412 	return 1;
1413 }
1414 EXPORT_SYMBOL(generic_delete_inode);
1415 
1416 /*
1417  * Called when we're dropping the last reference
1418  * to an inode.
1419  *
1420  * Call the FS "drop_inode()" function, defaulting to
1421  * the legacy UNIX filesystem behaviour.  If it tells
1422  * us to evict inode, do so.  Otherwise, retain inode
1423  * in cache if fs is alive, sync and evict if fs is
1424  * shutting down.
1425  */
1426 static void iput_final(struct inode *inode)
1427 {
1428 	struct super_block *sb = inode->i_sb;
1429 	const struct super_operations *op = inode->i_sb->s_op;
1430 	int drop;
1431 
1432 	WARN_ON(inode->i_state & I_NEW);
1433 
1434 	if (op->drop_inode)
1435 		drop = op->drop_inode(inode);
1436 	else
1437 		drop = generic_drop_inode(inode);
1438 
1439 	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1440 		inode->i_state |= I_REFERENCED;
1441 		inode_add_lru(inode);
1442 		spin_unlock(&inode->i_lock);
1443 		return;
1444 	}
1445 
1446 	if (!drop) {
1447 		inode->i_state |= I_WILL_FREE;
1448 		spin_unlock(&inode->i_lock);
1449 		write_inode_now(inode, 1);
1450 		spin_lock(&inode->i_lock);
1451 		WARN_ON(inode->i_state & I_NEW);
1452 		inode->i_state &= ~I_WILL_FREE;
1453 	}
1454 
1455 	inode->i_state |= I_FREEING;
1456 	if (!list_empty(&inode->i_lru))
1457 		inode_lru_list_del(inode);
1458 	spin_unlock(&inode->i_lock);
1459 
1460 	evict(inode);
1461 }
1462 
1463 /**
1464  *	iput	- put an inode
1465  *	@inode: inode to put
1466  *
1467  *	Puts an inode, dropping its usage count. If the inode use count hits
1468  *	zero, the inode is then freed and may also be destroyed.
1469  *
1470  *	Consequently, iput() can sleep.
1471  */
1472 void iput(struct inode *inode)
1473 {
1474 	if (!inode)
1475 		return;
1476 	BUG_ON(inode->i_state & I_CLEAR);
1477 retry:
1478 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1479 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1480 			atomic_inc(&inode->i_count);
1481 			inode->i_state &= ~I_DIRTY_TIME;
1482 			spin_unlock(&inode->i_lock);
1483 			trace_writeback_lazytime_iput(inode);
1484 			mark_inode_dirty_sync(inode);
1485 			goto retry;
1486 		}
1487 		iput_final(inode);
1488 	}
1489 }
1490 EXPORT_SYMBOL(iput);
1491 
1492 /**
1493  *	bmap	- find a block number in a file
1494  *	@inode: inode of file
1495  *	@block: block to find
1496  *
1497  *	Returns the block number on the device holding the inode that
1498  *	is the disk block number for the block of the file requested.
1499  *	That is, asked for block 4 of inode 1 the function will return the
1500  *	disk block relative to the disk start that holds that block of the
1501  *	file.
1502  */
1503 sector_t bmap(struct inode *inode, sector_t block)
1504 {
1505 	sector_t res = 0;
1506 	if (inode->i_mapping->a_ops->bmap)
1507 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1508 	return res;
1509 }
1510 EXPORT_SYMBOL(bmap);
1511 
1512 /*
1513  * With relative atime, only update atime if the previous atime is
1514  * earlier than either the ctime or mtime or if at least a day has
1515  * passed since the last atime update.
1516  */
1517 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1518 			     struct timespec now)
1519 {
1520 
1521 	if (!(mnt->mnt_flags & MNT_RELATIME))
1522 		return 1;
1523 	/*
1524 	 * Is mtime younger than atime? If yes, update atime:
1525 	 */
1526 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1527 		return 1;
1528 	/*
1529 	 * Is ctime younger than atime? If yes, update atime:
1530 	 */
1531 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1532 		return 1;
1533 
1534 	/*
1535 	 * Is the previous atime value older than a day? If yes,
1536 	 * update atime:
1537 	 */
1538 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1539 		return 1;
1540 	/*
1541 	 * Good, we can skip the atime update:
1542 	 */
1543 	return 0;
1544 }
1545 
1546 int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1547 {
1548 	int iflags = I_DIRTY_TIME;
1549 
1550 	if (flags & S_ATIME)
1551 		inode->i_atime = *time;
1552 	if (flags & S_VERSION)
1553 		inode_inc_iversion(inode);
1554 	if (flags & S_CTIME)
1555 		inode->i_ctime = *time;
1556 	if (flags & S_MTIME)
1557 		inode->i_mtime = *time;
1558 
1559 	if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1560 		iflags |= I_DIRTY_SYNC;
1561 	__mark_inode_dirty(inode, iflags);
1562 	return 0;
1563 }
1564 EXPORT_SYMBOL(generic_update_time);
1565 
1566 /*
1567  * This does the actual work of updating an inodes time or version.  Must have
1568  * had called mnt_want_write() before calling this.
1569  */
1570 static int update_time(struct inode *inode, struct timespec *time, int flags)
1571 {
1572 	int (*update_time)(struct inode *, struct timespec *, int);
1573 
1574 	update_time = inode->i_op->update_time ? inode->i_op->update_time :
1575 		generic_update_time;
1576 
1577 	return update_time(inode, time, flags);
1578 }
1579 
1580 /**
1581  *	touch_atime	-	update the access time
1582  *	@path: the &struct path to update
1583  *
1584  *	Update the accessed time on an inode and mark it for writeback.
1585  *	This function automatically handles read only file systems and media,
1586  *	as well as the "noatime" flag and inode specific "noatime" markers.
1587  */
1588 bool atime_needs_update(const struct path *path, struct inode *inode)
1589 {
1590 	struct vfsmount *mnt = path->mnt;
1591 	struct timespec now;
1592 
1593 	if (inode->i_flags & S_NOATIME)
1594 		return false;
1595 	if (IS_NOATIME(inode))
1596 		return false;
1597 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1598 		return false;
1599 
1600 	if (mnt->mnt_flags & MNT_NOATIME)
1601 		return false;
1602 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1603 		return false;
1604 
1605 	now = current_fs_time(inode->i_sb);
1606 
1607 	if (!relatime_need_update(mnt, inode, now))
1608 		return false;
1609 
1610 	if (timespec_equal(&inode->i_atime, &now))
1611 		return false;
1612 
1613 	return true;
1614 }
1615 
1616 void touch_atime(const struct path *path)
1617 {
1618 	struct vfsmount *mnt = path->mnt;
1619 	struct inode *inode = d_inode(path->dentry);
1620 	struct timespec now;
1621 
1622 	if (!atime_needs_update(path, inode))
1623 		return;
1624 
1625 	if (!sb_start_write_trylock(inode->i_sb))
1626 		return;
1627 
1628 	if (__mnt_want_write(mnt) != 0)
1629 		goto skip_update;
1630 	/*
1631 	 * File systems can error out when updating inodes if they need to
1632 	 * allocate new space to modify an inode (such is the case for
1633 	 * Btrfs), but since we touch atime while walking down the path we
1634 	 * really don't care if we failed to update the atime of the file,
1635 	 * so just ignore the return value.
1636 	 * We may also fail on filesystems that have the ability to make parts
1637 	 * of the fs read only, e.g. subvolumes in Btrfs.
1638 	 */
1639 	now = current_fs_time(inode->i_sb);
1640 	update_time(inode, &now, S_ATIME);
1641 	__mnt_drop_write(mnt);
1642 skip_update:
1643 	sb_end_write(inode->i_sb);
1644 }
1645 EXPORT_SYMBOL(touch_atime);
1646 
1647 /*
1648  * The logic we want is
1649  *
1650  *	if suid or (sgid and xgrp)
1651  *		remove privs
1652  */
1653 int should_remove_suid(struct dentry *dentry)
1654 {
1655 	umode_t mode = d_inode(dentry)->i_mode;
1656 	int kill = 0;
1657 
1658 	/* suid always must be killed */
1659 	if (unlikely(mode & S_ISUID))
1660 		kill = ATTR_KILL_SUID;
1661 
1662 	/*
1663 	 * sgid without any exec bits is just a mandatory locking mark; leave
1664 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1665 	 */
1666 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1667 		kill |= ATTR_KILL_SGID;
1668 
1669 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1670 		return kill;
1671 
1672 	return 0;
1673 }
1674 EXPORT_SYMBOL(should_remove_suid);
1675 
1676 static int __remove_suid(struct dentry *dentry, int kill)
1677 {
1678 	struct iattr newattrs;
1679 
1680 	newattrs.ia_valid = ATTR_FORCE | kill;
1681 	/*
1682 	 * Note we call this on write, so notify_change will not
1683 	 * encounter any conflicting delegations:
1684 	 */
1685 	return notify_change(dentry, &newattrs, NULL);
1686 }
1687 
1688 int file_remove_suid(struct file *file)
1689 {
1690 	struct dentry *dentry = file->f_path.dentry;
1691 	struct inode *inode = d_inode(dentry);
1692 	int killsuid;
1693 	int killpriv;
1694 	int error = 0;
1695 
1696 	/* Fast path for nothing security related */
1697 	if (IS_NOSEC(inode))
1698 		return 0;
1699 
1700 	killsuid = should_remove_suid(dentry);
1701 	killpriv = security_inode_need_killpriv(dentry);
1702 
1703 	if (killpriv < 0)
1704 		return killpriv;
1705 	if (killpriv)
1706 		error = security_inode_killpriv(dentry);
1707 	if (!error && killsuid)
1708 		error = __remove_suid(dentry, killsuid);
1709 	if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1710 		inode->i_flags |= S_NOSEC;
1711 
1712 	return error;
1713 }
1714 EXPORT_SYMBOL(file_remove_suid);
1715 
1716 /**
1717  *	file_update_time	-	update mtime and ctime time
1718  *	@file: file accessed
1719  *
1720  *	Update the mtime and ctime members of an inode and mark the inode
1721  *	for writeback.  Note that this function is meant exclusively for
1722  *	usage in the file write path of filesystems, and filesystems may
1723  *	choose to explicitly ignore update via this function with the
1724  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1725  *	timestamps are handled by the server.  This can return an error for
1726  *	file systems who need to allocate space in order to update an inode.
1727  */
1728 
1729 int file_update_time(struct file *file)
1730 {
1731 	struct inode *inode = file_inode(file);
1732 	struct timespec now;
1733 	int sync_it = 0;
1734 	int ret;
1735 
1736 	/* First try to exhaust all avenues to not sync */
1737 	if (IS_NOCMTIME(inode))
1738 		return 0;
1739 
1740 	now = current_fs_time(inode->i_sb);
1741 	if (!timespec_equal(&inode->i_mtime, &now))
1742 		sync_it = S_MTIME;
1743 
1744 	if (!timespec_equal(&inode->i_ctime, &now))
1745 		sync_it |= S_CTIME;
1746 
1747 	if (IS_I_VERSION(inode))
1748 		sync_it |= S_VERSION;
1749 
1750 	if (!sync_it)
1751 		return 0;
1752 
1753 	/* Finally allowed to write? Takes lock. */
1754 	if (__mnt_want_write_file(file))
1755 		return 0;
1756 
1757 	ret = update_time(inode, &now, sync_it);
1758 	__mnt_drop_write_file(file);
1759 
1760 	return ret;
1761 }
1762 EXPORT_SYMBOL(file_update_time);
1763 
1764 int inode_needs_sync(struct inode *inode)
1765 {
1766 	if (IS_SYNC(inode))
1767 		return 1;
1768 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1769 		return 1;
1770 	return 0;
1771 }
1772 EXPORT_SYMBOL(inode_needs_sync);
1773 
1774 /*
1775  * If we try to find an inode in the inode hash while it is being
1776  * deleted, we have to wait until the filesystem completes its
1777  * deletion before reporting that it isn't found.  This function waits
1778  * until the deletion _might_ have completed.  Callers are responsible
1779  * to recheck inode state.
1780  *
1781  * It doesn't matter if I_NEW is not set initially, a call to
1782  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1783  * will DTRT.
1784  */
1785 static void __wait_on_freeing_inode(struct inode *inode)
1786 {
1787 	wait_queue_head_t *wq;
1788 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1789 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1790 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1791 	spin_unlock(&inode->i_lock);
1792 	spin_unlock(&inode_hash_lock);
1793 	schedule();
1794 	finish_wait(wq, &wait.wait);
1795 	spin_lock(&inode_hash_lock);
1796 }
1797 
1798 static __initdata unsigned long ihash_entries;
1799 static int __init set_ihash_entries(char *str)
1800 {
1801 	if (!str)
1802 		return 0;
1803 	ihash_entries = simple_strtoul(str, &str, 0);
1804 	return 1;
1805 }
1806 __setup("ihash_entries=", set_ihash_entries);
1807 
1808 /*
1809  * Initialize the waitqueues and inode hash table.
1810  */
1811 void __init inode_init_early(void)
1812 {
1813 	unsigned int loop;
1814 
1815 	/* If hashes are distributed across NUMA nodes, defer
1816 	 * hash allocation until vmalloc space is available.
1817 	 */
1818 	if (hashdist)
1819 		return;
1820 
1821 	inode_hashtable =
1822 		alloc_large_system_hash("Inode-cache",
1823 					sizeof(struct hlist_head),
1824 					ihash_entries,
1825 					14,
1826 					HASH_EARLY,
1827 					&i_hash_shift,
1828 					&i_hash_mask,
1829 					0,
1830 					0);
1831 
1832 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1833 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1834 }
1835 
1836 void __init inode_init(void)
1837 {
1838 	unsigned int loop;
1839 
1840 	/* inode slab cache */
1841 	inode_cachep = kmem_cache_create("inode_cache",
1842 					 sizeof(struct inode),
1843 					 0,
1844 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1845 					 SLAB_MEM_SPREAD),
1846 					 init_once);
1847 
1848 	/* Hash may have been set up in inode_init_early */
1849 	if (!hashdist)
1850 		return;
1851 
1852 	inode_hashtable =
1853 		alloc_large_system_hash("Inode-cache",
1854 					sizeof(struct hlist_head),
1855 					ihash_entries,
1856 					14,
1857 					0,
1858 					&i_hash_shift,
1859 					&i_hash_mask,
1860 					0,
1861 					0);
1862 
1863 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1864 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1865 }
1866 
1867 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1868 {
1869 	inode->i_mode = mode;
1870 	if (S_ISCHR(mode)) {
1871 		inode->i_fop = &def_chr_fops;
1872 		inode->i_rdev = rdev;
1873 	} else if (S_ISBLK(mode)) {
1874 		inode->i_fop = &def_blk_fops;
1875 		inode->i_rdev = rdev;
1876 	} else if (S_ISFIFO(mode))
1877 		inode->i_fop = &pipefifo_fops;
1878 	else if (S_ISSOCK(mode))
1879 		;	/* leave it no_open_fops */
1880 	else
1881 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1882 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1883 				  inode->i_ino);
1884 }
1885 EXPORT_SYMBOL(init_special_inode);
1886 
1887 /**
1888  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1889  * @inode: New inode
1890  * @dir: Directory inode
1891  * @mode: mode of the new inode
1892  */
1893 void inode_init_owner(struct inode *inode, const struct inode *dir,
1894 			umode_t mode)
1895 {
1896 	inode->i_uid = current_fsuid();
1897 	if (dir && dir->i_mode & S_ISGID) {
1898 		inode->i_gid = dir->i_gid;
1899 		if (S_ISDIR(mode))
1900 			mode |= S_ISGID;
1901 	} else
1902 		inode->i_gid = current_fsgid();
1903 	inode->i_mode = mode;
1904 }
1905 EXPORT_SYMBOL(inode_init_owner);
1906 
1907 /**
1908  * inode_owner_or_capable - check current task permissions to inode
1909  * @inode: inode being checked
1910  *
1911  * Return true if current either has CAP_FOWNER in a namespace with the
1912  * inode owner uid mapped, or owns the file.
1913  */
1914 bool inode_owner_or_capable(const struct inode *inode)
1915 {
1916 	struct user_namespace *ns;
1917 
1918 	if (uid_eq(current_fsuid(), inode->i_uid))
1919 		return true;
1920 
1921 	ns = current_user_ns();
1922 	if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
1923 		return true;
1924 	return false;
1925 }
1926 EXPORT_SYMBOL(inode_owner_or_capable);
1927 
1928 /*
1929  * Direct i/o helper functions
1930  */
1931 static void __inode_dio_wait(struct inode *inode)
1932 {
1933 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1934 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1935 
1936 	do {
1937 		prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1938 		if (atomic_read(&inode->i_dio_count))
1939 			schedule();
1940 	} while (atomic_read(&inode->i_dio_count));
1941 	finish_wait(wq, &q.wait);
1942 }
1943 
1944 /**
1945  * inode_dio_wait - wait for outstanding DIO requests to finish
1946  * @inode: inode to wait for
1947  *
1948  * Waits for all pending direct I/O requests to finish so that we can
1949  * proceed with a truncate or equivalent operation.
1950  *
1951  * Must be called under a lock that serializes taking new references
1952  * to i_dio_count, usually by inode->i_mutex.
1953  */
1954 void inode_dio_wait(struct inode *inode)
1955 {
1956 	if (atomic_read(&inode->i_dio_count))
1957 		__inode_dio_wait(inode);
1958 }
1959 EXPORT_SYMBOL(inode_dio_wait);
1960 
1961 /*
1962  * inode_set_flags - atomically set some inode flags
1963  *
1964  * Note: the caller should be holding i_mutex, or else be sure that
1965  * they have exclusive access to the inode structure (i.e., while the
1966  * inode is being instantiated).  The reason for the cmpxchg() loop
1967  * --- which wouldn't be necessary if all code paths which modify
1968  * i_flags actually followed this rule, is that there is at least one
1969  * code path which doesn't today --- for example,
1970  * __generic_file_aio_write() calls file_remove_suid() without holding
1971  * i_mutex --- so we use cmpxchg() out of an abundance of caution.
1972  *
1973  * In the long run, i_mutex is overkill, and we should probably look
1974  * at using the i_lock spinlock to protect i_flags, and then make sure
1975  * it is so documented in include/linux/fs.h and that all code follows
1976  * the locking convention!!
1977  */
1978 void inode_set_flags(struct inode *inode, unsigned int flags,
1979 		     unsigned int mask)
1980 {
1981 	unsigned int old_flags, new_flags;
1982 
1983 	WARN_ON_ONCE(flags & ~mask);
1984 	do {
1985 		old_flags = ACCESS_ONCE(inode->i_flags);
1986 		new_flags = (old_flags & ~mask) | flags;
1987 	} while (unlikely(cmpxchg(&inode->i_flags, old_flags,
1988 				  new_flags) != old_flags));
1989 }
1990 EXPORT_SYMBOL(inode_set_flags);
1991