1 /* 2 * (C) 1997 Linus Torvalds 3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 4 */ 5 #include <linux/export.h> 6 #include <linux/fs.h> 7 #include <linux/mm.h> 8 #include <linux/backing-dev.h> 9 #include <linux/hash.h> 10 #include <linux/swap.h> 11 #include <linux/security.h> 12 #include <linux/cdev.h> 13 #include <linux/bootmem.h> 14 #include <linux/fsnotify.h> 15 #include <linux/mount.h> 16 #include <linux/posix_acl.h> 17 #include <linux/prefetch.h> 18 #include <linux/buffer_head.h> /* for inode_has_buffers */ 19 #include <linux/ratelimit.h> 20 #include <linux/list_lru.h> 21 #include "internal.h" 22 23 /* 24 * Inode locking rules: 25 * 26 * inode->i_lock protects: 27 * inode->i_state, inode->i_hash, __iget() 28 * Inode LRU list locks protect: 29 * inode->i_sb->s_inode_lru, inode->i_lru 30 * inode_sb_list_lock protects: 31 * sb->s_inodes, inode->i_sb_list 32 * bdi->wb.list_lock protects: 33 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list 34 * inode_hash_lock protects: 35 * inode_hashtable, inode->i_hash 36 * 37 * Lock ordering: 38 * 39 * inode_sb_list_lock 40 * inode->i_lock 41 * Inode LRU list locks 42 * 43 * bdi->wb.list_lock 44 * inode->i_lock 45 * 46 * inode_hash_lock 47 * inode_sb_list_lock 48 * inode->i_lock 49 * 50 * iunique_lock 51 * inode_hash_lock 52 */ 53 54 static unsigned int i_hash_mask __read_mostly; 55 static unsigned int i_hash_shift __read_mostly; 56 static struct hlist_head *inode_hashtable __read_mostly; 57 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 58 59 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock); 60 61 /* 62 * Empty aops. Can be used for the cases where the user does not 63 * define any of the address_space operations. 64 */ 65 const struct address_space_operations empty_aops = { 66 }; 67 EXPORT_SYMBOL(empty_aops); 68 69 /* 70 * Statistics gathering.. 71 */ 72 struct inodes_stat_t inodes_stat; 73 74 static DEFINE_PER_CPU(unsigned long, nr_inodes); 75 static DEFINE_PER_CPU(unsigned long, nr_unused); 76 77 static struct kmem_cache *inode_cachep __read_mostly; 78 79 static long get_nr_inodes(void) 80 { 81 int i; 82 long sum = 0; 83 for_each_possible_cpu(i) 84 sum += per_cpu(nr_inodes, i); 85 return sum < 0 ? 0 : sum; 86 } 87 88 static inline long get_nr_inodes_unused(void) 89 { 90 int i; 91 long sum = 0; 92 for_each_possible_cpu(i) 93 sum += per_cpu(nr_unused, i); 94 return sum < 0 ? 0 : sum; 95 } 96 97 long get_nr_dirty_inodes(void) 98 { 99 /* not actually dirty inodes, but a wild approximation */ 100 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 101 return nr_dirty > 0 ? nr_dirty : 0; 102 } 103 104 /* 105 * Handle nr_inode sysctl 106 */ 107 #ifdef CONFIG_SYSCTL 108 int proc_nr_inodes(struct ctl_table *table, int write, 109 void __user *buffer, size_t *lenp, loff_t *ppos) 110 { 111 inodes_stat.nr_inodes = get_nr_inodes(); 112 inodes_stat.nr_unused = get_nr_inodes_unused(); 113 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 114 } 115 #endif 116 117 static int no_open(struct inode *inode, struct file *file) 118 { 119 return -ENXIO; 120 } 121 122 /** 123 * inode_init_always - perform inode structure intialisation 124 * @sb: superblock inode belongs to 125 * @inode: inode to initialise 126 * 127 * These are initializations that need to be done on every inode 128 * allocation as the fields are not initialised by slab allocation. 129 */ 130 int inode_init_always(struct super_block *sb, struct inode *inode) 131 { 132 static const struct inode_operations empty_iops; 133 static const struct file_operations no_open_fops = {.open = no_open}; 134 struct address_space *const mapping = &inode->i_data; 135 136 inode->i_sb = sb; 137 inode->i_blkbits = sb->s_blocksize_bits; 138 inode->i_flags = 0; 139 atomic_set(&inode->i_count, 1); 140 inode->i_op = &empty_iops; 141 inode->i_fop = &no_open_fops; 142 inode->__i_nlink = 1; 143 inode->i_opflags = 0; 144 i_uid_write(inode, 0); 145 i_gid_write(inode, 0); 146 atomic_set(&inode->i_writecount, 0); 147 inode->i_size = 0; 148 inode->i_blocks = 0; 149 inode->i_bytes = 0; 150 inode->i_generation = 0; 151 inode->i_pipe = NULL; 152 inode->i_bdev = NULL; 153 inode->i_cdev = NULL; 154 inode->i_rdev = 0; 155 inode->dirtied_when = 0; 156 157 if (security_inode_alloc(inode)) 158 goto out; 159 spin_lock_init(&inode->i_lock); 160 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 161 162 mutex_init(&inode->i_mutex); 163 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 164 165 atomic_set(&inode->i_dio_count, 0); 166 167 mapping->a_ops = &empty_aops; 168 mapping->host = inode; 169 mapping->flags = 0; 170 atomic_set(&mapping->i_mmap_writable, 0); 171 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 172 mapping->private_data = NULL; 173 mapping->backing_dev_info = &default_backing_dev_info; 174 mapping->writeback_index = 0; 175 176 /* 177 * If the block_device provides a backing_dev_info for client 178 * inodes then use that. Otherwise the inode share the bdev's 179 * backing_dev_info. 180 */ 181 if (sb->s_bdev) { 182 struct backing_dev_info *bdi; 183 184 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 185 mapping->backing_dev_info = bdi; 186 } 187 inode->i_private = NULL; 188 inode->i_mapping = mapping; 189 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 190 #ifdef CONFIG_FS_POSIX_ACL 191 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 192 #endif 193 194 #ifdef CONFIG_FSNOTIFY 195 inode->i_fsnotify_mask = 0; 196 #endif 197 198 this_cpu_inc(nr_inodes); 199 200 return 0; 201 out: 202 return -ENOMEM; 203 } 204 EXPORT_SYMBOL(inode_init_always); 205 206 static struct inode *alloc_inode(struct super_block *sb) 207 { 208 struct inode *inode; 209 210 if (sb->s_op->alloc_inode) 211 inode = sb->s_op->alloc_inode(sb); 212 else 213 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 214 215 if (!inode) 216 return NULL; 217 218 if (unlikely(inode_init_always(sb, inode))) { 219 if (inode->i_sb->s_op->destroy_inode) 220 inode->i_sb->s_op->destroy_inode(inode); 221 else 222 kmem_cache_free(inode_cachep, inode); 223 return NULL; 224 } 225 226 return inode; 227 } 228 229 void free_inode_nonrcu(struct inode *inode) 230 { 231 kmem_cache_free(inode_cachep, inode); 232 } 233 EXPORT_SYMBOL(free_inode_nonrcu); 234 235 void __destroy_inode(struct inode *inode) 236 { 237 BUG_ON(inode_has_buffers(inode)); 238 security_inode_free(inode); 239 fsnotify_inode_delete(inode); 240 if (!inode->i_nlink) { 241 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 242 atomic_long_dec(&inode->i_sb->s_remove_count); 243 } 244 245 #ifdef CONFIG_FS_POSIX_ACL 246 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED) 247 posix_acl_release(inode->i_acl); 248 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED) 249 posix_acl_release(inode->i_default_acl); 250 #endif 251 this_cpu_dec(nr_inodes); 252 } 253 EXPORT_SYMBOL(__destroy_inode); 254 255 static void i_callback(struct rcu_head *head) 256 { 257 struct inode *inode = container_of(head, struct inode, i_rcu); 258 kmem_cache_free(inode_cachep, inode); 259 } 260 261 static void destroy_inode(struct inode *inode) 262 { 263 BUG_ON(!list_empty(&inode->i_lru)); 264 __destroy_inode(inode); 265 if (inode->i_sb->s_op->destroy_inode) 266 inode->i_sb->s_op->destroy_inode(inode); 267 else 268 call_rcu(&inode->i_rcu, i_callback); 269 } 270 271 /** 272 * drop_nlink - directly drop an inode's link count 273 * @inode: inode 274 * 275 * This is a low-level filesystem helper to replace any 276 * direct filesystem manipulation of i_nlink. In cases 277 * where we are attempting to track writes to the 278 * filesystem, a decrement to zero means an imminent 279 * write when the file is truncated and actually unlinked 280 * on the filesystem. 281 */ 282 void drop_nlink(struct inode *inode) 283 { 284 WARN_ON(inode->i_nlink == 0); 285 inode->__i_nlink--; 286 if (!inode->i_nlink) 287 atomic_long_inc(&inode->i_sb->s_remove_count); 288 } 289 EXPORT_SYMBOL(drop_nlink); 290 291 /** 292 * clear_nlink - directly zero an inode's link count 293 * @inode: inode 294 * 295 * This is a low-level filesystem helper to replace any 296 * direct filesystem manipulation of i_nlink. See 297 * drop_nlink() for why we care about i_nlink hitting zero. 298 */ 299 void clear_nlink(struct inode *inode) 300 { 301 if (inode->i_nlink) { 302 inode->__i_nlink = 0; 303 atomic_long_inc(&inode->i_sb->s_remove_count); 304 } 305 } 306 EXPORT_SYMBOL(clear_nlink); 307 308 /** 309 * set_nlink - directly set an inode's link count 310 * @inode: inode 311 * @nlink: new nlink (should be non-zero) 312 * 313 * This is a low-level filesystem helper to replace any 314 * direct filesystem manipulation of i_nlink. 315 */ 316 void set_nlink(struct inode *inode, unsigned int nlink) 317 { 318 if (!nlink) { 319 clear_nlink(inode); 320 } else { 321 /* Yes, some filesystems do change nlink from zero to one */ 322 if (inode->i_nlink == 0) 323 atomic_long_dec(&inode->i_sb->s_remove_count); 324 325 inode->__i_nlink = nlink; 326 } 327 } 328 EXPORT_SYMBOL(set_nlink); 329 330 /** 331 * inc_nlink - directly increment an inode's link count 332 * @inode: inode 333 * 334 * This is a low-level filesystem helper to replace any 335 * direct filesystem manipulation of i_nlink. Currently, 336 * it is only here for parity with dec_nlink(). 337 */ 338 void inc_nlink(struct inode *inode) 339 { 340 if (unlikely(inode->i_nlink == 0)) { 341 WARN_ON(!(inode->i_state & I_LINKABLE)); 342 atomic_long_dec(&inode->i_sb->s_remove_count); 343 } 344 345 inode->__i_nlink++; 346 } 347 EXPORT_SYMBOL(inc_nlink); 348 349 void address_space_init_once(struct address_space *mapping) 350 { 351 memset(mapping, 0, sizeof(*mapping)); 352 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC); 353 spin_lock_init(&mapping->tree_lock); 354 init_rwsem(&mapping->i_mmap_rwsem); 355 INIT_LIST_HEAD(&mapping->private_list); 356 spin_lock_init(&mapping->private_lock); 357 mapping->i_mmap = RB_ROOT; 358 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear); 359 } 360 EXPORT_SYMBOL(address_space_init_once); 361 362 /* 363 * These are initializations that only need to be done 364 * once, because the fields are idempotent across use 365 * of the inode, so let the slab aware of that. 366 */ 367 void inode_init_once(struct inode *inode) 368 { 369 memset(inode, 0, sizeof(*inode)); 370 INIT_HLIST_NODE(&inode->i_hash); 371 INIT_LIST_HEAD(&inode->i_devices); 372 INIT_LIST_HEAD(&inode->i_wb_list); 373 INIT_LIST_HEAD(&inode->i_lru); 374 address_space_init_once(&inode->i_data); 375 i_size_ordered_init(inode); 376 #ifdef CONFIG_FSNOTIFY 377 INIT_HLIST_HEAD(&inode->i_fsnotify_marks); 378 #endif 379 } 380 EXPORT_SYMBOL(inode_init_once); 381 382 static void init_once(void *foo) 383 { 384 struct inode *inode = (struct inode *) foo; 385 386 inode_init_once(inode); 387 } 388 389 /* 390 * inode->i_lock must be held 391 */ 392 void __iget(struct inode *inode) 393 { 394 atomic_inc(&inode->i_count); 395 } 396 397 /* 398 * get additional reference to inode; caller must already hold one. 399 */ 400 void ihold(struct inode *inode) 401 { 402 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 403 } 404 EXPORT_SYMBOL(ihold); 405 406 static void inode_lru_list_add(struct inode *inode) 407 { 408 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) 409 this_cpu_inc(nr_unused); 410 } 411 412 /* 413 * Add inode to LRU if needed (inode is unused and clean). 414 * 415 * Needs inode->i_lock held. 416 */ 417 void inode_add_lru(struct inode *inode) 418 { 419 if (!(inode->i_state & (I_DIRTY | I_SYNC | I_FREEING | I_WILL_FREE)) && 420 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE) 421 inode_lru_list_add(inode); 422 } 423 424 425 static void inode_lru_list_del(struct inode *inode) 426 { 427 428 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) 429 this_cpu_dec(nr_unused); 430 } 431 432 /** 433 * inode_sb_list_add - add inode to the superblock list of inodes 434 * @inode: inode to add 435 */ 436 void inode_sb_list_add(struct inode *inode) 437 { 438 spin_lock(&inode_sb_list_lock); 439 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 440 spin_unlock(&inode_sb_list_lock); 441 } 442 EXPORT_SYMBOL_GPL(inode_sb_list_add); 443 444 static inline void inode_sb_list_del(struct inode *inode) 445 { 446 if (!list_empty(&inode->i_sb_list)) { 447 spin_lock(&inode_sb_list_lock); 448 list_del_init(&inode->i_sb_list); 449 spin_unlock(&inode_sb_list_lock); 450 } 451 } 452 453 static unsigned long hash(struct super_block *sb, unsigned long hashval) 454 { 455 unsigned long tmp; 456 457 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 458 L1_CACHE_BYTES; 459 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 460 return tmp & i_hash_mask; 461 } 462 463 /** 464 * __insert_inode_hash - hash an inode 465 * @inode: unhashed inode 466 * @hashval: unsigned long value used to locate this object in the 467 * inode_hashtable. 468 * 469 * Add an inode to the inode hash for this superblock. 470 */ 471 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 472 { 473 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 474 475 spin_lock(&inode_hash_lock); 476 spin_lock(&inode->i_lock); 477 hlist_add_head(&inode->i_hash, b); 478 spin_unlock(&inode->i_lock); 479 spin_unlock(&inode_hash_lock); 480 } 481 EXPORT_SYMBOL(__insert_inode_hash); 482 483 /** 484 * __remove_inode_hash - remove an inode from the hash 485 * @inode: inode to unhash 486 * 487 * Remove an inode from the superblock. 488 */ 489 void __remove_inode_hash(struct inode *inode) 490 { 491 spin_lock(&inode_hash_lock); 492 spin_lock(&inode->i_lock); 493 hlist_del_init(&inode->i_hash); 494 spin_unlock(&inode->i_lock); 495 spin_unlock(&inode_hash_lock); 496 } 497 EXPORT_SYMBOL(__remove_inode_hash); 498 499 void clear_inode(struct inode *inode) 500 { 501 might_sleep(); 502 /* 503 * We have to cycle tree_lock here because reclaim can be still in the 504 * process of removing the last page (in __delete_from_page_cache()) 505 * and we must not free mapping under it. 506 */ 507 spin_lock_irq(&inode->i_data.tree_lock); 508 BUG_ON(inode->i_data.nrpages); 509 BUG_ON(inode->i_data.nrshadows); 510 spin_unlock_irq(&inode->i_data.tree_lock); 511 BUG_ON(!list_empty(&inode->i_data.private_list)); 512 BUG_ON(!(inode->i_state & I_FREEING)); 513 BUG_ON(inode->i_state & I_CLEAR); 514 /* don't need i_lock here, no concurrent mods to i_state */ 515 inode->i_state = I_FREEING | I_CLEAR; 516 } 517 EXPORT_SYMBOL(clear_inode); 518 519 /* 520 * Free the inode passed in, removing it from the lists it is still connected 521 * to. We remove any pages still attached to the inode and wait for any IO that 522 * is still in progress before finally destroying the inode. 523 * 524 * An inode must already be marked I_FREEING so that we avoid the inode being 525 * moved back onto lists if we race with other code that manipulates the lists 526 * (e.g. writeback_single_inode). The caller is responsible for setting this. 527 * 528 * An inode must already be removed from the LRU list before being evicted from 529 * the cache. This should occur atomically with setting the I_FREEING state 530 * flag, so no inodes here should ever be on the LRU when being evicted. 531 */ 532 static void evict(struct inode *inode) 533 { 534 const struct super_operations *op = inode->i_sb->s_op; 535 536 BUG_ON(!(inode->i_state & I_FREEING)); 537 BUG_ON(!list_empty(&inode->i_lru)); 538 539 if (!list_empty(&inode->i_wb_list)) 540 inode_wb_list_del(inode); 541 542 inode_sb_list_del(inode); 543 544 /* 545 * Wait for flusher thread to be done with the inode so that filesystem 546 * does not start destroying it while writeback is still running. Since 547 * the inode has I_FREEING set, flusher thread won't start new work on 548 * the inode. We just have to wait for running writeback to finish. 549 */ 550 inode_wait_for_writeback(inode); 551 552 if (op->evict_inode) { 553 op->evict_inode(inode); 554 } else { 555 truncate_inode_pages_final(&inode->i_data); 556 clear_inode(inode); 557 } 558 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 559 bd_forget(inode); 560 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 561 cd_forget(inode); 562 563 remove_inode_hash(inode); 564 565 spin_lock(&inode->i_lock); 566 wake_up_bit(&inode->i_state, __I_NEW); 567 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 568 spin_unlock(&inode->i_lock); 569 570 destroy_inode(inode); 571 } 572 573 /* 574 * dispose_list - dispose of the contents of a local list 575 * @head: the head of the list to free 576 * 577 * Dispose-list gets a local list with local inodes in it, so it doesn't 578 * need to worry about list corruption and SMP locks. 579 */ 580 static void dispose_list(struct list_head *head) 581 { 582 while (!list_empty(head)) { 583 struct inode *inode; 584 585 inode = list_first_entry(head, struct inode, i_lru); 586 list_del_init(&inode->i_lru); 587 588 evict(inode); 589 } 590 } 591 592 /** 593 * evict_inodes - evict all evictable inodes for a superblock 594 * @sb: superblock to operate on 595 * 596 * Make sure that no inodes with zero refcount are retained. This is 597 * called by superblock shutdown after having MS_ACTIVE flag removed, 598 * so any inode reaching zero refcount during or after that call will 599 * be immediately evicted. 600 */ 601 void evict_inodes(struct super_block *sb) 602 { 603 struct inode *inode, *next; 604 LIST_HEAD(dispose); 605 606 spin_lock(&inode_sb_list_lock); 607 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 608 if (atomic_read(&inode->i_count)) 609 continue; 610 611 spin_lock(&inode->i_lock); 612 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 613 spin_unlock(&inode->i_lock); 614 continue; 615 } 616 617 inode->i_state |= I_FREEING; 618 inode_lru_list_del(inode); 619 spin_unlock(&inode->i_lock); 620 list_add(&inode->i_lru, &dispose); 621 } 622 spin_unlock(&inode_sb_list_lock); 623 624 dispose_list(&dispose); 625 } 626 627 /** 628 * invalidate_inodes - attempt to free all inodes on a superblock 629 * @sb: superblock to operate on 630 * @kill_dirty: flag to guide handling of dirty inodes 631 * 632 * Attempts to free all inodes for a given superblock. If there were any 633 * busy inodes return a non-zero value, else zero. 634 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 635 * them as busy. 636 */ 637 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 638 { 639 int busy = 0; 640 struct inode *inode, *next; 641 LIST_HEAD(dispose); 642 643 spin_lock(&inode_sb_list_lock); 644 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 645 spin_lock(&inode->i_lock); 646 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 647 spin_unlock(&inode->i_lock); 648 continue; 649 } 650 if (inode->i_state & I_DIRTY && !kill_dirty) { 651 spin_unlock(&inode->i_lock); 652 busy = 1; 653 continue; 654 } 655 if (atomic_read(&inode->i_count)) { 656 spin_unlock(&inode->i_lock); 657 busy = 1; 658 continue; 659 } 660 661 inode->i_state |= I_FREEING; 662 inode_lru_list_del(inode); 663 spin_unlock(&inode->i_lock); 664 list_add(&inode->i_lru, &dispose); 665 } 666 spin_unlock(&inode_sb_list_lock); 667 668 dispose_list(&dispose); 669 670 return busy; 671 } 672 673 /* 674 * Isolate the inode from the LRU in preparation for freeing it. 675 * 676 * Any inodes which are pinned purely because of attached pagecache have their 677 * pagecache removed. If the inode has metadata buffers attached to 678 * mapping->private_list then try to remove them. 679 * 680 * If the inode has the I_REFERENCED flag set, then it means that it has been 681 * used recently - the flag is set in iput_final(). When we encounter such an 682 * inode, clear the flag and move it to the back of the LRU so it gets another 683 * pass through the LRU before it gets reclaimed. This is necessary because of 684 * the fact we are doing lazy LRU updates to minimise lock contention so the 685 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 686 * with this flag set because they are the inodes that are out of order. 687 */ 688 static enum lru_status 689 inode_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg) 690 { 691 struct list_head *freeable = arg; 692 struct inode *inode = container_of(item, struct inode, i_lru); 693 694 /* 695 * we are inverting the lru lock/inode->i_lock here, so use a trylock. 696 * If we fail to get the lock, just skip it. 697 */ 698 if (!spin_trylock(&inode->i_lock)) 699 return LRU_SKIP; 700 701 /* 702 * Referenced or dirty inodes are still in use. Give them another pass 703 * through the LRU as we canot reclaim them now. 704 */ 705 if (atomic_read(&inode->i_count) || 706 (inode->i_state & ~I_REFERENCED)) { 707 list_del_init(&inode->i_lru); 708 spin_unlock(&inode->i_lock); 709 this_cpu_dec(nr_unused); 710 return LRU_REMOVED; 711 } 712 713 /* recently referenced inodes get one more pass */ 714 if (inode->i_state & I_REFERENCED) { 715 inode->i_state &= ~I_REFERENCED; 716 spin_unlock(&inode->i_lock); 717 return LRU_ROTATE; 718 } 719 720 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 721 __iget(inode); 722 spin_unlock(&inode->i_lock); 723 spin_unlock(lru_lock); 724 if (remove_inode_buffers(inode)) { 725 unsigned long reap; 726 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 727 if (current_is_kswapd()) 728 __count_vm_events(KSWAPD_INODESTEAL, reap); 729 else 730 __count_vm_events(PGINODESTEAL, reap); 731 if (current->reclaim_state) 732 current->reclaim_state->reclaimed_slab += reap; 733 } 734 iput(inode); 735 spin_lock(lru_lock); 736 return LRU_RETRY; 737 } 738 739 WARN_ON(inode->i_state & I_NEW); 740 inode->i_state |= I_FREEING; 741 list_move(&inode->i_lru, freeable); 742 spin_unlock(&inode->i_lock); 743 744 this_cpu_dec(nr_unused); 745 return LRU_REMOVED; 746 } 747 748 /* 749 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 750 * This is called from the superblock shrinker function with a number of inodes 751 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 752 * then are freed outside inode_lock by dispose_list(). 753 */ 754 long prune_icache_sb(struct super_block *sb, unsigned long nr_to_scan, 755 int nid) 756 { 757 LIST_HEAD(freeable); 758 long freed; 759 760 freed = list_lru_walk_node(&sb->s_inode_lru, nid, inode_lru_isolate, 761 &freeable, &nr_to_scan); 762 dispose_list(&freeable); 763 return freed; 764 } 765 766 static void __wait_on_freeing_inode(struct inode *inode); 767 /* 768 * Called with the inode lock held. 769 */ 770 static struct inode *find_inode(struct super_block *sb, 771 struct hlist_head *head, 772 int (*test)(struct inode *, void *), 773 void *data) 774 { 775 struct inode *inode = NULL; 776 777 repeat: 778 hlist_for_each_entry(inode, head, i_hash) { 779 if (inode->i_sb != sb) 780 continue; 781 if (!test(inode, data)) 782 continue; 783 spin_lock(&inode->i_lock); 784 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 785 __wait_on_freeing_inode(inode); 786 goto repeat; 787 } 788 __iget(inode); 789 spin_unlock(&inode->i_lock); 790 return inode; 791 } 792 return NULL; 793 } 794 795 /* 796 * find_inode_fast is the fast path version of find_inode, see the comment at 797 * iget_locked for details. 798 */ 799 static struct inode *find_inode_fast(struct super_block *sb, 800 struct hlist_head *head, unsigned long ino) 801 { 802 struct inode *inode = NULL; 803 804 repeat: 805 hlist_for_each_entry(inode, head, i_hash) { 806 if (inode->i_ino != ino) 807 continue; 808 if (inode->i_sb != sb) 809 continue; 810 spin_lock(&inode->i_lock); 811 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 812 __wait_on_freeing_inode(inode); 813 goto repeat; 814 } 815 __iget(inode); 816 spin_unlock(&inode->i_lock); 817 return inode; 818 } 819 return NULL; 820 } 821 822 /* 823 * Each cpu owns a range of LAST_INO_BATCH numbers. 824 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 825 * to renew the exhausted range. 826 * 827 * This does not significantly increase overflow rate because every CPU can 828 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 829 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 830 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 831 * overflow rate by 2x, which does not seem too significant. 832 * 833 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 834 * error if st_ino won't fit in target struct field. Use 32bit counter 835 * here to attempt to avoid that. 836 */ 837 #define LAST_INO_BATCH 1024 838 static DEFINE_PER_CPU(unsigned int, last_ino); 839 840 unsigned int get_next_ino(void) 841 { 842 unsigned int *p = &get_cpu_var(last_ino); 843 unsigned int res = *p; 844 845 #ifdef CONFIG_SMP 846 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 847 static atomic_t shared_last_ino; 848 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 849 850 res = next - LAST_INO_BATCH; 851 } 852 #endif 853 854 *p = ++res; 855 put_cpu_var(last_ino); 856 return res; 857 } 858 EXPORT_SYMBOL(get_next_ino); 859 860 /** 861 * new_inode_pseudo - obtain an inode 862 * @sb: superblock 863 * 864 * Allocates a new inode for given superblock. 865 * Inode wont be chained in superblock s_inodes list 866 * This means : 867 * - fs can't be unmount 868 * - quotas, fsnotify, writeback can't work 869 */ 870 struct inode *new_inode_pseudo(struct super_block *sb) 871 { 872 struct inode *inode = alloc_inode(sb); 873 874 if (inode) { 875 spin_lock(&inode->i_lock); 876 inode->i_state = 0; 877 spin_unlock(&inode->i_lock); 878 INIT_LIST_HEAD(&inode->i_sb_list); 879 } 880 return inode; 881 } 882 883 /** 884 * new_inode - obtain an inode 885 * @sb: superblock 886 * 887 * Allocates a new inode for given superblock. The default gfp_mask 888 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 889 * If HIGHMEM pages are unsuitable or it is known that pages allocated 890 * for the page cache are not reclaimable or migratable, 891 * mapping_set_gfp_mask() must be called with suitable flags on the 892 * newly created inode's mapping 893 * 894 */ 895 struct inode *new_inode(struct super_block *sb) 896 { 897 struct inode *inode; 898 899 spin_lock_prefetch(&inode_sb_list_lock); 900 901 inode = new_inode_pseudo(sb); 902 if (inode) 903 inode_sb_list_add(inode); 904 return inode; 905 } 906 EXPORT_SYMBOL(new_inode); 907 908 #ifdef CONFIG_DEBUG_LOCK_ALLOC 909 void lockdep_annotate_inode_mutex_key(struct inode *inode) 910 { 911 if (S_ISDIR(inode->i_mode)) { 912 struct file_system_type *type = inode->i_sb->s_type; 913 914 /* Set new key only if filesystem hasn't already changed it */ 915 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) { 916 /* 917 * ensure nobody is actually holding i_mutex 918 */ 919 mutex_destroy(&inode->i_mutex); 920 mutex_init(&inode->i_mutex); 921 lockdep_set_class(&inode->i_mutex, 922 &type->i_mutex_dir_key); 923 } 924 } 925 } 926 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 927 #endif 928 929 /** 930 * unlock_new_inode - clear the I_NEW state and wake up any waiters 931 * @inode: new inode to unlock 932 * 933 * Called when the inode is fully initialised to clear the new state of the 934 * inode and wake up anyone waiting for the inode to finish initialisation. 935 */ 936 void unlock_new_inode(struct inode *inode) 937 { 938 lockdep_annotate_inode_mutex_key(inode); 939 spin_lock(&inode->i_lock); 940 WARN_ON(!(inode->i_state & I_NEW)); 941 inode->i_state &= ~I_NEW; 942 smp_mb(); 943 wake_up_bit(&inode->i_state, __I_NEW); 944 spin_unlock(&inode->i_lock); 945 } 946 EXPORT_SYMBOL(unlock_new_inode); 947 948 /** 949 * lock_two_nondirectories - take two i_mutexes on non-directory objects 950 * 951 * Lock any non-NULL argument that is not a directory. 952 * Zero, one or two objects may be locked by this function. 953 * 954 * @inode1: first inode to lock 955 * @inode2: second inode to lock 956 */ 957 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 958 { 959 if (inode1 > inode2) 960 swap(inode1, inode2); 961 962 if (inode1 && !S_ISDIR(inode1->i_mode)) 963 mutex_lock(&inode1->i_mutex); 964 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 965 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_NONDIR2); 966 } 967 EXPORT_SYMBOL(lock_two_nondirectories); 968 969 /** 970 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 971 * @inode1: first inode to unlock 972 * @inode2: second inode to unlock 973 */ 974 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 975 { 976 if (inode1 && !S_ISDIR(inode1->i_mode)) 977 mutex_unlock(&inode1->i_mutex); 978 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 979 mutex_unlock(&inode2->i_mutex); 980 } 981 EXPORT_SYMBOL(unlock_two_nondirectories); 982 983 /** 984 * iget5_locked - obtain an inode from a mounted file system 985 * @sb: super block of file system 986 * @hashval: hash value (usually inode number) to get 987 * @test: callback used for comparisons between inodes 988 * @set: callback used to initialize a new struct inode 989 * @data: opaque data pointer to pass to @test and @set 990 * 991 * Search for the inode specified by @hashval and @data in the inode cache, 992 * and if present it is return it with an increased reference count. This is 993 * a generalized version of iget_locked() for file systems where the inode 994 * number is not sufficient for unique identification of an inode. 995 * 996 * If the inode is not in cache, allocate a new inode and return it locked, 997 * hashed, and with the I_NEW flag set. The file system gets to fill it in 998 * before unlocking it via unlock_new_inode(). 999 * 1000 * Note both @test and @set are called with the inode_hash_lock held, so can't 1001 * sleep. 1002 */ 1003 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1004 int (*test)(struct inode *, void *), 1005 int (*set)(struct inode *, void *), void *data) 1006 { 1007 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1008 struct inode *inode; 1009 1010 spin_lock(&inode_hash_lock); 1011 inode = find_inode(sb, head, test, data); 1012 spin_unlock(&inode_hash_lock); 1013 1014 if (inode) { 1015 wait_on_inode(inode); 1016 return inode; 1017 } 1018 1019 inode = alloc_inode(sb); 1020 if (inode) { 1021 struct inode *old; 1022 1023 spin_lock(&inode_hash_lock); 1024 /* We released the lock, so.. */ 1025 old = find_inode(sb, head, test, data); 1026 if (!old) { 1027 if (set(inode, data)) 1028 goto set_failed; 1029 1030 spin_lock(&inode->i_lock); 1031 inode->i_state = I_NEW; 1032 hlist_add_head(&inode->i_hash, head); 1033 spin_unlock(&inode->i_lock); 1034 inode_sb_list_add(inode); 1035 spin_unlock(&inode_hash_lock); 1036 1037 /* Return the locked inode with I_NEW set, the 1038 * caller is responsible for filling in the contents 1039 */ 1040 return inode; 1041 } 1042 1043 /* 1044 * Uhhuh, somebody else created the same inode under 1045 * us. Use the old inode instead of the one we just 1046 * allocated. 1047 */ 1048 spin_unlock(&inode_hash_lock); 1049 destroy_inode(inode); 1050 inode = old; 1051 wait_on_inode(inode); 1052 } 1053 return inode; 1054 1055 set_failed: 1056 spin_unlock(&inode_hash_lock); 1057 destroy_inode(inode); 1058 return NULL; 1059 } 1060 EXPORT_SYMBOL(iget5_locked); 1061 1062 /** 1063 * iget_locked - obtain an inode from a mounted file system 1064 * @sb: super block of file system 1065 * @ino: inode number to get 1066 * 1067 * Search for the inode specified by @ino in the inode cache and if present 1068 * return it with an increased reference count. This is for file systems 1069 * where the inode number is sufficient for unique identification of an inode. 1070 * 1071 * If the inode is not in cache, allocate a new inode and return it locked, 1072 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1073 * before unlocking it via unlock_new_inode(). 1074 */ 1075 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1076 { 1077 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1078 struct inode *inode; 1079 1080 spin_lock(&inode_hash_lock); 1081 inode = find_inode_fast(sb, head, ino); 1082 spin_unlock(&inode_hash_lock); 1083 if (inode) { 1084 wait_on_inode(inode); 1085 return inode; 1086 } 1087 1088 inode = alloc_inode(sb); 1089 if (inode) { 1090 struct inode *old; 1091 1092 spin_lock(&inode_hash_lock); 1093 /* We released the lock, so.. */ 1094 old = find_inode_fast(sb, head, ino); 1095 if (!old) { 1096 inode->i_ino = ino; 1097 spin_lock(&inode->i_lock); 1098 inode->i_state = I_NEW; 1099 hlist_add_head(&inode->i_hash, head); 1100 spin_unlock(&inode->i_lock); 1101 inode_sb_list_add(inode); 1102 spin_unlock(&inode_hash_lock); 1103 1104 /* Return the locked inode with I_NEW set, the 1105 * caller is responsible for filling in the contents 1106 */ 1107 return inode; 1108 } 1109 1110 /* 1111 * Uhhuh, somebody else created the same inode under 1112 * us. Use the old inode instead of the one we just 1113 * allocated. 1114 */ 1115 spin_unlock(&inode_hash_lock); 1116 destroy_inode(inode); 1117 inode = old; 1118 wait_on_inode(inode); 1119 } 1120 return inode; 1121 } 1122 EXPORT_SYMBOL(iget_locked); 1123 1124 /* 1125 * search the inode cache for a matching inode number. 1126 * If we find one, then the inode number we are trying to 1127 * allocate is not unique and so we should not use it. 1128 * 1129 * Returns 1 if the inode number is unique, 0 if it is not. 1130 */ 1131 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1132 { 1133 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1134 struct inode *inode; 1135 1136 spin_lock(&inode_hash_lock); 1137 hlist_for_each_entry(inode, b, i_hash) { 1138 if (inode->i_ino == ino && inode->i_sb == sb) { 1139 spin_unlock(&inode_hash_lock); 1140 return 0; 1141 } 1142 } 1143 spin_unlock(&inode_hash_lock); 1144 1145 return 1; 1146 } 1147 1148 /** 1149 * iunique - get a unique inode number 1150 * @sb: superblock 1151 * @max_reserved: highest reserved inode number 1152 * 1153 * Obtain an inode number that is unique on the system for a given 1154 * superblock. This is used by file systems that have no natural 1155 * permanent inode numbering system. An inode number is returned that 1156 * is higher than the reserved limit but unique. 1157 * 1158 * BUGS: 1159 * With a large number of inodes live on the file system this function 1160 * currently becomes quite slow. 1161 */ 1162 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1163 { 1164 /* 1165 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1166 * error if st_ino won't fit in target struct field. Use 32bit counter 1167 * here to attempt to avoid that. 1168 */ 1169 static DEFINE_SPINLOCK(iunique_lock); 1170 static unsigned int counter; 1171 ino_t res; 1172 1173 spin_lock(&iunique_lock); 1174 do { 1175 if (counter <= max_reserved) 1176 counter = max_reserved + 1; 1177 res = counter++; 1178 } while (!test_inode_iunique(sb, res)); 1179 spin_unlock(&iunique_lock); 1180 1181 return res; 1182 } 1183 EXPORT_SYMBOL(iunique); 1184 1185 struct inode *igrab(struct inode *inode) 1186 { 1187 spin_lock(&inode->i_lock); 1188 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1189 __iget(inode); 1190 spin_unlock(&inode->i_lock); 1191 } else { 1192 spin_unlock(&inode->i_lock); 1193 /* 1194 * Handle the case where s_op->clear_inode is not been 1195 * called yet, and somebody is calling igrab 1196 * while the inode is getting freed. 1197 */ 1198 inode = NULL; 1199 } 1200 return inode; 1201 } 1202 EXPORT_SYMBOL(igrab); 1203 1204 /** 1205 * ilookup5_nowait - search for an inode in the inode cache 1206 * @sb: super block of file system to search 1207 * @hashval: hash value (usually inode number) to search for 1208 * @test: callback used for comparisons between inodes 1209 * @data: opaque data pointer to pass to @test 1210 * 1211 * Search for the inode specified by @hashval and @data in the inode cache. 1212 * If the inode is in the cache, the inode is returned with an incremented 1213 * reference count. 1214 * 1215 * Note: I_NEW is not waited upon so you have to be very careful what you do 1216 * with the returned inode. You probably should be using ilookup5() instead. 1217 * 1218 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1219 */ 1220 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1221 int (*test)(struct inode *, void *), void *data) 1222 { 1223 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1224 struct inode *inode; 1225 1226 spin_lock(&inode_hash_lock); 1227 inode = find_inode(sb, head, test, data); 1228 spin_unlock(&inode_hash_lock); 1229 1230 return inode; 1231 } 1232 EXPORT_SYMBOL(ilookup5_nowait); 1233 1234 /** 1235 * ilookup5 - search for an inode in the inode cache 1236 * @sb: super block of file system to search 1237 * @hashval: hash value (usually inode number) to search for 1238 * @test: callback used for comparisons between inodes 1239 * @data: opaque data pointer to pass to @test 1240 * 1241 * Search for the inode specified by @hashval and @data in the inode cache, 1242 * and if the inode is in the cache, return the inode with an incremented 1243 * reference count. Waits on I_NEW before returning the inode. 1244 * returned with an incremented reference count. 1245 * 1246 * This is a generalized version of ilookup() for file systems where the 1247 * inode number is not sufficient for unique identification of an inode. 1248 * 1249 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1250 */ 1251 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1252 int (*test)(struct inode *, void *), void *data) 1253 { 1254 struct inode *inode = ilookup5_nowait(sb, hashval, test, data); 1255 1256 if (inode) 1257 wait_on_inode(inode); 1258 return inode; 1259 } 1260 EXPORT_SYMBOL(ilookup5); 1261 1262 /** 1263 * ilookup - search for an inode in the inode cache 1264 * @sb: super block of file system to search 1265 * @ino: inode number to search for 1266 * 1267 * Search for the inode @ino in the inode cache, and if the inode is in the 1268 * cache, the inode is returned with an incremented reference count. 1269 */ 1270 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1271 { 1272 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1273 struct inode *inode; 1274 1275 spin_lock(&inode_hash_lock); 1276 inode = find_inode_fast(sb, head, ino); 1277 spin_unlock(&inode_hash_lock); 1278 1279 if (inode) 1280 wait_on_inode(inode); 1281 return inode; 1282 } 1283 EXPORT_SYMBOL(ilookup); 1284 1285 int insert_inode_locked(struct inode *inode) 1286 { 1287 struct super_block *sb = inode->i_sb; 1288 ino_t ino = inode->i_ino; 1289 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1290 1291 while (1) { 1292 struct inode *old = NULL; 1293 spin_lock(&inode_hash_lock); 1294 hlist_for_each_entry(old, head, i_hash) { 1295 if (old->i_ino != ino) 1296 continue; 1297 if (old->i_sb != sb) 1298 continue; 1299 spin_lock(&old->i_lock); 1300 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1301 spin_unlock(&old->i_lock); 1302 continue; 1303 } 1304 break; 1305 } 1306 if (likely(!old)) { 1307 spin_lock(&inode->i_lock); 1308 inode->i_state |= I_NEW; 1309 hlist_add_head(&inode->i_hash, head); 1310 spin_unlock(&inode->i_lock); 1311 spin_unlock(&inode_hash_lock); 1312 return 0; 1313 } 1314 __iget(old); 1315 spin_unlock(&old->i_lock); 1316 spin_unlock(&inode_hash_lock); 1317 wait_on_inode(old); 1318 if (unlikely(!inode_unhashed(old))) { 1319 iput(old); 1320 return -EBUSY; 1321 } 1322 iput(old); 1323 } 1324 } 1325 EXPORT_SYMBOL(insert_inode_locked); 1326 1327 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1328 int (*test)(struct inode *, void *), void *data) 1329 { 1330 struct super_block *sb = inode->i_sb; 1331 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1332 1333 while (1) { 1334 struct inode *old = NULL; 1335 1336 spin_lock(&inode_hash_lock); 1337 hlist_for_each_entry(old, head, i_hash) { 1338 if (old->i_sb != sb) 1339 continue; 1340 if (!test(old, data)) 1341 continue; 1342 spin_lock(&old->i_lock); 1343 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1344 spin_unlock(&old->i_lock); 1345 continue; 1346 } 1347 break; 1348 } 1349 if (likely(!old)) { 1350 spin_lock(&inode->i_lock); 1351 inode->i_state |= I_NEW; 1352 hlist_add_head(&inode->i_hash, head); 1353 spin_unlock(&inode->i_lock); 1354 spin_unlock(&inode_hash_lock); 1355 return 0; 1356 } 1357 __iget(old); 1358 spin_unlock(&old->i_lock); 1359 spin_unlock(&inode_hash_lock); 1360 wait_on_inode(old); 1361 if (unlikely(!inode_unhashed(old))) { 1362 iput(old); 1363 return -EBUSY; 1364 } 1365 iput(old); 1366 } 1367 } 1368 EXPORT_SYMBOL(insert_inode_locked4); 1369 1370 1371 int generic_delete_inode(struct inode *inode) 1372 { 1373 return 1; 1374 } 1375 EXPORT_SYMBOL(generic_delete_inode); 1376 1377 /* 1378 * Called when we're dropping the last reference 1379 * to an inode. 1380 * 1381 * Call the FS "drop_inode()" function, defaulting to 1382 * the legacy UNIX filesystem behaviour. If it tells 1383 * us to evict inode, do so. Otherwise, retain inode 1384 * in cache if fs is alive, sync and evict if fs is 1385 * shutting down. 1386 */ 1387 static void iput_final(struct inode *inode) 1388 { 1389 struct super_block *sb = inode->i_sb; 1390 const struct super_operations *op = inode->i_sb->s_op; 1391 int drop; 1392 1393 WARN_ON(inode->i_state & I_NEW); 1394 1395 if (op->drop_inode) 1396 drop = op->drop_inode(inode); 1397 else 1398 drop = generic_drop_inode(inode); 1399 1400 if (!drop && (sb->s_flags & MS_ACTIVE)) { 1401 inode->i_state |= I_REFERENCED; 1402 inode_add_lru(inode); 1403 spin_unlock(&inode->i_lock); 1404 return; 1405 } 1406 1407 if (!drop) { 1408 inode->i_state |= I_WILL_FREE; 1409 spin_unlock(&inode->i_lock); 1410 write_inode_now(inode, 1); 1411 spin_lock(&inode->i_lock); 1412 WARN_ON(inode->i_state & I_NEW); 1413 inode->i_state &= ~I_WILL_FREE; 1414 } 1415 1416 inode->i_state |= I_FREEING; 1417 if (!list_empty(&inode->i_lru)) 1418 inode_lru_list_del(inode); 1419 spin_unlock(&inode->i_lock); 1420 1421 evict(inode); 1422 } 1423 1424 /** 1425 * iput - put an inode 1426 * @inode: inode to put 1427 * 1428 * Puts an inode, dropping its usage count. If the inode use count hits 1429 * zero, the inode is then freed and may also be destroyed. 1430 * 1431 * Consequently, iput() can sleep. 1432 */ 1433 void iput(struct inode *inode) 1434 { 1435 if (inode) { 1436 BUG_ON(inode->i_state & I_CLEAR); 1437 1438 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) 1439 iput_final(inode); 1440 } 1441 } 1442 EXPORT_SYMBOL(iput); 1443 1444 /** 1445 * bmap - find a block number in a file 1446 * @inode: inode of file 1447 * @block: block to find 1448 * 1449 * Returns the block number on the device holding the inode that 1450 * is the disk block number for the block of the file requested. 1451 * That is, asked for block 4 of inode 1 the function will return the 1452 * disk block relative to the disk start that holds that block of the 1453 * file. 1454 */ 1455 sector_t bmap(struct inode *inode, sector_t block) 1456 { 1457 sector_t res = 0; 1458 if (inode->i_mapping->a_ops->bmap) 1459 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1460 return res; 1461 } 1462 EXPORT_SYMBOL(bmap); 1463 1464 /* 1465 * With relative atime, only update atime if the previous atime is 1466 * earlier than either the ctime or mtime or if at least a day has 1467 * passed since the last atime update. 1468 */ 1469 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1470 struct timespec now) 1471 { 1472 1473 if (!(mnt->mnt_flags & MNT_RELATIME)) 1474 return 1; 1475 /* 1476 * Is mtime younger than atime? If yes, update atime: 1477 */ 1478 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1479 return 1; 1480 /* 1481 * Is ctime younger than atime? If yes, update atime: 1482 */ 1483 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1484 return 1; 1485 1486 /* 1487 * Is the previous atime value older than a day? If yes, 1488 * update atime: 1489 */ 1490 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1491 return 1; 1492 /* 1493 * Good, we can skip the atime update: 1494 */ 1495 return 0; 1496 } 1497 1498 /* 1499 * This does the actual work of updating an inodes time or version. Must have 1500 * had called mnt_want_write() before calling this. 1501 */ 1502 static int update_time(struct inode *inode, struct timespec *time, int flags) 1503 { 1504 if (inode->i_op->update_time) 1505 return inode->i_op->update_time(inode, time, flags); 1506 1507 if (flags & S_ATIME) 1508 inode->i_atime = *time; 1509 if (flags & S_VERSION) 1510 inode_inc_iversion(inode); 1511 if (flags & S_CTIME) 1512 inode->i_ctime = *time; 1513 if (flags & S_MTIME) 1514 inode->i_mtime = *time; 1515 mark_inode_dirty_sync(inode); 1516 return 0; 1517 } 1518 1519 /** 1520 * touch_atime - update the access time 1521 * @path: the &struct path to update 1522 * 1523 * Update the accessed time on an inode and mark it for writeback. 1524 * This function automatically handles read only file systems and media, 1525 * as well as the "noatime" flag and inode specific "noatime" markers. 1526 */ 1527 void touch_atime(const struct path *path) 1528 { 1529 struct vfsmount *mnt = path->mnt; 1530 struct inode *inode = path->dentry->d_inode; 1531 struct timespec now; 1532 1533 if (inode->i_flags & S_NOATIME) 1534 return; 1535 if (IS_NOATIME(inode)) 1536 return; 1537 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1538 return; 1539 1540 if (mnt->mnt_flags & MNT_NOATIME) 1541 return; 1542 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1543 return; 1544 1545 now = current_fs_time(inode->i_sb); 1546 1547 if (!relatime_need_update(mnt, inode, now)) 1548 return; 1549 1550 if (timespec_equal(&inode->i_atime, &now)) 1551 return; 1552 1553 if (!sb_start_write_trylock(inode->i_sb)) 1554 return; 1555 1556 if (__mnt_want_write(mnt)) 1557 goto skip_update; 1558 /* 1559 * File systems can error out when updating inodes if they need to 1560 * allocate new space to modify an inode (such is the case for 1561 * Btrfs), but since we touch atime while walking down the path we 1562 * really don't care if we failed to update the atime of the file, 1563 * so just ignore the return value. 1564 * We may also fail on filesystems that have the ability to make parts 1565 * of the fs read only, e.g. subvolumes in Btrfs. 1566 */ 1567 update_time(inode, &now, S_ATIME); 1568 __mnt_drop_write(mnt); 1569 skip_update: 1570 sb_end_write(inode->i_sb); 1571 } 1572 EXPORT_SYMBOL(touch_atime); 1573 1574 /* 1575 * The logic we want is 1576 * 1577 * if suid or (sgid and xgrp) 1578 * remove privs 1579 */ 1580 int should_remove_suid(struct dentry *dentry) 1581 { 1582 umode_t mode = dentry->d_inode->i_mode; 1583 int kill = 0; 1584 1585 /* suid always must be killed */ 1586 if (unlikely(mode & S_ISUID)) 1587 kill = ATTR_KILL_SUID; 1588 1589 /* 1590 * sgid without any exec bits is just a mandatory locking mark; leave 1591 * it alone. If some exec bits are set, it's a real sgid; kill it. 1592 */ 1593 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1594 kill |= ATTR_KILL_SGID; 1595 1596 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1597 return kill; 1598 1599 return 0; 1600 } 1601 EXPORT_SYMBOL(should_remove_suid); 1602 1603 static int __remove_suid(struct dentry *dentry, int kill) 1604 { 1605 struct iattr newattrs; 1606 1607 newattrs.ia_valid = ATTR_FORCE | kill; 1608 /* 1609 * Note we call this on write, so notify_change will not 1610 * encounter any conflicting delegations: 1611 */ 1612 return notify_change(dentry, &newattrs, NULL); 1613 } 1614 1615 int file_remove_suid(struct file *file) 1616 { 1617 struct dentry *dentry = file->f_path.dentry; 1618 struct inode *inode = dentry->d_inode; 1619 int killsuid; 1620 int killpriv; 1621 int error = 0; 1622 1623 /* Fast path for nothing security related */ 1624 if (IS_NOSEC(inode)) 1625 return 0; 1626 1627 killsuid = should_remove_suid(dentry); 1628 killpriv = security_inode_need_killpriv(dentry); 1629 1630 if (killpriv < 0) 1631 return killpriv; 1632 if (killpriv) 1633 error = security_inode_killpriv(dentry); 1634 if (!error && killsuid) 1635 error = __remove_suid(dentry, killsuid); 1636 if (!error && (inode->i_sb->s_flags & MS_NOSEC)) 1637 inode->i_flags |= S_NOSEC; 1638 1639 return error; 1640 } 1641 EXPORT_SYMBOL(file_remove_suid); 1642 1643 /** 1644 * file_update_time - update mtime and ctime time 1645 * @file: file accessed 1646 * 1647 * Update the mtime and ctime members of an inode and mark the inode 1648 * for writeback. Note that this function is meant exclusively for 1649 * usage in the file write path of filesystems, and filesystems may 1650 * choose to explicitly ignore update via this function with the 1651 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1652 * timestamps are handled by the server. This can return an error for 1653 * file systems who need to allocate space in order to update an inode. 1654 */ 1655 1656 int file_update_time(struct file *file) 1657 { 1658 struct inode *inode = file_inode(file); 1659 struct timespec now; 1660 int sync_it = 0; 1661 int ret; 1662 1663 /* First try to exhaust all avenues to not sync */ 1664 if (IS_NOCMTIME(inode)) 1665 return 0; 1666 1667 now = current_fs_time(inode->i_sb); 1668 if (!timespec_equal(&inode->i_mtime, &now)) 1669 sync_it = S_MTIME; 1670 1671 if (!timespec_equal(&inode->i_ctime, &now)) 1672 sync_it |= S_CTIME; 1673 1674 if (IS_I_VERSION(inode)) 1675 sync_it |= S_VERSION; 1676 1677 if (!sync_it) 1678 return 0; 1679 1680 /* Finally allowed to write? Takes lock. */ 1681 if (__mnt_want_write_file(file)) 1682 return 0; 1683 1684 ret = update_time(inode, &now, sync_it); 1685 __mnt_drop_write_file(file); 1686 1687 return ret; 1688 } 1689 EXPORT_SYMBOL(file_update_time); 1690 1691 int inode_needs_sync(struct inode *inode) 1692 { 1693 if (IS_SYNC(inode)) 1694 return 1; 1695 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1696 return 1; 1697 return 0; 1698 } 1699 EXPORT_SYMBOL(inode_needs_sync); 1700 1701 /* 1702 * If we try to find an inode in the inode hash while it is being 1703 * deleted, we have to wait until the filesystem completes its 1704 * deletion before reporting that it isn't found. This function waits 1705 * until the deletion _might_ have completed. Callers are responsible 1706 * to recheck inode state. 1707 * 1708 * It doesn't matter if I_NEW is not set initially, a call to 1709 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 1710 * will DTRT. 1711 */ 1712 static void __wait_on_freeing_inode(struct inode *inode) 1713 { 1714 wait_queue_head_t *wq; 1715 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 1716 wq = bit_waitqueue(&inode->i_state, __I_NEW); 1717 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1718 spin_unlock(&inode->i_lock); 1719 spin_unlock(&inode_hash_lock); 1720 schedule(); 1721 finish_wait(wq, &wait.wait); 1722 spin_lock(&inode_hash_lock); 1723 } 1724 1725 static __initdata unsigned long ihash_entries; 1726 static int __init set_ihash_entries(char *str) 1727 { 1728 if (!str) 1729 return 0; 1730 ihash_entries = simple_strtoul(str, &str, 0); 1731 return 1; 1732 } 1733 __setup("ihash_entries=", set_ihash_entries); 1734 1735 /* 1736 * Initialize the waitqueues and inode hash table. 1737 */ 1738 void __init inode_init_early(void) 1739 { 1740 unsigned int loop; 1741 1742 /* If hashes are distributed across NUMA nodes, defer 1743 * hash allocation until vmalloc space is available. 1744 */ 1745 if (hashdist) 1746 return; 1747 1748 inode_hashtable = 1749 alloc_large_system_hash("Inode-cache", 1750 sizeof(struct hlist_head), 1751 ihash_entries, 1752 14, 1753 HASH_EARLY, 1754 &i_hash_shift, 1755 &i_hash_mask, 1756 0, 1757 0); 1758 1759 for (loop = 0; loop < (1U << i_hash_shift); loop++) 1760 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1761 } 1762 1763 void __init inode_init(void) 1764 { 1765 unsigned int loop; 1766 1767 /* inode slab cache */ 1768 inode_cachep = kmem_cache_create("inode_cache", 1769 sizeof(struct inode), 1770 0, 1771 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1772 SLAB_MEM_SPREAD), 1773 init_once); 1774 1775 /* Hash may have been set up in inode_init_early */ 1776 if (!hashdist) 1777 return; 1778 1779 inode_hashtable = 1780 alloc_large_system_hash("Inode-cache", 1781 sizeof(struct hlist_head), 1782 ihash_entries, 1783 14, 1784 0, 1785 &i_hash_shift, 1786 &i_hash_mask, 1787 0, 1788 0); 1789 1790 for (loop = 0; loop < (1U << i_hash_shift); loop++) 1791 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1792 } 1793 1794 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1795 { 1796 inode->i_mode = mode; 1797 if (S_ISCHR(mode)) { 1798 inode->i_fop = &def_chr_fops; 1799 inode->i_rdev = rdev; 1800 } else if (S_ISBLK(mode)) { 1801 inode->i_fop = &def_blk_fops; 1802 inode->i_rdev = rdev; 1803 } else if (S_ISFIFO(mode)) 1804 inode->i_fop = &pipefifo_fops; 1805 else if (S_ISSOCK(mode)) 1806 ; /* leave it no_open_fops */ 1807 else 1808 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 1809 " inode %s:%lu\n", mode, inode->i_sb->s_id, 1810 inode->i_ino); 1811 } 1812 EXPORT_SYMBOL(init_special_inode); 1813 1814 /** 1815 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 1816 * @inode: New inode 1817 * @dir: Directory inode 1818 * @mode: mode of the new inode 1819 */ 1820 void inode_init_owner(struct inode *inode, const struct inode *dir, 1821 umode_t mode) 1822 { 1823 inode->i_uid = current_fsuid(); 1824 if (dir && dir->i_mode & S_ISGID) { 1825 inode->i_gid = dir->i_gid; 1826 if (S_ISDIR(mode)) 1827 mode |= S_ISGID; 1828 } else 1829 inode->i_gid = current_fsgid(); 1830 inode->i_mode = mode; 1831 } 1832 EXPORT_SYMBOL(inode_init_owner); 1833 1834 /** 1835 * inode_owner_or_capable - check current task permissions to inode 1836 * @inode: inode being checked 1837 * 1838 * Return true if current either has CAP_FOWNER in a namespace with the 1839 * inode owner uid mapped, or owns the file. 1840 */ 1841 bool inode_owner_or_capable(const struct inode *inode) 1842 { 1843 struct user_namespace *ns; 1844 1845 if (uid_eq(current_fsuid(), inode->i_uid)) 1846 return true; 1847 1848 ns = current_user_ns(); 1849 if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid)) 1850 return true; 1851 return false; 1852 } 1853 EXPORT_SYMBOL(inode_owner_or_capable); 1854 1855 /* 1856 * Direct i/o helper functions 1857 */ 1858 static void __inode_dio_wait(struct inode *inode) 1859 { 1860 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 1861 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 1862 1863 do { 1864 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE); 1865 if (atomic_read(&inode->i_dio_count)) 1866 schedule(); 1867 } while (atomic_read(&inode->i_dio_count)); 1868 finish_wait(wq, &q.wait); 1869 } 1870 1871 /** 1872 * inode_dio_wait - wait for outstanding DIO requests to finish 1873 * @inode: inode to wait for 1874 * 1875 * Waits for all pending direct I/O requests to finish so that we can 1876 * proceed with a truncate or equivalent operation. 1877 * 1878 * Must be called under a lock that serializes taking new references 1879 * to i_dio_count, usually by inode->i_mutex. 1880 */ 1881 void inode_dio_wait(struct inode *inode) 1882 { 1883 if (atomic_read(&inode->i_dio_count)) 1884 __inode_dio_wait(inode); 1885 } 1886 EXPORT_SYMBOL(inode_dio_wait); 1887 1888 /* 1889 * inode_dio_done - signal finish of a direct I/O requests 1890 * @inode: inode the direct I/O happens on 1891 * 1892 * This is called once we've finished processing a direct I/O request, 1893 * and is used to wake up callers waiting for direct I/O to be quiesced. 1894 */ 1895 void inode_dio_done(struct inode *inode) 1896 { 1897 if (atomic_dec_and_test(&inode->i_dio_count)) 1898 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP); 1899 } 1900 EXPORT_SYMBOL(inode_dio_done); 1901 1902 /* 1903 * inode_set_flags - atomically set some inode flags 1904 * 1905 * Note: the caller should be holding i_mutex, or else be sure that 1906 * they have exclusive access to the inode structure (i.e., while the 1907 * inode is being instantiated). The reason for the cmpxchg() loop 1908 * --- which wouldn't be necessary if all code paths which modify 1909 * i_flags actually followed this rule, is that there is at least one 1910 * code path which doesn't today --- for example, 1911 * __generic_file_aio_write() calls file_remove_suid() without holding 1912 * i_mutex --- so we use cmpxchg() out of an abundance of caution. 1913 * 1914 * In the long run, i_mutex is overkill, and we should probably look 1915 * at using the i_lock spinlock to protect i_flags, and then make sure 1916 * it is so documented in include/linux/fs.h and that all code follows 1917 * the locking convention!! 1918 */ 1919 void inode_set_flags(struct inode *inode, unsigned int flags, 1920 unsigned int mask) 1921 { 1922 unsigned int old_flags, new_flags; 1923 1924 WARN_ON_ONCE(flags & ~mask); 1925 do { 1926 old_flags = ACCESS_ONCE(inode->i_flags); 1927 new_flags = (old_flags & ~mask) | flags; 1928 } while (unlikely(cmpxchg(&inode->i_flags, old_flags, 1929 new_flags) != old_flags)); 1930 } 1931 EXPORT_SYMBOL(inode_set_flags); 1932