xref: /openbmc/linux/fs/inode.c (revision 405db98b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fsnotify.h>
16 #include <linux/mount.h>
17 #include <linux/posix_acl.h>
18 #include <linux/prefetch.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <trace/events/writeback.h>
24 #include "internal.h"
25 
26 /*
27  * Inode locking rules:
28  *
29  * inode->i_lock protects:
30  *   inode->i_state, inode->i_hash, __iget()
31  * Inode LRU list locks protect:
32  *   inode->i_sb->s_inode_lru, inode->i_lru
33  * inode->i_sb->s_inode_list_lock protects:
34  *   inode->i_sb->s_inodes, inode->i_sb_list
35  * bdi->wb.list_lock protects:
36  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37  * inode_hash_lock protects:
38  *   inode_hashtable, inode->i_hash
39  *
40  * Lock ordering:
41  *
42  * inode->i_sb->s_inode_list_lock
43  *   inode->i_lock
44  *     Inode LRU list locks
45  *
46  * bdi->wb.list_lock
47  *   inode->i_lock
48  *
49  * inode_hash_lock
50  *   inode->i_sb->s_inode_list_lock
51  *   inode->i_lock
52  *
53  * iunique_lock
54  *   inode_hash_lock
55  */
56 
57 static unsigned int i_hash_mask __read_mostly;
58 static unsigned int i_hash_shift __read_mostly;
59 static struct hlist_head *inode_hashtable __read_mostly;
60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61 
62 /*
63  * Empty aops. Can be used for the cases where the user does not
64  * define any of the address_space operations.
65  */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69 
70 /*
71  * Statistics gathering..
72  */
73 struct inodes_stat_t inodes_stat;
74 
75 static DEFINE_PER_CPU(unsigned long, nr_inodes);
76 static DEFINE_PER_CPU(unsigned long, nr_unused);
77 
78 static struct kmem_cache *inode_cachep __read_mostly;
79 
80 static long get_nr_inodes(void)
81 {
82 	int i;
83 	long sum = 0;
84 	for_each_possible_cpu(i)
85 		sum += per_cpu(nr_inodes, i);
86 	return sum < 0 ? 0 : sum;
87 }
88 
89 static inline long get_nr_inodes_unused(void)
90 {
91 	int i;
92 	long sum = 0;
93 	for_each_possible_cpu(i)
94 		sum += per_cpu(nr_unused, i);
95 	return sum < 0 ? 0 : sum;
96 }
97 
98 long get_nr_dirty_inodes(void)
99 {
100 	/* not actually dirty inodes, but a wild approximation */
101 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
102 	return nr_dirty > 0 ? nr_dirty : 0;
103 }
104 
105 /*
106  * Handle nr_inode sysctl
107  */
108 #ifdef CONFIG_SYSCTL
109 int proc_nr_inodes(struct ctl_table *table, int write,
110 		   void *buffer, size_t *lenp, loff_t *ppos)
111 {
112 	inodes_stat.nr_inodes = get_nr_inodes();
113 	inodes_stat.nr_unused = get_nr_inodes_unused();
114 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116 #endif
117 
118 static int no_open(struct inode *inode, struct file *file)
119 {
120 	return -ENXIO;
121 }
122 
123 /**
124  * inode_init_always - perform inode structure initialisation
125  * @sb: superblock inode belongs to
126  * @inode: inode to initialise
127  *
128  * These are initializations that need to be done on every inode
129  * allocation as the fields are not initialised by slab allocation.
130  */
131 int inode_init_always(struct super_block *sb, struct inode *inode)
132 {
133 	static const struct inode_operations empty_iops;
134 	static const struct file_operations no_open_fops = {.open = no_open};
135 	struct address_space *const mapping = &inode->i_data;
136 
137 	inode->i_sb = sb;
138 	inode->i_blkbits = sb->s_blocksize_bits;
139 	inode->i_flags = 0;
140 	atomic64_set(&inode->i_sequence, 0);
141 	atomic_set(&inode->i_count, 1);
142 	inode->i_op = &empty_iops;
143 	inode->i_fop = &no_open_fops;
144 	inode->i_ino = 0;
145 	inode->__i_nlink = 1;
146 	inode->i_opflags = 0;
147 	if (sb->s_xattr)
148 		inode->i_opflags |= IOP_XATTR;
149 	i_uid_write(inode, 0);
150 	i_gid_write(inode, 0);
151 	atomic_set(&inode->i_writecount, 0);
152 	inode->i_size = 0;
153 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
154 	inode->i_blocks = 0;
155 	inode->i_bytes = 0;
156 	inode->i_generation = 0;
157 	inode->i_pipe = NULL;
158 	inode->i_cdev = NULL;
159 	inode->i_link = NULL;
160 	inode->i_dir_seq = 0;
161 	inode->i_rdev = 0;
162 	inode->dirtied_when = 0;
163 
164 #ifdef CONFIG_CGROUP_WRITEBACK
165 	inode->i_wb_frn_winner = 0;
166 	inode->i_wb_frn_avg_time = 0;
167 	inode->i_wb_frn_history = 0;
168 #endif
169 
170 	if (security_inode_alloc(inode))
171 		goto out;
172 	spin_lock_init(&inode->i_lock);
173 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
174 
175 	init_rwsem(&inode->i_rwsem);
176 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
177 
178 	atomic_set(&inode->i_dio_count, 0);
179 
180 	mapping->a_ops = &empty_aops;
181 	mapping->host = inode;
182 	mapping->flags = 0;
183 	mapping->wb_err = 0;
184 	atomic_set(&mapping->i_mmap_writable, 0);
185 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
186 	atomic_set(&mapping->nr_thps, 0);
187 #endif
188 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
189 	mapping->private_data = NULL;
190 	mapping->writeback_index = 0;
191 	init_rwsem(&mapping->invalidate_lock);
192 	lockdep_set_class_and_name(&mapping->invalidate_lock,
193 				   &sb->s_type->invalidate_lock_key,
194 				   "mapping.invalidate_lock");
195 	inode->i_private = NULL;
196 	inode->i_mapping = mapping;
197 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
198 #ifdef CONFIG_FS_POSIX_ACL
199 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
200 #endif
201 
202 #ifdef CONFIG_FSNOTIFY
203 	inode->i_fsnotify_mask = 0;
204 #endif
205 	inode->i_flctx = NULL;
206 	this_cpu_inc(nr_inodes);
207 
208 	return 0;
209 out:
210 	return -ENOMEM;
211 }
212 EXPORT_SYMBOL(inode_init_always);
213 
214 void free_inode_nonrcu(struct inode *inode)
215 {
216 	kmem_cache_free(inode_cachep, inode);
217 }
218 EXPORT_SYMBOL(free_inode_nonrcu);
219 
220 static void i_callback(struct rcu_head *head)
221 {
222 	struct inode *inode = container_of(head, struct inode, i_rcu);
223 	if (inode->free_inode)
224 		inode->free_inode(inode);
225 	else
226 		free_inode_nonrcu(inode);
227 }
228 
229 static struct inode *alloc_inode(struct super_block *sb)
230 {
231 	const struct super_operations *ops = sb->s_op;
232 	struct inode *inode;
233 
234 	if (ops->alloc_inode)
235 		inode = ops->alloc_inode(sb);
236 	else
237 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
238 
239 	if (!inode)
240 		return NULL;
241 
242 	if (unlikely(inode_init_always(sb, inode))) {
243 		if (ops->destroy_inode) {
244 			ops->destroy_inode(inode);
245 			if (!ops->free_inode)
246 				return NULL;
247 		}
248 		inode->free_inode = ops->free_inode;
249 		i_callback(&inode->i_rcu);
250 		return NULL;
251 	}
252 
253 	return inode;
254 }
255 
256 void __destroy_inode(struct inode *inode)
257 {
258 	BUG_ON(inode_has_buffers(inode));
259 	inode_detach_wb(inode);
260 	security_inode_free(inode);
261 	fsnotify_inode_delete(inode);
262 	locks_free_lock_context(inode);
263 	if (!inode->i_nlink) {
264 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
265 		atomic_long_dec(&inode->i_sb->s_remove_count);
266 	}
267 
268 #ifdef CONFIG_FS_POSIX_ACL
269 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
270 		posix_acl_release(inode->i_acl);
271 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
272 		posix_acl_release(inode->i_default_acl);
273 #endif
274 	this_cpu_dec(nr_inodes);
275 }
276 EXPORT_SYMBOL(__destroy_inode);
277 
278 static void destroy_inode(struct inode *inode)
279 {
280 	const struct super_operations *ops = inode->i_sb->s_op;
281 
282 	BUG_ON(!list_empty(&inode->i_lru));
283 	__destroy_inode(inode);
284 	if (ops->destroy_inode) {
285 		ops->destroy_inode(inode);
286 		if (!ops->free_inode)
287 			return;
288 	}
289 	inode->free_inode = ops->free_inode;
290 	call_rcu(&inode->i_rcu, i_callback);
291 }
292 
293 /**
294  * drop_nlink - directly drop an inode's link count
295  * @inode: inode
296  *
297  * This is a low-level filesystem helper to replace any
298  * direct filesystem manipulation of i_nlink.  In cases
299  * where we are attempting to track writes to the
300  * filesystem, a decrement to zero means an imminent
301  * write when the file is truncated and actually unlinked
302  * on the filesystem.
303  */
304 void drop_nlink(struct inode *inode)
305 {
306 	WARN_ON(inode->i_nlink == 0);
307 	inode->__i_nlink--;
308 	if (!inode->i_nlink)
309 		atomic_long_inc(&inode->i_sb->s_remove_count);
310 }
311 EXPORT_SYMBOL(drop_nlink);
312 
313 /**
314  * clear_nlink - directly zero an inode's link count
315  * @inode: inode
316  *
317  * This is a low-level filesystem helper to replace any
318  * direct filesystem manipulation of i_nlink.  See
319  * drop_nlink() for why we care about i_nlink hitting zero.
320  */
321 void clear_nlink(struct inode *inode)
322 {
323 	if (inode->i_nlink) {
324 		inode->__i_nlink = 0;
325 		atomic_long_inc(&inode->i_sb->s_remove_count);
326 	}
327 }
328 EXPORT_SYMBOL(clear_nlink);
329 
330 /**
331  * set_nlink - directly set an inode's link count
332  * @inode: inode
333  * @nlink: new nlink (should be non-zero)
334  *
335  * This is a low-level filesystem helper to replace any
336  * direct filesystem manipulation of i_nlink.
337  */
338 void set_nlink(struct inode *inode, unsigned int nlink)
339 {
340 	if (!nlink) {
341 		clear_nlink(inode);
342 	} else {
343 		/* Yes, some filesystems do change nlink from zero to one */
344 		if (inode->i_nlink == 0)
345 			atomic_long_dec(&inode->i_sb->s_remove_count);
346 
347 		inode->__i_nlink = nlink;
348 	}
349 }
350 EXPORT_SYMBOL(set_nlink);
351 
352 /**
353  * inc_nlink - directly increment an inode's link count
354  * @inode: inode
355  *
356  * This is a low-level filesystem helper to replace any
357  * direct filesystem manipulation of i_nlink.  Currently,
358  * it is only here for parity with dec_nlink().
359  */
360 void inc_nlink(struct inode *inode)
361 {
362 	if (unlikely(inode->i_nlink == 0)) {
363 		WARN_ON(!(inode->i_state & I_LINKABLE));
364 		atomic_long_dec(&inode->i_sb->s_remove_count);
365 	}
366 
367 	inode->__i_nlink++;
368 }
369 EXPORT_SYMBOL(inc_nlink);
370 
371 static void __address_space_init_once(struct address_space *mapping)
372 {
373 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
374 	init_rwsem(&mapping->i_mmap_rwsem);
375 	INIT_LIST_HEAD(&mapping->private_list);
376 	spin_lock_init(&mapping->private_lock);
377 	mapping->i_mmap = RB_ROOT_CACHED;
378 }
379 
380 void address_space_init_once(struct address_space *mapping)
381 {
382 	memset(mapping, 0, sizeof(*mapping));
383 	__address_space_init_once(mapping);
384 }
385 EXPORT_SYMBOL(address_space_init_once);
386 
387 /*
388  * These are initializations that only need to be done
389  * once, because the fields are idempotent across use
390  * of the inode, so let the slab aware of that.
391  */
392 void inode_init_once(struct inode *inode)
393 {
394 	memset(inode, 0, sizeof(*inode));
395 	INIT_HLIST_NODE(&inode->i_hash);
396 	INIT_LIST_HEAD(&inode->i_devices);
397 	INIT_LIST_HEAD(&inode->i_io_list);
398 	INIT_LIST_HEAD(&inode->i_wb_list);
399 	INIT_LIST_HEAD(&inode->i_lru);
400 	__address_space_init_once(&inode->i_data);
401 	i_size_ordered_init(inode);
402 }
403 EXPORT_SYMBOL(inode_init_once);
404 
405 static void init_once(void *foo)
406 {
407 	struct inode *inode = (struct inode *) foo;
408 
409 	inode_init_once(inode);
410 }
411 
412 /*
413  * inode->i_lock must be held
414  */
415 void __iget(struct inode *inode)
416 {
417 	atomic_inc(&inode->i_count);
418 }
419 
420 /*
421  * get additional reference to inode; caller must already hold one.
422  */
423 void ihold(struct inode *inode)
424 {
425 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
426 }
427 EXPORT_SYMBOL(ihold);
428 
429 static void __inode_add_lru(struct inode *inode, bool rotate)
430 {
431 	if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE))
432 		return;
433 	if (atomic_read(&inode->i_count))
434 		return;
435 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
436 		return;
437 	if (!mapping_shrinkable(&inode->i_data))
438 		return;
439 
440 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
441 		this_cpu_inc(nr_unused);
442 	else if (rotate)
443 		inode->i_state |= I_REFERENCED;
444 }
445 
446 /*
447  * Add inode to LRU if needed (inode is unused and clean).
448  *
449  * Needs inode->i_lock held.
450  */
451 void inode_add_lru(struct inode *inode)
452 {
453 	__inode_add_lru(inode, false);
454 }
455 
456 static void inode_lru_list_del(struct inode *inode)
457 {
458 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
459 		this_cpu_dec(nr_unused);
460 }
461 
462 /**
463  * inode_sb_list_add - add inode to the superblock list of inodes
464  * @inode: inode to add
465  */
466 void inode_sb_list_add(struct inode *inode)
467 {
468 	spin_lock(&inode->i_sb->s_inode_list_lock);
469 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
470 	spin_unlock(&inode->i_sb->s_inode_list_lock);
471 }
472 EXPORT_SYMBOL_GPL(inode_sb_list_add);
473 
474 static inline void inode_sb_list_del(struct inode *inode)
475 {
476 	if (!list_empty(&inode->i_sb_list)) {
477 		spin_lock(&inode->i_sb->s_inode_list_lock);
478 		list_del_init(&inode->i_sb_list);
479 		spin_unlock(&inode->i_sb->s_inode_list_lock);
480 	}
481 }
482 
483 static unsigned long hash(struct super_block *sb, unsigned long hashval)
484 {
485 	unsigned long tmp;
486 
487 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
488 			L1_CACHE_BYTES;
489 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
490 	return tmp & i_hash_mask;
491 }
492 
493 /**
494  *	__insert_inode_hash - hash an inode
495  *	@inode: unhashed inode
496  *	@hashval: unsigned long value used to locate this object in the
497  *		inode_hashtable.
498  *
499  *	Add an inode to the inode hash for this superblock.
500  */
501 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
502 {
503 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
504 
505 	spin_lock(&inode_hash_lock);
506 	spin_lock(&inode->i_lock);
507 	hlist_add_head_rcu(&inode->i_hash, b);
508 	spin_unlock(&inode->i_lock);
509 	spin_unlock(&inode_hash_lock);
510 }
511 EXPORT_SYMBOL(__insert_inode_hash);
512 
513 /**
514  *	__remove_inode_hash - remove an inode from the hash
515  *	@inode: inode to unhash
516  *
517  *	Remove an inode from the superblock.
518  */
519 void __remove_inode_hash(struct inode *inode)
520 {
521 	spin_lock(&inode_hash_lock);
522 	spin_lock(&inode->i_lock);
523 	hlist_del_init_rcu(&inode->i_hash);
524 	spin_unlock(&inode->i_lock);
525 	spin_unlock(&inode_hash_lock);
526 }
527 EXPORT_SYMBOL(__remove_inode_hash);
528 
529 void clear_inode(struct inode *inode)
530 {
531 	/*
532 	 * We have to cycle the i_pages lock here because reclaim can be in the
533 	 * process of removing the last page (in __delete_from_page_cache())
534 	 * and we must not free the mapping under it.
535 	 */
536 	xa_lock_irq(&inode->i_data.i_pages);
537 	BUG_ON(inode->i_data.nrpages);
538 	/*
539 	 * Almost always, mapping_empty(&inode->i_data) here; but there are
540 	 * two known and long-standing ways in which nodes may get left behind
541 	 * (when deep radix-tree node allocation failed partway; or when THP
542 	 * collapse_file() failed). Until those two known cases are cleaned up,
543 	 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
544 	 * nor even WARN_ON(!mapping_empty).
545 	 */
546 	xa_unlock_irq(&inode->i_data.i_pages);
547 	BUG_ON(!list_empty(&inode->i_data.private_list));
548 	BUG_ON(!(inode->i_state & I_FREEING));
549 	BUG_ON(inode->i_state & I_CLEAR);
550 	BUG_ON(!list_empty(&inode->i_wb_list));
551 	/* don't need i_lock here, no concurrent mods to i_state */
552 	inode->i_state = I_FREEING | I_CLEAR;
553 }
554 EXPORT_SYMBOL(clear_inode);
555 
556 /*
557  * Free the inode passed in, removing it from the lists it is still connected
558  * to. We remove any pages still attached to the inode and wait for any IO that
559  * is still in progress before finally destroying the inode.
560  *
561  * An inode must already be marked I_FREEING so that we avoid the inode being
562  * moved back onto lists if we race with other code that manipulates the lists
563  * (e.g. writeback_single_inode). The caller is responsible for setting this.
564  *
565  * An inode must already be removed from the LRU list before being evicted from
566  * the cache. This should occur atomically with setting the I_FREEING state
567  * flag, so no inodes here should ever be on the LRU when being evicted.
568  */
569 static void evict(struct inode *inode)
570 {
571 	const struct super_operations *op = inode->i_sb->s_op;
572 
573 	BUG_ON(!(inode->i_state & I_FREEING));
574 	BUG_ON(!list_empty(&inode->i_lru));
575 
576 	if (!list_empty(&inode->i_io_list))
577 		inode_io_list_del(inode);
578 
579 	inode_sb_list_del(inode);
580 
581 	/*
582 	 * Wait for flusher thread to be done with the inode so that filesystem
583 	 * does not start destroying it while writeback is still running. Since
584 	 * the inode has I_FREEING set, flusher thread won't start new work on
585 	 * the inode.  We just have to wait for running writeback to finish.
586 	 */
587 	inode_wait_for_writeback(inode);
588 
589 	if (op->evict_inode) {
590 		op->evict_inode(inode);
591 	} else {
592 		truncate_inode_pages_final(&inode->i_data);
593 		clear_inode(inode);
594 	}
595 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
596 		cd_forget(inode);
597 
598 	remove_inode_hash(inode);
599 
600 	spin_lock(&inode->i_lock);
601 	wake_up_bit(&inode->i_state, __I_NEW);
602 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
603 	spin_unlock(&inode->i_lock);
604 
605 	destroy_inode(inode);
606 }
607 
608 /*
609  * dispose_list - dispose of the contents of a local list
610  * @head: the head of the list to free
611  *
612  * Dispose-list gets a local list with local inodes in it, so it doesn't
613  * need to worry about list corruption and SMP locks.
614  */
615 static void dispose_list(struct list_head *head)
616 {
617 	while (!list_empty(head)) {
618 		struct inode *inode;
619 
620 		inode = list_first_entry(head, struct inode, i_lru);
621 		list_del_init(&inode->i_lru);
622 
623 		evict(inode);
624 		cond_resched();
625 	}
626 }
627 
628 /**
629  * evict_inodes	- evict all evictable inodes for a superblock
630  * @sb:		superblock to operate on
631  *
632  * Make sure that no inodes with zero refcount are retained.  This is
633  * called by superblock shutdown after having SB_ACTIVE flag removed,
634  * so any inode reaching zero refcount during or after that call will
635  * be immediately evicted.
636  */
637 void evict_inodes(struct super_block *sb)
638 {
639 	struct inode *inode, *next;
640 	LIST_HEAD(dispose);
641 
642 again:
643 	spin_lock(&sb->s_inode_list_lock);
644 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
645 		if (atomic_read(&inode->i_count))
646 			continue;
647 
648 		spin_lock(&inode->i_lock);
649 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
650 			spin_unlock(&inode->i_lock);
651 			continue;
652 		}
653 
654 		inode->i_state |= I_FREEING;
655 		inode_lru_list_del(inode);
656 		spin_unlock(&inode->i_lock);
657 		list_add(&inode->i_lru, &dispose);
658 
659 		/*
660 		 * We can have a ton of inodes to evict at unmount time given
661 		 * enough memory, check to see if we need to go to sleep for a
662 		 * bit so we don't livelock.
663 		 */
664 		if (need_resched()) {
665 			spin_unlock(&sb->s_inode_list_lock);
666 			cond_resched();
667 			dispose_list(&dispose);
668 			goto again;
669 		}
670 	}
671 	spin_unlock(&sb->s_inode_list_lock);
672 
673 	dispose_list(&dispose);
674 }
675 EXPORT_SYMBOL_GPL(evict_inodes);
676 
677 /**
678  * invalidate_inodes	- attempt to free all inodes on a superblock
679  * @sb:		superblock to operate on
680  * @kill_dirty: flag to guide handling of dirty inodes
681  *
682  * Attempts to free all inodes for a given superblock.  If there were any
683  * busy inodes return a non-zero value, else zero.
684  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
685  * them as busy.
686  */
687 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
688 {
689 	int busy = 0;
690 	struct inode *inode, *next;
691 	LIST_HEAD(dispose);
692 
693 again:
694 	spin_lock(&sb->s_inode_list_lock);
695 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
696 		spin_lock(&inode->i_lock);
697 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
698 			spin_unlock(&inode->i_lock);
699 			continue;
700 		}
701 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
702 			spin_unlock(&inode->i_lock);
703 			busy = 1;
704 			continue;
705 		}
706 		if (atomic_read(&inode->i_count)) {
707 			spin_unlock(&inode->i_lock);
708 			busy = 1;
709 			continue;
710 		}
711 
712 		inode->i_state |= I_FREEING;
713 		inode_lru_list_del(inode);
714 		spin_unlock(&inode->i_lock);
715 		list_add(&inode->i_lru, &dispose);
716 		if (need_resched()) {
717 			spin_unlock(&sb->s_inode_list_lock);
718 			cond_resched();
719 			dispose_list(&dispose);
720 			goto again;
721 		}
722 	}
723 	spin_unlock(&sb->s_inode_list_lock);
724 
725 	dispose_list(&dispose);
726 
727 	return busy;
728 }
729 
730 /*
731  * Isolate the inode from the LRU in preparation for freeing it.
732  *
733  * If the inode has the I_REFERENCED flag set, then it means that it has been
734  * used recently - the flag is set in iput_final(). When we encounter such an
735  * inode, clear the flag and move it to the back of the LRU so it gets another
736  * pass through the LRU before it gets reclaimed. This is necessary because of
737  * the fact we are doing lazy LRU updates to minimise lock contention so the
738  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
739  * with this flag set because they are the inodes that are out of order.
740  */
741 static enum lru_status inode_lru_isolate(struct list_head *item,
742 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
743 {
744 	struct list_head *freeable = arg;
745 	struct inode	*inode = container_of(item, struct inode, i_lru);
746 
747 	/*
748 	 * We are inverting the lru lock/inode->i_lock here, so use a
749 	 * trylock. If we fail to get the lock, just skip it.
750 	 */
751 	if (!spin_trylock(&inode->i_lock))
752 		return LRU_SKIP;
753 
754 	/*
755 	 * Inodes can get referenced, redirtied, or repopulated while
756 	 * they're already on the LRU, and this can make them
757 	 * unreclaimable for a while. Remove them lazily here; iput,
758 	 * sync, or the last page cache deletion will requeue them.
759 	 */
760 	if (atomic_read(&inode->i_count) ||
761 	    (inode->i_state & ~I_REFERENCED) ||
762 	    !mapping_shrinkable(&inode->i_data)) {
763 		list_lru_isolate(lru, &inode->i_lru);
764 		spin_unlock(&inode->i_lock);
765 		this_cpu_dec(nr_unused);
766 		return LRU_REMOVED;
767 	}
768 
769 	/* Recently referenced inodes get one more pass */
770 	if (inode->i_state & I_REFERENCED) {
771 		inode->i_state &= ~I_REFERENCED;
772 		spin_unlock(&inode->i_lock);
773 		return LRU_ROTATE;
774 	}
775 
776 	/*
777 	 * On highmem systems, mapping_shrinkable() permits dropping
778 	 * page cache in order to free up struct inodes: lowmem might
779 	 * be under pressure before the cache inside the highmem zone.
780 	 */
781 	if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
782 		__iget(inode);
783 		spin_unlock(&inode->i_lock);
784 		spin_unlock(lru_lock);
785 		if (remove_inode_buffers(inode)) {
786 			unsigned long reap;
787 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
788 			if (current_is_kswapd())
789 				__count_vm_events(KSWAPD_INODESTEAL, reap);
790 			else
791 				__count_vm_events(PGINODESTEAL, reap);
792 			if (current->reclaim_state)
793 				current->reclaim_state->reclaimed_slab += reap;
794 		}
795 		iput(inode);
796 		spin_lock(lru_lock);
797 		return LRU_RETRY;
798 	}
799 
800 	WARN_ON(inode->i_state & I_NEW);
801 	inode->i_state |= I_FREEING;
802 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
803 	spin_unlock(&inode->i_lock);
804 
805 	this_cpu_dec(nr_unused);
806 	return LRU_REMOVED;
807 }
808 
809 /*
810  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
811  * This is called from the superblock shrinker function with a number of inodes
812  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
813  * then are freed outside inode_lock by dispose_list().
814  */
815 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
816 {
817 	LIST_HEAD(freeable);
818 	long freed;
819 
820 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
821 				     inode_lru_isolate, &freeable);
822 	dispose_list(&freeable);
823 	return freed;
824 }
825 
826 static void __wait_on_freeing_inode(struct inode *inode);
827 /*
828  * Called with the inode lock held.
829  */
830 static struct inode *find_inode(struct super_block *sb,
831 				struct hlist_head *head,
832 				int (*test)(struct inode *, void *),
833 				void *data)
834 {
835 	struct inode *inode = NULL;
836 
837 repeat:
838 	hlist_for_each_entry(inode, head, i_hash) {
839 		if (inode->i_sb != sb)
840 			continue;
841 		if (!test(inode, data))
842 			continue;
843 		spin_lock(&inode->i_lock);
844 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
845 			__wait_on_freeing_inode(inode);
846 			goto repeat;
847 		}
848 		if (unlikely(inode->i_state & I_CREATING)) {
849 			spin_unlock(&inode->i_lock);
850 			return ERR_PTR(-ESTALE);
851 		}
852 		__iget(inode);
853 		spin_unlock(&inode->i_lock);
854 		return inode;
855 	}
856 	return NULL;
857 }
858 
859 /*
860  * find_inode_fast is the fast path version of find_inode, see the comment at
861  * iget_locked for details.
862  */
863 static struct inode *find_inode_fast(struct super_block *sb,
864 				struct hlist_head *head, unsigned long ino)
865 {
866 	struct inode *inode = NULL;
867 
868 repeat:
869 	hlist_for_each_entry(inode, head, i_hash) {
870 		if (inode->i_ino != ino)
871 			continue;
872 		if (inode->i_sb != sb)
873 			continue;
874 		spin_lock(&inode->i_lock);
875 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
876 			__wait_on_freeing_inode(inode);
877 			goto repeat;
878 		}
879 		if (unlikely(inode->i_state & I_CREATING)) {
880 			spin_unlock(&inode->i_lock);
881 			return ERR_PTR(-ESTALE);
882 		}
883 		__iget(inode);
884 		spin_unlock(&inode->i_lock);
885 		return inode;
886 	}
887 	return NULL;
888 }
889 
890 /*
891  * Each cpu owns a range of LAST_INO_BATCH numbers.
892  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
893  * to renew the exhausted range.
894  *
895  * This does not significantly increase overflow rate because every CPU can
896  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
897  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
898  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
899  * overflow rate by 2x, which does not seem too significant.
900  *
901  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
902  * error if st_ino won't fit in target struct field. Use 32bit counter
903  * here to attempt to avoid that.
904  */
905 #define LAST_INO_BATCH 1024
906 static DEFINE_PER_CPU(unsigned int, last_ino);
907 
908 unsigned int get_next_ino(void)
909 {
910 	unsigned int *p = &get_cpu_var(last_ino);
911 	unsigned int res = *p;
912 
913 #ifdef CONFIG_SMP
914 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
915 		static atomic_t shared_last_ino;
916 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
917 
918 		res = next - LAST_INO_BATCH;
919 	}
920 #endif
921 
922 	res++;
923 	/* get_next_ino should not provide a 0 inode number */
924 	if (unlikely(!res))
925 		res++;
926 	*p = res;
927 	put_cpu_var(last_ino);
928 	return res;
929 }
930 EXPORT_SYMBOL(get_next_ino);
931 
932 /**
933  *	new_inode_pseudo 	- obtain an inode
934  *	@sb: superblock
935  *
936  *	Allocates a new inode for given superblock.
937  *	Inode wont be chained in superblock s_inodes list
938  *	This means :
939  *	- fs can't be unmount
940  *	- quotas, fsnotify, writeback can't work
941  */
942 struct inode *new_inode_pseudo(struct super_block *sb)
943 {
944 	struct inode *inode = alloc_inode(sb);
945 
946 	if (inode) {
947 		spin_lock(&inode->i_lock);
948 		inode->i_state = 0;
949 		spin_unlock(&inode->i_lock);
950 		INIT_LIST_HEAD(&inode->i_sb_list);
951 	}
952 	return inode;
953 }
954 
955 /**
956  *	new_inode 	- obtain an inode
957  *	@sb: superblock
958  *
959  *	Allocates a new inode for given superblock. The default gfp_mask
960  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
961  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
962  *	for the page cache are not reclaimable or migratable,
963  *	mapping_set_gfp_mask() must be called with suitable flags on the
964  *	newly created inode's mapping
965  *
966  */
967 struct inode *new_inode(struct super_block *sb)
968 {
969 	struct inode *inode;
970 
971 	spin_lock_prefetch(&sb->s_inode_list_lock);
972 
973 	inode = new_inode_pseudo(sb);
974 	if (inode)
975 		inode_sb_list_add(inode);
976 	return inode;
977 }
978 EXPORT_SYMBOL(new_inode);
979 
980 #ifdef CONFIG_DEBUG_LOCK_ALLOC
981 void lockdep_annotate_inode_mutex_key(struct inode *inode)
982 {
983 	if (S_ISDIR(inode->i_mode)) {
984 		struct file_system_type *type = inode->i_sb->s_type;
985 
986 		/* Set new key only if filesystem hasn't already changed it */
987 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
988 			/*
989 			 * ensure nobody is actually holding i_mutex
990 			 */
991 			// mutex_destroy(&inode->i_mutex);
992 			init_rwsem(&inode->i_rwsem);
993 			lockdep_set_class(&inode->i_rwsem,
994 					  &type->i_mutex_dir_key);
995 		}
996 	}
997 }
998 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
999 #endif
1000 
1001 /**
1002  * unlock_new_inode - clear the I_NEW state and wake up any waiters
1003  * @inode:	new inode to unlock
1004  *
1005  * Called when the inode is fully initialised to clear the new state of the
1006  * inode and wake up anyone waiting for the inode to finish initialisation.
1007  */
1008 void unlock_new_inode(struct inode *inode)
1009 {
1010 	lockdep_annotate_inode_mutex_key(inode);
1011 	spin_lock(&inode->i_lock);
1012 	WARN_ON(!(inode->i_state & I_NEW));
1013 	inode->i_state &= ~I_NEW & ~I_CREATING;
1014 	smp_mb();
1015 	wake_up_bit(&inode->i_state, __I_NEW);
1016 	spin_unlock(&inode->i_lock);
1017 }
1018 EXPORT_SYMBOL(unlock_new_inode);
1019 
1020 void discard_new_inode(struct inode *inode)
1021 {
1022 	lockdep_annotate_inode_mutex_key(inode);
1023 	spin_lock(&inode->i_lock);
1024 	WARN_ON(!(inode->i_state & I_NEW));
1025 	inode->i_state &= ~I_NEW;
1026 	smp_mb();
1027 	wake_up_bit(&inode->i_state, __I_NEW);
1028 	spin_unlock(&inode->i_lock);
1029 	iput(inode);
1030 }
1031 EXPORT_SYMBOL(discard_new_inode);
1032 
1033 /**
1034  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1035  *
1036  * Lock any non-NULL argument that is not a directory.
1037  * Zero, one or two objects may be locked by this function.
1038  *
1039  * @inode1: first inode to lock
1040  * @inode2: second inode to lock
1041  */
1042 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1043 {
1044 	if (inode1 > inode2)
1045 		swap(inode1, inode2);
1046 
1047 	if (inode1 && !S_ISDIR(inode1->i_mode))
1048 		inode_lock(inode1);
1049 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1050 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1051 }
1052 EXPORT_SYMBOL(lock_two_nondirectories);
1053 
1054 /**
1055  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1056  * @inode1: first inode to unlock
1057  * @inode2: second inode to unlock
1058  */
1059 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1060 {
1061 	if (inode1 && !S_ISDIR(inode1->i_mode))
1062 		inode_unlock(inode1);
1063 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1064 		inode_unlock(inode2);
1065 }
1066 EXPORT_SYMBOL(unlock_two_nondirectories);
1067 
1068 /**
1069  * inode_insert5 - obtain an inode from a mounted file system
1070  * @inode:	pre-allocated inode to use for insert to cache
1071  * @hashval:	hash value (usually inode number) to get
1072  * @test:	callback used for comparisons between inodes
1073  * @set:	callback used to initialize a new struct inode
1074  * @data:	opaque data pointer to pass to @test and @set
1075  *
1076  * Search for the inode specified by @hashval and @data in the inode cache,
1077  * and if present it is return it with an increased reference count. This is
1078  * a variant of iget5_locked() for callers that don't want to fail on memory
1079  * allocation of inode.
1080  *
1081  * If the inode is not in cache, insert the pre-allocated inode to cache and
1082  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1083  * to fill it in before unlocking it via unlock_new_inode().
1084  *
1085  * Note both @test and @set are called with the inode_hash_lock held, so can't
1086  * sleep.
1087  */
1088 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1089 			    int (*test)(struct inode *, void *),
1090 			    int (*set)(struct inode *, void *), void *data)
1091 {
1092 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1093 	struct inode *old;
1094 	bool creating = inode->i_state & I_CREATING;
1095 
1096 again:
1097 	spin_lock(&inode_hash_lock);
1098 	old = find_inode(inode->i_sb, head, test, data);
1099 	if (unlikely(old)) {
1100 		/*
1101 		 * Uhhuh, somebody else created the same inode under us.
1102 		 * Use the old inode instead of the preallocated one.
1103 		 */
1104 		spin_unlock(&inode_hash_lock);
1105 		if (IS_ERR(old))
1106 			return NULL;
1107 		wait_on_inode(old);
1108 		if (unlikely(inode_unhashed(old))) {
1109 			iput(old);
1110 			goto again;
1111 		}
1112 		return old;
1113 	}
1114 
1115 	if (set && unlikely(set(inode, data))) {
1116 		inode = NULL;
1117 		goto unlock;
1118 	}
1119 
1120 	/*
1121 	 * Return the locked inode with I_NEW set, the
1122 	 * caller is responsible for filling in the contents
1123 	 */
1124 	spin_lock(&inode->i_lock);
1125 	inode->i_state |= I_NEW;
1126 	hlist_add_head_rcu(&inode->i_hash, head);
1127 	spin_unlock(&inode->i_lock);
1128 	if (!creating)
1129 		inode_sb_list_add(inode);
1130 unlock:
1131 	spin_unlock(&inode_hash_lock);
1132 
1133 	return inode;
1134 }
1135 EXPORT_SYMBOL(inode_insert5);
1136 
1137 /**
1138  * iget5_locked - obtain an inode from a mounted file system
1139  * @sb:		super block of file system
1140  * @hashval:	hash value (usually inode number) to get
1141  * @test:	callback used for comparisons between inodes
1142  * @set:	callback used to initialize a new struct inode
1143  * @data:	opaque data pointer to pass to @test and @set
1144  *
1145  * Search for the inode specified by @hashval and @data in the inode cache,
1146  * and if present it is return it with an increased reference count. This is
1147  * a generalized version of iget_locked() for file systems where the inode
1148  * number is not sufficient for unique identification of an inode.
1149  *
1150  * If the inode is not in cache, allocate a new inode and return it locked,
1151  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1152  * before unlocking it via unlock_new_inode().
1153  *
1154  * Note both @test and @set are called with the inode_hash_lock held, so can't
1155  * sleep.
1156  */
1157 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1158 		int (*test)(struct inode *, void *),
1159 		int (*set)(struct inode *, void *), void *data)
1160 {
1161 	struct inode *inode = ilookup5(sb, hashval, test, data);
1162 
1163 	if (!inode) {
1164 		struct inode *new = alloc_inode(sb);
1165 
1166 		if (new) {
1167 			new->i_state = 0;
1168 			inode = inode_insert5(new, hashval, test, set, data);
1169 			if (unlikely(inode != new))
1170 				destroy_inode(new);
1171 		}
1172 	}
1173 	return inode;
1174 }
1175 EXPORT_SYMBOL(iget5_locked);
1176 
1177 /**
1178  * iget_locked - obtain an inode from a mounted file system
1179  * @sb:		super block of file system
1180  * @ino:	inode number to get
1181  *
1182  * Search for the inode specified by @ino in the inode cache and if present
1183  * return it with an increased reference count. This is for file systems
1184  * where the inode number is sufficient for unique identification of an inode.
1185  *
1186  * If the inode is not in cache, allocate a new inode and return it locked,
1187  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1188  * before unlocking it via unlock_new_inode().
1189  */
1190 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1191 {
1192 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1193 	struct inode *inode;
1194 again:
1195 	spin_lock(&inode_hash_lock);
1196 	inode = find_inode_fast(sb, head, ino);
1197 	spin_unlock(&inode_hash_lock);
1198 	if (inode) {
1199 		if (IS_ERR(inode))
1200 			return NULL;
1201 		wait_on_inode(inode);
1202 		if (unlikely(inode_unhashed(inode))) {
1203 			iput(inode);
1204 			goto again;
1205 		}
1206 		return inode;
1207 	}
1208 
1209 	inode = alloc_inode(sb);
1210 	if (inode) {
1211 		struct inode *old;
1212 
1213 		spin_lock(&inode_hash_lock);
1214 		/* We released the lock, so.. */
1215 		old = find_inode_fast(sb, head, ino);
1216 		if (!old) {
1217 			inode->i_ino = ino;
1218 			spin_lock(&inode->i_lock);
1219 			inode->i_state = I_NEW;
1220 			hlist_add_head_rcu(&inode->i_hash, head);
1221 			spin_unlock(&inode->i_lock);
1222 			inode_sb_list_add(inode);
1223 			spin_unlock(&inode_hash_lock);
1224 
1225 			/* Return the locked inode with I_NEW set, the
1226 			 * caller is responsible for filling in the contents
1227 			 */
1228 			return inode;
1229 		}
1230 
1231 		/*
1232 		 * Uhhuh, somebody else created the same inode under
1233 		 * us. Use the old inode instead of the one we just
1234 		 * allocated.
1235 		 */
1236 		spin_unlock(&inode_hash_lock);
1237 		destroy_inode(inode);
1238 		if (IS_ERR(old))
1239 			return NULL;
1240 		inode = old;
1241 		wait_on_inode(inode);
1242 		if (unlikely(inode_unhashed(inode))) {
1243 			iput(inode);
1244 			goto again;
1245 		}
1246 	}
1247 	return inode;
1248 }
1249 EXPORT_SYMBOL(iget_locked);
1250 
1251 /*
1252  * search the inode cache for a matching inode number.
1253  * If we find one, then the inode number we are trying to
1254  * allocate is not unique and so we should not use it.
1255  *
1256  * Returns 1 if the inode number is unique, 0 if it is not.
1257  */
1258 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1259 {
1260 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1261 	struct inode *inode;
1262 
1263 	hlist_for_each_entry_rcu(inode, b, i_hash) {
1264 		if (inode->i_ino == ino && inode->i_sb == sb)
1265 			return 0;
1266 	}
1267 	return 1;
1268 }
1269 
1270 /**
1271  *	iunique - get a unique inode number
1272  *	@sb: superblock
1273  *	@max_reserved: highest reserved inode number
1274  *
1275  *	Obtain an inode number that is unique on the system for a given
1276  *	superblock. This is used by file systems that have no natural
1277  *	permanent inode numbering system. An inode number is returned that
1278  *	is higher than the reserved limit but unique.
1279  *
1280  *	BUGS:
1281  *	With a large number of inodes live on the file system this function
1282  *	currently becomes quite slow.
1283  */
1284 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1285 {
1286 	/*
1287 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1288 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1289 	 * here to attempt to avoid that.
1290 	 */
1291 	static DEFINE_SPINLOCK(iunique_lock);
1292 	static unsigned int counter;
1293 	ino_t res;
1294 
1295 	rcu_read_lock();
1296 	spin_lock(&iunique_lock);
1297 	do {
1298 		if (counter <= max_reserved)
1299 			counter = max_reserved + 1;
1300 		res = counter++;
1301 	} while (!test_inode_iunique(sb, res));
1302 	spin_unlock(&iunique_lock);
1303 	rcu_read_unlock();
1304 
1305 	return res;
1306 }
1307 EXPORT_SYMBOL(iunique);
1308 
1309 struct inode *igrab(struct inode *inode)
1310 {
1311 	spin_lock(&inode->i_lock);
1312 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1313 		__iget(inode);
1314 		spin_unlock(&inode->i_lock);
1315 	} else {
1316 		spin_unlock(&inode->i_lock);
1317 		/*
1318 		 * Handle the case where s_op->clear_inode is not been
1319 		 * called yet, and somebody is calling igrab
1320 		 * while the inode is getting freed.
1321 		 */
1322 		inode = NULL;
1323 	}
1324 	return inode;
1325 }
1326 EXPORT_SYMBOL(igrab);
1327 
1328 /**
1329  * ilookup5_nowait - search for an inode in the inode cache
1330  * @sb:		super block of file system to search
1331  * @hashval:	hash value (usually inode number) to search for
1332  * @test:	callback used for comparisons between inodes
1333  * @data:	opaque data pointer to pass to @test
1334  *
1335  * Search for the inode specified by @hashval and @data in the inode cache.
1336  * If the inode is in the cache, the inode is returned with an incremented
1337  * reference count.
1338  *
1339  * Note: I_NEW is not waited upon so you have to be very careful what you do
1340  * with the returned inode.  You probably should be using ilookup5() instead.
1341  *
1342  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1343  */
1344 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1345 		int (*test)(struct inode *, void *), void *data)
1346 {
1347 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1348 	struct inode *inode;
1349 
1350 	spin_lock(&inode_hash_lock);
1351 	inode = find_inode(sb, head, test, data);
1352 	spin_unlock(&inode_hash_lock);
1353 
1354 	return IS_ERR(inode) ? NULL : inode;
1355 }
1356 EXPORT_SYMBOL(ilookup5_nowait);
1357 
1358 /**
1359  * ilookup5 - search for an inode in the inode cache
1360  * @sb:		super block of file system to search
1361  * @hashval:	hash value (usually inode number) to search for
1362  * @test:	callback used for comparisons between inodes
1363  * @data:	opaque data pointer to pass to @test
1364  *
1365  * Search for the inode specified by @hashval and @data in the inode cache,
1366  * and if the inode is in the cache, return the inode with an incremented
1367  * reference count.  Waits on I_NEW before returning the inode.
1368  * returned with an incremented reference count.
1369  *
1370  * This is a generalized version of ilookup() for file systems where the
1371  * inode number is not sufficient for unique identification of an inode.
1372  *
1373  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1374  */
1375 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1376 		int (*test)(struct inode *, void *), void *data)
1377 {
1378 	struct inode *inode;
1379 again:
1380 	inode = ilookup5_nowait(sb, hashval, test, data);
1381 	if (inode) {
1382 		wait_on_inode(inode);
1383 		if (unlikely(inode_unhashed(inode))) {
1384 			iput(inode);
1385 			goto again;
1386 		}
1387 	}
1388 	return inode;
1389 }
1390 EXPORT_SYMBOL(ilookup5);
1391 
1392 /**
1393  * ilookup - search for an inode in the inode cache
1394  * @sb:		super block of file system to search
1395  * @ino:	inode number to search for
1396  *
1397  * Search for the inode @ino in the inode cache, and if the inode is in the
1398  * cache, the inode is returned with an incremented reference count.
1399  */
1400 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1401 {
1402 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1403 	struct inode *inode;
1404 again:
1405 	spin_lock(&inode_hash_lock);
1406 	inode = find_inode_fast(sb, head, ino);
1407 	spin_unlock(&inode_hash_lock);
1408 
1409 	if (inode) {
1410 		if (IS_ERR(inode))
1411 			return NULL;
1412 		wait_on_inode(inode);
1413 		if (unlikely(inode_unhashed(inode))) {
1414 			iput(inode);
1415 			goto again;
1416 		}
1417 	}
1418 	return inode;
1419 }
1420 EXPORT_SYMBOL(ilookup);
1421 
1422 /**
1423  * find_inode_nowait - find an inode in the inode cache
1424  * @sb:		super block of file system to search
1425  * @hashval:	hash value (usually inode number) to search for
1426  * @match:	callback used for comparisons between inodes
1427  * @data:	opaque data pointer to pass to @match
1428  *
1429  * Search for the inode specified by @hashval and @data in the inode
1430  * cache, where the helper function @match will return 0 if the inode
1431  * does not match, 1 if the inode does match, and -1 if the search
1432  * should be stopped.  The @match function must be responsible for
1433  * taking the i_lock spin_lock and checking i_state for an inode being
1434  * freed or being initialized, and incrementing the reference count
1435  * before returning 1.  It also must not sleep, since it is called with
1436  * the inode_hash_lock spinlock held.
1437  *
1438  * This is a even more generalized version of ilookup5() when the
1439  * function must never block --- find_inode() can block in
1440  * __wait_on_freeing_inode() --- or when the caller can not increment
1441  * the reference count because the resulting iput() might cause an
1442  * inode eviction.  The tradeoff is that the @match funtion must be
1443  * very carefully implemented.
1444  */
1445 struct inode *find_inode_nowait(struct super_block *sb,
1446 				unsigned long hashval,
1447 				int (*match)(struct inode *, unsigned long,
1448 					     void *),
1449 				void *data)
1450 {
1451 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1452 	struct inode *inode, *ret_inode = NULL;
1453 	int mval;
1454 
1455 	spin_lock(&inode_hash_lock);
1456 	hlist_for_each_entry(inode, head, i_hash) {
1457 		if (inode->i_sb != sb)
1458 			continue;
1459 		mval = match(inode, hashval, data);
1460 		if (mval == 0)
1461 			continue;
1462 		if (mval == 1)
1463 			ret_inode = inode;
1464 		goto out;
1465 	}
1466 out:
1467 	spin_unlock(&inode_hash_lock);
1468 	return ret_inode;
1469 }
1470 EXPORT_SYMBOL(find_inode_nowait);
1471 
1472 /**
1473  * find_inode_rcu - find an inode in the inode cache
1474  * @sb:		Super block of file system to search
1475  * @hashval:	Key to hash
1476  * @test:	Function to test match on an inode
1477  * @data:	Data for test function
1478  *
1479  * Search for the inode specified by @hashval and @data in the inode cache,
1480  * where the helper function @test will return 0 if the inode does not match
1481  * and 1 if it does.  The @test function must be responsible for taking the
1482  * i_lock spin_lock and checking i_state for an inode being freed or being
1483  * initialized.
1484  *
1485  * If successful, this will return the inode for which the @test function
1486  * returned 1 and NULL otherwise.
1487  *
1488  * The @test function is not permitted to take a ref on any inode presented.
1489  * It is also not permitted to sleep.
1490  *
1491  * The caller must hold the RCU read lock.
1492  */
1493 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1494 			     int (*test)(struct inode *, void *), void *data)
1495 {
1496 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1497 	struct inode *inode;
1498 
1499 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1500 			 "suspicious find_inode_rcu() usage");
1501 
1502 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1503 		if (inode->i_sb == sb &&
1504 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1505 		    test(inode, data))
1506 			return inode;
1507 	}
1508 	return NULL;
1509 }
1510 EXPORT_SYMBOL(find_inode_rcu);
1511 
1512 /**
1513  * find_inode_by_ino_rcu - Find an inode in the inode cache
1514  * @sb:		Super block of file system to search
1515  * @ino:	The inode number to match
1516  *
1517  * Search for the inode specified by @hashval and @data in the inode cache,
1518  * where the helper function @test will return 0 if the inode does not match
1519  * and 1 if it does.  The @test function must be responsible for taking the
1520  * i_lock spin_lock and checking i_state for an inode being freed or being
1521  * initialized.
1522  *
1523  * If successful, this will return the inode for which the @test function
1524  * returned 1 and NULL otherwise.
1525  *
1526  * The @test function is not permitted to take a ref on any inode presented.
1527  * It is also not permitted to sleep.
1528  *
1529  * The caller must hold the RCU read lock.
1530  */
1531 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1532 				    unsigned long ino)
1533 {
1534 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1535 	struct inode *inode;
1536 
1537 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1538 			 "suspicious find_inode_by_ino_rcu() usage");
1539 
1540 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1541 		if (inode->i_ino == ino &&
1542 		    inode->i_sb == sb &&
1543 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1544 		    return inode;
1545 	}
1546 	return NULL;
1547 }
1548 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1549 
1550 int insert_inode_locked(struct inode *inode)
1551 {
1552 	struct super_block *sb = inode->i_sb;
1553 	ino_t ino = inode->i_ino;
1554 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1555 
1556 	while (1) {
1557 		struct inode *old = NULL;
1558 		spin_lock(&inode_hash_lock);
1559 		hlist_for_each_entry(old, head, i_hash) {
1560 			if (old->i_ino != ino)
1561 				continue;
1562 			if (old->i_sb != sb)
1563 				continue;
1564 			spin_lock(&old->i_lock);
1565 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1566 				spin_unlock(&old->i_lock);
1567 				continue;
1568 			}
1569 			break;
1570 		}
1571 		if (likely(!old)) {
1572 			spin_lock(&inode->i_lock);
1573 			inode->i_state |= I_NEW | I_CREATING;
1574 			hlist_add_head_rcu(&inode->i_hash, head);
1575 			spin_unlock(&inode->i_lock);
1576 			spin_unlock(&inode_hash_lock);
1577 			return 0;
1578 		}
1579 		if (unlikely(old->i_state & I_CREATING)) {
1580 			spin_unlock(&old->i_lock);
1581 			spin_unlock(&inode_hash_lock);
1582 			return -EBUSY;
1583 		}
1584 		__iget(old);
1585 		spin_unlock(&old->i_lock);
1586 		spin_unlock(&inode_hash_lock);
1587 		wait_on_inode(old);
1588 		if (unlikely(!inode_unhashed(old))) {
1589 			iput(old);
1590 			return -EBUSY;
1591 		}
1592 		iput(old);
1593 	}
1594 }
1595 EXPORT_SYMBOL(insert_inode_locked);
1596 
1597 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1598 		int (*test)(struct inode *, void *), void *data)
1599 {
1600 	struct inode *old;
1601 
1602 	inode->i_state |= I_CREATING;
1603 	old = inode_insert5(inode, hashval, test, NULL, data);
1604 
1605 	if (old != inode) {
1606 		iput(old);
1607 		return -EBUSY;
1608 	}
1609 	return 0;
1610 }
1611 EXPORT_SYMBOL(insert_inode_locked4);
1612 
1613 
1614 int generic_delete_inode(struct inode *inode)
1615 {
1616 	return 1;
1617 }
1618 EXPORT_SYMBOL(generic_delete_inode);
1619 
1620 /*
1621  * Called when we're dropping the last reference
1622  * to an inode.
1623  *
1624  * Call the FS "drop_inode()" function, defaulting to
1625  * the legacy UNIX filesystem behaviour.  If it tells
1626  * us to evict inode, do so.  Otherwise, retain inode
1627  * in cache if fs is alive, sync and evict if fs is
1628  * shutting down.
1629  */
1630 static void iput_final(struct inode *inode)
1631 {
1632 	struct super_block *sb = inode->i_sb;
1633 	const struct super_operations *op = inode->i_sb->s_op;
1634 	unsigned long state;
1635 	int drop;
1636 
1637 	WARN_ON(inode->i_state & I_NEW);
1638 
1639 	if (op->drop_inode)
1640 		drop = op->drop_inode(inode);
1641 	else
1642 		drop = generic_drop_inode(inode);
1643 
1644 	if (!drop &&
1645 	    !(inode->i_state & I_DONTCACHE) &&
1646 	    (sb->s_flags & SB_ACTIVE)) {
1647 		__inode_add_lru(inode, true);
1648 		spin_unlock(&inode->i_lock);
1649 		return;
1650 	}
1651 
1652 	state = inode->i_state;
1653 	if (!drop) {
1654 		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1655 		spin_unlock(&inode->i_lock);
1656 
1657 		write_inode_now(inode, 1);
1658 
1659 		spin_lock(&inode->i_lock);
1660 		state = inode->i_state;
1661 		WARN_ON(state & I_NEW);
1662 		state &= ~I_WILL_FREE;
1663 	}
1664 
1665 	WRITE_ONCE(inode->i_state, state | I_FREEING);
1666 	if (!list_empty(&inode->i_lru))
1667 		inode_lru_list_del(inode);
1668 	spin_unlock(&inode->i_lock);
1669 
1670 	evict(inode);
1671 }
1672 
1673 /**
1674  *	iput	- put an inode
1675  *	@inode: inode to put
1676  *
1677  *	Puts an inode, dropping its usage count. If the inode use count hits
1678  *	zero, the inode is then freed and may also be destroyed.
1679  *
1680  *	Consequently, iput() can sleep.
1681  */
1682 void iput(struct inode *inode)
1683 {
1684 	if (!inode)
1685 		return;
1686 	BUG_ON(inode->i_state & I_CLEAR);
1687 retry:
1688 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1689 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1690 			atomic_inc(&inode->i_count);
1691 			spin_unlock(&inode->i_lock);
1692 			trace_writeback_lazytime_iput(inode);
1693 			mark_inode_dirty_sync(inode);
1694 			goto retry;
1695 		}
1696 		iput_final(inode);
1697 	}
1698 }
1699 EXPORT_SYMBOL(iput);
1700 
1701 #ifdef CONFIG_BLOCK
1702 /**
1703  *	bmap	- find a block number in a file
1704  *	@inode:  inode owning the block number being requested
1705  *	@block: pointer containing the block to find
1706  *
1707  *	Replaces the value in ``*block`` with the block number on the device holding
1708  *	corresponding to the requested block number in the file.
1709  *	That is, asked for block 4 of inode 1 the function will replace the
1710  *	4 in ``*block``, with disk block relative to the disk start that holds that
1711  *	block of the file.
1712  *
1713  *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1714  *	hole, returns 0 and ``*block`` is also set to 0.
1715  */
1716 int bmap(struct inode *inode, sector_t *block)
1717 {
1718 	if (!inode->i_mapping->a_ops->bmap)
1719 		return -EINVAL;
1720 
1721 	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1722 	return 0;
1723 }
1724 EXPORT_SYMBOL(bmap);
1725 #endif
1726 
1727 /*
1728  * With relative atime, only update atime if the previous atime is
1729  * earlier than either the ctime or mtime or if at least a day has
1730  * passed since the last atime update.
1731  */
1732 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1733 			     struct timespec64 now)
1734 {
1735 
1736 	if (!(mnt->mnt_flags & MNT_RELATIME))
1737 		return 1;
1738 	/*
1739 	 * Is mtime younger than atime? If yes, update atime:
1740 	 */
1741 	if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1742 		return 1;
1743 	/*
1744 	 * Is ctime younger than atime? If yes, update atime:
1745 	 */
1746 	if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1747 		return 1;
1748 
1749 	/*
1750 	 * Is the previous atime value older than a day? If yes,
1751 	 * update atime:
1752 	 */
1753 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1754 		return 1;
1755 	/*
1756 	 * Good, we can skip the atime update:
1757 	 */
1758 	return 0;
1759 }
1760 
1761 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1762 {
1763 	int dirty_flags = 0;
1764 
1765 	if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
1766 		if (flags & S_ATIME)
1767 			inode->i_atime = *time;
1768 		if (flags & S_CTIME)
1769 			inode->i_ctime = *time;
1770 		if (flags & S_MTIME)
1771 			inode->i_mtime = *time;
1772 
1773 		if (inode->i_sb->s_flags & SB_LAZYTIME)
1774 			dirty_flags |= I_DIRTY_TIME;
1775 		else
1776 			dirty_flags |= I_DIRTY_SYNC;
1777 	}
1778 
1779 	if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
1780 		dirty_flags |= I_DIRTY_SYNC;
1781 
1782 	__mark_inode_dirty(inode, dirty_flags);
1783 	return 0;
1784 }
1785 EXPORT_SYMBOL(generic_update_time);
1786 
1787 /*
1788  * This does the actual work of updating an inodes time or version.  Must have
1789  * had called mnt_want_write() before calling this.
1790  */
1791 int inode_update_time(struct inode *inode, struct timespec64 *time, int flags)
1792 {
1793 	if (inode->i_op->update_time)
1794 		return inode->i_op->update_time(inode, time, flags);
1795 	return generic_update_time(inode, time, flags);
1796 }
1797 EXPORT_SYMBOL(inode_update_time);
1798 
1799 /**
1800  *	atime_needs_update	-	update the access time
1801  *	@path: the &struct path to update
1802  *	@inode: inode to update
1803  *
1804  *	Update the accessed time on an inode and mark it for writeback.
1805  *	This function automatically handles read only file systems and media,
1806  *	as well as the "noatime" flag and inode specific "noatime" markers.
1807  */
1808 bool atime_needs_update(const struct path *path, struct inode *inode)
1809 {
1810 	struct vfsmount *mnt = path->mnt;
1811 	struct timespec64 now;
1812 
1813 	if (inode->i_flags & S_NOATIME)
1814 		return false;
1815 
1816 	/* Atime updates will likely cause i_uid and i_gid to be written
1817 	 * back improprely if their true value is unknown to the vfs.
1818 	 */
1819 	if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode))
1820 		return false;
1821 
1822 	if (IS_NOATIME(inode))
1823 		return false;
1824 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1825 		return false;
1826 
1827 	if (mnt->mnt_flags & MNT_NOATIME)
1828 		return false;
1829 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1830 		return false;
1831 
1832 	now = current_time(inode);
1833 
1834 	if (!relatime_need_update(mnt, inode, now))
1835 		return false;
1836 
1837 	if (timespec64_equal(&inode->i_atime, &now))
1838 		return false;
1839 
1840 	return true;
1841 }
1842 
1843 void touch_atime(const struct path *path)
1844 {
1845 	struct vfsmount *mnt = path->mnt;
1846 	struct inode *inode = d_inode(path->dentry);
1847 	struct timespec64 now;
1848 
1849 	if (!atime_needs_update(path, inode))
1850 		return;
1851 
1852 	if (!sb_start_write_trylock(inode->i_sb))
1853 		return;
1854 
1855 	if (__mnt_want_write(mnt) != 0)
1856 		goto skip_update;
1857 	/*
1858 	 * File systems can error out when updating inodes if they need to
1859 	 * allocate new space to modify an inode (such is the case for
1860 	 * Btrfs), but since we touch atime while walking down the path we
1861 	 * really don't care if we failed to update the atime of the file,
1862 	 * so just ignore the return value.
1863 	 * We may also fail on filesystems that have the ability to make parts
1864 	 * of the fs read only, e.g. subvolumes in Btrfs.
1865 	 */
1866 	now = current_time(inode);
1867 	inode_update_time(inode, &now, S_ATIME);
1868 	__mnt_drop_write(mnt);
1869 skip_update:
1870 	sb_end_write(inode->i_sb);
1871 }
1872 EXPORT_SYMBOL(touch_atime);
1873 
1874 /*
1875  * The logic we want is
1876  *
1877  *	if suid or (sgid and xgrp)
1878  *		remove privs
1879  */
1880 int should_remove_suid(struct dentry *dentry)
1881 {
1882 	umode_t mode = d_inode(dentry)->i_mode;
1883 	int kill = 0;
1884 
1885 	/* suid always must be killed */
1886 	if (unlikely(mode & S_ISUID))
1887 		kill = ATTR_KILL_SUID;
1888 
1889 	/*
1890 	 * sgid without any exec bits is just a mandatory locking mark; leave
1891 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1892 	 */
1893 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1894 		kill |= ATTR_KILL_SGID;
1895 
1896 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1897 		return kill;
1898 
1899 	return 0;
1900 }
1901 EXPORT_SYMBOL(should_remove_suid);
1902 
1903 /*
1904  * Return mask of changes for notify_change() that need to be done as a
1905  * response to write or truncate. Return 0 if nothing has to be changed.
1906  * Negative value on error (change should be denied).
1907  */
1908 int dentry_needs_remove_privs(struct dentry *dentry)
1909 {
1910 	struct inode *inode = d_inode(dentry);
1911 	int mask = 0;
1912 	int ret;
1913 
1914 	if (IS_NOSEC(inode))
1915 		return 0;
1916 
1917 	mask = should_remove_suid(dentry);
1918 	ret = security_inode_need_killpriv(dentry);
1919 	if (ret < 0)
1920 		return ret;
1921 	if (ret)
1922 		mask |= ATTR_KILL_PRIV;
1923 	return mask;
1924 }
1925 
1926 static int __remove_privs(struct user_namespace *mnt_userns,
1927 			  struct dentry *dentry, int kill)
1928 {
1929 	struct iattr newattrs;
1930 
1931 	newattrs.ia_valid = ATTR_FORCE | kill;
1932 	/*
1933 	 * Note we call this on write, so notify_change will not
1934 	 * encounter any conflicting delegations:
1935 	 */
1936 	return notify_change(mnt_userns, dentry, &newattrs, NULL);
1937 }
1938 
1939 /*
1940  * Remove special file priviledges (suid, capabilities) when file is written
1941  * to or truncated.
1942  */
1943 int file_remove_privs(struct file *file)
1944 {
1945 	struct dentry *dentry = file_dentry(file);
1946 	struct inode *inode = file_inode(file);
1947 	int kill;
1948 	int error = 0;
1949 
1950 	/*
1951 	 * Fast path for nothing security related.
1952 	 * As well for non-regular files, e.g. blkdev inodes.
1953 	 * For example, blkdev_write_iter() might get here
1954 	 * trying to remove privs which it is not allowed to.
1955 	 */
1956 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1957 		return 0;
1958 
1959 	kill = dentry_needs_remove_privs(dentry);
1960 	if (kill < 0)
1961 		return kill;
1962 	if (kill)
1963 		error = __remove_privs(file_mnt_user_ns(file), dentry, kill);
1964 	if (!error)
1965 		inode_has_no_xattr(inode);
1966 
1967 	return error;
1968 }
1969 EXPORT_SYMBOL(file_remove_privs);
1970 
1971 /**
1972  *	file_update_time	-	update mtime and ctime time
1973  *	@file: file accessed
1974  *
1975  *	Update the mtime and ctime members of an inode and mark the inode
1976  *	for writeback.  Note that this function is meant exclusively for
1977  *	usage in the file write path of filesystems, and filesystems may
1978  *	choose to explicitly ignore update via this function with the
1979  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1980  *	timestamps are handled by the server.  This can return an error for
1981  *	file systems who need to allocate space in order to update an inode.
1982  */
1983 
1984 int file_update_time(struct file *file)
1985 {
1986 	struct inode *inode = file_inode(file);
1987 	struct timespec64 now;
1988 	int sync_it = 0;
1989 	int ret;
1990 
1991 	/* First try to exhaust all avenues to not sync */
1992 	if (IS_NOCMTIME(inode))
1993 		return 0;
1994 
1995 	now = current_time(inode);
1996 	if (!timespec64_equal(&inode->i_mtime, &now))
1997 		sync_it = S_MTIME;
1998 
1999 	if (!timespec64_equal(&inode->i_ctime, &now))
2000 		sync_it |= S_CTIME;
2001 
2002 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2003 		sync_it |= S_VERSION;
2004 
2005 	if (!sync_it)
2006 		return 0;
2007 
2008 	/* Finally allowed to write? Takes lock. */
2009 	if (__mnt_want_write_file(file))
2010 		return 0;
2011 
2012 	ret = inode_update_time(inode, &now, sync_it);
2013 	__mnt_drop_write_file(file);
2014 
2015 	return ret;
2016 }
2017 EXPORT_SYMBOL(file_update_time);
2018 
2019 /* Caller must hold the file's inode lock */
2020 int file_modified(struct file *file)
2021 {
2022 	int err;
2023 
2024 	/*
2025 	 * Clear the security bits if the process is not being run by root.
2026 	 * This keeps people from modifying setuid and setgid binaries.
2027 	 */
2028 	err = file_remove_privs(file);
2029 	if (err)
2030 		return err;
2031 
2032 	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2033 		return 0;
2034 
2035 	return file_update_time(file);
2036 }
2037 EXPORT_SYMBOL(file_modified);
2038 
2039 int inode_needs_sync(struct inode *inode)
2040 {
2041 	if (IS_SYNC(inode))
2042 		return 1;
2043 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2044 		return 1;
2045 	return 0;
2046 }
2047 EXPORT_SYMBOL(inode_needs_sync);
2048 
2049 /*
2050  * If we try to find an inode in the inode hash while it is being
2051  * deleted, we have to wait until the filesystem completes its
2052  * deletion before reporting that it isn't found.  This function waits
2053  * until the deletion _might_ have completed.  Callers are responsible
2054  * to recheck inode state.
2055  *
2056  * It doesn't matter if I_NEW is not set initially, a call to
2057  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2058  * will DTRT.
2059  */
2060 static void __wait_on_freeing_inode(struct inode *inode)
2061 {
2062 	wait_queue_head_t *wq;
2063 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2064 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
2065 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2066 	spin_unlock(&inode->i_lock);
2067 	spin_unlock(&inode_hash_lock);
2068 	schedule();
2069 	finish_wait(wq, &wait.wq_entry);
2070 	spin_lock(&inode_hash_lock);
2071 }
2072 
2073 static __initdata unsigned long ihash_entries;
2074 static int __init set_ihash_entries(char *str)
2075 {
2076 	if (!str)
2077 		return 0;
2078 	ihash_entries = simple_strtoul(str, &str, 0);
2079 	return 1;
2080 }
2081 __setup("ihash_entries=", set_ihash_entries);
2082 
2083 /*
2084  * Initialize the waitqueues and inode hash table.
2085  */
2086 void __init inode_init_early(void)
2087 {
2088 	/* If hashes are distributed across NUMA nodes, defer
2089 	 * hash allocation until vmalloc space is available.
2090 	 */
2091 	if (hashdist)
2092 		return;
2093 
2094 	inode_hashtable =
2095 		alloc_large_system_hash("Inode-cache",
2096 					sizeof(struct hlist_head),
2097 					ihash_entries,
2098 					14,
2099 					HASH_EARLY | HASH_ZERO,
2100 					&i_hash_shift,
2101 					&i_hash_mask,
2102 					0,
2103 					0);
2104 }
2105 
2106 void __init inode_init(void)
2107 {
2108 	/* inode slab cache */
2109 	inode_cachep = kmem_cache_create("inode_cache",
2110 					 sizeof(struct inode),
2111 					 0,
2112 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2113 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2114 					 init_once);
2115 
2116 	/* Hash may have been set up in inode_init_early */
2117 	if (!hashdist)
2118 		return;
2119 
2120 	inode_hashtable =
2121 		alloc_large_system_hash("Inode-cache",
2122 					sizeof(struct hlist_head),
2123 					ihash_entries,
2124 					14,
2125 					HASH_ZERO,
2126 					&i_hash_shift,
2127 					&i_hash_mask,
2128 					0,
2129 					0);
2130 }
2131 
2132 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2133 {
2134 	inode->i_mode = mode;
2135 	if (S_ISCHR(mode)) {
2136 		inode->i_fop = &def_chr_fops;
2137 		inode->i_rdev = rdev;
2138 	} else if (S_ISBLK(mode)) {
2139 		inode->i_fop = &def_blk_fops;
2140 		inode->i_rdev = rdev;
2141 	} else if (S_ISFIFO(mode))
2142 		inode->i_fop = &pipefifo_fops;
2143 	else if (S_ISSOCK(mode))
2144 		;	/* leave it no_open_fops */
2145 	else
2146 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2147 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2148 				  inode->i_ino);
2149 }
2150 EXPORT_SYMBOL(init_special_inode);
2151 
2152 /**
2153  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2154  * @mnt_userns:	User namespace of the mount the inode was created from
2155  * @inode: New inode
2156  * @dir: Directory inode
2157  * @mode: mode of the new inode
2158  *
2159  * If the inode has been created through an idmapped mount the user namespace of
2160  * the vfsmount must be passed through @mnt_userns. This function will then take
2161  * care to map the inode according to @mnt_userns before checking permissions
2162  * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2163  * checking is to be performed on the raw inode simply passs init_user_ns.
2164  */
2165 void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode,
2166 		      const struct inode *dir, umode_t mode)
2167 {
2168 	inode_fsuid_set(inode, mnt_userns);
2169 	if (dir && dir->i_mode & S_ISGID) {
2170 		inode->i_gid = dir->i_gid;
2171 
2172 		/* Directories are special, and always inherit S_ISGID */
2173 		if (S_ISDIR(mode))
2174 			mode |= S_ISGID;
2175 		else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2176 			 !in_group_p(i_gid_into_mnt(mnt_userns, dir)) &&
2177 			 !capable_wrt_inode_uidgid(mnt_userns, dir, CAP_FSETID))
2178 			mode &= ~S_ISGID;
2179 	} else
2180 		inode_fsgid_set(inode, mnt_userns);
2181 	inode->i_mode = mode;
2182 }
2183 EXPORT_SYMBOL(inode_init_owner);
2184 
2185 /**
2186  * inode_owner_or_capable - check current task permissions to inode
2187  * @mnt_userns:	user namespace of the mount the inode was found from
2188  * @inode: inode being checked
2189  *
2190  * Return true if current either has CAP_FOWNER in a namespace with the
2191  * inode owner uid mapped, or owns the file.
2192  *
2193  * If the inode has been found through an idmapped mount the user namespace of
2194  * the vfsmount must be passed through @mnt_userns. This function will then take
2195  * care to map the inode according to @mnt_userns before checking permissions.
2196  * On non-idmapped mounts or if permission checking is to be performed on the
2197  * raw inode simply passs init_user_ns.
2198  */
2199 bool inode_owner_or_capable(struct user_namespace *mnt_userns,
2200 			    const struct inode *inode)
2201 {
2202 	kuid_t i_uid;
2203 	struct user_namespace *ns;
2204 
2205 	i_uid = i_uid_into_mnt(mnt_userns, inode);
2206 	if (uid_eq(current_fsuid(), i_uid))
2207 		return true;
2208 
2209 	ns = current_user_ns();
2210 	if (kuid_has_mapping(ns, i_uid) && ns_capable(ns, CAP_FOWNER))
2211 		return true;
2212 	return false;
2213 }
2214 EXPORT_SYMBOL(inode_owner_or_capable);
2215 
2216 /*
2217  * Direct i/o helper functions
2218  */
2219 static void __inode_dio_wait(struct inode *inode)
2220 {
2221 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2222 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2223 
2224 	do {
2225 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2226 		if (atomic_read(&inode->i_dio_count))
2227 			schedule();
2228 	} while (atomic_read(&inode->i_dio_count));
2229 	finish_wait(wq, &q.wq_entry);
2230 }
2231 
2232 /**
2233  * inode_dio_wait - wait for outstanding DIO requests to finish
2234  * @inode: inode to wait for
2235  *
2236  * Waits for all pending direct I/O requests to finish so that we can
2237  * proceed with a truncate or equivalent operation.
2238  *
2239  * Must be called under a lock that serializes taking new references
2240  * to i_dio_count, usually by inode->i_mutex.
2241  */
2242 void inode_dio_wait(struct inode *inode)
2243 {
2244 	if (atomic_read(&inode->i_dio_count))
2245 		__inode_dio_wait(inode);
2246 }
2247 EXPORT_SYMBOL(inode_dio_wait);
2248 
2249 /*
2250  * inode_set_flags - atomically set some inode flags
2251  *
2252  * Note: the caller should be holding i_mutex, or else be sure that
2253  * they have exclusive access to the inode structure (i.e., while the
2254  * inode is being instantiated).  The reason for the cmpxchg() loop
2255  * --- which wouldn't be necessary if all code paths which modify
2256  * i_flags actually followed this rule, is that there is at least one
2257  * code path which doesn't today so we use cmpxchg() out of an abundance
2258  * of caution.
2259  *
2260  * In the long run, i_mutex is overkill, and we should probably look
2261  * at using the i_lock spinlock to protect i_flags, and then make sure
2262  * it is so documented in include/linux/fs.h and that all code follows
2263  * the locking convention!!
2264  */
2265 void inode_set_flags(struct inode *inode, unsigned int flags,
2266 		     unsigned int mask)
2267 {
2268 	WARN_ON_ONCE(flags & ~mask);
2269 	set_mask_bits(&inode->i_flags, mask, flags);
2270 }
2271 EXPORT_SYMBOL(inode_set_flags);
2272 
2273 void inode_nohighmem(struct inode *inode)
2274 {
2275 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2276 }
2277 EXPORT_SYMBOL(inode_nohighmem);
2278 
2279 /**
2280  * timestamp_truncate - Truncate timespec to a granularity
2281  * @t: Timespec
2282  * @inode: inode being updated
2283  *
2284  * Truncate a timespec to the granularity supported by the fs
2285  * containing the inode. Always rounds down. gran must
2286  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2287  */
2288 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2289 {
2290 	struct super_block *sb = inode->i_sb;
2291 	unsigned int gran = sb->s_time_gran;
2292 
2293 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2294 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2295 		t.tv_nsec = 0;
2296 
2297 	/* Avoid division in the common cases 1 ns and 1 s. */
2298 	if (gran == 1)
2299 		; /* nothing */
2300 	else if (gran == NSEC_PER_SEC)
2301 		t.tv_nsec = 0;
2302 	else if (gran > 1 && gran < NSEC_PER_SEC)
2303 		t.tv_nsec -= t.tv_nsec % gran;
2304 	else
2305 		WARN(1, "invalid file time granularity: %u", gran);
2306 	return t;
2307 }
2308 EXPORT_SYMBOL(timestamp_truncate);
2309 
2310 /**
2311  * current_time - Return FS time
2312  * @inode: inode.
2313  *
2314  * Return the current time truncated to the time granularity supported by
2315  * the fs.
2316  *
2317  * Note that inode and inode->sb cannot be NULL.
2318  * Otherwise, the function warns and returns time without truncation.
2319  */
2320 struct timespec64 current_time(struct inode *inode)
2321 {
2322 	struct timespec64 now;
2323 
2324 	ktime_get_coarse_real_ts64(&now);
2325 
2326 	if (unlikely(!inode->i_sb)) {
2327 		WARN(1, "current_time() called with uninitialized super_block in the inode");
2328 		return now;
2329 	}
2330 
2331 	return timestamp_truncate(now, inode);
2332 }
2333 EXPORT_SYMBOL(current_time);
2334