1 /* 2 * linux/fs/inode.c 3 * 4 * (C) 1997 Linus Torvalds 5 */ 6 7 #include <linux/fs.h> 8 #include <linux/mm.h> 9 #include <linux/dcache.h> 10 #include <linux/init.h> 11 #include <linux/quotaops.h> 12 #include <linux/slab.h> 13 #include <linux/writeback.h> 14 #include <linux/module.h> 15 #include <linux/backing-dev.h> 16 #include <linux/wait.h> 17 #include <linux/hash.h> 18 #include <linux/swap.h> 19 #include <linux/security.h> 20 #include <linux/pagemap.h> 21 #include <linux/cdev.h> 22 #include <linux/bootmem.h> 23 #include <linux/inotify.h> 24 #include <linux/mount.h> 25 26 /* 27 * This is needed for the following functions: 28 * - inode_has_buffers 29 * - invalidate_inode_buffers 30 * - invalidate_bdev 31 * 32 * FIXME: remove all knowledge of the buffer layer from this file 33 */ 34 #include <linux/buffer_head.h> 35 36 /* 37 * New inode.c implementation. 38 * 39 * This implementation has the basic premise of trying 40 * to be extremely low-overhead and SMP-safe, yet be 41 * simple enough to be "obviously correct". 42 * 43 * Famous last words. 44 */ 45 46 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */ 47 48 /* #define INODE_PARANOIA 1 */ 49 /* #define INODE_DEBUG 1 */ 50 51 /* 52 * Inode lookup is no longer as critical as it used to be: 53 * most of the lookups are going to be through the dcache. 54 */ 55 #define I_HASHBITS i_hash_shift 56 #define I_HASHMASK i_hash_mask 57 58 static unsigned int i_hash_mask __read_mostly; 59 static unsigned int i_hash_shift __read_mostly; 60 61 /* 62 * Each inode can be on two separate lists. One is 63 * the hash list of the inode, used for lookups. The 64 * other linked list is the "type" list: 65 * "in_use" - valid inode, i_count > 0, i_nlink > 0 66 * "dirty" - as "in_use" but also dirty 67 * "unused" - valid inode, i_count = 0 68 * 69 * A "dirty" list is maintained for each super block, 70 * allowing for low-overhead inode sync() operations. 71 */ 72 73 LIST_HEAD(inode_in_use); 74 LIST_HEAD(inode_unused); 75 static struct hlist_head *inode_hashtable __read_mostly; 76 77 /* 78 * A simple spinlock to protect the list manipulations. 79 * 80 * NOTE! You also have to own the lock if you change 81 * the i_state of an inode while it is in use.. 82 */ 83 DEFINE_SPINLOCK(inode_lock); 84 85 /* 86 * iprune_mutex provides exclusion between the kswapd or try_to_free_pages 87 * icache shrinking path, and the umount path. Without this exclusion, 88 * by the time prune_icache calls iput for the inode whose pages it has 89 * been invalidating, or by the time it calls clear_inode & destroy_inode 90 * from its final dispose_list, the struct super_block they refer to 91 * (for inode->i_sb->s_op) may already have been freed and reused. 92 */ 93 static DEFINE_MUTEX(iprune_mutex); 94 95 /* 96 * Statistics gathering.. 97 */ 98 struct inodes_stat_t inodes_stat; 99 100 static struct kmem_cache * inode_cachep __read_mostly; 101 102 static void wake_up_inode(struct inode *inode) 103 { 104 /* 105 * Prevent speculative execution through spin_unlock(&inode_lock); 106 */ 107 smp_mb(); 108 wake_up_bit(&inode->i_state, __I_LOCK); 109 } 110 111 static struct inode *alloc_inode(struct super_block *sb) 112 { 113 static const struct address_space_operations empty_aops; 114 static struct inode_operations empty_iops; 115 static const struct file_operations empty_fops; 116 struct inode *inode; 117 118 if (sb->s_op->alloc_inode) 119 inode = sb->s_op->alloc_inode(sb); 120 else 121 inode = (struct inode *) kmem_cache_alloc(inode_cachep, GFP_KERNEL); 122 123 if (inode) { 124 struct address_space * const mapping = &inode->i_data; 125 126 inode->i_sb = sb; 127 inode->i_blkbits = sb->s_blocksize_bits; 128 inode->i_flags = 0; 129 atomic_set(&inode->i_count, 1); 130 inode->i_op = &empty_iops; 131 inode->i_fop = &empty_fops; 132 inode->i_nlink = 1; 133 atomic_set(&inode->i_writecount, 0); 134 inode->i_size = 0; 135 inode->i_blocks = 0; 136 inode->i_bytes = 0; 137 inode->i_generation = 0; 138 #ifdef CONFIG_QUOTA 139 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 140 #endif 141 inode->i_pipe = NULL; 142 inode->i_bdev = NULL; 143 inode->i_cdev = NULL; 144 inode->i_rdev = 0; 145 inode->dirtied_when = 0; 146 if (security_inode_alloc(inode)) { 147 if (inode->i_sb->s_op->destroy_inode) 148 inode->i_sb->s_op->destroy_inode(inode); 149 else 150 kmem_cache_free(inode_cachep, (inode)); 151 return NULL; 152 } 153 154 spin_lock_init(&inode->i_lock); 155 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 156 157 mutex_init(&inode->i_mutex); 158 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 159 160 init_rwsem(&inode->i_alloc_sem); 161 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key); 162 163 mapping->a_ops = &empty_aops; 164 mapping->host = inode; 165 mapping->flags = 0; 166 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_PAGECACHE); 167 mapping->assoc_mapping = NULL; 168 mapping->backing_dev_info = &default_backing_dev_info; 169 mapping->writeback_index = 0; 170 171 /* 172 * If the block_device provides a backing_dev_info for client 173 * inodes then use that. Otherwise the inode share the bdev's 174 * backing_dev_info. 175 */ 176 if (sb->s_bdev) { 177 struct backing_dev_info *bdi; 178 179 bdi = sb->s_bdev->bd_inode_backing_dev_info; 180 if (!bdi) 181 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 182 mapping->backing_dev_info = bdi; 183 } 184 inode->i_private = NULL; 185 inode->i_mapping = mapping; 186 } 187 return inode; 188 } 189 190 void destroy_inode(struct inode *inode) 191 { 192 BUG_ON(inode_has_buffers(inode)); 193 security_inode_free(inode); 194 if (inode->i_sb->s_op->destroy_inode) 195 inode->i_sb->s_op->destroy_inode(inode); 196 else 197 kmem_cache_free(inode_cachep, (inode)); 198 } 199 200 201 /* 202 * These are initializations that only need to be done 203 * once, because the fields are idempotent across use 204 * of the inode, so let the slab aware of that. 205 */ 206 void inode_init_once(struct inode *inode) 207 { 208 memset(inode, 0, sizeof(*inode)); 209 INIT_HLIST_NODE(&inode->i_hash); 210 INIT_LIST_HEAD(&inode->i_dentry); 211 INIT_LIST_HEAD(&inode->i_devices); 212 INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC); 213 spin_lock_init(&inode->i_data.tree_lock); 214 spin_lock_init(&inode->i_data.i_mmap_lock); 215 INIT_LIST_HEAD(&inode->i_data.private_list); 216 spin_lock_init(&inode->i_data.private_lock); 217 INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap); 218 INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear); 219 i_size_ordered_init(inode); 220 #ifdef CONFIG_INOTIFY 221 INIT_LIST_HEAD(&inode->inotify_watches); 222 mutex_init(&inode->inotify_mutex); 223 #endif 224 } 225 226 EXPORT_SYMBOL(inode_init_once); 227 228 static void init_once(void *foo) 229 { 230 struct inode * inode = (struct inode *) foo; 231 232 inode_init_once(inode); 233 } 234 235 /* 236 * inode_lock must be held 237 */ 238 void __iget(struct inode * inode) 239 { 240 if (atomic_read(&inode->i_count)) { 241 atomic_inc(&inode->i_count); 242 return; 243 } 244 atomic_inc(&inode->i_count); 245 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 246 list_move(&inode->i_list, &inode_in_use); 247 inodes_stat.nr_unused--; 248 } 249 250 /** 251 * clear_inode - clear an inode 252 * @inode: inode to clear 253 * 254 * This is called by the filesystem to tell us 255 * that the inode is no longer useful. We just 256 * terminate it with extreme prejudice. 257 */ 258 void clear_inode(struct inode *inode) 259 { 260 might_sleep(); 261 invalidate_inode_buffers(inode); 262 263 BUG_ON(inode->i_data.nrpages); 264 BUG_ON(!(inode->i_state & I_FREEING)); 265 BUG_ON(inode->i_state & I_CLEAR); 266 inode_sync_wait(inode); 267 DQUOT_DROP(inode); 268 if (inode->i_sb->s_op->clear_inode) 269 inode->i_sb->s_op->clear_inode(inode); 270 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 271 bd_forget(inode); 272 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 273 cd_forget(inode); 274 inode->i_state = I_CLEAR; 275 } 276 277 EXPORT_SYMBOL(clear_inode); 278 279 /* 280 * dispose_list - dispose of the contents of a local list 281 * @head: the head of the list to free 282 * 283 * Dispose-list gets a local list with local inodes in it, so it doesn't 284 * need to worry about list corruption and SMP locks. 285 */ 286 static void dispose_list(struct list_head *head) 287 { 288 int nr_disposed = 0; 289 290 while (!list_empty(head)) { 291 struct inode *inode; 292 293 inode = list_first_entry(head, struct inode, i_list); 294 list_del(&inode->i_list); 295 296 if (inode->i_data.nrpages) 297 truncate_inode_pages(&inode->i_data, 0); 298 clear_inode(inode); 299 300 spin_lock(&inode_lock); 301 hlist_del_init(&inode->i_hash); 302 list_del_init(&inode->i_sb_list); 303 spin_unlock(&inode_lock); 304 305 wake_up_inode(inode); 306 destroy_inode(inode); 307 nr_disposed++; 308 } 309 spin_lock(&inode_lock); 310 inodes_stat.nr_inodes -= nr_disposed; 311 spin_unlock(&inode_lock); 312 } 313 314 /* 315 * Invalidate all inodes for a device. 316 */ 317 static int invalidate_list(struct list_head *head, struct list_head *dispose) 318 { 319 struct list_head *next; 320 int busy = 0, count = 0; 321 322 next = head->next; 323 for (;;) { 324 struct list_head * tmp = next; 325 struct inode * inode; 326 327 /* 328 * We can reschedule here without worrying about the list's 329 * consistency because the per-sb list of inodes must not 330 * change during umount anymore, and because iprune_mutex keeps 331 * shrink_icache_memory() away. 332 */ 333 cond_resched_lock(&inode_lock); 334 335 next = next->next; 336 if (tmp == head) 337 break; 338 inode = list_entry(tmp, struct inode, i_sb_list); 339 invalidate_inode_buffers(inode); 340 if (!atomic_read(&inode->i_count)) { 341 list_move(&inode->i_list, dispose); 342 inode->i_state |= I_FREEING; 343 count++; 344 continue; 345 } 346 busy = 1; 347 } 348 /* only unused inodes may be cached with i_count zero */ 349 inodes_stat.nr_unused -= count; 350 return busy; 351 } 352 353 /** 354 * invalidate_inodes - discard the inodes on a device 355 * @sb: superblock 356 * 357 * Discard all of the inodes for a given superblock. If the discard 358 * fails because there are busy inodes then a non zero value is returned. 359 * If the discard is successful all the inodes have been discarded. 360 */ 361 int invalidate_inodes(struct super_block * sb) 362 { 363 int busy; 364 LIST_HEAD(throw_away); 365 366 mutex_lock(&iprune_mutex); 367 spin_lock(&inode_lock); 368 inotify_unmount_inodes(&sb->s_inodes); 369 busy = invalidate_list(&sb->s_inodes, &throw_away); 370 spin_unlock(&inode_lock); 371 372 dispose_list(&throw_away); 373 mutex_unlock(&iprune_mutex); 374 375 return busy; 376 } 377 378 EXPORT_SYMBOL(invalidate_inodes); 379 380 static int can_unuse(struct inode *inode) 381 { 382 if (inode->i_state) 383 return 0; 384 if (inode_has_buffers(inode)) 385 return 0; 386 if (atomic_read(&inode->i_count)) 387 return 0; 388 if (inode->i_data.nrpages) 389 return 0; 390 return 1; 391 } 392 393 /* 394 * Scan `goal' inodes on the unused list for freeable ones. They are moved to 395 * a temporary list and then are freed outside inode_lock by dispose_list(). 396 * 397 * Any inodes which are pinned purely because of attached pagecache have their 398 * pagecache removed. We expect the final iput() on that inode to add it to 399 * the front of the inode_unused list. So look for it there and if the 400 * inode is still freeable, proceed. The right inode is found 99.9% of the 401 * time in testing on a 4-way. 402 * 403 * If the inode has metadata buffers attached to mapping->private_list then 404 * try to remove them. 405 */ 406 static void prune_icache(int nr_to_scan) 407 { 408 LIST_HEAD(freeable); 409 int nr_pruned = 0; 410 int nr_scanned; 411 unsigned long reap = 0; 412 413 mutex_lock(&iprune_mutex); 414 spin_lock(&inode_lock); 415 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) { 416 struct inode *inode; 417 418 if (list_empty(&inode_unused)) 419 break; 420 421 inode = list_entry(inode_unused.prev, struct inode, i_list); 422 423 if (inode->i_state || atomic_read(&inode->i_count)) { 424 list_move(&inode->i_list, &inode_unused); 425 continue; 426 } 427 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 428 __iget(inode); 429 spin_unlock(&inode_lock); 430 if (remove_inode_buffers(inode)) 431 reap += invalidate_mapping_pages(&inode->i_data, 432 0, -1); 433 iput(inode); 434 spin_lock(&inode_lock); 435 436 if (inode != list_entry(inode_unused.next, 437 struct inode, i_list)) 438 continue; /* wrong inode or list_empty */ 439 if (!can_unuse(inode)) 440 continue; 441 } 442 list_move(&inode->i_list, &freeable); 443 inode->i_state |= I_FREEING; 444 nr_pruned++; 445 } 446 inodes_stat.nr_unused -= nr_pruned; 447 if (current_is_kswapd()) 448 __count_vm_events(KSWAPD_INODESTEAL, reap); 449 else 450 __count_vm_events(PGINODESTEAL, reap); 451 spin_unlock(&inode_lock); 452 453 dispose_list(&freeable); 454 mutex_unlock(&iprune_mutex); 455 } 456 457 /* 458 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here, 459 * "unused" means that no dentries are referring to the inodes: the files are 460 * not open and the dcache references to those inodes have already been 461 * reclaimed. 462 * 463 * This function is passed the number of inodes to scan, and it returns the 464 * total number of remaining possibly-reclaimable inodes. 465 */ 466 static int shrink_icache_memory(int nr, gfp_t gfp_mask) 467 { 468 if (nr) { 469 /* 470 * Nasty deadlock avoidance. We may hold various FS locks, 471 * and we don't want to recurse into the FS that called us 472 * in clear_inode() and friends.. 473 */ 474 if (!(gfp_mask & __GFP_FS)) 475 return -1; 476 prune_icache(nr); 477 } 478 return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure; 479 } 480 481 static struct shrinker icache_shrinker = { 482 .shrink = shrink_icache_memory, 483 .seeks = DEFAULT_SEEKS, 484 }; 485 486 static void __wait_on_freeing_inode(struct inode *inode); 487 /* 488 * Called with the inode lock held. 489 * NOTE: we are not increasing the inode-refcount, you must call __iget() 490 * by hand after calling find_inode now! This simplifies iunique and won't 491 * add any additional branch in the common code. 492 */ 493 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data) 494 { 495 struct hlist_node *node; 496 struct inode * inode = NULL; 497 498 repeat: 499 hlist_for_each_entry(inode, node, head, i_hash) { 500 if (inode->i_sb != sb) 501 continue; 502 if (!test(inode, data)) 503 continue; 504 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 505 __wait_on_freeing_inode(inode); 506 goto repeat; 507 } 508 break; 509 } 510 return node ? inode : NULL; 511 } 512 513 /* 514 * find_inode_fast is the fast path version of find_inode, see the comment at 515 * iget_locked for details. 516 */ 517 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino) 518 { 519 struct hlist_node *node; 520 struct inode * inode = NULL; 521 522 repeat: 523 hlist_for_each_entry(inode, node, head, i_hash) { 524 if (inode->i_ino != ino) 525 continue; 526 if (inode->i_sb != sb) 527 continue; 528 if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) { 529 __wait_on_freeing_inode(inode); 530 goto repeat; 531 } 532 break; 533 } 534 return node ? inode : NULL; 535 } 536 537 /** 538 * new_inode - obtain an inode 539 * @sb: superblock 540 * 541 * Allocates a new inode for given superblock. The default gfp_mask 542 * for allocations related to inode->i_mapping is GFP_HIGHUSER_PAGECACHE. 543 * If HIGHMEM pages are unsuitable or it is known that pages allocated 544 * for the page cache are not reclaimable or migratable, 545 * mapping_set_gfp_mask() must be called with suitable flags on the 546 * newly created inode's mapping 547 * 548 */ 549 struct inode *new_inode(struct super_block *sb) 550 { 551 /* 552 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 553 * error if st_ino won't fit in target struct field. Use 32bit counter 554 * here to attempt to avoid that. 555 */ 556 static unsigned int last_ino; 557 struct inode * inode; 558 559 spin_lock_prefetch(&inode_lock); 560 561 inode = alloc_inode(sb); 562 if (inode) { 563 spin_lock(&inode_lock); 564 inodes_stat.nr_inodes++; 565 list_add(&inode->i_list, &inode_in_use); 566 list_add(&inode->i_sb_list, &sb->s_inodes); 567 inode->i_ino = ++last_ino; 568 inode->i_state = 0; 569 spin_unlock(&inode_lock); 570 } 571 return inode; 572 } 573 574 EXPORT_SYMBOL(new_inode); 575 576 void unlock_new_inode(struct inode *inode) 577 { 578 #ifdef CONFIG_DEBUG_LOCK_ALLOC 579 if (inode->i_mode & S_IFDIR) { 580 struct file_system_type *type = inode->i_sb->s_type; 581 582 /* 583 * ensure nobody is actually holding i_mutex 584 */ 585 mutex_destroy(&inode->i_mutex); 586 mutex_init(&inode->i_mutex); 587 lockdep_set_class(&inode->i_mutex, &type->i_mutex_dir_key); 588 } 589 #endif 590 /* 591 * This is special! We do not need the spinlock 592 * when clearing I_LOCK, because we're guaranteed 593 * that nobody else tries to do anything about the 594 * state of the inode when it is locked, as we 595 * just created it (so there can be no old holders 596 * that haven't tested I_LOCK). 597 */ 598 inode->i_state &= ~(I_LOCK|I_NEW); 599 wake_up_inode(inode); 600 } 601 602 EXPORT_SYMBOL(unlock_new_inode); 603 604 /* 605 * This is called without the inode lock held.. Be careful. 606 * 607 * We no longer cache the sb_flags in i_flags - see fs.h 608 * -- rmk@arm.uk.linux.org 609 */ 610 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data) 611 { 612 struct inode * inode; 613 614 inode = alloc_inode(sb); 615 if (inode) { 616 struct inode * old; 617 618 spin_lock(&inode_lock); 619 /* We released the lock, so.. */ 620 old = find_inode(sb, head, test, data); 621 if (!old) { 622 if (set(inode, data)) 623 goto set_failed; 624 625 inodes_stat.nr_inodes++; 626 list_add(&inode->i_list, &inode_in_use); 627 list_add(&inode->i_sb_list, &sb->s_inodes); 628 hlist_add_head(&inode->i_hash, head); 629 inode->i_state = I_LOCK|I_NEW; 630 spin_unlock(&inode_lock); 631 632 /* Return the locked inode with I_NEW set, the 633 * caller is responsible for filling in the contents 634 */ 635 return inode; 636 } 637 638 /* 639 * Uhhuh, somebody else created the same inode under 640 * us. Use the old inode instead of the one we just 641 * allocated. 642 */ 643 __iget(old); 644 spin_unlock(&inode_lock); 645 destroy_inode(inode); 646 inode = old; 647 wait_on_inode(inode); 648 } 649 return inode; 650 651 set_failed: 652 spin_unlock(&inode_lock); 653 destroy_inode(inode); 654 return NULL; 655 } 656 657 /* 658 * get_new_inode_fast is the fast path version of get_new_inode, see the 659 * comment at iget_locked for details. 660 */ 661 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino) 662 { 663 struct inode * inode; 664 665 inode = alloc_inode(sb); 666 if (inode) { 667 struct inode * old; 668 669 spin_lock(&inode_lock); 670 /* We released the lock, so.. */ 671 old = find_inode_fast(sb, head, ino); 672 if (!old) { 673 inode->i_ino = ino; 674 inodes_stat.nr_inodes++; 675 list_add(&inode->i_list, &inode_in_use); 676 list_add(&inode->i_sb_list, &sb->s_inodes); 677 hlist_add_head(&inode->i_hash, head); 678 inode->i_state = I_LOCK|I_NEW; 679 spin_unlock(&inode_lock); 680 681 /* Return the locked inode with I_NEW set, the 682 * caller is responsible for filling in the contents 683 */ 684 return inode; 685 } 686 687 /* 688 * Uhhuh, somebody else created the same inode under 689 * us. Use the old inode instead of the one we just 690 * allocated. 691 */ 692 __iget(old); 693 spin_unlock(&inode_lock); 694 destroy_inode(inode); 695 inode = old; 696 wait_on_inode(inode); 697 } 698 return inode; 699 } 700 701 static unsigned long hash(struct super_block *sb, unsigned long hashval) 702 { 703 unsigned long tmp; 704 705 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 706 L1_CACHE_BYTES; 707 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS); 708 return tmp & I_HASHMASK; 709 } 710 711 /** 712 * iunique - get a unique inode number 713 * @sb: superblock 714 * @max_reserved: highest reserved inode number 715 * 716 * Obtain an inode number that is unique on the system for a given 717 * superblock. This is used by file systems that have no natural 718 * permanent inode numbering system. An inode number is returned that 719 * is higher than the reserved limit but unique. 720 * 721 * BUGS: 722 * With a large number of inodes live on the file system this function 723 * currently becomes quite slow. 724 */ 725 ino_t iunique(struct super_block *sb, ino_t max_reserved) 726 { 727 /* 728 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 729 * error if st_ino won't fit in target struct field. Use 32bit counter 730 * here to attempt to avoid that. 731 */ 732 static unsigned int counter; 733 struct inode *inode; 734 struct hlist_head *head; 735 ino_t res; 736 737 spin_lock(&inode_lock); 738 do { 739 if (counter <= max_reserved) 740 counter = max_reserved + 1; 741 res = counter++; 742 head = inode_hashtable + hash(sb, res); 743 inode = find_inode_fast(sb, head, res); 744 } while (inode != NULL); 745 spin_unlock(&inode_lock); 746 747 return res; 748 } 749 EXPORT_SYMBOL(iunique); 750 751 struct inode *igrab(struct inode *inode) 752 { 753 spin_lock(&inode_lock); 754 if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE))) 755 __iget(inode); 756 else 757 /* 758 * Handle the case where s_op->clear_inode is not been 759 * called yet, and somebody is calling igrab 760 * while the inode is getting freed. 761 */ 762 inode = NULL; 763 spin_unlock(&inode_lock); 764 return inode; 765 } 766 767 EXPORT_SYMBOL(igrab); 768 769 /** 770 * ifind - internal function, you want ilookup5() or iget5(). 771 * @sb: super block of file system to search 772 * @head: the head of the list to search 773 * @test: callback used for comparisons between inodes 774 * @data: opaque data pointer to pass to @test 775 * @wait: if true wait for the inode to be unlocked, if false do not 776 * 777 * ifind() searches for the inode specified by @data in the inode 778 * cache. This is a generalized version of ifind_fast() for file systems where 779 * the inode number is not sufficient for unique identification of an inode. 780 * 781 * If the inode is in the cache, the inode is returned with an incremented 782 * reference count. 783 * 784 * Otherwise NULL is returned. 785 * 786 * Note, @test is called with the inode_lock held, so can't sleep. 787 */ 788 static struct inode *ifind(struct super_block *sb, 789 struct hlist_head *head, int (*test)(struct inode *, void *), 790 void *data, const int wait) 791 { 792 struct inode *inode; 793 794 spin_lock(&inode_lock); 795 inode = find_inode(sb, head, test, data); 796 if (inode) { 797 __iget(inode); 798 spin_unlock(&inode_lock); 799 if (likely(wait)) 800 wait_on_inode(inode); 801 return inode; 802 } 803 spin_unlock(&inode_lock); 804 return NULL; 805 } 806 807 /** 808 * ifind_fast - internal function, you want ilookup() or iget(). 809 * @sb: super block of file system to search 810 * @head: head of the list to search 811 * @ino: inode number to search for 812 * 813 * ifind_fast() searches for the inode @ino in the inode cache. This is for 814 * file systems where the inode number is sufficient for unique identification 815 * of an inode. 816 * 817 * If the inode is in the cache, the inode is returned with an incremented 818 * reference count. 819 * 820 * Otherwise NULL is returned. 821 */ 822 static struct inode *ifind_fast(struct super_block *sb, 823 struct hlist_head *head, unsigned long ino) 824 { 825 struct inode *inode; 826 827 spin_lock(&inode_lock); 828 inode = find_inode_fast(sb, head, ino); 829 if (inode) { 830 __iget(inode); 831 spin_unlock(&inode_lock); 832 wait_on_inode(inode); 833 return inode; 834 } 835 spin_unlock(&inode_lock); 836 return NULL; 837 } 838 839 /** 840 * ilookup5_nowait - search for an inode in the inode cache 841 * @sb: super block of file system to search 842 * @hashval: hash value (usually inode number) to search for 843 * @test: callback used for comparisons between inodes 844 * @data: opaque data pointer to pass to @test 845 * 846 * ilookup5() uses ifind() to search for the inode specified by @hashval and 847 * @data in the inode cache. This is a generalized version of ilookup() for 848 * file systems where the inode number is not sufficient for unique 849 * identification of an inode. 850 * 851 * If the inode is in the cache, the inode is returned with an incremented 852 * reference count. Note, the inode lock is not waited upon so you have to be 853 * very careful what you do with the returned inode. You probably should be 854 * using ilookup5() instead. 855 * 856 * Otherwise NULL is returned. 857 * 858 * Note, @test is called with the inode_lock held, so can't sleep. 859 */ 860 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 861 int (*test)(struct inode *, void *), void *data) 862 { 863 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 864 865 return ifind(sb, head, test, data, 0); 866 } 867 868 EXPORT_SYMBOL(ilookup5_nowait); 869 870 /** 871 * ilookup5 - search for an inode in the inode cache 872 * @sb: super block of file system to search 873 * @hashval: hash value (usually inode number) to search for 874 * @test: callback used for comparisons between inodes 875 * @data: opaque data pointer to pass to @test 876 * 877 * ilookup5() uses ifind() to search for the inode specified by @hashval and 878 * @data in the inode cache. This is a generalized version of ilookup() for 879 * file systems where the inode number is not sufficient for unique 880 * identification of an inode. 881 * 882 * If the inode is in the cache, the inode lock is waited upon and the inode is 883 * returned with an incremented reference count. 884 * 885 * Otherwise NULL is returned. 886 * 887 * Note, @test is called with the inode_lock held, so can't sleep. 888 */ 889 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 890 int (*test)(struct inode *, void *), void *data) 891 { 892 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 893 894 return ifind(sb, head, test, data, 1); 895 } 896 897 EXPORT_SYMBOL(ilookup5); 898 899 /** 900 * ilookup - search for an inode in the inode cache 901 * @sb: super block of file system to search 902 * @ino: inode number to search for 903 * 904 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache. 905 * This is for file systems where the inode number is sufficient for unique 906 * identification of an inode. 907 * 908 * If the inode is in the cache, the inode is returned with an incremented 909 * reference count. 910 * 911 * Otherwise NULL is returned. 912 */ 913 struct inode *ilookup(struct super_block *sb, unsigned long ino) 914 { 915 struct hlist_head *head = inode_hashtable + hash(sb, ino); 916 917 return ifind_fast(sb, head, ino); 918 } 919 920 EXPORT_SYMBOL(ilookup); 921 922 /** 923 * iget5_locked - obtain an inode from a mounted file system 924 * @sb: super block of file system 925 * @hashval: hash value (usually inode number) to get 926 * @test: callback used for comparisons between inodes 927 * @set: callback used to initialize a new struct inode 928 * @data: opaque data pointer to pass to @test and @set 929 * 930 * iget5_locked() uses ifind() to search for the inode specified by @hashval 931 * and @data in the inode cache and if present it is returned with an increased 932 * reference count. This is a generalized version of iget_locked() for file 933 * systems where the inode number is not sufficient for unique identification 934 * of an inode. 935 * 936 * If the inode is not in cache, get_new_inode() is called to allocate a new 937 * inode and this is returned locked, hashed, and with the I_NEW flag set. The 938 * file system gets to fill it in before unlocking it via unlock_new_inode(). 939 * 940 * Note both @test and @set are called with the inode_lock held, so can't sleep. 941 */ 942 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 943 int (*test)(struct inode *, void *), 944 int (*set)(struct inode *, void *), void *data) 945 { 946 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 947 struct inode *inode; 948 949 inode = ifind(sb, head, test, data, 1); 950 if (inode) 951 return inode; 952 /* 953 * get_new_inode() will do the right thing, re-trying the search 954 * in case it had to block at any point. 955 */ 956 return get_new_inode(sb, head, test, set, data); 957 } 958 959 EXPORT_SYMBOL(iget5_locked); 960 961 /** 962 * iget_locked - obtain an inode from a mounted file system 963 * @sb: super block of file system 964 * @ino: inode number to get 965 * 966 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in 967 * the inode cache and if present it is returned with an increased reference 968 * count. This is for file systems where the inode number is sufficient for 969 * unique identification of an inode. 970 * 971 * If the inode is not in cache, get_new_inode_fast() is called to allocate a 972 * new inode and this is returned locked, hashed, and with the I_NEW flag set. 973 * The file system gets to fill it in before unlocking it via 974 * unlock_new_inode(). 975 */ 976 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 977 { 978 struct hlist_head *head = inode_hashtable + hash(sb, ino); 979 struct inode *inode; 980 981 inode = ifind_fast(sb, head, ino); 982 if (inode) 983 return inode; 984 /* 985 * get_new_inode_fast() will do the right thing, re-trying the search 986 * in case it had to block at any point. 987 */ 988 return get_new_inode_fast(sb, head, ino); 989 } 990 991 EXPORT_SYMBOL(iget_locked); 992 993 /** 994 * __insert_inode_hash - hash an inode 995 * @inode: unhashed inode 996 * @hashval: unsigned long value used to locate this object in the 997 * inode_hashtable. 998 * 999 * Add an inode to the inode hash for this superblock. 1000 */ 1001 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 1002 { 1003 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1004 spin_lock(&inode_lock); 1005 hlist_add_head(&inode->i_hash, head); 1006 spin_unlock(&inode_lock); 1007 } 1008 1009 EXPORT_SYMBOL(__insert_inode_hash); 1010 1011 /** 1012 * remove_inode_hash - remove an inode from the hash 1013 * @inode: inode to unhash 1014 * 1015 * Remove an inode from the superblock. 1016 */ 1017 void remove_inode_hash(struct inode *inode) 1018 { 1019 spin_lock(&inode_lock); 1020 hlist_del_init(&inode->i_hash); 1021 spin_unlock(&inode_lock); 1022 } 1023 1024 EXPORT_SYMBOL(remove_inode_hash); 1025 1026 /* 1027 * Tell the filesystem that this inode is no longer of any interest and should 1028 * be completely destroyed. 1029 * 1030 * We leave the inode in the inode hash table until *after* the filesystem's 1031 * ->delete_inode completes. This ensures that an iget (such as nfsd might 1032 * instigate) will always find up-to-date information either in the hash or on 1033 * disk. 1034 * 1035 * I_FREEING is set so that no-one will take a new reference to the inode while 1036 * it is being deleted. 1037 */ 1038 void generic_delete_inode(struct inode *inode) 1039 { 1040 const struct super_operations *op = inode->i_sb->s_op; 1041 1042 list_del_init(&inode->i_list); 1043 list_del_init(&inode->i_sb_list); 1044 inode->i_state |= I_FREEING; 1045 inodes_stat.nr_inodes--; 1046 spin_unlock(&inode_lock); 1047 1048 security_inode_delete(inode); 1049 1050 if (op->delete_inode) { 1051 void (*delete)(struct inode *) = op->delete_inode; 1052 if (!is_bad_inode(inode)) 1053 DQUOT_INIT(inode); 1054 /* Filesystems implementing their own 1055 * s_op->delete_inode are required to call 1056 * truncate_inode_pages and clear_inode() 1057 * internally */ 1058 delete(inode); 1059 } else { 1060 truncate_inode_pages(&inode->i_data, 0); 1061 clear_inode(inode); 1062 } 1063 spin_lock(&inode_lock); 1064 hlist_del_init(&inode->i_hash); 1065 spin_unlock(&inode_lock); 1066 wake_up_inode(inode); 1067 BUG_ON(inode->i_state != I_CLEAR); 1068 destroy_inode(inode); 1069 } 1070 1071 EXPORT_SYMBOL(generic_delete_inode); 1072 1073 static void generic_forget_inode(struct inode *inode) 1074 { 1075 struct super_block *sb = inode->i_sb; 1076 1077 if (!hlist_unhashed(&inode->i_hash)) { 1078 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 1079 list_move(&inode->i_list, &inode_unused); 1080 inodes_stat.nr_unused++; 1081 if (sb->s_flags & MS_ACTIVE) { 1082 spin_unlock(&inode_lock); 1083 return; 1084 } 1085 inode->i_state |= I_WILL_FREE; 1086 spin_unlock(&inode_lock); 1087 write_inode_now(inode, 1); 1088 spin_lock(&inode_lock); 1089 inode->i_state &= ~I_WILL_FREE; 1090 inodes_stat.nr_unused--; 1091 hlist_del_init(&inode->i_hash); 1092 } 1093 list_del_init(&inode->i_list); 1094 list_del_init(&inode->i_sb_list); 1095 inode->i_state |= I_FREEING; 1096 inodes_stat.nr_inodes--; 1097 spin_unlock(&inode_lock); 1098 if (inode->i_data.nrpages) 1099 truncate_inode_pages(&inode->i_data, 0); 1100 clear_inode(inode); 1101 wake_up_inode(inode); 1102 destroy_inode(inode); 1103 } 1104 1105 /* 1106 * Normal UNIX filesystem behaviour: delete the 1107 * inode when the usage count drops to zero, and 1108 * i_nlink is zero. 1109 */ 1110 void generic_drop_inode(struct inode *inode) 1111 { 1112 if (!inode->i_nlink) 1113 generic_delete_inode(inode); 1114 else 1115 generic_forget_inode(inode); 1116 } 1117 1118 EXPORT_SYMBOL_GPL(generic_drop_inode); 1119 1120 /* 1121 * Called when we're dropping the last reference 1122 * to an inode. 1123 * 1124 * Call the FS "drop()" function, defaulting to 1125 * the legacy UNIX filesystem behaviour.. 1126 * 1127 * NOTE! NOTE! NOTE! We're called with the inode lock 1128 * held, and the drop function is supposed to release 1129 * the lock! 1130 */ 1131 static inline void iput_final(struct inode *inode) 1132 { 1133 const struct super_operations *op = inode->i_sb->s_op; 1134 void (*drop)(struct inode *) = generic_drop_inode; 1135 1136 if (op && op->drop_inode) 1137 drop = op->drop_inode; 1138 drop(inode); 1139 } 1140 1141 /** 1142 * iput - put an inode 1143 * @inode: inode to put 1144 * 1145 * Puts an inode, dropping its usage count. If the inode use count hits 1146 * zero, the inode is then freed and may also be destroyed. 1147 * 1148 * Consequently, iput() can sleep. 1149 */ 1150 void iput(struct inode *inode) 1151 { 1152 if (inode) { 1153 BUG_ON(inode->i_state == I_CLEAR); 1154 1155 if (atomic_dec_and_lock(&inode->i_count, &inode_lock)) 1156 iput_final(inode); 1157 } 1158 } 1159 1160 EXPORT_SYMBOL(iput); 1161 1162 /** 1163 * bmap - find a block number in a file 1164 * @inode: inode of file 1165 * @block: block to find 1166 * 1167 * Returns the block number on the device holding the inode that 1168 * is the disk block number for the block of the file requested. 1169 * That is, asked for block 4 of inode 1 the function will return the 1170 * disk block relative to the disk start that holds that block of the 1171 * file. 1172 */ 1173 sector_t bmap(struct inode * inode, sector_t block) 1174 { 1175 sector_t res = 0; 1176 if (inode->i_mapping->a_ops->bmap) 1177 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1178 return res; 1179 } 1180 EXPORT_SYMBOL(bmap); 1181 1182 /** 1183 * touch_atime - update the access time 1184 * @mnt: mount the inode is accessed on 1185 * @dentry: dentry accessed 1186 * 1187 * Update the accessed time on an inode and mark it for writeback. 1188 * This function automatically handles read only file systems and media, 1189 * as well as the "noatime" flag and inode specific "noatime" markers. 1190 */ 1191 void touch_atime(struct vfsmount *mnt, struct dentry *dentry) 1192 { 1193 struct inode *inode = dentry->d_inode; 1194 struct timespec now; 1195 1196 if (mnt_want_write(mnt)) 1197 return; 1198 if (inode->i_flags & S_NOATIME) 1199 goto out; 1200 if (IS_NOATIME(inode)) 1201 goto out; 1202 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1203 goto out; 1204 1205 if (mnt->mnt_flags & MNT_NOATIME) 1206 goto out; 1207 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1208 goto out; 1209 if (mnt->mnt_flags & MNT_RELATIME) { 1210 /* 1211 * With relative atime, only update atime if the previous 1212 * atime is earlier than either the ctime or mtime. 1213 */ 1214 if (timespec_compare(&inode->i_mtime, &inode->i_atime) < 0 && 1215 timespec_compare(&inode->i_ctime, &inode->i_atime) < 0) 1216 goto out; 1217 } 1218 1219 now = current_fs_time(inode->i_sb); 1220 if (timespec_equal(&inode->i_atime, &now)) 1221 goto out; 1222 1223 inode->i_atime = now; 1224 mark_inode_dirty_sync(inode); 1225 out: 1226 mnt_drop_write(mnt); 1227 } 1228 EXPORT_SYMBOL(touch_atime); 1229 1230 /** 1231 * file_update_time - update mtime and ctime time 1232 * @file: file accessed 1233 * 1234 * Update the mtime and ctime members of an inode and mark the inode 1235 * for writeback. Note that this function is meant exclusively for 1236 * usage in the file write path of filesystems, and filesystems may 1237 * choose to explicitly ignore update via this function with the 1238 * S_NOCTIME inode flag, e.g. for network filesystem where these 1239 * timestamps are handled by the server. 1240 */ 1241 1242 void file_update_time(struct file *file) 1243 { 1244 struct inode *inode = file->f_path.dentry->d_inode; 1245 struct timespec now; 1246 int sync_it = 0; 1247 int err; 1248 1249 if (IS_NOCMTIME(inode)) 1250 return; 1251 1252 err = mnt_want_write(file->f_path.mnt); 1253 if (err) 1254 return; 1255 1256 now = current_fs_time(inode->i_sb); 1257 if (!timespec_equal(&inode->i_mtime, &now)) { 1258 inode->i_mtime = now; 1259 sync_it = 1; 1260 } 1261 1262 if (!timespec_equal(&inode->i_ctime, &now)) { 1263 inode->i_ctime = now; 1264 sync_it = 1; 1265 } 1266 1267 if (IS_I_VERSION(inode)) { 1268 inode_inc_iversion(inode); 1269 sync_it = 1; 1270 } 1271 1272 if (sync_it) 1273 mark_inode_dirty_sync(inode); 1274 mnt_drop_write(file->f_path.mnt); 1275 } 1276 1277 EXPORT_SYMBOL(file_update_time); 1278 1279 int inode_needs_sync(struct inode *inode) 1280 { 1281 if (IS_SYNC(inode)) 1282 return 1; 1283 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1284 return 1; 1285 return 0; 1286 } 1287 1288 EXPORT_SYMBOL(inode_needs_sync); 1289 1290 int inode_wait(void *word) 1291 { 1292 schedule(); 1293 return 0; 1294 } 1295 1296 /* 1297 * If we try to find an inode in the inode hash while it is being 1298 * deleted, we have to wait until the filesystem completes its 1299 * deletion before reporting that it isn't found. This function waits 1300 * until the deletion _might_ have completed. Callers are responsible 1301 * to recheck inode state. 1302 * 1303 * It doesn't matter if I_LOCK is not set initially, a call to 1304 * wake_up_inode() after removing from the hash list will DTRT. 1305 * 1306 * This is called with inode_lock held. 1307 */ 1308 static void __wait_on_freeing_inode(struct inode *inode) 1309 { 1310 wait_queue_head_t *wq; 1311 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK); 1312 wq = bit_waitqueue(&inode->i_state, __I_LOCK); 1313 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1314 spin_unlock(&inode_lock); 1315 schedule(); 1316 finish_wait(wq, &wait.wait); 1317 spin_lock(&inode_lock); 1318 } 1319 1320 /* 1321 * We rarely want to lock two inodes that do not have a parent/child 1322 * relationship (such as directory, child inode) simultaneously. The 1323 * vast majority of file systems should be able to get along fine 1324 * without this. Do not use these functions except as a last resort. 1325 */ 1326 void inode_double_lock(struct inode *inode1, struct inode *inode2) 1327 { 1328 if (inode1 == NULL || inode2 == NULL || inode1 == inode2) { 1329 if (inode1) 1330 mutex_lock(&inode1->i_mutex); 1331 else if (inode2) 1332 mutex_lock(&inode2->i_mutex); 1333 return; 1334 } 1335 1336 if (inode1 < inode2) { 1337 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT); 1338 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD); 1339 } else { 1340 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_PARENT); 1341 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_CHILD); 1342 } 1343 } 1344 EXPORT_SYMBOL(inode_double_lock); 1345 1346 void inode_double_unlock(struct inode *inode1, struct inode *inode2) 1347 { 1348 if (inode1) 1349 mutex_unlock(&inode1->i_mutex); 1350 1351 if (inode2 && inode2 != inode1) 1352 mutex_unlock(&inode2->i_mutex); 1353 } 1354 EXPORT_SYMBOL(inode_double_unlock); 1355 1356 static __initdata unsigned long ihash_entries; 1357 static int __init set_ihash_entries(char *str) 1358 { 1359 if (!str) 1360 return 0; 1361 ihash_entries = simple_strtoul(str, &str, 0); 1362 return 1; 1363 } 1364 __setup("ihash_entries=", set_ihash_entries); 1365 1366 /* 1367 * Initialize the waitqueues and inode hash table. 1368 */ 1369 void __init inode_init_early(void) 1370 { 1371 int loop; 1372 1373 /* If hashes are distributed across NUMA nodes, defer 1374 * hash allocation until vmalloc space is available. 1375 */ 1376 if (hashdist) 1377 return; 1378 1379 inode_hashtable = 1380 alloc_large_system_hash("Inode-cache", 1381 sizeof(struct hlist_head), 1382 ihash_entries, 1383 14, 1384 HASH_EARLY, 1385 &i_hash_shift, 1386 &i_hash_mask, 1387 0); 1388 1389 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1390 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1391 } 1392 1393 void __init inode_init(void) 1394 { 1395 int loop; 1396 1397 /* inode slab cache */ 1398 inode_cachep = kmem_cache_create("inode_cache", 1399 sizeof(struct inode), 1400 0, 1401 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1402 SLAB_MEM_SPREAD), 1403 init_once); 1404 register_shrinker(&icache_shrinker); 1405 1406 /* Hash may have been set up in inode_init_early */ 1407 if (!hashdist) 1408 return; 1409 1410 inode_hashtable = 1411 alloc_large_system_hash("Inode-cache", 1412 sizeof(struct hlist_head), 1413 ihash_entries, 1414 14, 1415 0, 1416 &i_hash_shift, 1417 &i_hash_mask, 1418 0); 1419 1420 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1421 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1422 } 1423 1424 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1425 { 1426 inode->i_mode = mode; 1427 if (S_ISCHR(mode)) { 1428 inode->i_fop = &def_chr_fops; 1429 inode->i_rdev = rdev; 1430 } else if (S_ISBLK(mode)) { 1431 inode->i_fop = &def_blk_fops; 1432 inode->i_rdev = rdev; 1433 } else if (S_ISFIFO(mode)) 1434 inode->i_fop = &def_fifo_fops; 1435 else if (S_ISSOCK(mode)) 1436 inode->i_fop = &bad_sock_fops; 1437 else 1438 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n", 1439 mode); 1440 } 1441 EXPORT_SYMBOL(init_special_inode); 1442