xref: /openbmc/linux/fs/inode.c (revision 367b8112)
1 /*
2  * linux/fs/inode.c
3  *
4  * (C) 1997 Linus Torvalds
5  */
6 
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/quotaops.h>
12 #include <linux/slab.h>
13 #include <linux/writeback.h>
14 #include <linux/module.h>
15 #include <linux/backing-dev.h>
16 #include <linux/wait.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/inotify.h>
24 #include <linux/mount.h>
25 
26 /*
27  * This is needed for the following functions:
28  *  - inode_has_buffers
29  *  - invalidate_inode_buffers
30  *  - invalidate_bdev
31  *
32  * FIXME: remove all knowledge of the buffer layer from this file
33  */
34 #include <linux/buffer_head.h>
35 
36 /*
37  * New inode.c implementation.
38  *
39  * This implementation has the basic premise of trying
40  * to be extremely low-overhead and SMP-safe, yet be
41  * simple enough to be "obviously correct".
42  *
43  * Famous last words.
44  */
45 
46 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
47 
48 /* #define INODE_PARANOIA 1 */
49 /* #define INODE_DEBUG 1 */
50 
51 /*
52  * Inode lookup is no longer as critical as it used to be:
53  * most of the lookups are going to be through the dcache.
54  */
55 #define I_HASHBITS	i_hash_shift
56 #define I_HASHMASK	i_hash_mask
57 
58 static unsigned int i_hash_mask __read_mostly;
59 static unsigned int i_hash_shift __read_mostly;
60 
61 /*
62  * Each inode can be on two separate lists. One is
63  * the hash list of the inode, used for lookups. The
64  * other linked list is the "type" list:
65  *  "in_use" - valid inode, i_count > 0, i_nlink > 0
66  *  "dirty"  - as "in_use" but also dirty
67  *  "unused" - valid inode, i_count = 0
68  *
69  * A "dirty" list is maintained for each super block,
70  * allowing for low-overhead inode sync() operations.
71  */
72 
73 LIST_HEAD(inode_in_use);
74 LIST_HEAD(inode_unused);
75 static struct hlist_head *inode_hashtable __read_mostly;
76 
77 /*
78  * A simple spinlock to protect the list manipulations.
79  *
80  * NOTE! You also have to own the lock if you change
81  * the i_state of an inode while it is in use..
82  */
83 DEFINE_SPINLOCK(inode_lock);
84 
85 /*
86  * iprune_mutex provides exclusion between the kswapd or try_to_free_pages
87  * icache shrinking path, and the umount path.  Without this exclusion,
88  * by the time prune_icache calls iput for the inode whose pages it has
89  * been invalidating, or by the time it calls clear_inode & destroy_inode
90  * from its final dispose_list, the struct super_block they refer to
91  * (for inode->i_sb->s_op) may already have been freed and reused.
92  */
93 static DEFINE_MUTEX(iprune_mutex);
94 
95 /*
96  * Statistics gathering..
97  */
98 struct inodes_stat_t inodes_stat;
99 
100 static struct kmem_cache * inode_cachep __read_mostly;
101 
102 static void wake_up_inode(struct inode *inode)
103 {
104 	/*
105 	 * Prevent speculative execution through spin_unlock(&inode_lock);
106 	 */
107 	smp_mb();
108 	wake_up_bit(&inode->i_state, __I_LOCK);
109 }
110 
111 static struct inode *alloc_inode(struct super_block *sb)
112 {
113 	static const struct address_space_operations empty_aops;
114 	static struct inode_operations empty_iops;
115 	static const struct file_operations empty_fops;
116 	struct inode *inode;
117 
118 	if (sb->s_op->alloc_inode)
119 		inode = sb->s_op->alloc_inode(sb);
120 	else
121 		inode = (struct inode *) kmem_cache_alloc(inode_cachep, GFP_KERNEL);
122 
123 	if (inode) {
124 		struct address_space * const mapping = &inode->i_data;
125 
126 		inode->i_sb = sb;
127 		inode->i_blkbits = sb->s_blocksize_bits;
128 		inode->i_flags = 0;
129 		atomic_set(&inode->i_count, 1);
130 		inode->i_op = &empty_iops;
131 		inode->i_fop = &empty_fops;
132 		inode->i_nlink = 1;
133 		atomic_set(&inode->i_writecount, 0);
134 		inode->i_size = 0;
135 		inode->i_blocks = 0;
136 		inode->i_bytes = 0;
137 		inode->i_generation = 0;
138 #ifdef CONFIG_QUOTA
139 		memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
140 #endif
141 		inode->i_pipe = NULL;
142 		inode->i_bdev = NULL;
143 		inode->i_cdev = NULL;
144 		inode->i_rdev = 0;
145 		inode->dirtied_when = 0;
146 		if (security_inode_alloc(inode)) {
147 			if (inode->i_sb->s_op->destroy_inode)
148 				inode->i_sb->s_op->destroy_inode(inode);
149 			else
150 				kmem_cache_free(inode_cachep, (inode));
151 			return NULL;
152 		}
153 
154 		spin_lock_init(&inode->i_lock);
155 		lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
156 
157 		mutex_init(&inode->i_mutex);
158 		lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
159 
160 		init_rwsem(&inode->i_alloc_sem);
161 		lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
162 
163 		mapping->a_ops = &empty_aops;
164  		mapping->host = inode;
165 		mapping->flags = 0;
166 		mapping_set_gfp_mask(mapping, GFP_HIGHUSER_PAGECACHE);
167 		mapping->assoc_mapping = NULL;
168 		mapping->backing_dev_info = &default_backing_dev_info;
169 		mapping->writeback_index = 0;
170 
171 		/*
172 		 * If the block_device provides a backing_dev_info for client
173 		 * inodes then use that.  Otherwise the inode share the bdev's
174 		 * backing_dev_info.
175 		 */
176 		if (sb->s_bdev) {
177 			struct backing_dev_info *bdi;
178 
179 			bdi = sb->s_bdev->bd_inode_backing_dev_info;
180 			if (!bdi)
181 				bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
182 			mapping->backing_dev_info = bdi;
183 		}
184 		inode->i_private = NULL;
185 		inode->i_mapping = mapping;
186 	}
187 	return inode;
188 }
189 
190 void destroy_inode(struct inode *inode)
191 {
192 	BUG_ON(inode_has_buffers(inode));
193 	security_inode_free(inode);
194 	if (inode->i_sb->s_op->destroy_inode)
195 		inode->i_sb->s_op->destroy_inode(inode);
196 	else
197 		kmem_cache_free(inode_cachep, (inode));
198 }
199 
200 
201 /*
202  * These are initializations that only need to be done
203  * once, because the fields are idempotent across use
204  * of the inode, so let the slab aware of that.
205  */
206 void inode_init_once(struct inode *inode)
207 {
208 	memset(inode, 0, sizeof(*inode));
209 	INIT_HLIST_NODE(&inode->i_hash);
210 	INIT_LIST_HEAD(&inode->i_dentry);
211 	INIT_LIST_HEAD(&inode->i_devices);
212 	INIT_RADIX_TREE(&inode->i_data.page_tree, GFP_ATOMIC);
213 	spin_lock_init(&inode->i_data.tree_lock);
214 	spin_lock_init(&inode->i_data.i_mmap_lock);
215 	INIT_LIST_HEAD(&inode->i_data.private_list);
216 	spin_lock_init(&inode->i_data.private_lock);
217 	INIT_RAW_PRIO_TREE_ROOT(&inode->i_data.i_mmap);
218 	INIT_LIST_HEAD(&inode->i_data.i_mmap_nonlinear);
219 	i_size_ordered_init(inode);
220 #ifdef CONFIG_INOTIFY
221 	INIT_LIST_HEAD(&inode->inotify_watches);
222 	mutex_init(&inode->inotify_mutex);
223 #endif
224 }
225 
226 EXPORT_SYMBOL(inode_init_once);
227 
228 static void init_once(void *foo)
229 {
230 	struct inode * inode = (struct inode *) foo;
231 
232 	inode_init_once(inode);
233 }
234 
235 /*
236  * inode_lock must be held
237  */
238 void __iget(struct inode * inode)
239 {
240 	if (atomic_read(&inode->i_count)) {
241 		atomic_inc(&inode->i_count);
242 		return;
243 	}
244 	atomic_inc(&inode->i_count);
245 	if (!(inode->i_state & (I_DIRTY|I_SYNC)))
246 		list_move(&inode->i_list, &inode_in_use);
247 	inodes_stat.nr_unused--;
248 }
249 
250 /**
251  * clear_inode - clear an inode
252  * @inode: inode to clear
253  *
254  * This is called by the filesystem to tell us
255  * that the inode is no longer useful. We just
256  * terminate it with extreme prejudice.
257  */
258 void clear_inode(struct inode *inode)
259 {
260 	might_sleep();
261 	invalidate_inode_buffers(inode);
262 
263 	BUG_ON(inode->i_data.nrpages);
264 	BUG_ON(!(inode->i_state & I_FREEING));
265 	BUG_ON(inode->i_state & I_CLEAR);
266 	inode_sync_wait(inode);
267 	DQUOT_DROP(inode);
268 	if (inode->i_sb->s_op->clear_inode)
269 		inode->i_sb->s_op->clear_inode(inode);
270 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
271 		bd_forget(inode);
272 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
273 		cd_forget(inode);
274 	inode->i_state = I_CLEAR;
275 }
276 
277 EXPORT_SYMBOL(clear_inode);
278 
279 /*
280  * dispose_list - dispose of the contents of a local list
281  * @head: the head of the list to free
282  *
283  * Dispose-list gets a local list with local inodes in it, so it doesn't
284  * need to worry about list corruption and SMP locks.
285  */
286 static void dispose_list(struct list_head *head)
287 {
288 	int nr_disposed = 0;
289 
290 	while (!list_empty(head)) {
291 		struct inode *inode;
292 
293 		inode = list_first_entry(head, struct inode, i_list);
294 		list_del(&inode->i_list);
295 
296 		if (inode->i_data.nrpages)
297 			truncate_inode_pages(&inode->i_data, 0);
298 		clear_inode(inode);
299 
300 		spin_lock(&inode_lock);
301 		hlist_del_init(&inode->i_hash);
302 		list_del_init(&inode->i_sb_list);
303 		spin_unlock(&inode_lock);
304 
305 		wake_up_inode(inode);
306 		destroy_inode(inode);
307 		nr_disposed++;
308 	}
309 	spin_lock(&inode_lock);
310 	inodes_stat.nr_inodes -= nr_disposed;
311 	spin_unlock(&inode_lock);
312 }
313 
314 /*
315  * Invalidate all inodes for a device.
316  */
317 static int invalidate_list(struct list_head *head, struct list_head *dispose)
318 {
319 	struct list_head *next;
320 	int busy = 0, count = 0;
321 
322 	next = head->next;
323 	for (;;) {
324 		struct list_head * tmp = next;
325 		struct inode * inode;
326 
327 		/*
328 		 * We can reschedule here without worrying about the list's
329 		 * consistency because the per-sb list of inodes must not
330 		 * change during umount anymore, and because iprune_mutex keeps
331 		 * shrink_icache_memory() away.
332 		 */
333 		cond_resched_lock(&inode_lock);
334 
335 		next = next->next;
336 		if (tmp == head)
337 			break;
338 		inode = list_entry(tmp, struct inode, i_sb_list);
339 		invalidate_inode_buffers(inode);
340 		if (!atomic_read(&inode->i_count)) {
341 			list_move(&inode->i_list, dispose);
342 			inode->i_state |= I_FREEING;
343 			count++;
344 			continue;
345 		}
346 		busy = 1;
347 	}
348 	/* only unused inodes may be cached with i_count zero */
349 	inodes_stat.nr_unused -= count;
350 	return busy;
351 }
352 
353 /**
354  *	invalidate_inodes	- discard the inodes on a device
355  *	@sb: superblock
356  *
357  *	Discard all of the inodes for a given superblock. If the discard
358  *	fails because there are busy inodes then a non zero value is returned.
359  *	If the discard is successful all the inodes have been discarded.
360  */
361 int invalidate_inodes(struct super_block * sb)
362 {
363 	int busy;
364 	LIST_HEAD(throw_away);
365 
366 	mutex_lock(&iprune_mutex);
367 	spin_lock(&inode_lock);
368 	inotify_unmount_inodes(&sb->s_inodes);
369 	busy = invalidate_list(&sb->s_inodes, &throw_away);
370 	spin_unlock(&inode_lock);
371 
372 	dispose_list(&throw_away);
373 	mutex_unlock(&iprune_mutex);
374 
375 	return busy;
376 }
377 
378 EXPORT_SYMBOL(invalidate_inodes);
379 
380 static int can_unuse(struct inode *inode)
381 {
382 	if (inode->i_state)
383 		return 0;
384 	if (inode_has_buffers(inode))
385 		return 0;
386 	if (atomic_read(&inode->i_count))
387 		return 0;
388 	if (inode->i_data.nrpages)
389 		return 0;
390 	return 1;
391 }
392 
393 /*
394  * Scan `goal' inodes on the unused list for freeable ones. They are moved to
395  * a temporary list and then are freed outside inode_lock by dispose_list().
396  *
397  * Any inodes which are pinned purely because of attached pagecache have their
398  * pagecache removed.  We expect the final iput() on that inode to add it to
399  * the front of the inode_unused list.  So look for it there and if the
400  * inode is still freeable, proceed.  The right inode is found 99.9% of the
401  * time in testing on a 4-way.
402  *
403  * If the inode has metadata buffers attached to mapping->private_list then
404  * try to remove them.
405  */
406 static void prune_icache(int nr_to_scan)
407 {
408 	LIST_HEAD(freeable);
409 	int nr_pruned = 0;
410 	int nr_scanned;
411 	unsigned long reap = 0;
412 
413 	mutex_lock(&iprune_mutex);
414 	spin_lock(&inode_lock);
415 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
416 		struct inode *inode;
417 
418 		if (list_empty(&inode_unused))
419 			break;
420 
421 		inode = list_entry(inode_unused.prev, struct inode, i_list);
422 
423 		if (inode->i_state || atomic_read(&inode->i_count)) {
424 			list_move(&inode->i_list, &inode_unused);
425 			continue;
426 		}
427 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
428 			__iget(inode);
429 			spin_unlock(&inode_lock);
430 			if (remove_inode_buffers(inode))
431 				reap += invalidate_mapping_pages(&inode->i_data,
432 								0, -1);
433 			iput(inode);
434 			spin_lock(&inode_lock);
435 
436 			if (inode != list_entry(inode_unused.next,
437 						struct inode, i_list))
438 				continue;	/* wrong inode or list_empty */
439 			if (!can_unuse(inode))
440 				continue;
441 		}
442 		list_move(&inode->i_list, &freeable);
443 		inode->i_state |= I_FREEING;
444 		nr_pruned++;
445 	}
446 	inodes_stat.nr_unused -= nr_pruned;
447 	if (current_is_kswapd())
448 		__count_vm_events(KSWAPD_INODESTEAL, reap);
449 	else
450 		__count_vm_events(PGINODESTEAL, reap);
451 	spin_unlock(&inode_lock);
452 
453 	dispose_list(&freeable);
454 	mutex_unlock(&iprune_mutex);
455 }
456 
457 /*
458  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
459  * "unused" means that no dentries are referring to the inodes: the files are
460  * not open and the dcache references to those inodes have already been
461  * reclaimed.
462  *
463  * This function is passed the number of inodes to scan, and it returns the
464  * total number of remaining possibly-reclaimable inodes.
465  */
466 static int shrink_icache_memory(int nr, gfp_t gfp_mask)
467 {
468 	if (nr) {
469 		/*
470 		 * Nasty deadlock avoidance.  We may hold various FS locks,
471 		 * and we don't want to recurse into the FS that called us
472 		 * in clear_inode() and friends..
473 	 	 */
474 		if (!(gfp_mask & __GFP_FS))
475 			return -1;
476 		prune_icache(nr);
477 	}
478 	return (inodes_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
479 }
480 
481 static struct shrinker icache_shrinker = {
482 	.shrink = shrink_icache_memory,
483 	.seeks = DEFAULT_SEEKS,
484 };
485 
486 static void __wait_on_freeing_inode(struct inode *inode);
487 /*
488  * Called with the inode lock held.
489  * NOTE: we are not increasing the inode-refcount, you must call __iget()
490  * by hand after calling find_inode now! This simplifies iunique and won't
491  * add any additional branch in the common code.
492  */
493 static struct inode * find_inode(struct super_block * sb, struct hlist_head *head, int (*test)(struct inode *, void *), void *data)
494 {
495 	struct hlist_node *node;
496 	struct inode * inode = NULL;
497 
498 repeat:
499 	hlist_for_each_entry(inode, node, head, i_hash) {
500 		if (inode->i_sb != sb)
501 			continue;
502 		if (!test(inode, data))
503 			continue;
504 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
505 			__wait_on_freeing_inode(inode);
506 			goto repeat;
507 		}
508 		break;
509 	}
510 	return node ? inode : NULL;
511 }
512 
513 /*
514  * find_inode_fast is the fast path version of find_inode, see the comment at
515  * iget_locked for details.
516  */
517 static struct inode * find_inode_fast(struct super_block * sb, struct hlist_head *head, unsigned long ino)
518 {
519 	struct hlist_node *node;
520 	struct inode * inode = NULL;
521 
522 repeat:
523 	hlist_for_each_entry(inode, node, head, i_hash) {
524 		if (inode->i_ino != ino)
525 			continue;
526 		if (inode->i_sb != sb)
527 			continue;
528 		if (inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)) {
529 			__wait_on_freeing_inode(inode);
530 			goto repeat;
531 		}
532 		break;
533 	}
534 	return node ? inode : NULL;
535 }
536 
537 /**
538  *	new_inode 	- obtain an inode
539  *	@sb: superblock
540  *
541  *	Allocates a new inode for given superblock. The default gfp_mask
542  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_PAGECACHE.
543  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
544  *	for the page cache are not reclaimable or migratable,
545  *	mapping_set_gfp_mask() must be called with suitable flags on the
546  *	newly created inode's mapping
547  *
548  */
549 struct inode *new_inode(struct super_block *sb)
550 {
551 	/*
552 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
553 	 * error if st_ino won't fit in target struct field. Use 32bit counter
554 	 * here to attempt to avoid that.
555 	 */
556 	static unsigned int last_ino;
557 	struct inode * inode;
558 
559 	spin_lock_prefetch(&inode_lock);
560 
561 	inode = alloc_inode(sb);
562 	if (inode) {
563 		spin_lock(&inode_lock);
564 		inodes_stat.nr_inodes++;
565 		list_add(&inode->i_list, &inode_in_use);
566 		list_add(&inode->i_sb_list, &sb->s_inodes);
567 		inode->i_ino = ++last_ino;
568 		inode->i_state = 0;
569 		spin_unlock(&inode_lock);
570 	}
571 	return inode;
572 }
573 
574 EXPORT_SYMBOL(new_inode);
575 
576 void unlock_new_inode(struct inode *inode)
577 {
578 #ifdef CONFIG_DEBUG_LOCK_ALLOC
579 	if (inode->i_mode & S_IFDIR) {
580 		struct file_system_type *type = inode->i_sb->s_type;
581 
582 		/*
583 		 * ensure nobody is actually holding i_mutex
584 		 */
585 		mutex_destroy(&inode->i_mutex);
586 		mutex_init(&inode->i_mutex);
587 		lockdep_set_class(&inode->i_mutex, &type->i_mutex_dir_key);
588 	}
589 #endif
590 	/*
591 	 * This is special!  We do not need the spinlock
592 	 * when clearing I_LOCK, because we're guaranteed
593 	 * that nobody else tries to do anything about the
594 	 * state of the inode when it is locked, as we
595 	 * just created it (so there can be no old holders
596 	 * that haven't tested I_LOCK).
597 	 */
598 	inode->i_state &= ~(I_LOCK|I_NEW);
599 	wake_up_inode(inode);
600 }
601 
602 EXPORT_SYMBOL(unlock_new_inode);
603 
604 /*
605  * This is called without the inode lock held.. Be careful.
606  *
607  * We no longer cache the sb_flags in i_flags - see fs.h
608  *	-- rmk@arm.uk.linux.org
609  */
610 static struct inode * get_new_inode(struct super_block *sb, struct hlist_head *head, int (*test)(struct inode *, void *), int (*set)(struct inode *, void *), void *data)
611 {
612 	struct inode * inode;
613 
614 	inode = alloc_inode(sb);
615 	if (inode) {
616 		struct inode * old;
617 
618 		spin_lock(&inode_lock);
619 		/* We released the lock, so.. */
620 		old = find_inode(sb, head, test, data);
621 		if (!old) {
622 			if (set(inode, data))
623 				goto set_failed;
624 
625 			inodes_stat.nr_inodes++;
626 			list_add(&inode->i_list, &inode_in_use);
627 			list_add(&inode->i_sb_list, &sb->s_inodes);
628 			hlist_add_head(&inode->i_hash, head);
629 			inode->i_state = I_LOCK|I_NEW;
630 			spin_unlock(&inode_lock);
631 
632 			/* Return the locked inode with I_NEW set, the
633 			 * caller is responsible for filling in the contents
634 			 */
635 			return inode;
636 		}
637 
638 		/*
639 		 * Uhhuh, somebody else created the same inode under
640 		 * us. Use the old inode instead of the one we just
641 		 * allocated.
642 		 */
643 		__iget(old);
644 		spin_unlock(&inode_lock);
645 		destroy_inode(inode);
646 		inode = old;
647 		wait_on_inode(inode);
648 	}
649 	return inode;
650 
651 set_failed:
652 	spin_unlock(&inode_lock);
653 	destroy_inode(inode);
654 	return NULL;
655 }
656 
657 /*
658  * get_new_inode_fast is the fast path version of get_new_inode, see the
659  * comment at iget_locked for details.
660  */
661 static struct inode * get_new_inode_fast(struct super_block *sb, struct hlist_head *head, unsigned long ino)
662 {
663 	struct inode * inode;
664 
665 	inode = alloc_inode(sb);
666 	if (inode) {
667 		struct inode * old;
668 
669 		spin_lock(&inode_lock);
670 		/* We released the lock, so.. */
671 		old = find_inode_fast(sb, head, ino);
672 		if (!old) {
673 			inode->i_ino = ino;
674 			inodes_stat.nr_inodes++;
675 			list_add(&inode->i_list, &inode_in_use);
676 			list_add(&inode->i_sb_list, &sb->s_inodes);
677 			hlist_add_head(&inode->i_hash, head);
678 			inode->i_state = I_LOCK|I_NEW;
679 			spin_unlock(&inode_lock);
680 
681 			/* Return the locked inode with I_NEW set, the
682 			 * caller is responsible for filling in the contents
683 			 */
684 			return inode;
685 		}
686 
687 		/*
688 		 * Uhhuh, somebody else created the same inode under
689 		 * us. Use the old inode instead of the one we just
690 		 * allocated.
691 		 */
692 		__iget(old);
693 		spin_unlock(&inode_lock);
694 		destroy_inode(inode);
695 		inode = old;
696 		wait_on_inode(inode);
697 	}
698 	return inode;
699 }
700 
701 static unsigned long hash(struct super_block *sb, unsigned long hashval)
702 {
703 	unsigned long tmp;
704 
705 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
706 			L1_CACHE_BYTES;
707 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
708 	return tmp & I_HASHMASK;
709 }
710 
711 /**
712  *	iunique - get a unique inode number
713  *	@sb: superblock
714  *	@max_reserved: highest reserved inode number
715  *
716  *	Obtain an inode number that is unique on the system for a given
717  *	superblock. This is used by file systems that have no natural
718  *	permanent inode numbering system. An inode number is returned that
719  *	is higher than the reserved limit but unique.
720  *
721  *	BUGS:
722  *	With a large number of inodes live on the file system this function
723  *	currently becomes quite slow.
724  */
725 ino_t iunique(struct super_block *sb, ino_t max_reserved)
726 {
727 	/*
728 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
729 	 * error if st_ino won't fit in target struct field. Use 32bit counter
730 	 * here to attempt to avoid that.
731 	 */
732 	static unsigned int counter;
733 	struct inode *inode;
734 	struct hlist_head *head;
735 	ino_t res;
736 
737 	spin_lock(&inode_lock);
738 	do {
739 		if (counter <= max_reserved)
740 			counter = max_reserved + 1;
741 		res = counter++;
742 		head = inode_hashtable + hash(sb, res);
743 		inode = find_inode_fast(sb, head, res);
744 	} while (inode != NULL);
745 	spin_unlock(&inode_lock);
746 
747 	return res;
748 }
749 EXPORT_SYMBOL(iunique);
750 
751 struct inode *igrab(struct inode *inode)
752 {
753 	spin_lock(&inode_lock);
754 	if (!(inode->i_state & (I_FREEING|I_CLEAR|I_WILL_FREE)))
755 		__iget(inode);
756 	else
757 		/*
758 		 * Handle the case where s_op->clear_inode is not been
759 		 * called yet, and somebody is calling igrab
760 		 * while the inode is getting freed.
761 		 */
762 		inode = NULL;
763 	spin_unlock(&inode_lock);
764 	return inode;
765 }
766 
767 EXPORT_SYMBOL(igrab);
768 
769 /**
770  * ifind - internal function, you want ilookup5() or iget5().
771  * @sb:		super block of file system to search
772  * @head:       the head of the list to search
773  * @test:	callback used for comparisons between inodes
774  * @data:	opaque data pointer to pass to @test
775  * @wait:	if true wait for the inode to be unlocked, if false do not
776  *
777  * ifind() searches for the inode specified by @data in the inode
778  * cache. This is a generalized version of ifind_fast() for file systems where
779  * the inode number is not sufficient for unique identification of an inode.
780  *
781  * If the inode is in the cache, the inode is returned with an incremented
782  * reference count.
783  *
784  * Otherwise NULL is returned.
785  *
786  * Note, @test is called with the inode_lock held, so can't sleep.
787  */
788 static struct inode *ifind(struct super_block *sb,
789 		struct hlist_head *head, int (*test)(struct inode *, void *),
790 		void *data, const int wait)
791 {
792 	struct inode *inode;
793 
794 	spin_lock(&inode_lock);
795 	inode = find_inode(sb, head, test, data);
796 	if (inode) {
797 		__iget(inode);
798 		spin_unlock(&inode_lock);
799 		if (likely(wait))
800 			wait_on_inode(inode);
801 		return inode;
802 	}
803 	spin_unlock(&inode_lock);
804 	return NULL;
805 }
806 
807 /**
808  * ifind_fast - internal function, you want ilookup() or iget().
809  * @sb:		super block of file system to search
810  * @head:       head of the list to search
811  * @ino:	inode number to search for
812  *
813  * ifind_fast() searches for the inode @ino in the inode cache. This is for
814  * file systems where the inode number is sufficient for unique identification
815  * of an inode.
816  *
817  * If the inode is in the cache, the inode is returned with an incremented
818  * reference count.
819  *
820  * Otherwise NULL is returned.
821  */
822 static struct inode *ifind_fast(struct super_block *sb,
823 		struct hlist_head *head, unsigned long ino)
824 {
825 	struct inode *inode;
826 
827 	spin_lock(&inode_lock);
828 	inode = find_inode_fast(sb, head, ino);
829 	if (inode) {
830 		__iget(inode);
831 		spin_unlock(&inode_lock);
832 		wait_on_inode(inode);
833 		return inode;
834 	}
835 	spin_unlock(&inode_lock);
836 	return NULL;
837 }
838 
839 /**
840  * ilookup5_nowait - search for an inode in the inode cache
841  * @sb:		super block of file system to search
842  * @hashval:	hash value (usually inode number) to search for
843  * @test:	callback used for comparisons between inodes
844  * @data:	opaque data pointer to pass to @test
845  *
846  * ilookup5() uses ifind() to search for the inode specified by @hashval and
847  * @data in the inode cache. This is a generalized version of ilookup() for
848  * file systems where the inode number is not sufficient for unique
849  * identification of an inode.
850  *
851  * If the inode is in the cache, the inode is returned with an incremented
852  * reference count.  Note, the inode lock is not waited upon so you have to be
853  * very careful what you do with the returned inode.  You probably should be
854  * using ilookup5() instead.
855  *
856  * Otherwise NULL is returned.
857  *
858  * Note, @test is called with the inode_lock held, so can't sleep.
859  */
860 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
861 		int (*test)(struct inode *, void *), void *data)
862 {
863 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
864 
865 	return ifind(sb, head, test, data, 0);
866 }
867 
868 EXPORT_SYMBOL(ilookup5_nowait);
869 
870 /**
871  * ilookup5 - search for an inode in the inode cache
872  * @sb:		super block of file system to search
873  * @hashval:	hash value (usually inode number) to search for
874  * @test:	callback used for comparisons between inodes
875  * @data:	opaque data pointer to pass to @test
876  *
877  * ilookup5() uses ifind() to search for the inode specified by @hashval and
878  * @data in the inode cache. This is a generalized version of ilookup() for
879  * file systems where the inode number is not sufficient for unique
880  * identification of an inode.
881  *
882  * If the inode is in the cache, the inode lock is waited upon and the inode is
883  * returned with an incremented reference count.
884  *
885  * Otherwise NULL is returned.
886  *
887  * Note, @test is called with the inode_lock held, so can't sleep.
888  */
889 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
890 		int (*test)(struct inode *, void *), void *data)
891 {
892 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
893 
894 	return ifind(sb, head, test, data, 1);
895 }
896 
897 EXPORT_SYMBOL(ilookup5);
898 
899 /**
900  * ilookup - search for an inode in the inode cache
901  * @sb:		super block of file system to search
902  * @ino:	inode number to search for
903  *
904  * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
905  * This is for file systems where the inode number is sufficient for unique
906  * identification of an inode.
907  *
908  * If the inode is in the cache, the inode is returned with an incremented
909  * reference count.
910  *
911  * Otherwise NULL is returned.
912  */
913 struct inode *ilookup(struct super_block *sb, unsigned long ino)
914 {
915 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
916 
917 	return ifind_fast(sb, head, ino);
918 }
919 
920 EXPORT_SYMBOL(ilookup);
921 
922 /**
923  * iget5_locked - obtain an inode from a mounted file system
924  * @sb:		super block of file system
925  * @hashval:	hash value (usually inode number) to get
926  * @test:	callback used for comparisons between inodes
927  * @set:	callback used to initialize a new struct inode
928  * @data:	opaque data pointer to pass to @test and @set
929  *
930  * iget5_locked() uses ifind() to search for the inode specified by @hashval
931  * and @data in the inode cache and if present it is returned with an increased
932  * reference count. This is a generalized version of iget_locked() for file
933  * systems where the inode number is not sufficient for unique identification
934  * of an inode.
935  *
936  * If the inode is not in cache, get_new_inode() is called to allocate a new
937  * inode and this is returned locked, hashed, and with the I_NEW flag set. The
938  * file system gets to fill it in before unlocking it via unlock_new_inode().
939  *
940  * Note both @test and @set are called with the inode_lock held, so can't sleep.
941  */
942 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
943 		int (*test)(struct inode *, void *),
944 		int (*set)(struct inode *, void *), void *data)
945 {
946 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
947 	struct inode *inode;
948 
949 	inode = ifind(sb, head, test, data, 1);
950 	if (inode)
951 		return inode;
952 	/*
953 	 * get_new_inode() will do the right thing, re-trying the search
954 	 * in case it had to block at any point.
955 	 */
956 	return get_new_inode(sb, head, test, set, data);
957 }
958 
959 EXPORT_SYMBOL(iget5_locked);
960 
961 /**
962  * iget_locked - obtain an inode from a mounted file system
963  * @sb:		super block of file system
964  * @ino:	inode number to get
965  *
966  * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
967  * the inode cache and if present it is returned with an increased reference
968  * count. This is for file systems where the inode number is sufficient for
969  * unique identification of an inode.
970  *
971  * If the inode is not in cache, get_new_inode_fast() is called to allocate a
972  * new inode and this is returned locked, hashed, and with the I_NEW flag set.
973  * The file system gets to fill it in before unlocking it via
974  * unlock_new_inode().
975  */
976 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
977 {
978 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
979 	struct inode *inode;
980 
981 	inode = ifind_fast(sb, head, ino);
982 	if (inode)
983 		return inode;
984 	/*
985 	 * get_new_inode_fast() will do the right thing, re-trying the search
986 	 * in case it had to block at any point.
987 	 */
988 	return get_new_inode_fast(sb, head, ino);
989 }
990 
991 EXPORT_SYMBOL(iget_locked);
992 
993 /**
994  *	__insert_inode_hash - hash an inode
995  *	@inode: unhashed inode
996  *	@hashval: unsigned long value used to locate this object in the
997  *		inode_hashtable.
998  *
999  *	Add an inode to the inode hash for this superblock.
1000  */
1001 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
1002 {
1003 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1004 	spin_lock(&inode_lock);
1005 	hlist_add_head(&inode->i_hash, head);
1006 	spin_unlock(&inode_lock);
1007 }
1008 
1009 EXPORT_SYMBOL(__insert_inode_hash);
1010 
1011 /**
1012  *	remove_inode_hash - remove an inode from the hash
1013  *	@inode: inode to unhash
1014  *
1015  *	Remove an inode from the superblock.
1016  */
1017 void remove_inode_hash(struct inode *inode)
1018 {
1019 	spin_lock(&inode_lock);
1020 	hlist_del_init(&inode->i_hash);
1021 	spin_unlock(&inode_lock);
1022 }
1023 
1024 EXPORT_SYMBOL(remove_inode_hash);
1025 
1026 /*
1027  * Tell the filesystem that this inode is no longer of any interest and should
1028  * be completely destroyed.
1029  *
1030  * We leave the inode in the inode hash table until *after* the filesystem's
1031  * ->delete_inode completes.  This ensures that an iget (such as nfsd might
1032  * instigate) will always find up-to-date information either in the hash or on
1033  * disk.
1034  *
1035  * I_FREEING is set so that no-one will take a new reference to the inode while
1036  * it is being deleted.
1037  */
1038 void generic_delete_inode(struct inode *inode)
1039 {
1040 	const struct super_operations *op = inode->i_sb->s_op;
1041 
1042 	list_del_init(&inode->i_list);
1043 	list_del_init(&inode->i_sb_list);
1044 	inode->i_state |= I_FREEING;
1045 	inodes_stat.nr_inodes--;
1046 	spin_unlock(&inode_lock);
1047 
1048 	security_inode_delete(inode);
1049 
1050 	if (op->delete_inode) {
1051 		void (*delete)(struct inode *) = op->delete_inode;
1052 		if (!is_bad_inode(inode))
1053 			DQUOT_INIT(inode);
1054 		/* Filesystems implementing their own
1055 		 * s_op->delete_inode are required to call
1056 		 * truncate_inode_pages and clear_inode()
1057 		 * internally */
1058 		delete(inode);
1059 	} else {
1060 		truncate_inode_pages(&inode->i_data, 0);
1061 		clear_inode(inode);
1062 	}
1063 	spin_lock(&inode_lock);
1064 	hlist_del_init(&inode->i_hash);
1065 	spin_unlock(&inode_lock);
1066 	wake_up_inode(inode);
1067 	BUG_ON(inode->i_state != I_CLEAR);
1068 	destroy_inode(inode);
1069 }
1070 
1071 EXPORT_SYMBOL(generic_delete_inode);
1072 
1073 static void generic_forget_inode(struct inode *inode)
1074 {
1075 	struct super_block *sb = inode->i_sb;
1076 
1077 	if (!hlist_unhashed(&inode->i_hash)) {
1078 		if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1079 			list_move(&inode->i_list, &inode_unused);
1080 		inodes_stat.nr_unused++;
1081 		if (sb->s_flags & MS_ACTIVE) {
1082 			spin_unlock(&inode_lock);
1083 			return;
1084 		}
1085 		inode->i_state |= I_WILL_FREE;
1086 		spin_unlock(&inode_lock);
1087 		write_inode_now(inode, 1);
1088 		spin_lock(&inode_lock);
1089 		inode->i_state &= ~I_WILL_FREE;
1090 		inodes_stat.nr_unused--;
1091 		hlist_del_init(&inode->i_hash);
1092 	}
1093 	list_del_init(&inode->i_list);
1094 	list_del_init(&inode->i_sb_list);
1095 	inode->i_state |= I_FREEING;
1096 	inodes_stat.nr_inodes--;
1097 	spin_unlock(&inode_lock);
1098 	if (inode->i_data.nrpages)
1099 		truncate_inode_pages(&inode->i_data, 0);
1100 	clear_inode(inode);
1101 	wake_up_inode(inode);
1102 	destroy_inode(inode);
1103 }
1104 
1105 /*
1106  * Normal UNIX filesystem behaviour: delete the
1107  * inode when the usage count drops to zero, and
1108  * i_nlink is zero.
1109  */
1110 void generic_drop_inode(struct inode *inode)
1111 {
1112 	if (!inode->i_nlink)
1113 		generic_delete_inode(inode);
1114 	else
1115 		generic_forget_inode(inode);
1116 }
1117 
1118 EXPORT_SYMBOL_GPL(generic_drop_inode);
1119 
1120 /*
1121  * Called when we're dropping the last reference
1122  * to an inode.
1123  *
1124  * Call the FS "drop()" function, defaulting to
1125  * the legacy UNIX filesystem behaviour..
1126  *
1127  * NOTE! NOTE! NOTE! We're called with the inode lock
1128  * held, and the drop function is supposed to release
1129  * the lock!
1130  */
1131 static inline void iput_final(struct inode *inode)
1132 {
1133 	const struct super_operations *op = inode->i_sb->s_op;
1134 	void (*drop)(struct inode *) = generic_drop_inode;
1135 
1136 	if (op && op->drop_inode)
1137 		drop = op->drop_inode;
1138 	drop(inode);
1139 }
1140 
1141 /**
1142  *	iput	- put an inode
1143  *	@inode: inode to put
1144  *
1145  *	Puts an inode, dropping its usage count. If the inode use count hits
1146  *	zero, the inode is then freed and may also be destroyed.
1147  *
1148  *	Consequently, iput() can sleep.
1149  */
1150 void iput(struct inode *inode)
1151 {
1152 	if (inode) {
1153 		BUG_ON(inode->i_state == I_CLEAR);
1154 
1155 		if (atomic_dec_and_lock(&inode->i_count, &inode_lock))
1156 			iput_final(inode);
1157 	}
1158 }
1159 
1160 EXPORT_SYMBOL(iput);
1161 
1162 /**
1163  *	bmap	- find a block number in a file
1164  *	@inode: inode of file
1165  *	@block: block to find
1166  *
1167  *	Returns the block number on the device holding the inode that
1168  *	is the disk block number for the block of the file requested.
1169  *	That is, asked for block 4 of inode 1 the function will return the
1170  *	disk block relative to the disk start that holds that block of the
1171  *	file.
1172  */
1173 sector_t bmap(struct inode * inode, sector_t block)
1174 {
1175 	sector_t res = 0;
1176 	if (inode->i_mapping->a_ops->bmap)
1177 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1178 	return res;
1179 }
1180 EXPORT_SYMBOL(bmap);
1181 
1182 /**
1183  *	touch_atime	-	update the access time
1184  *	@mnt: mount the inode is accessed on
1185  *	@dentry: dentry accessed
1186  *
1187  *	Update the accessed time on an inode and mark it for writeback.
1188  *	This function automatically handles read only file systems and media,
1189  *	as well as the "noatime" flag and inode specific "noatime" markers.
1190  */
1191 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1192 {
1193 	struct inode *inode = dentry->d_inode;
1194 	struct timespec now;
1195 
1196 	if (mnt_want_write(mnt))
1197 		return;
1198 	if (inode->i_flags & S_NOATIME)
1199 		goto out;
1200 	if (IS_NOATIME(inode))
1201 		goto out;
1202 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1203 		goto out;
1204 
1205 	if (mnt->mnt_flags & MNT_NOATIME)
1206 		goto out;
1207 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1208 		goto out;
1209 	if (mnt->mnt_flags & MNT_RELATIME) {
1210 		/*
1211 		 * With relative atime, only update atime if the previous
1212 		 * atime is earlier than either the ctime or mtime.
1213 		 */
1214 		if (timespec_compare(&inode->i_mtime, &inode->i_atime) < 0 &&
1215 		    timespec_compare(&inode->i_ctime, &inode->i_atime) < 0)
1216 			goto out;
1217 	}
1218 
1219 	now = current_fs_time(inode->i_sb);
1220 	if (timespec_equal(&inode->i_atime, &now))
1221 		goto out;
1222 
1223 	inode->i_atime = now;
1224 	mark_inode_dirty_sync(inode);
1225 out:
1226 	mnt_drop_write(mnt);
1227 }
1228 EXPORT_SYMBOL(touch_atime);
1229 
1230 /**
1231  *	file_update_time	-	update mtime and ctime time
1232  *	@file: file accessed
1233  *
1234  *	Update the mtime and ctime members of an inode and mark the inode
1235  *	for writeback.  Note that this function is meant exclusively for
1236  *	usage in the file write path of filesystems, and filesystems may
1237  *	choose to explicitly ignore update via this function with the
1238  *	S_NOCTIME inode flag, e.g. for network filesystem where these
1239  *	timestamps are handled by the server.
1240  */
1241 
1242 void file_update_time(struct file *file)
1243 {
1244 	struct inode *inode = file->f_path.dentry->d_inode;
1245 	struct timespec now;
1246 	int sync_it = 0;
1247 	int err;
1248 
1249 	if (IS_NOCMTIME(inode))
1250 		return;
1251 
1252 	err = mnt_want_write(file->f_path.mnt);
1253 	if (err)
1254 		return;
1255 
1256 	now = current_fs_time(inode->i_sb);
1257 	if (!timespec_equal(&inode->i_mtime, &now)) {
1258 		inode->i_mtime = now;
1259 		sync_it = 1;
1260 	}
1261 
1262 	if (!timespec_equal(&inode->i_ctime, &now)) {
1263 		inode->i_ctime = now;
1264 		sync_it = 1;
1265 	}
1266 
1267 	if (IS_I_VERSION(inode)) {
1268 		inode_inc_iversion(inode);
1269 		sync_it = 1;
1270 	}
1271 
1272 	if (sync_it)
1273 		mark_inode_dirty_sync(inode);
1274 	mnt_drop_write(file->f_path.mnt);
1275 }
1276 
1277 EXPORT_SYMBOL(file_update_time);
1278 
1279 int inode_needs_sync(struct inode *inode)
1280 {
1281 	if (IS_SYNC(inode))
1282 		return 1;
1283 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1284 		return 1;
1285 	return 0;
1286 }
1287 
1288 EXPORT_SYMBOL(inode_needs_sync);
1289 
1290 int inode_wait(void *word)
1291 {
1292 	schedule();
1293 	return 0;
1294 }
1295 
1296 /*
1297  * If we try to find an inode in the inode hash while it is being
1298  * deleted, we have to wait until the filesystem completes its
1299  * deletion before reporting that it isn't found.  This function waits
1300  * until the deletion _might_ have completed.  Callers are responsible
1301  * to recheck inode state.
1302  *
1303  * It doesn't matter if I_LOCK is not set initially, a call to
1304  * wake_up_inode() after removing from the hash list will DTRT.
1305  *
1306  * This is called with inode_lock held.
1307  */
1308 static void __wait_on_freeing_inode(struct inode *inode)
1309 {
1310 	wait_queue_head_t *wq;
1311 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_LOCK);
1312 	wq = bit_waitqueue(&inode->i_state, __I_LOCK);
1313 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1314 	spin_unlock(&inode_lock);
1315 	schedule();
1316 	finish_wait(wq, &wait.wait);
1317 	spin_lock(&inode_lock);
1318 }
1319 
1320 /*
1321  * We rarely want to lock two inodes that do not have a parent/child
1322  * relationship (such as directory, child inode) simultaneously. The
1323  * vast majority of file systems should be able to get along fine
1324  * without this. Do not use these functions except as a last resort.
1325  */
1326 void inode_double_lock(struct inode *inode1, struct inode *inode2)
1327 {
1328 	if (inode1 == NULL || inode2 == NULL || inode1 == inode2) {
1329 		if (inode1)
1330 			mutex_lock(&inode1->i_mutex);
1331 		else if (inode2)
1332 			mutex_lock(&inode2->i_mutex);
1333 		return;
1334 	}
1335 
1336 	if (inode1 < inode2) {
1337 		mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
1338 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
1339 	} else {
1340 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_PARENT);
1341 		mutex_lock_nested(&inode1->i_mutex, I_MUTEX_CHILD);
1342 	}
1343 }
1344 EXPORT_SYMBOL(inode_double_lock);
1345 
1346 void inode_double_unlock(struct inode *inode1, struct inode *inode2)
1347 {
1348 	if (inode1)
1349 		mutex_unlock(&inode1->i_mutex);
1350 
1351 	if (inode2 && inode2 != inode1)
1352 		mutex_unlock(&inode2->i_mutex);
1353 }
1354 EXPORT_SYMBOL(inode_double_unlock);
1355 
1356 static __initdata unsigned long ihash_entries;
1357 static int __init set_ihash_entries(char *str)
1358 {
1359 	if (!str)
1360 		return 0;
1361 	ihash_entries = simple_strtoul(str, &str, 0);
1362 	return 1;
1363 }
1364 __setup("ihash_entries=", set_ihash_entries);
1365 
1366 /*
1367  * Initialize the waitqueues and inode hash table.
1368  */
1369 void __init inode_init_early(void)
1370 {
1371 	int loop;
1372 
1373 	/* If hashes are distributed across NUMA nodes, defer
1374 	 * hash allocation until vmalloc space is available.
1375 	 */
1376 	if (hashdist)
1377 		return;
1378 
1379 	inode_hashtable =
1380 		alloc_large_system_hash("Inode-cache",
1381 					sizeof(struct hlist_head),
1382 					ihash_entries,
1383 					14,
1384 					HASH_EARLY,
1385 					&i_hash_shift,
1386 					&i_hash_mask,
1387 					0);
1388 
1389 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1390 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1391 }
1392 
1393 void __init inode_init(void)
1394 {
1395 	int loop;
1396 
1397 	/* inode slab cache */
1398 	inode_cachep = kmem_cache_create("inode_cache",
1399 					 sizeof(struct inode),
1400 					 0,
1401 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1402 					 SLAB_MEM_SPREAD),
1403 					 init_once);
1404 	register_shrinker(&icache_shrinker);
1405 
1406 	/* Hash may have been set up in inode_init_early */
1407 	if (!hashdist)
1408 		return;
1409 
1410 	inode_hashtable =
1411 		alloc_large_system_hash("Inode-cache",
1412 					sizeof(struct hlist_head),
1413 					ihash_entries,
1414 					14,
1415 					0,
1416 					&i_hash_shift,
1417 					&i_hash_mask,
1418 					0);
1419 
1420 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1421 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1422 }
1423 
1424 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1425 {
1426 	inode->i_mode = mode;
1427 	if (S_ISCHR(mode)) {
1428 		inode->i_fop = &def_chr_fops;
1429 		inode->i_rdev = rdev;
1430 	} else if (S_ISBLK(mode)) {
1431 		inode->i_fop = &def_blk_fops;
1432 		inode->i_rdev = rdev;
1433 	} else if (S_ISFIFO(mode))
1434 		inode->i_fop = &def_fifo_fops;
1435 	else if (S_ISSOCK(mode))
1436 		inode->i_fop = &bad_sock_fops;
1437 	else
1438 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o)\n",
1439 		       mode);
1440 }
1441 EXPORT_SYMBOL(init_special_inode);
1442