1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) 1997 Linus Torvalds 4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 5 */ 6 #include <linux/export.h> 7 #include <linux/fs.h> 8 #include <linux/mm.h> 9 #include <linux/backing-dev.h> 10 #include <linux/hash.h> 11 #include <linux/swap.h> 12 #include <linux/security.h> 13 #include <linux/cdev.h> 14 #include <linux/memblock.h> 15 #include <linux/fsnotify.h> 16 #include <linux/mount.h> 17 #include <linux/posix_acl.h> 18 #include <linux/prefetch.h> 19 #include <linux/buffer_head.h> /* for inode_has_buffers */ 20 #include <linux/ratelimit.h> 21 #include <linux/list_lru.h> 22 #include <linux/iversion.h> 23 #include <trace/events/writeback.h> 24 #include "internal.h" 25 26 /* 27 * Inode locking rules: 28 * 29 * inode->i_lock protects: 30 * inode->i_state, inode->i_hash, __iget() 31 * Inode LRU list locks protect: 32 * inode->i_sb->s_inode_lru, inode->i_lru 33 * inode->i_sb->s_inode_list_lock protects: 34 * inode->i_sb->s_inodes, inode->i_sb_list 35 * bdi->wb.list_lock protects: 36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 37 * inode_hash_lock protects: 38 * inode_hashtable, inode->i_hash 39 * 40 * Lock ordering: 41 * 42 * inode->i_sb->s_inode_list_lock 43 * inode->i_lock 44 * Inode LRU list locks 45 * 46 * bdi->wb.list_lock 47 * inode->i_lock 48 * 49 * inode_hash_lock 50 * inode->i_sb->s_inode_list_lock 51 * inode->i_lock 52 * 53 * iunique_lock 54 * inode_hash_lock 55 */ 56 57 static unsigned int i_hash_mask __read_mostly; 58 static unsigned int i_hash_shift __read_mostly; 59 static struct hlist_head *inode_hashtable __read_mostly; 60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 61 62 /* 63 * Empty aops. Can be used for the cases where the user does not 64 * define any of the address_space operations. 65 */ 66 const struct address_space_operations empty_aops = { 67 }; 68 EXPORT_SYMBOL(empty_aops); 69 70 /* 71 * Statistics gathering.. 72 */ 73 struct inodes_stat_t inodes_stat; 74 75 static DEFINE_PER_CPU(unsigned long, nr_inodes); 76 static DEFINE_PER_CPU(unsigned long, nr_unused); 77 78 static struct kmem_cache *inode_cachep __read_mostly; 79 80 static long get_nr_inodes(void) 81 { 82 int i; 83 long sum = 0; 84 for_each_possible_cpu(i) 85 sum += per_cpu(nr_inodes, i); 86 return sum < 0 ? 0 : sum; 87 } 88 89 static inline long get_nr_inodes_unused(void) 90 { 91 int i; 92 long sum = 0; 93 for_each_possible_cpu(i) 94 sum += per_cpu(nr_unused, i); 95 return sum < 0 ? 0 : sum; 96 } 97 98 long get_nr_dirty_inodes(void) 99 { 100 /* not actually dirty inodes, but a wild approximation */ 101 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 102 return nr_dirty > 0 ? nr_dirty : 0; 103 } 104 105 /* 106 * Handle nr_inode sysctl 107 */ 108 #ifdef CONFIG_SYSCTL 109 int proc_nr_inodes(struct ctl_table *table, int write, 110 void *buffer, size_t *lenp, loff_t *ppos) 111 { 112 inodes_stat.nr_inodes = get_nr_inodes(); 113 inodes_stat.nr_unused = get_nr_inodes_unused(); 114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 115 } 116 #endif 117 118 static int no_open(struct inode *inode, struct file *file) 119 { 120 return -ENXIO; 121 } 122 123 /** 124 * inode_init_always - perform inode structure initialisation 125 * @sb: superblock inode belongs to 126 * @inode: inode to initialise 127 * 128 * These are initializations that need to be done on every inode 129 * allocation as the fields are not initialised by slab allocation. 130 */ 131 int inode_init_always(struct super_block *sb, struct inode *inode) 132 { 133 static const struct inode_operations empty_iops; 134 static const struct file_operations no_open_fops = {.open = no_open}; 135 struct address_space *const mapping = &inode->i_data; 136 137 inode->i_sb = sb; 138 inode->i_blkbits = sb->s_blocksize_bits; 139 inode->i_flags = 0; 140 atomic64_set(&inode->i_sequence, 0); 141 atomic_set(&inode->i_count, 1); 142 inode->i_op = &empty_iops; 143 inode->i_fop = &no_open_fops; 144 inode->i_ino = 0; 145 inode->__i_nlink = 1; 146 inode->i_opflags = 0; 147 if (sb->s_xattr) 148 inode->i_opflags |= IOP_XATTR; 149 i_uid_write(inode, 0); 150 i_gid_write(inode, 0); 151 atomic_set(&inode->i_writecount, 0); 152 inode->i_size = 0; 153 inode->i_write_hint = WRITE_LIFE_NOT_SET; 154 inode->i_blocks = 0; 155 inode->i_bytes = 0; 156 inode->i_generation = 0; 157 inode->i_pipe = NULL; 158 inode->i_cdev = NULL; 159 inode->i_link = NULL; 160 inode->i_dir_seq = 0; 161 inode->i_rdev = 0; 162 inode->dirtied_when = 0; 163 164 #ifdef CONFIG_CGROUP_WRITEBACK 165 inode->i_wb_frn_winner = 0; 166 inode->i_wb_frn_avg_time = 0; 167 inode->i_wb_frn_history = 0; 168 #endif 169 170 if (security_inode_alloc(inode)) 171 goto out; 172 spin_lock_init(&inode->i_lock); 173 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 174 175 init_rwsem(&inode->i_rwsem); 176 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 177 178 atomic_set(&inode->i_dio_count, 0); 179 180 mapping->a_ops = &empty_aops; 181 mapping->host = inode; 182 mapping->flags = 0; 183 mapping->wb_err = 0; 184 atomic_set(&mapping->i_mmap_writable, 0); 185 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 186 atomic_set(&mapping->nr_thps, 0); 187 #endif 188 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 189 mapping->private_data = NULL; 190 mapping->writeback_index = 0; 191 init_rwsem(&mapping->invalidate_lock); 192 lockdep_set_class_and_name(&mapping->invalidate_lock, 193 &sb->s_type->invalidate_lock_key, 194 "mapping.invalidate_lock"); 195 inode->i_private = NULL; 196 inode->i_mapping = mapping; 197 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 198 #ifdef CONFIG_FS_POSIX_ACL 199 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 200 #endif 201 202 #ifdef CONFIG_FSNOTIFY 203 inode->i_fsnotify_mask = 0; 204 #endif 205 inode->i_flctx = NULL; 206 this_cpu_inc(nr_inodes); 207 208 return 0; 209 out: 210 return -ENOMEM; 211 } 212 EXPORT_SYMBOL(inode_init_always); 213 214 void free_inode_nonrcu(struct inode *inode) 215 { 216 kmem_cache_free(inode_cachep, inode); 217 } 218 EXPORT_SYMBOL(free_inode_nonrcu); 219 220 static void i_callback(struct rcu_head *head) 221 { 222 struct inode *inode = container_of(head, struct inode, i_rcu); 223 if (inode->free_inode) 224 inode->free_inode(inode); 225 else 226 free_inode_nonrcu(inode); 227 } 228 229 static struct inode *alloc_inode(struct super_block *sb) 230 { 231 const struct super_operations *ops = sb->s_op; 232 struct inode *inode; 233 234 if (ops->alloc_inode) 235 inode = ops->alloc_inode(sb); 236 else 237 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 238 239 if (!inode) 240 return NULL; 241 242 if (unlikely(inode_init_always(sb, inode))) { 243 if (ops->destroy_inode) { 244 ops->destroy_inode(inode); 245 if (!ops->free_inode) 246 return NULL; 247 } 248 inode->free_inode = ops->free_inode; 249 i_callback(&inode->i_rcu); 250 return NULL; 251 } 252 253 return inode; 254 } 255 256 void __destroy_inode(struct inode *inode) 257 { 258 BUG_ON(inode_has_buffers(inode)); 259 inode_detach_wb(inode); 260 security_inode_free(inode); 261 fsnotify_inode_delete(inode); 262 locks_free_lock_context(inode); 263 if (!inode->i_nlink) { 264 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 265 atomic_long_dec(&inode->i_sb->s_remove_count); 266 } 267 268 #ifdef CONFIG_FS_POSIX_ACL 269 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 270 posix_acl_release(inode->i_acl); 271 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 272 posix_acl_release(inode->i_default_acl); 273 #endif 274 this_cpu_dec(nr_inodes); 275 } 276 EXPORT_SYMBOL(__destroy_inode); 277 278 static void destroy_inode(struct inode *inode) 279 { 280 const struct super_operations *ops = inode->i_sb->s_op; 281 282 BUG_ON(!list_empty(&inode->i_lru)); 283 __destroy_inode(inode); 284 if (ops->destroy_inode) { 285 ops->destroy_inode(inode); 286 if (!ops->free_inode) 287 return; 288 } 289 inode->free_inode = ops->free_inode; 290 call_rcu(&inode->i_rcu, i_callback); 291 } 292 293 /** 294 * drop_nlink - directly drop an inode's link count 295 * @inode: inode 296 * 297 * This is a low-level filesystem helper to replace any 298 * direct filesystem manipulation of i_nlink. In cases 299 * where we are attempting to track writes to the 300 * filesystem, a decrement to zero means an imminent 301 * write when the file is truncated and actually unlinked 302 * on the filesystem. 303 */ 304 void drop_nlink(struct inode *inode) 305 { 306 WARN_ON(inode->i_nlink == 0); 307 inode->__i_nlink--; 308 if (!inode->i_nlink) 309 atomic_long_inc(&inode->i_sb->s_remove_count); 310 } 311 EXPORT_SYMBOL(drop_nlink); 312 313 /** 314 * clear_nlink - directly zero an inode's link count 315 * @inode: inode 316 * 317 * This is a low-level filesystem helper to replace any 318 * direct filesystem manipulation of i_nlink. See 319 * drop_nlink() for why we care about i_nlink hitting zero. 320 */ 321 void clear_nlink(struct inode *inode) 322 { 323 if (inode->i_nlink) { 324 inode->__i_nlink = 0; 325 atomic_long_inc(&inode->i_sb->s_remove_count); 326 } 327 } 328 EXPORT_SYMBOL(clear_nlink); 329 330 /** 331 * set_nlink - directly set an inode's link count 332 * @inode: inode 333 * @nlink: new nlink (should be non-zero) 334 * 335 * This is a low-level filesystem helper to replace any 336 * direct filesystem manipulation of i_nlink. 337 */ 338 void set_nlink(struct inode *inode, unsigned int nlink) 339 { 340 if (!nlink) { 341 clear_nlink(inode); 342 } else { 343 /* Yes, some filesystems do change nlink from zero to one */ 344 if (inode->i_nlink == 0) 345 atomic_long_dec(&inode->i_sb->s_remove_count); 346 347 inode->__i_nlink = nlink; 348 } 349 } 350 EXPORT_SYMBOL(set_nlink); 351 352 /** 353 * inc_nlink - directly increment an inode's link count 354 * @inode: inode 355 * 356 * This is a low-level filesystem helper to replace any 357 * direct filesystem manipulation of i_nlink. Currently, 358 * it is only here for parity with dec_nlink(). 359 */ 360 void inc_nlink(struct inode *inode) 361 { 362 if (unlikely(inode->i_nlink == 0)) { 363 WARN_ON(!(inode->i_state & I_LINKABLE)); 364 atomic_long_dec(&inode->i_sb->s_remove_count); 365 } 366 367 inode->__i_nlink++; 368 } 369 EXPORT_SYMBOL(inc_nlink); 370 371 static void __address_space_init_once(struct address_space *mapping) 372 { 373 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 374 init_rwsem(&mapping->i_mmap_rwsem); 375 INIT_LIST_HEAD(&mapping->private_list); 376 spin_lock_init(&mapping->private_lock); 377 mapping->i_mmap = RB_ROOT_CACHED; 378 } 379 380 void address_space_init_once(struct address_space *mapping) 381 { 382 memset(mapping, 0, sizeof(*mapping)); 383 __address_space_init_once(mapping); 384 } 385 EXPORT_SYMBOL(address_space_init_once); 386 387 /* 388 * These are initializations that only need to be done 389 * once, because the fields are idempotent across use 390 * of the inode, so let the slab aware of that. 391 */ 392 void inode_init_once(struct inode *inode) 393 { 394 memset(inode, 0, sizeof(*inode)); 395 INIT_HLIST_NODE(&inode->i_hash); 396 INIT_LIST_HEAD(&inode->i_devices); 397 INIT_LIST_HEAD(&inode->i_io_list); 398 INIT_LIST_HEAD(&inode->i_wb_list); 399 INIT_LIST_HEAD(&inode->i_lru); 400 __address_space_init_once(&inode->i_data); 401 i_size_ordered_init(inode); 402 } 403 EXPORT_SYMBOL(inode_init_once); 404 405 static void init_once(void *foo) 406 { 407 struct inode *inode = (struct inode *) foo; 408 409 inode_init_once(inode); 410 } 411 412 /* 413 * inode->i_lock must be held 414 */ 415 void __iget(struct inode *inode) 416 { 417 atomic_inc(&inode->i_count); 418 } 419 420 /* 421 * get additional reference to inode; caller must already hold one. 422 */ 423 void ihold(struct inode *inode) 424 { 425 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 426 } 427 EXPORT_SYMBOL(ihold); 428 429 static void __inode_add_lru(struct inode *inode, bool rotate) 430 { 431 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE)) 432 return; 433 if (atomic_read(&inode->i_count)) 434 return; 435 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 436 return; 437 if (!mapping_shrinkable(&inode->i_data)) 438 return; 439 440 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) 441 this_cpu_inc(nr_unused); 442 else if (rotate) 443 inode->i_state |= I_REFERENCED; 444 } 445 446 /* 447 * Add inode to LRU if needed (inode is unused and clean). 448 * 449 * Needs inode->i_lock held. 450 */ 451 void inode_add_lru(struct inode *inode) 452 { 453 __inode_add_lru(inode, false); 454 } 455 456 static void inode_lru_list_del(struct inode *inode) 457 { 458 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) 459 this_cpu_dec(nr_unused); 460 } 461 462 /** 463 * inode_sb_list_add - add inode to the superblock list of inodes 464 * @inode: inode to add 465 */ 466 void inode_sb_list_add(struct inode *inode) 467 { 468 spin_lock(&inode->i_sb->s_inode_list_lock); 469 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 470 spin_unlock(&inode->i_sb->s_inode_list_lock); 471 } 472 EXPORT_SYMBOL_GPL(inode_sb_list_add); 473 474 static inline void inode_sb_list_del(struct inode *inode) 475 { 476 if (!list_empty(&inode->i_sb_list)) { 477 spin_lock(&inode->i_sb->s_inode_list_lock); 478 list_del_init(&inode->i_sb_list); 479 spin_unlock(&inode->i_sb->s_inode_list_lock); 480 } 481 } 482 483 static unsigned long hash(struct super_block *sb, unsigned long hashval) 484 { 485 unsigned long tmp; 486 487 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 488 L1_CACHE_BYTES; 489 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 490 return tmp & i_hash_mask; 491 } 492 493 /** 494 * __insert_inode_hash - hash an inode 495 * @inode: unhashed inode 496 * @hashval: unsigned long value used to locate this object in the 497 * inode_hashtable. 498 * 499 * Add an inode to the inode hash for this superblock. 500 */ 501 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 502 { 503 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 504 505 spin_lock(&inode_hash_lock); 506 spin_lock(&inode->i_lock); 507 hlist_add_head_rcu(&inode->i_hash, b); 508 spin_unlock(&inode->i_lock); 509 spin_unlock(&inode_hash_lock); 510 } 511 EXPORT_SYMBOL(__insert_inode_hash); 512 513 /** 514 * __remove_inode_hash - remove an inode from the hash 515 * @inode: inode to unhash 516 * 517 * Remove an inode from the superblock. 518 */ 519 void __remove_inode_hash(struct inode *inode) 520 { 521 spin_lock(&inode_hash_lock); 522 spin_lock(&inode->i_lock); 523 hlist_del_init_rcu(&inode->i_hash); 524 spin_unlock(&inode->i_lock); 525 spin_unlock(&inode_hash_lock); 526 } 527 EXPORT_SYMBOL(__remove_inode_hash); 528 529 void dump_mapping(const struct address_space *mapping) 530 { 531 struct inode *host; 532 const struct address_space_operations *a_ops; 533 struct hlist_node *dentry_first; 534 struct dentry *dentry_ptr; 535 struct dentry dentry; 536 unsigned long ino; 537 538 /* 539 * If mapping is an invalid pointer, we don't want to crash 540 * accessing it, so probe everything depending on it carefully. 541 */ 542 if (get_kernel_nofault(host, &mapping->host) || 543 get_kernel_nofault(a_ops, &mapping->a_ops)) { 544 pr_warn("invalid mapping:%px\n", mapping); 545 return; 546 } 547 548 if (!host) { 549 pr_warn("aops:%ps\n", a_ops); 550 return; 551 } 552 553 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) || 554 get_kernel_nofault(ino, &host->i_ino)) { 555 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host); 556 return; 557 } 558 559 if (!dentry_first) { 560 pr_warn("aops:%ps ino:%lx\n", a_ops, ino); 561 return; 562 } 563 564 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias); 565 if (get_kernel_nofault(dentry, dentry_ptr)) { 566 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n", 567 a_ops, ino, dentry_ptr); 568 return; 569 } 570 571 /* 572 * if dentry is corrupted, the %pd handler may still crash, 573 * but it's unlikely that we reach here with a corrupt mapping 574 */ 575 pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry); 576 } 577 578 void clear_inode(struct inode *inode) 579 { 580 /* 581 * We have to cycle the i_pages lock here because reclaim can be in the 582 * process of removing the last page (in __delete_from_page_cache()) 583 * and we must not free the mapping under it. 584 */ 585 xa_lock_irq(&inode->i_data.i_pages); 586 BUG_ON(inode->i_data.nrpages); 587 /* 588 * Almost always, mapping_empty(&inode->i_data) here; but there are 589 * two known and long-standing ways in which nodes may get left behind 590 * (when deep radix-tree node allocation failed partway; or when THP 591 * collapse_file() failed). Until those two known cases are cleaned up, 592 * or a cleanup function is called here, do not BUG_ON(!mapping_empty), 593 * nor even WARN_ON(!mapping_empty). 594 */ 595 xa_unlock_irq(&inode->i_data.i_pages); 596 BUG_ON(!list_empty(&inode->i_data.private_list)); 597 BUG_ON(!(inode->i_state & I_FREEING)); 598 BUG_ON(inode->i_state & I_CLEAR); 599 BUG_ON(!list_empty(&inode->i_wb_list)); 600 /* don't need i_lock here, no concurrent mods to i_state */ 601 inode->i_state = I_FREEING | I_CLEAR; 602 } 603 EXPORT_SYMBOL(clear_inode); 604 605 /* 606 * Free the inode passed in, removing it from the lists it is still connected 607 * to. We remove any pages still attached to the inode and wait for any IO that 608 * is still in progress before finally destroying the inode. 609 * 610 * An inode must already be marked I_FREEING so that we avoid the inode being 611 * moved back onto lists if we race with other code that manipulates the lists 612 * (e.g. writeback_single_inode). The caller is responsible for setting this. 613 * 614 * An inode must already be removed from the LRU list before being evicted from 615 * the cache. This should occur atomically with setting the I_FREEING state 616 * flag, so no inodes here should ever be on the LRU when being evicted. 617 */ 618 static void evict(struct inode *inode) 619 { 620 const struct super_operations *op = inode->i_sb->s_op; 621 622 BUG_ON(!(inode->i_state & I_FREEING)); 623 BUG_ON(!list_empty(&inode->i_lru)); 624 625 if (!list_empty(&inode->i_io_list)) 626 inode_io_list_del(inode); 627 628 inode_sb_list_del(inode); 629 630 /* 631 * Wait for flusher thread to be done with the inode so that filesystem 632 * does not start destroying it while writeback is still running. Since 633 * the inode has I_FREEING set, flusher thread won't start new work on 634 * the inode. We just have to wait for running writeback to finish. 635 */ 636 inode_wait_for_writeback(inode); 637 638 if (op->evict_inode) { 639 op->evict_inode(inode); 640 } else { 641 truncate_inode_pages_final(&inode->i_data); 642 clear_inode(inode); 643 } 644 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 645 cd_forget(inode); 646 647 remove_inode_hash(inode); 648 649 spin_lock(&inode->i_lock); 650 wake_up_bit(&inode->i_state, __I_NEW); 651 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 652 spin_unlock(&inode->i_lock); 653 654 destroy_inode(inode); 655 } 656 657 /* 658 * dispose_list - dispose of the contents of a local list 659 * @head: the head of the list to free 660 * 661 * Dispose-list gets a local list with local inodes in it, so it doesn't 662 * need to worry about list corruption and SMP locks. 663 */ 664 static void dispose_list(struct list_head *head) 665 { 666 while (!list_empty(head)) { 667 struct inode *inode; 668 669 inode = list_first_entry(head, struct inode, i_lru); 670 list_del_init(&inode->i_lru); 671 672 evict(inode); 673 cond_resched(); 674 } 675 } 676 677 /** 678 * evict_inodes - evict all evictable inodes for a superblock 679 * @sb: superblock to operate on 680 * 681 * Make sure that no inodes with zero refcount are retained. This is 682 * called by superblock shutdown after having SB_ACTIVE flag removed, 683 * so any inode reaching zero refcount during or after that call will 684 * be immediately evicted. 685 */ 686 void evict_inodes(struct super_block *sb) 687 { 688 struct inode *inode, *next; 689 LIST_HEAD(dispose); 690 691 again: 692 spin_lock(&sb->s_inode_list_lock); 693 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 694 if (atomic_read(&inode->i_count)) 695 continue; 696 697 spin_lock(&inode->i_lock); 698 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 699 spin_unlock(&inode->i_lock); 700 continue; 701 } 702 703 inode->i_state |= I_FREEING; 704 inode_lru_list_del(inode); 705 spin_unlock(&inode->i_lock); 706 list_add(&inode->i_lru, &dispose); 707 708 /* 709 * We can have a ton of inodes to evict at unmount time given 710 * enough memory, check to see if we need to go to sleep for a 711 * bit so we don't livelock. 712 */ 713 if (need_resched()) { 714 spin_unlock(&sb->s_inode_list_lock); 715 cond_resched(); 716 dispose_list(&dispose); 717 goto again; 718 } 719 } 720 spin_unlock(&sb->s_inode_list_lock); 721 722 dispose_list(&dispose); 723 } 724 EXPORT_SYMBOL_GPL(evict_inodes); 725 726 /** 727 * invalidate_inodes - attempt to free all inodes on a superblock 728 * @sb: superblock to operate on 729 * @kill_dirty: flag to guide handling of dirty inodes 730 * 731 * Attempts to free all inodes for a given superblock. If there were any 732 * busy inodes return a non-zero value, else zero. 733 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 734 * them as busy. 735 */ 736 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 737 { 738 int busy = 0; 739 struct inode *inode, *next; 740 LIST_HEAD(dispose); 741 742 again: 743 spin_lock(&sb->s_inode_list_lock); 744 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 745 spin_lock(&inode->i_lock); 746 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 747 spin_unlock(&inode->i_lock); 748 continue; 749 } 750 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) { 751 spin_unlock(&inode->i_lock); 752 busy = 1; 753 continue; 754 } 755 if (atomic_read(&inode->i_count)) { 756 spin_unlock(&inode->i_lock); 757 busy = 1; 758 continue; 759 } 760 761 inode->i_state |= I_FREEING; 762 inode_lru_list_del(inode); 763 spin_unlock(&inode->i_lock); 764 list_add(&inode->i_lru, &dispose); 765 if (need_resched()) { 766 spin_unlock(&sb->s_inode_list_lock); 767 cond_resched(); 768 dispose_list(&dispose); 769 goto again; 770 } 771 } 772 spin_unlock(&sb->s_inode_list_lock); 773 774 dispose_list(&dispose); 775 776 return busy; 777 } 778 779 /* 780 * Isolate the inode from the LRU in preparation for freeing it. 781 * 782 * If the inode has the I_REFERENCED flag set, then it means that it has been 783 * used recently - the flag is set in iput_final(). When we encounter such an 784 * inode, clear the flag and move it to the back of the LRU so it gets another 785 * pass through the LRU before it gets reclaimed. This is necessary because of 786 * the fact we are doing lazy LRU updates to minimise lock contention so the 787 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 788 * with this flag set because they are the inodes that are out of order. 789 */ 790 static enum lru_status inode_lru_isolate(struct list_head *item, 791 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 792 { 793 struct list_head *freeable = arg; 794 struct inode *inode = container_of(item, struct inode, i_lru); 795 796 /* 797 * We are inverting the lru lock/inode->i_lock here, so use a 798 * trylock. If we fail to get the lock, just skip it. 799 */ 800 if (!spin_trylock(&inode->i_lock)) 801 return LRU_SKIP; 802 803 /* 804 * Inodes can get referenced, redirtied, or repopulated while 805 * they're already on the LRU, and this can make them 806 * unreclaimable for a while. Remove them lazily here; iput, 807 * sync, or the last page cache deletion will requeue them. 808 */ 809 if (atomic_read(&inode->i_count) || 810 (inode->i_state & ~I_REFERENCED) || 811 !mapping_shrinkable(&inode->i_data)) { 812 list_lru_isolate(lru, &inode->i_lru); 813 spin_unlock(&inode->i_lock); 814 this_cpu_dec(nr_unused); 815 return LRU_REMOVED; 816 } 817 818 /* Recently referenced inodes get one more pass */ 819 if (inode->i_state & I_REFERENCED) { 820 inode->i_state &= ~I_REFERENCED; 821 spin_unlock(&inode->i_lock); 822 return LRU_ROTATE; 823 } 824 825 /* 826 * On highmem systems, mapping_shrinkable() permits dropping 827 * page cache in order to free up struct inodes: lowmem might 828 * be under pressure before the cache inside the highmem zone. 829 */ 830 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) { 831 __iget(inode); 832 spin_unlock(&inode->i_lock); 833 spin_unlock(lru_lock); 834 if (remove_inode_buffers(inode)) { 835 unsigned long reap; 836 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 837 if (current_is_kswapd()) 838 __count_vm_events(KSWAPD_INODESTEAL, reap); 839 else 840 __count_vm_events(PGINODESTEAL, reap); 841 if (current->reclaim_state) 842 current->reclaim_state->reclaimed_slab += reap; 843 } 844 iput(inode); 845 spin_lock(lru_lock); 846 return LRU_RETRY; 847 } 848 849 WARN_ON(inode->i_state & I_NEW); 850 inode->i_state |= I_FREEING; 851 list_lru_isolate_move(lru, &inode->i_lru, freeable); 852 spin_unlock(&inode->i_lock); 853 854 this_cpu_dec(nr_unused); 855 return LRU_REMOVED; 856 } 857 858 /* 859 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 860 * This is called from the superblock shrinker function with a number of inodes 861 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 862 * then are freed outside inode_lock by dispose_list(). 863 */ 864 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 865 { 866 LIST_HEAD(freeable); 867 long freed; 868 869 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 870 inode_lru_isolate, &freeable); 871 dispose_list(&freeable); 872 return freed; 873 } 874 875 static void __wait_on_freeing_inode(struct inode *inode); 876 /* 877 * Called with the inode lock held. 878 */ 879 static struct inode *find_inode(struct super_block *sb, 880 struct hlist_head *head, 881 int (*test)(struct inode *, void *), 882 void *data) 883 { 884 struct inode *inode = NULL; 885 886 repeat: 887 hlist_for_each_entry(inode, head, i_hash) { 888 if (inode->i_sb != sb) 889 continue; 890 if (!test(inode, data)) 891 continue; 892 spin_lock(&inode->i_lock); 893 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 894 __wait_on_freeing_inode(inode); 895 goto repeat; 896 } 897 if (unlikely(inode->i_state & I_CREATING)) { 898 spin_unlock(&inode->i_lock); 899 return ERR_PTR(-ESTALE); 900 } 901 __iget(inode); 902 spin_unlock(&inode->i_lock); 903 return inode; 904 } 905 return NULL; 906 } 907 908 /* 909 * find_inode_fast is the fast path version of find_inode, see the comment at 910 * iget_locked for details. 911 */ 912 static struct inode *find_inode_fast(struct super_block *sb, 913 struct hlist_head *head, unsigned long ino) 914 { 915 struct inode *inode = NULL; 916 917 repeat: 918 hlist_for_each_entry(inode, head, i_hash) { 919 if (inode->i_ino != ino) 920 continue; 921 if (inode->i_sb != sb) 922 continue; 923 spin_lock(&inode->i_lock); 924 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 925 __wait_on_freeing_inode(inode); 926 goto repeat; 927 } 928 if (unlikely(inode->i_state & I_CREATING)) { 929 spin_unlock(&inode->i_lock); 930 return ERR_PTR(-ESTALE); 931 } 932 __iget(inode); 933 spin_unlock(&inode->i_lock); 934 return inode; 935 } 936 return NULL; 937 } 938 939 /* 940 * Each cpu owns a range of LAST_INO_BATCH numbers. 941 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 942 * to renew the exhausted range. 943 * 944 * This does not significantly increase overflow rate because every CPU can 945 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 946 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 947 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 948 * overflow rate by 2x, which does not seem too significant. 949 * 950 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 951 * error if st_ino won't fit in target struct field. Use 32bit counter 952 * here to attempt to avoid that. 953 */ 954 #define LAST_INO_BATCH 1024 955 static DEFINE_PER_CPU(unsigned int, last_ino); 956 957 unsigned int get_next_ino(void) 958 { 959 unsigned int *p = &get_cpu_var(last_ino); 960 unsigned int res = *p; 961 962 #ifdef CONFIG_SMP 963 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 964 static atomic_t shared_last_ino; 965 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 966 967 res = next - LAST_INO_BATCH; 968 } 969 #endif 970 971 res++; 972 /* get_next_ino should not provide a 0 inode number */ 973 if (unlikely(!res)) 974 res++; 975 *p = res; 976 put_cpu_var(last_ino); 977 return res; 978 } 979 EXPORT_SYMBOL(get_next_ino); 980 981 /** 982 * new_inode_pseudo - obtain an inode 983 * @sb: superblock 984 * 985 * Allocates a new inode for given superblock. 986 * Inode wont be chained in superblock s_inodes list 987 * This means : 988 * - fs can't be unmount 989 * - quotas, fsnotify, writeback can't work 990 */ 991 struct inode *new_inode_pseudo(struct super_block *sb) 992 { 993 struct inode *inode = alloc_inode(sb); 994 995 if (inode) { 996 spin_lock(&inode->i_lock); 997 inode->i_state = 0; 998 spin_unlock(&inode->i_lock); 999 INIT_LIST_HEAD(&inode->i_sb_list); 1000 } 1001 return inode; 1002 } 1003 1004 /** 1005 * new_inode - obtain an inode 1006 * @sb: superblock 1007 * 1008 * Allocates a new inode for given superblock. The default gfp_mask 1009 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 1010 * If HIGHMEM pages are unsuitable or it is known that pages allocated 1011 * for the page cache are not reclaimable or migratable, 1012 * mapping_set_gfp_mask() must be called with suitable flags on the 1013 * newly created inode's mapping 1014 * 1015 */ 1016 struct inode *new_inode(struct super_block *sb) 1017 { 1018 struct inode *inode; 1019 1020 spin_lock_prefetch(&sb->s_inode_list_lock); 1021 1022 inode = new_inode_pseudo(sb); 1023 if (inode) 1024 inode_sb_list_add(inode); 1025 return inode; 1026 } 1027 EXPORT_SYMBOL(new_inode); 1028 1029 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1030 void lockdep_annotate_inode_mutex_key(struct inode *inode) 1031 { 1032 if (S_ISDIR(inode->i_mode)) { 1033 struct file_system_type *type = inode->i_sb->s_type; 1034 1035 /* Set new key only if filesystem hasn't already changed it */ 1036 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 1037 /* 1038 * ensure nobody is actually holding i_mutex 1039 */ 1040 // mutex_destroy(&inode->i_mutex); 1041 init_rwsem(&inode->i_rwsem); 1042 lockdep_set_class(&inode->i_rwsem, 1043 &type->i_mutex_dir_key); 1044 } 1045 } 1046 } 1047 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 1048 #endif 1049 1050 /** 1051 * unlock_new_inode - clear the I_NEW state and wake up any waiters 1052 * @inode: new inode to unlock 1053 * 1054 * Called when the inode is fully initialised to clear the new state of the 1055 * inode and wake up anyone waiting for the inode to finish initialisation. 1056 */ 1057 void unlock_new_inode(struct inode *inode) 1058 { 1059 lockdep_annotate_inode_mutex_key(inode); 1060 spin_lock(&inode->i_lock); 1061 WARN_ON(!(inode->i_state & I_NEW)); 1062 inode->i_state &= ~I_NEW & ~I_CREATING; 1063 smp_mb(); 1064 wake_up_bit(&inode->i_state, __I_NEW); 1065 spin_unlock(&inode->i_lock); 1066 } 1067 EXPORT_SYMBOL(unlock_new_inode); 1068 1069 void discard_new_inode(struct inode *inode) 1070 { 1071 lockdep_annotate_inode_mutex_key(inode); 1072 spin_lock(&inode->i_lock); 1073 WARN_ON(!(inode->i_state & I_NEW)); 1074 inode->i_state &= ~I_NEW; 1075 smp_mb(); 1076 wake_up_bit(&inode->i_state, __I_NEW); 1077 spin_unlock(&inode->i_lock); 1078 iput(inode); 1079 } 1080 EXPORT_SYMBOL(discard_new_inode); 1081 1082 /** 1083 * lock_two_nondirectories - take two i_mutexes on non-directory objects 1084 * 1085 * Lock any non-NULL argument that is not a directory. 1086 * Zero, one or two objects may be locked by this function. 1087 * 1088 * @inode1: first inode to lock 1089 * @inode2: second inode to lock 1090 */ 1091 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1092 { 1093 if (inode1 > inode2) 1094 swap(inode1, inode2); 1095 1096 if (inode1 && !S_ISDIR(inode1->i_mode)) 1097 inode_lock(inode1); 1098 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 1099 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 1100 } 1101 EXPORT_SYMBOL(lock_two_nondirectories); 1102 1103 /** 1104 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1105 * @inode1: first inode to unlock 1106 * @inode2: second inode to unlock 1107 */ 1108 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1109 { 1110 if (inode1 && !S_ISDIR(inode1->i_mode)) 1111 inode_unlock(inode1); 1112 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 1113 inode_unlock(inode2); 1114 } 1115 EXPORT_SYMBOL(unlock_two_nondirectories); 1116 1117 /** 1118 * inode_insert5 - obtain an inode from a mounted file system 1119 * @inode: pre-allocated inode to use for insert to cache 1120 * @hashval: hash value (usually inode number) to get 1121 * @test: callback used for comparisons between inodes 1122 * @set: callback used to initialize a new struct inode 1123 * @data: opaque data pointer to pass to @test and @set 1124 * 1125 * Search for the inode specified by @hashval and @data in the inode cache, 1126 * and if present it is return it with an increased reference count. This is 1127 * a variant of iget5_locked() for callers that don't want to fail on memory 1128 * allocation of inode. 1129 * 1130 * If the inode is not in cache, insert the pre-allocated inode to cache and 1131 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1132 * to fill it in before unlocking it via unlock_new_inode(). 1133 * 1134 * Note both @test and @set are called with the inode_hash_lock held, so can't 1135 * sleep. 1136 */ 1137 struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1138 int (*test)(struct inode *, void *), 1139 int (*set)(struct inode *, void *), void *data) 1140 { 1141 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1142 struct inode *old; 1143 bool creating = inode->i_state & I_CREATING; 1144 1145 again: 1146 spin_lock(&inode_hash_lock); 1147 old = find_inode(inode->i_sb, head, test, data); 1148 if (unlikely(old)) { 1149 /* 1150 * Uhhuh, somebody else created the same inode under us. 1151 * Use the old inode instead of the preallocated one. 1152 */ 1153 spin_unlock(&inode_hash_lock); 1154 if (IS_ERR(old)) 1155 return NULL; 1156 wait_on_inode(old); 1157 if (unlikely(inode_unhashed(old))) { 1158 iput(old); 1159 goto again; 1160 } 1161 return old; 1162 } 1163 1164 if (set && unlikely(set(inode, data))) { 1165 inode = NULL; 1166 goto unlock; 1167 } 1168 1169 /* 1170 * Return the locked inode with I_NEW set, the 1171 * caller is responsible for filling in the contents 1172 */ 1173 spin_lock(&inode->i_lock); 1174 inode->i_state |= I_NEW; 1175 hlist_add_head_rcu(&inode->i_hash, head); 1176 spin_unlock(&inode->i_lock); 1177 if (!creating) 1178 inode_sb_list_add(inode); 1179 unlock: 1180 spin_unlock(&inode_hash_lock); 1181 1182 return inode; 1183 } 1184 EXPORT_SYMBOL(inode_insert5); 1185 1186 /** 1187 * iget5_locked - obtain an inode from a mounted file system 1188 * @sb: super block of file system 1189 * @hashval: hash value (usually inode number) to get 1190 * @test: callback used for comparisons between inodes 1191 * @set: callback used to initialize a new struct inode 1192 * @data: opaque data pointer to pass to @test and @set 1193 * 1194 * Search for the inode specified by @hashval and @data in the inode cache, 1195 * and if present it is return it with an increased reference count. This is 1196 * a generalized version of iget_locked() for file systems where the inode 1197 * number is not sufficient for unique identification of an inode. 1198 * 1199 * If the inode is not in cache, allocate a new inode and return it locked, 1200 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1201 * before unlocking it via unlock_new_inode(). 1202 * 1203 * Note both @test and @set are called with the inode_hash_lock held, so can't 1204 * sleep. 1205 */ 1206 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1207 int (*test)(struct inode *, void *), 1208 int (*set)(struct inode *, void *), void *data) 1209 { 1210 struct inode *inode = ilookup5(sb, hashval, test, data); 1211 1212 if (!inode) { 1213 struct inode *new = alloc_inode(sb); 1214 1215 if (new) { 1216 new->i_state = 0; 1217 inode = inode_insert5(new, hashval, test, set, data); 1218 if (unlikely(inode != new)) 1219 destroy_inode(new); 1220 } 1221 } 1222 return inode; 1223 } 1224 EXPORT_SYMBOL(iget5_locked); 1225 1226 /** 1227 * iget_locked - obtain an inode from a mounted file system 1228 * @sb: super block of file system 1229 * @ino: inode number to get 1230 * 1231 * Search for the inode specified by @ino in the inode cache and if present 1232 * return it with an increased reference count. This is for file systems 1233 * where the inode number is sufficient for unique identification of an inode. 1234 * 1235 * If the inode is not in cache, allocate a new inode and return it locked, 1236 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1237 * before unlocking it via unlock_new_inode(). 1238 */ 1239 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1240 { 1241 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1242 struct inode *inode; 1243 again: 1244 spin_lock(&inode_hash_lock); 1245 inode = find_inode_fast(sb, head, ino); 1246 spin_unlock(&inode_hash_lock); 1247 if (inode) { 1248 if (IS_ERR(inode)) 1249 return NULL; 1250 wait_on_inode(inode); 1251 if (unlikely(inode_unhashed(inode))) { 1252 iput(inode); 1253 goto again; 1254 } 1255 return inode; 1256 } 1257 1258 inode = alloc_inode(sb); 1259 if (inode) { 1260 struct inode *old; 1261 1262 spin_lock(&inode_hash_lock); 1263 /* We released the lock, so.. */ 1264 old = find_inode_fast(sb, head, ino); 1265 if (!old) { 1266 inode->i_ino = ino; 1267 spin_lock(&inode->i_lock); 1268 inode->i_state = I_NEW; 1269 hlist_add_head_rcu(&inode->i_hash, head); 1270 spin_unlock(&inode->i_lock); 1271 inode_sb_list_add(inode); 1272 spin_unlock(&inode_hash_lock); 1273 1274 /* Return the locked inode with I_NEW set, the 1275 * caller is responsible for filling in the contents 1276 */ 1277 return inode; 1278 } 1279 1280 /* 1281 * Uhhuh, somebody else created the same inode under 1282 * us. Use the old inode instead of the one we just 1283 * allocated. 1284 */ 1285 spin_unlock(&inode_hash_lock); 1286 destroy_inode(inode); 1287 if (IS_ERR(old)) 1288 return NULL; 1289 inode = old; 1290 wait_on_inode(inode); 1291 if (unlikely(inode_unhashed(inode))) { 1292 iput(inode); 1293 goto again; 1294 } 1295 } 1296 return inode; 1297 } 1298 EXPORT_SYMBOL(iget_locked); 1299 1300 /* 1301 * search the inode cache for a matching inode number. 1302 * If we find one, then the inode number we are trying to 1303 * allocate is not unique and so we should not use it. 1304 * 1305 * Returns 1 if the inode number is unique, 0 if it is not. 1306 */ 1307 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1308 { 1309 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1310 struct inode *inode; 1311 1312 hlist_for_each_entry_rcu(inode, b, i_hash) { 1313 if (inode->i_ino == ino && inode->i_sb == sb) 1314 return 0; 1315 } 1316 return 1; 1317 } 1318 1319 /** 1320 * iunique - get a unique inode number 1321 * @sb: superblock 1322 * @max_reserved: highest reserved inode number 1323 * 1324 * Obtain an inode number that is unique on the system for a given 1325 * superblock. This is used by file systems that have no natural 1326 * permanent inode numbering system. An inode number is returned that 1327 * is higher than the reserved limit but unique. 1328 * 1329 * BUGS: 1330 * With a large number of inodes live on the file system this function 1331 * currently becomes quite slow. 1332 */ 1333 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1334 { 1335 /* 1336 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1337 * error if st_ino won't fit in target struct field. Use 32bit counter 1338 * here to attempt to avoid that. 1339 */ 1340 static DEFINE_SPINLOCK(iunique_lock); 1341 static unsigned int counter; 1342 ino_t res; 1343 1344 rcu_read_lock(); 1345 spin_lock(&iunique_lock); 1346 do { 1347 if (counter <= max_reserved) 1348 counter = max_reserved + 1; 1349 res = counter++; 1350 } while (!test_inode_iunique(sb, res)); 1351 spin_unlock(&iunique_lock); 1352 rcu_read_unlock(); 1353 1354 return res; 1355 } 1356 EXPORT_SYMBOL(iunique); 1357 1358 struct inode *igrab(struct inode *inode) 1359 { 1360 spin_lock(&inode->i_lock); 1361 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1362 __iget(inode); 1363 spin_unlock(&inode->i_lock); 1364 } else { 1365 spin_unlock(&inode->i_lock); 1366 /* 1367 * Handle the case where s_op->clear_inode is not been 1368 * called yet, and somebody is calling igrab 1369 * while the inode is getting freed. 1370 */ 1371 inode = NULL; 1372 } 1373 return inode; 1374 } 1375 EXPORT_SYMBOL(igrab); 1376 1377 /** 1378 * ilookup5_nowait - search for an inode in the inode cache 1379 * @sb: super block of file system to search 1380 * @hashval: hash value (usually inode number) to search for 1381 * @test: callback used for comparisons between inodes 1382 * @data: opaque data pointer to pass to @test 1383 * 1384 * Search for the inode specified by @hashval and @data in the inode cache. 1385 * If the inode is in the cache, the inode is returned with an incremented 1386 * reference count. 1387 * 1388 * Note: I_NEW is not waited upon so you have to be very careful what you do 1389 * with the returned inode. You probably should be using ilookup5() instead. 1390 * 1391 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1392 */ 1393 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1394 int (*test)(struct inode *, void *), void *data) 1395 { 1396 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1397 struct inode *inode; 1398 1399 spin_lock(&inode_hash_lock); 1400 inode = find_inode(sb, head, test, data); 1401 spin_unlock(&inode_hash_lock); 1402 1403 return IS_ERR(inode) ? NULL : inode; 1404 } 1405 EXPORT_SYMBOL(ilookup5_nowait); 1406 1407 /** 1408 * ilookup5 - search for an inode in the inode cache 1409 * @sb: super block of file system to search 1410 * @hashval: hash value (usually inode number) to search for 1411 * @test: callback used for comparisons between inodes 1412 * @data: opaque data pointer to pass to @test 1413 * 1414 * Search for the inode specified by @hashval and @data in the inode cache, 1415 * and if the inode is in the cache, return the inode with an incremented 1416 * reference count. Waits on I_NEW before returning the inode. 1417 * returned with an incremented reference count. 1418 * 1419 * This is a generalized version of ilookup() for file systems where the 1420 * inode number is not sufficient for unique identification of an inode. 1421 * 1422 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1423 */ 1424 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1425 int (*test)(struct inode *, void *), void *data) 1426 { 1427 struct inode *inode; 1428 again: 1429 inode = ilookup5_nowait(sb, hashval, test, data); 1430 if (inode) { 1431 wait_on_inode(inode); 1432 if (unlikely(inode_unhashed(inode))) { 1433 iput(inode); 1434 goto again; 1435 } 1436 } 1437 return inode; 1438 } 1439 EXPORT_SYMBOL(ilookup5); 1440 1441 /** 1442 * ilookup - search for an inode in the inode cache 1443 * @sb: super block of file system to search 1444 * @ino: inode number to search for 1445 * 1446 * Search for the inode @ino in the inode cache, and if the inode is in the 1447 * cache, the inode is returned with an incremented reference count. 1448 */ 1449 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1450 { 1451 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1452 struct inode *inode; 1453 again: 1454 spin_lock(&inode_hash_lock); 1455 inode = find_inode_fast(sb, head, ino); 1456 spin_unlock(&inode_hash_lock); 1457 1458 if (inode) { 1459 if (IS_ERR(inode)) 1460 return NULL; 1461 wait_on_inode(inode); 1462 if (unlikely(inode_unhashed(inode))) { 1463 iput(inode); 1464 goto again; 1465 } 1466 } 1467 return inode; 1468 } 1469 EXPORT_SYMBOL(ilookup); 1470 1471 /** 1472 * find_inode_nowait - find an inode in the inode cache 1473 * @sb: super block of file system to search 1474 * @hashval: hash value (usually inode number) to search for 1475 * @match: callback used for comparisons between inodes 1476 * @data: opaque data pointer to pass to @match 1477 * 1478 * Search for the inode specified by @hashval and @data in the inode 1479 * cache, where the helper function @match will return 0 if the inode 1480 * does not match, 1 if the inode does match, and -1 if the search 1481 * should be stopped. The @match function must be responsible for 1482 * taking the i_lock spin_lock and checking i_state for an inode being 1483 * freed or being initialized, and incrementing the reference count 1484 * before returning 1. It also must not sleep, since it is called with 1485 * the inode_hash_lock spinlock held. 1486 * 1487 * This is a even more generalized version of ilookup5() when the 1488 * function must never block --- find_inode() can block in 1489 * __wait_on_freeing_inode() --- or when the caller can not increment 1490 * the reference count because the resulting iput() might cause an 1491 * inode eviction. The tradeoff is that the @match funtion must be 1492 * very carefully implemented. 1493 */ 1494 struct inode *find_inode_nowait(struct super_block *sb, 1495 unsigned long hashval, 1496 int (*match)(struct inode *, unsigned long, 1497 void *), 1498 void *data) 1499 { 1500 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1501 struct inode *inode, *ret_inode = NULL; 1502 int mval; 1503 1504 spin_lock(&inode_hash_lock); 1505 hlist_for_each_entry(inode, head, i_hash) { 1506 if (inode->i_sb != sb) 1507 continue; 1508 mval = match(inode, hashval, data); 1509 if (mval == 0) 1510 continue; 1511 if (mval == 1) 1512 ret_inode = inode; 1513 goto out; 1514 } 1515 out: 1516 spin_unlock(&inode_hash_lock); 1517 return ret_inode; 1518 } 1519 EXPORT_SYMBOL(find_inode_nowait); 1520 1521 /** 1522 * find_inode_rcu - find an inode in the inode cache 1523 * @sb: Super block of file system to search 1524 * @hashval: Key to hash 1525 * @test: Function to test match on an inode 1526 * @data: Data for test function 1527 * 1528 * Search for the inode specified by @hashval and @data in the inode cache, 1529 * where the helper function @test will return 0 if the inode does not match 1530 * and 1 if it does. The @test function must be responsible for taking the 1531 * i_lock spin_lock and checking i_state for an inode being freed or being 1532 * initialized. 1533 * 1534 * If successful, this will return the inode for which the @test function 1535 * returned 1 and NULL otherwise. 1536 * 1537 * The @test function is not permitted to take a ref on any inode presented. 1538 * It is also not permitted to sleep. 1539 * 1540 * The caller must hold the RCU read lock. 1541 */ 1542 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, 1543 int (*test)(struct inode *, void *), void *data) 1544 { 1545 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1546 struct inode *inode; 1547 1548 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1549 "suspicious find_inode_rcu() usage"); 1550 1551 hlist_for_each_entry_rcu(inode, head, i_hash) { 1552 if (inode->i_sb == sb && 1553 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) && 1554 test(inode, data)) 1555 return inode; 1556 } 1557 return NULL; 1558 } 1559 EXPORT_SYMBOL(find_inode_rcu); 1560 1561 /** 1562 * find_inode_by_ino_rcu - Find an inode in the inode cache 1563 * @sb: Super block of file system to search 1564 * @ino: The inode number to match 1565 * 1566 * Search for the inode specified by @hashval and @data in the inode cache, 1567 * where the helper function @test will return 0 if the inode does not match 1568 * and 1 if it does. The @test function must be responsible for taking the 1569 * i_lock spin_lock and checking i_state for an inode being freed or being 1570 * initialized. 1571 * 1572 * If successful, this will return the inode for which the @test function 1573 * returned 1 and NULL otherwise. 1574 * 1575 * The @test function is not permitted to take a ref on any inode presented. 1576 * It is also not permitted to sleep. 1577 * 1578 * The caller must hold the RCU read lock. 1579 */ 1580 struct inode *find_inode_by_ino_rcu(struct super_block *sb, 1581 unsigned long ino) 1582 { 1583 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1584 struct inode *inode; 1585 1586 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1587 "suspicious find_inode_by_ino_rcu() usage"); 1588 1589 hlist_for_each_entry_rcu(inode, head, i_hash) { 1590 if (inode->i_ino == ino && 1591 inode->i_sb == sb && 1592 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE))) 1593 return inode; 1594 } 1595 return NULL; 1596 } 1597 EXPORT_SYMBOL(find_inode_by_ino_rcu); 1598 1599 int insert_inode_locked(struct inode *inode) 1600 { 1601 struct super_block *sb = inode->i_sb; 1602 ino_t ino = inode->i_ino; 1603 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1604 1605 while (1) { 1606 struct inode *old = NULL; 1607 spin_lock(&inode_hash_lock); 1608 hlist_for_each_entry(old, head, i_hash) { 1609 if (old->i_ino != ino) 1610 continue; 1611 if (old->i_sb != sb) 1612 continue; 1613 spin_lock(&old->i_lock); 1614 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1615 spin_unlock(&old->i_lock); 1616 continue; 1617 } 1618 break; 1619 } 1620 if (likely(!old)) { 1621 spin_lock(&inode->i_lock); 1622 inode->i_state |= I_NEW | I_CREATING; 1623 hlist_add_head_rcu(&inode->i_hash, head); 1624 spin_unlock(&inode->i_lock); 1625 spin_unlock(&inode_hash_lock); 1626 return 0; 1627 } 1628 if (unlikely(old->i_state & I_CREATING)) { 1629 spin_unlock(&old->i_lock); 1630 spin_unlock(&inode_hash_lock); 1631 return -EBUSY; 1632 } 1633 __iget(old); 1634 spin_unlock(&old->i_lock); 1635 spin_unlock(&inode_hash_lock); 1636 wait_on_inode(old); 1637 if (unlikely(!inode_unhashed(old))) { 1638 iput(old); 1639 return -EBUSY; 1640 } 1641 iput(old); 1642 } 1643 } 1644 EXPORT_SYMBOL(insert_inode_locked); 1645 1646 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1647 int (*test)(struct inode *, void *), void *data) 1648 { 1649 struct inode *old; 1650 1651 inode->i_state |= I_CREATING; 1652 old = inode_insert5(inode, hashval, test, NULL, data); 1653 1654 if (old != inode) { 1655 iput(old); 1656 return -EBUSY; 1657 } 1658 return 0; 1659 } 1660 EXPORT_SYMBOL(insert_inode_locked4); 1661 1662 1663 int generic_delete_inode(struct inode *inode) 1664 { 1665 return 1; 1666 } 1667 EXPORT_SYMBOL(generic_delete_inode); 1668 1669 /* 1670 * Called when we're dropping the last reference 1671 * to an inode. 1672 * 1673 * Call the FS "drop_inode()" function, defaulting to 1674 * the legacy UNIX filesystem behaviour. If it tells 1675 * us to evict inode, do so. Otherwise, retain inode 1676 * in cache if fs is alive, sync and evict if fs is 1677 * shutting down. 1678 */ 1679 static void iput_final(struct inode *inode) 1680 { 1681 struct super_block *sb = inode->i_sb; 1682 const struct super_operations *op = inode->i_sb->s_op; 1683 unsigned long state; 1684 int drop; 1685 1686 WARN_ON(inode->i_state & I_NEW); 1687 1688 if (op->drop_inode) 1689 drop = op->drop_inode(inode); 1690 else 1691 drop = generic_drop_inode(inode); 1692 1693 if (!drop && 1694 !(inode->i_state & I_DONTCACHE) && 1695 (sb->s_flags & SB_ACTIVE)) { 1696 __inode_add_lru(inode, true); 1697 spin_unlock(&inode->i_lock); 1698 return; 1699 } 1700 1701 state = inode->i_state; 1702 if (!drop) { 1703 WRITE_ONCE(inode->i_state, state | I_WILL_FREE); 1704 spin_unlock(&inode->i_lock); 1705 1706 write_inode_now(inode, 1); 1707 1708 spin_lock(&inode->i_lock); 1709 state = inode->i_state; 1710 WARN_ON(state & I_NEW); 1711 state &= ~I_WILL_FREE; 1712 } 1713 1714 WRITE_ONCE(inode->i_state, state | I_FREEING); 1715 if (!list_empty(&inode->i_lru)) 1716 inode_lru_list_del(inode); 1717 spin_unlock(&inode->i_lock); 1718 1719 evict(inode); 1720 } 1721 1722 /** 1723 * iput - put an inode 1724 * @inode: inode to put 1725 * 1726 * Puts an inode, dropping its usage count. If the inode use count hits 1727 * zero, the inode is then freed and may also be destroyed. 1728 * 1729 * Consequently, iput() can sleep. 1730 */ 1731 void iput(struct inode *inode) 1732 { 1733 if (!inode) 1734 return; 1735 BUG_ON(inode->i_state & I_CLEAR); 1736 retry: 1737 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1738 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1739 atomic_inc(&inode->i_count); 1740 spin_unlock(&inode->i_lock); 1741 trace_writeback_lazytime_iput(inode); 1742 mark_inode_dirty_sync(inode); 1743 goto retry; 1744 } 1745 iput_final(inode); 1746 } 1747 } 1748 EXPORT_SYMBOL(iput); 1749 1750 #ifdef CONFIG_BLOCK 1751 /** 1752 * bmap - find a block number in a file 1753 * @inode: inode owning the block number being requested 1754 * @block: pointer containing the block to find 1755 * 1756 * Replaces the value in ``*block`` with the block number on the device holding 1757 * corresponding to the requested block number in the file. 1758 * That is, asked for block 4 of inode 1 the function will replace the 1759 * 4 in ``*block``, with disk block relative to the disk start that holds that 1760 * block of the file. 1761 * 1762 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a 1763 * hole, returns 0 and ``*block`` is also set to 0. 1764 */ 1765 int bmap(struct inode *inode, sector_t *block) 1766 { 1767 if (!inode->i_mapping->a_ops->bmap) 1768 return -EINVAL; 1769 1770 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); 1771 return 0; 1772 } 1773 EXPORT_SYMBOL(bmap); 1774 #endif 1775 1776 /* 1777 * With relative atime, only update atime if the previous atime is 1778 * earlier than either the ctime or mtime or if at least a day has 1779 * passed since the last atime update. 1780 */ 1781 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1782 struct timespec64 now) 1783 { 1784 1785 if (!(mnt->mnt_flags & MNT_RELATIME)) 1786 return 1; 1787 /* 1788 * Is mtime younger than atime? If yes, update atime: 1789 */ 1790 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1791 return 1; 1792 /* 1793 * Is ctime younger than atime? If yes, update atime: 1794 */ 1795 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1796 return 1; 1797 1798 /* 1799 * Is the previous atime value older than a day? If yes, 1800 * update atime: 1801 */ 1802 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1803 return 1; 1804 /* 1805 * Good, we can skip the atime update: 1806 */ 1807 return 0; 1808 } 1809 1810 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags) 1811 { 1812 int dirty_flags = 0; 1813 1814 if (flags & (S_ATIME | S_CTIME | S_MTIME)) { 1815 if (flags & S_ATIME) 1816 inode->i_atime = *time; 1817 if (flags & S_CTIME) 1818 inode->i_ctime = *time; 1819 if (flags & S_MTIME) 1820 inode->i_mtime = *time; 1821 1822 if (inode->i_sb->s_flags & SB_LAZYTIME) 1823 dirty_flags |= I_DIRTY_TIME; 1824 else 1825 dirty_flags |= I_DIRTY_SYNC; 1826 } 1827 1828 if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false)) 1829 dirty_flags |= I_DIRTY_SYNC; 1830 1831 __mark_inode_dirty(inode, dirty_flags); 1832 return 0; 1833 } 1834 EXPORT_SYMBOL(generic_update_time); 1835 1836 /* 1837 * This does the actual work of updating an inodes time or version. Must have 1838 * had called mnt_want_write() before calling this. 1839 */ 1840 int inode_update_time(struct inode *inode, struct timespec64 *time, int flags) 1841 { 1842 if (inode->i_op->update_time) 1843 return inode->i_op->update_time(inode, time, flags); 1844 return generic_update_time(inode, time, flags); 1845 } 1846 EXPORT_SYMBOL(inode_update_time); 1847 1848 /** 1849 * atime_needs_update - update the access time 1850 * @path: the &struct path to update 1851 * @inode: inode to update 1852 * 1853 * Update the accessed time on an inode and mark it for writeback. 1854 * This function automatically handles read only file systems and media, 1855 * as well as the "noatime" flag and inode specific "noatime" markers. 1856 */ 1857 bool atime_needs_update(const struct path *path, struct inode *inode) 1858 { 1859 struct vfsmount *mnt = path->mnt; 1860 struct timespec64 now; 1861 1862 if (inode->i_flags & S_NOATIME) 1863 return false; 1864 1865 /* Atime updates will likely cause i_uid and i_gid to be written 1866 * back improprely if their true value is unknown to the vfs. 1867 */ 1868 if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode)) 1869 return false; 1870 1871 if (IS_NOATIME(inode)) 1872 return false; 1873 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 1874 return false; 1875 1876 if (mnt->mnt_flags & MNT_NOATIME) 1877 return false; 1878 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1879 return false; 1880 1881 now = current_time(inode); 1882 1883 if (!relatime_need_update(mnt, inode, now)) 1884 return false; 1885 1886 if (timespec64_equal(&inode->i_atime, &now)) 1887 return false; 1888 1889 return true; 1890 } 1891 1892 void touch_atime(const struct path *path) 1893 { 1894 struct vfsmount *mnt = path->mnt; 1895 struct inode *inode = d_inode(path->dentry); 1896 struct timespec64 now; 1897 1898 if (!atime_needs_update(path, inode)) 1899 return; 1900 1901 if (!sb_start_write_trylock(inode->i_sb)) 1902 return; 1903 1904 if (__mnt_want_write(mnt) != 0) 1905 goto skip_update; 1906 /* 1907 * File systems can error out when updating inodes if they need to 1908 * allocate new space to modify an inode (such is the case for 1909 * Btrfs), but since we touch atime while walking down the path we 1910 * really don't care if we failed to update the atime of the file, 1911 * so just ignore the return value. 1912 * We may also fail on filesystems that have the ability to make parts 1913 * of the fs read only, e.g. subvolumes in Btrfs. 1914 */ 1915 now = current_time(inode); 1916 inode_update_time(inode, &now, S_ATIME); 1917 __mnt_drop_write(mnt); 1918 skip_update: 1919 sb_end_write(inode->i_sb); 1920 } 1921 EXPORT_SYMBOL(touch_atime); 1922 1923 /* 1924 * The logic we want is 1925 * 1926 * if suid or (sgid and xgrp) 1927 * remove privs 1928 */ 1929 int should_remove_suid(struct dentry *dentry) 1930 { 1931 umode_t mode = d_inode(dentry)->i_mode; 1932 int kill = 0; 1933 1934 /* suid always must be killed */ 1935 if (unlikely(mode & S_ISUID)) 1936 kill = ATTR_KILL_SUID; 1937 1938 /* 1939 * sgid without any exec bits is just a mandatory locking mark; leave 1940 * it alone. If some exec bits are set, it's a real sgid; kill it. 1941 */ 1942 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1943 kill |= ATTR_KILL_SGID; 1944 1945 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1946 return kill; 1947 1948 return 0; 1949 } 1950 EXPORT_SYMBOL(should_remove_suid); 1951 1952 /* 1953 * Return mask of changes for notify_change() that need to be done as a 1954 * response to write or truncate. Return 0 if nothing has to be changed. 1955 * Negative value on error (change should be denied). 1956 */ 1957 int dentry_needs_remove_privs(struct dentry *dentry) 1958 { 1959 struct inode *inode = d_inode(dentry); 1960 int mask = 0; 1961 int ret; 1962 1963 if (IS_NOSEC(inode)) 1964 return 0; 1965 1966 mask = should_remove_suid(dentry); 1967 ret = security_inode_need_killpriv(dentry); 1968 if (ret < 0) 1969 return ret; 1970 if (ret) 1971 mask |= ATTR_KILL_PRIV; 1972 return mask; 1973 } 1974 1975 static int __remove_privs(struct user_namespace *mnt_userns, 1976 struct dentry *dentry, int kill) 1977 { 1978 struct iattr newattrs; 1979 1980 newattrs.ia_valid = ATTR_FORCE | kill; 1981 /* 1982 * Note we call this on write, so notify_change will not 1983 * encounter any conflicting delegations: 1984 */ 1985 return notify_change(mnt_userns, dentry, &newattrs, NULL); 1986 } 1987 1988 /* 1989 * Remove special file priviledges (suid, capabilities) when file is written 1990 * to or truncated. 1991 */ 1992 int file_remove_privs(struct file *file) 1993 { 1994 struct dentry *dentry = file_dentry(file); 1995 struct inode *inode = file_inode(file); 1996 int kill; 1997 int error = 0; 1998 1999 /* 2000 * Fast path for nothing security related. 2001 * As well for non-regular files, e.g. blkdev inodes. 2002 * For example, blkdev_write_iter() might get here 2003 * trying to remove privs which it is not allowed to. 2004 */ 2005 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) 2006 return 0; 2007 2008 kill = dentry_needs_remove_privs(dentry); 2009 if (kill < 0) 2010 return kill; 2011 if (kill) 2012 error = __remove_privs(file_mnt_user_ns(file), dentry, kill); 2013 if (!error) 2014 inode_has_no_xattr(inode); 2015 2016 return error; 2017 } 2018 EXPORT_SYMBOL(file_remove_privs); 2019 2020 /** 2021 * file_update_time - update mtime and ctime time 2022 * @file: file accessed 2023 * 2024 * Update the mtime and ctime members of an inode and mark the inode 2025 * for writeback. Note that this function is meant exclusively for 2026 * usage in the file write path of filesystems, and filesystems may 2027 * choose to explicitly ignore update via this function with the 2028 * S_NOCMTIME inode flag, e.g. for network filesystem where these 2029 * timestamps are handled by the server. This can return an error for 2030 * file systems who need to allocate space in order to update an inode. 2031 */ 2032 2033 int file_update_time(struct file *file) 2034 { 2035 struct inode *inode = file_inode(file); 2036 struct timespec64 now; 2037 int sync_it = 0; 2038 int ret; 2039 2040 /* First try to exhaust all avenues to not sync */ 2041 if (IS_NOCMTIME(inode)) 2042 return 0; 2043 2044 now = current_time(inode); 2045 if (!timespec64_equal(&inode->i_mtime, &now)) 2046 sync_it = S_MTIME; 2047 2048 if (!timespec64_equal(&inode->i_ctime, &now)) 2049 sync_it |= S_CTIME; 2050 2051 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 2052 sync_it |= S_VERSION; 2053 2054 if (!sync_it) 2055 return 0; 2056 2057 /* Finally allowed to write? Takes lock. */ 2058 if (__mnt_want_write_file(file)) 2059 return 0; 2060 2061 ret = inode_update_time(inode, &now, sync_it); 2062 __mnt_drop_write_file(file); 2063 2064 return ret; 2065 } 2066 EXPORT_SYMBOL(file_update_time); 2067 2068 /* Caller must hold the file's inode lock */ 2069 int file_modified(struct file *file) 2070 { 2071 int err; 2072 2073 /* 2074 * Clear the security bits if the process is not being run by root. 2075 * This keeps people from modifying setuid and setgid binaries. 2076 */ 2077 err = file_remove_privs(file); 2078 if (err) 2079 return err; 2080 2081 if (unlikely(file->f_mode & FMODE_NOCMTIME)) 2082 return 0; 2083 2084 return file_update_time(file); 2085 } 2086 EXPORT_SYMBOL(file_modified); 2087 2088 int inode_needs_sync(struct inode *inode) 2089 { 2090 if (IS_SYNC(inode)) 2091 return 1; 2092 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 2093 return 1; 2094 return 0; 2095 } 2096 EXPORT_SYMBOL(inode_needs_sync); 2097 2098 /* 2099 * If we try to find an inode in the inode hash while it is being 2100 * deleted, we have to wait until the filesystem completes its 2101 * deletion before reporting that it isn't found. This function waits 2102 * until the deletion _might_ have completed. Callers are responsible 2103 * to recheck inode state. 2104 * 2105 * It doesn't matter if I_NEW is not set initially, a call to 2106 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 2107 * will DTRT. 2108 */ 2109 static void __wait_on_freeing_inode(struct inode *inode) 2110 { 2111 wait_queue_head_t *wq; 2112 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 2113 wq = bit_waitqueue(&inode->i_state, __I_NEW); 2114 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2115 spin_unlock(&inode->i_lock); 2116 spin_unlock(&inode_hash_lock); 2117 schedule(); 2118 finish_wait(wq, &wait.wq_entry); 2119 spin_lock(&inode_hash_lock); 2120 } 2121 2122 static __initdata unsigned long ihash_entries; 2123 static int __init set_ihash_entries(char *str) 2124 { 2125 if (!str) 2126 return 0; 2127 ihash_entries = simple_strtoul(str, &str, 0); 2128 return 1; 2129 } 2130 __setup("ihash_entries=", set_ihash_entries); 2131 2132 /* 2133 * Initialize the waitqueues and inode hash table. 2134 */ 2135 void __init inode_init_early(void) 2136 { 2137 /* If hashes are distributed across NUMA nodes, defer 2138 * hash allocation until vmalloc space is available. 2139 */ 2140 if (hashdist) 2141 return; 2142 2143 inode_hashtable = 2144 alloc_large_system_hash("Inode-cache", 2145 sizeof(struct hlist_head), 2146 ihash_entries, 2147 14, 2148 HASH_EARLY | HASH_ZERO, 2149 &i_hash_shift, 2150 &i_hash_mask, 2151 0, 2152 0); 2153 } 2154 2155 void __init inode_init(void) 2156 { 2157 /* inode slab cache */ 2158 inode_cachep = kmem_cache_create("inode_cache", 2159 sizeof(struct inode), 2160 0, 2161 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2162 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 2163 init_once); 2164 2165 /* Hash may have been set up in inode_init_early */ 2166 if (!hashdist) 2167 return; 2168 2169 inode_hashtable = 2170 alloc_large_system_hash("Inode-cache", 2171 sizeof(struct hlist_head), 2172 ihash_entries, 2173 14, 2174 HASH_ZERO, 2175 &i_hash_shift, 2176 &i_hash_mask, 2177 0, 2178 0); 2179 } 2180 2181 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 2182 { 2183 inode->i_mode = mode; 2184 if (S_ISCHR(mode)) { 2185 inode->i_fop = &def_chr_fops; 2186 inode->i_rdev = rdev; 2187 } else if (S_ISBLK(mode)) { 2188 inode->i_fop = &def_blk_fops; 2189 inode->i_rdev = rdev; 2190 } else if (S_ISFIFO(mode)) 2191 inode->i_fop = &pipefifo_fops; 2192 else if (S_ISSOCK(mode)) 2193 ; /* leave it no_open_fops */ 2194 else 2195 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 2196 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2197 inode->i_ino); 2198 } 2199 EXPORT_SYMBOL(init_special_inode); 2200 2201 /** 2202 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2203 * @mnt_userns: User namespace of the mount the inode was created from 2204 * @inode: New inode 2205 * @dir: Directory inode 2206 * @mode: mode of the new inode 2207 * 2208 * If the inode has been created through an idmapped mount the user namespace of 2209 * the vfsmount must be passed through @mnt_userns. This function will then take 2210 * care to map the inode according to @mnt_userns before checking permissions 2211 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission 2212 * checking is to be performed on the raw inode simply passs init_user_ns. 2213 */ 2214 void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode, 2215 const struct inode *dir, umode_t mode) 2216 { 2217 inode_fsuid_set(inode, mnt_userns); 2218 if (dir && dir->i_mode & S_ISGID) { 2219 inode->i_gid = dir->i_gid; 2220 2221 /* Directories are special, and always inherit S_ISGID */ 2222 if (S_ISDIR(mode)) 2223 mode |= S_ISGID; 2224 else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) && 2225 !in_group_p(i_gid_into_mnt(mnt_userns, dir)) && 2226 !capable_wrt_inode_uidgid(mnt_userns, dir, CAP_FSETID)) 2227 mode &= ~S_ISGID; 2228 } else 2229 inode_fsgid_set(inode, mnt_userns); 2230 inode->i_mode = mode; 2231 } 2232 EXPORT_SYMBOL(inode_init_owner); 2233 2234 /** 2235 * inode_owner_or_capable - check current task permissions to inode 2236 * @mnt_userns: user namespace of the mount the inode was found from 2237 * @inode: inode being checked 2238 * 2239 * Return true if current either has CAP_FOWNER in a namespace with the 2240 * inode owner uid mapped, or owns the file. 2241 * 2242 * If the inode has been found through an idmapped mount the user namespace of 2243 * the vfsmount must be passed through @mnt_userns. This function will then take 2244 * care to map the inode according to @mnt_userns before checking permissions. 2245 * On non-idmapped mounts or if permission checking is to be performed on the 2246 * raw inode simply passs init_user_ns. 2247 */ 2248 bool inode_owner_or_capable(struct user_namespace *mnt_userns, 2249 const struct inode *inode) 2250 { 2251 kuid_t i_uid; 2252 struct user_namespace *ns; 2253 2254 i_uid = i_uid_into_mnt(mnt_userns, inode); 2255 if (uid_eq(current_fsuid(), i_uid)) 2256 return true; 2257 2258 ns = current_user_ns(); 2259 if (kuid_has_mapping(ns, i_uid) && ns_capable(ns, CAP_FOWNER)) 2260 return true; 2261 return false; 2262 } 2263 EXPORT_SYMBOL(inode_owner_or_capable); 2264 2265 /* 2266 * Direct i/o helper functions 2267 */ 2268 static void __inode_dio_wait(struct inode *inode) 2269 { 2270 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2271 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2272 2273 do { 2274 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); 2275 if (atomic_read(&inode->i_dio_count)) 2276 schedule(); 2277 } while (atomic_read(&inode->i_dio_count)); 2278 finish_wait(wq, &q.wq_entry); 2279 } 2280 2281 /** 2282 * inode_dio_wait - wait for outstanding DIO requests to finish 2283 * @inode: inode to wait for 2284 * 2285 * Waits for all pending direct I/O requests to finish so that we can 2286 * proceed with a truncate or equivalent operation. 2287 * 2288 * Must be called under a lock that serializes taking new references 2289 * to i_dio_count, usually by inode->i_mutex. 2290 */ 2291 void inode_dio_wait(struct inode *inode) 2292 { 2293 if (atomic_read(&inode->i_dio_count)) 2294 __inode_dio_wait(inode); 2295 } 2296 EXPORT_SYMBOL(inode_dio_wait); 2297 2298 /* 2299 * inode_set_flags - atomically set some inode flags 2300 * 2301 * Note: the caller should be holding i_mutex, or else be sure that 2302 * they have exclusive access to the inode structure (i.e., while the 2303 * inode is being instantiated). The reason for the cmpxchg() loop 2304 * --- which wouldn't be necessary if all code paths which modify 2305 * i_flags actually followed this rule, is that there is at least one 2306 * code path which doesn't today so we use cmpxchg() out of an abundance 2307 * of caution. 2308 * 2309 * In the long run, i_mutex is overkill, and we should probably look 2310 * at using the i_lock spinlock to protect i_flags, and then make sure 2311 * it is so documented in include/linux/fs.h and that all code follows 2312 * the locking convention!! 2313 */ 2314 void inode_set_flags(struct inode *inode, unsigned int flags, 2315 unsigned int mask) 2316 { 2317 WARN_ON_ONCE(flags & ~mask); 2318 set_mask_bits(&inode->i_flags, mask, flags); 2319 } 2320 EXPORT_SYMBOL(inode_set_flags); 2321 2322 void inode_nohighmem(struct inode *inode) 2323 { 2324 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2325 } 2326 EXPORT_SYMBOL(inode_nohighmem); 2327 2328 /** 2329 * timestamp_truncate - Truncate timespec to a granularity 2330 * @t: Timespec 2331 * @inode: inode being updated 2332 * 2333 * Truncate a timespec to the granularity supported by the fs 2334 * containing the inode. Always rounds down. gran must 2335 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2336 */ 2337 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) 2338 { 2339 struct super_block *sb = inode->i_sb; 2340 unsigned int gran = sb->s_time_gran; 2341 2342 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); 2343 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) 2344 t.tv_nsec = 0; 2345 2346 /* Avoid division in the common cases 1 ns and 1 s. */ 2347 if (gran == 1) 2348 ; /* nothing */ 2349 else if (gran == NSEC_PER_SEC) 2350 t.tv_nsec = 0; 2351 else if (gran > 1 && gran < NSEC_PER_SEC) 2352 t.tv_nsec -= t.tv_nsec % gran; 2353 else 2354 WARN(1, "invalid file time granularity: %u", gran); 2355 return t; 2356 } 2357 EXPORT_SYMBOL(timestamp_truncate); 2358 2359 /** 2360 * current_time - Return FS time 2361 * @inode: inode. 2362 * 2363 * Return the current time truncated to the time granularity supported by 2364 * the fs. 2365 * 2366 * Note that inode and inode->sb cannot be NULL. 2367 * Otherwise, the function warns and returns time without truncation. 2368 */ 2369 struct timespec64 current_time(struct inode *inode) 2370 { 2371 struct timespec64 now; 2372 2373 ktime_get_coarse_real_ts64(&now); 2374 2375 if (unlikely(!inode->i_sb)) { 2376 WARN(1, "current_time() called with uninitialized super_block in the inode"); 2377 return now; 2378 } 2379 2380 return timestamp_truncate(now, inode); 2381 } 2382 EXPORT_SYMBOL(current_time); 2383