1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) 1997 Linus Torvalds 4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 5 */ 6 #include <linux/export.h> 7 #include <linux/fs.h> 8 #include <linux/filelock.h> 9 #include <linux/mm.h> 10 #include <linux/backing-dev.h> 11 #include <linux/hash.h> 12 #include <linux/swap.h> 13 #include <linux/security.h> 14 #include <linux/cdev.h> 15 #include <linux/memblock.h> 16 #include <linux/fsnotify.h> 17 #include <linux/mount.h> 18 #include <linux/posix_acl.h> 19 #include <linux/buffer_head.h> /* for inode_has_buffers */ 20 #include <linux/ratelimit.h> 21 #include <linux/list_lru.h> 22 #include <linux/iversion.h> 23 #include <trace/events/writeback.h> 24 #include "internal.h" 25 26 /* 27 * Inode locking rules: 28 * 29 * inode->i_lock protects: 30 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list 31 * Inode LRU list locks protect: 32 * inode->i_sb->s_inode_lru, inode->i_lru 33 * inode->i_sb->s_inode_list_lock protects: 34 * inode->i_sb->s_inodes, inode->i_sb_list 35 * bdi->wb.list_lock protects: 36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 37 * inode_hash_lock protects: 38 * inode_hashtable, inode->i_hash 39 * 40 * Lock ordering: 41 * 42 * inode->i_sb->s_inode_list_lock 43 * inode->i_lock 44 * Inode LRU list locks 45 * 46 * bdi->wb.list_lock 47 * inode->i_lock 48 * 49 * inode_hash_lock 50 * inode->i_sb->s_inode_list_lock 51 * inode->i_lock 52 * 53 * iunique_lock 54 * inode_hash_lock 55 */ 56 57 static unsigned int i_hash_mask __read_mostly; 58 static unsigned int i_hash_shift __read_mostly; 59 static struct hlist_head *inode_hashtable __read_mostly; 60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 61 62 /* 63 * Empty aops. Can be used for the cases where the user does not 64 * define any of the address_space operations. 65 */ 66 const struct address_space_operations empty_aops = { 67 }; 68 EXPORT_SYMBOL(empty_aops); 69 70 static DEFINE_PER_CPU(unsigned long, nr_inodes); 71 static DEFINE_PER_CPU(unsigned long, nr_unused); 72 73 static struct kmem_cache *inode_cachep __read_mostly; 74 75 static long get_nr_inodes(void) 76 { 77 int i; 78 long sum = 0; 79 for_each_possible_cpu(i) 80 sum += per_cpu(nr_inodes, i); 81 return sum < 0 ? 0 : sum; 82 } 83 84 static inline long get_nr_inodes_unused(void) 85 { 86 int i; 87 long sum = 0; 88 for_each_possible_cpu(i) 89 sum += per_cpu(nr_unused, i); 90 return sum < 0 ? 0 : sum; 91 } 92 93 long get_nr_dirty_inodes(void) 94 { 95 /* not actually dirty inodes, but a wild approximation */ 96 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 97 return nr_dirty > 0 ? nr_dirty : 0; 98 } 99 100 /* 101 * Handle nr_inode sysctl 102 */ 103 #ifdef CONFIG_SYSCTL 104 /* 105 * Statistics gathering.. 106 */ 107 static struct inodes_stat_t inodes_stat; 108 109 static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer, 110 size_t *lenp, loff_t *ppos) 111 { 112 inodes_stat.nr_inodes = get_nr_inodes(); 113 inodes_stat.nr_unused = get_nr_inodes_unused(); 114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 115 } 116 117 static struct ctl_table inodes_sysctls[] = { 118 { 119 .procname = "inode-nr", 120 .data = &inodes_stat, 121 .maxlen = 2*sizeof(long), 122 .mode = 0444, 123 .proc_handler = proc_nr_inodes, 124 }, 125 { 126 .procname = "inode-state", 127 .data = &inodes_stat, 128 .maxlen = 7*sizeof(long), 129 .mode = 0444, 130 .proc_handler = proc_nr_inodes, 131 }, 132 { } 133 }; 134 135 static int __init init_fs_inode_sysctls(void) 136 { 137 register_sysctl_init("fs", inodes_sysctls); 138 return 0; 139 } 140 early_initcall(init_fs_inode_sysctls); 141 #endif 142 143 static int no_open(struct inode *inode, struct file *file) 144 { 145 return -ENXIO; 146 } 147 148 /** 149 * inode_init_always - perform inode structure initialisation 150 * @sb: superblock inode belongs to 151 * @inode: inode to initialise 152 * 153 * These are initializations that need to be done on every inode 154 * allocation as the fields are not initialised by slab allocation. 155 */ 156 int inode_init_always(struct super_block *sb, struct inode *inode) 157 { 158 static const struct inode_operations empty_iops; 159 static const struct file_operations no_open_fops = {.open = no_open}; 160 struct address_space *const mapping = &inode->i_data; 161 162 inode->i_sb = sb; 163 inode->i_blkbits = sb->s_blocksize_bits; 164 inode->i_flags = 0; 165 atomic64_set(&inode->i_sequence, 0); 166 atomic_set(&inode->i_count, 1); 167 inode->i_op = &empty_iops; 168 inode->i_fop = &no_open_fops; 169 inode->i_ino = 0; 170 inode->__i_nlink = 1; 171 inode->i_opflags = 0; 172 if (sb->s_xattr) 173 inode->i_opflags |= IOP_XATTR; 174 i_uid_write(inode, 0); 175 i_gid_write(inode, 0); 176 atomic_set(&inode->i_writecount, 0); 177 inode->i_size = 0; 178 inode->i_write_hint = WRITE_LIFE_NOT_SET; 179 inode->i_blocks = 0; 180 inode->i_bytes = 0; 181 inode->i_generation = 0; 182 inode->i_pipe = NULL; 183 inode->i_cdev = NULL; 184 inode->i_link = NULL; 185 inode->i_dir_seq = 0; 186 inode->i_rdev = 0; 187 inode->dirtied_when = 0; 188 189 #ifdef CONFIG_CGROUP_WRITEBACK 190 inode->i_wb_frn_winner = 0; 191 inode->i_wb_frn_avg_time = 0; 192 inode->i_wb_frn_history = 0; 193 #endif 194 195 spin_lock_init(&inode->i_lock); 196 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 197 198 init_rwsem(&inode->i_rwsem); 199 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 200 201 atomic_set(&inode->i_dio_count, 0); 202 203 mapping->a_ops = &empty_aops; 204 mapping->host = inode; 205 mapping->flags = 0; 206 mapping->wb_err = 0; 207 atomic_set(&mapping->i_mmap_writable, 0); 208 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 209 atomic_set(&mapping->nr_thps, 0); 210 #endif 211 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 212 mapping->private_data = NULL; 213 mapping->writeback_index = 0; 214 init_rwsem(&mapping->invalidate_lock); 215 lockdep_set_class_and_name(&mapping->invalidate_lock, 216 &sb->s_type->invalidate_lock_key, 217 "mapping.invalidate_lock"); 218 inode->i_private = NULL; 219 inode->i_mapping = mapping; 220 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 221 #ifdef CONFIG_FS_POSIX_ACL 222 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 223 #endif 224 225 #ifdef CONFIG_FSNOTIFY 226 inode->i_fsnotify_mask = 0; 227 #endif 228 inode->i_flctx = NULL; 229 230 if (unlikely(security_inode_alloc(inode))) 231 return -ENOMEM; 232 this_cpu_inc(nr_inodes); 233 234 return 0; 235 } 236 EXPORT_SYMBOL(inode_init_always); 237 238 void free_inode_nonrcu(struct inode *inode) 239 { 240 kmem_cache_free(inode_cachep, inode); 241 } 242 EXPORT_SYMBOL(free_inode_nonrcu); 243 244 static void i_callback(struct rcu_head *head) 245 { 246 struct inode *inode = container_of(head, struct inode, i_rcu); 247 if (inode->free_inode) 248 inode->free_inode(inode); 249 else 250 free_inode_nonrcu(inode); 251 } 252 253 static struct inode *alloc_inode(struct super_block *sb) 254 { 255 const struct super_operations *ops = sb->s_op; 256 struct inode *inode; 257 258 if (ops->alloc_inode) 259 inode = ops->alloc_inode(sb); 260 else 261 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL); 262 263 if (!inode) 264 return NULL; 265 266 if (unlikely(inode_init_always(sb, inode))) { 267 if (ops->destroy_inode) { 268 ops->destroy_inode(inode); 269 if (!ops->free_inode) 270 return NULL; 271 } 272 inode->free_inode = ops->free_inode; 273 i_callback(&inode->i_rcu); 274 return NULL; 275 } 276 277 return inode; 278 } 279 280 void __destroy_inode(struct inode *inode) 281 { 282 BUG_ON(inode_has_buffers(inode)); 283 inode_detach_wb(inode); 284 security_inode_free(inode); 285 fsnotify_inode_delete(inode); 286 locks_free_lock_context(inode); 287 if (!inode->i_nlink) { 288 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 289 atomic_long_dec(&inode->i_sb->s_remove_count); 290 } 291 292 #ifdef CONFIG_FS_POSIX_ACL 293 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 294 posix_acl_release(inode->i_acl); 295 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 296 posix_acl_release(inode->i_default_acl); 297 #endif 298 this_cpu_dec(nr_inodes); 299 } 300 EXPORT_SYMBOL(__destroy_inode); 301 302 static void destroy_inode(struct inode *inode) 303 { 304 const struct super_operations *ops = inode->i_sb->s_op; 305 306 BUG_ON(!list_empty(&inode->i_lru)); 307 __destroy_inode(inode); 308 if (ops->destroy_inode) { 309 ops->destroy_inode(inode); 310 if (!ops->free_inode) 311 return; 312 } 313 inode->free_inode = ops->free_inode; 314 call_rcu(&inode->i_rcu, i_callback); 315 } 316 317 /** 318 * drop_nlink - directly drop an inode's link count 319 * @inode: inode 320 * 321 * This is a low-level filesystem helper to replace any 322 * direct filesystem manipulation of i_nlink. In cases 323 * where we are attempting to track writes to the 324 * filesystem, a decrement to zero means an imminent 325 * write when the file is truncated and actually unlinked 326 * on the filesystem. 327 */ 328 void drop_nlink(struct inode *inode) 329 { 330 WARN_ON(inode->i_nlink == 0); 331 inode->__i_nlink--; 332 if (!inode->i_nlink) 333 atomic_long_inc(&inode->i_sb->s_remove_count); 334 } 335 EXPORT_SYMBOL(drop_nlink); 336 337 /** 338 * clear_nlink - directly zero an inode's link count 339 * @inode: inode 340 * 341 * This is a low-level filesystem helper to replace any 342 * direct filesystem manipulation of i_nlink. See 343 * drop_nlink() for why we care about i_nlink hitting zero. 344 */ 345 void clear_nlink(struct inode *inode) 346 { 347 if (inode->i_nlink) { 348 inode->__i_nlink = 0; 349 atomic_long_inc(&inode->i_sb->s_remove_count); 350 } 351 } 352 EXPORT_SYMBOL(clear_nlink); 353 354 /** 355 * set_nlink - directly set an inode's link count 356 * @inode: inode 357 * @nlink: new nlink (should be non-zero) 358 * 359 * This is a low-level filesystem helper to replace any 360 * direct filesystem manipulation of i_nlink. 361 */ 362 void set_nlink(struct inode *inode, unsigned int nlink) 363 { 364 if (!nlink) { 365 clear_nlink(inode); 366 } else { 367 /* Yes, some filesystems do change nlink from zero to one */ 368 if (inode->i_nlink == 0) 369 atomic_long_dec(&inode->i_sb->s_remove_count); 370 371 inode->__i_nlink = nlink; 372 } 373 } 374 EXPORT_SYMBOL(set_nlink); 375 376 /** 377 * inc_nlink - directly increment an inode's link count 378 * @inode: inode 379 * 380 * This is a low-level filesystem helper to replace any 381 * direct filesystem manipulation of i_nlink. Currently, 382 * it is only here for parity with dec_nlink(). 383 */ 384 void inc_nlink(struct inode *inode) 385 { 386 if (unlikely(inode->i_nlink == 0)) { 387 WARN_ON(!(inode->i_state & I_LINKABLE)); 388 atomic_long_dec(&inode->i_sb->s_remove_count); 389 } 390 391 inode->__i_nlink++; 392 } 393 EXPORT_SYMBOL(inc_nlink); 394 395 static void __address_space_init_once(struct address_space *mapping) 396 { 397 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 398 init_rwsem(&mapping->i_mmap_rwsem); 399 INIT_LIST_HEAD(&mapping->private_list); 400 spin_lock_init(&mapping->private_lock); 401 mapping->i_mmap = RB_ROOT_CACHED; 402 } 403 404 void address_space_init_once(struct address_space *mapping) 405 { 406 memset(mapping, 0, sizeof(*mapping)); 407 __address_space_init_once(mapping); 408 } 409 EXPORT_SYMBOL(address_space_init_once); 410 411 /* 412 * These are initializations that only need to be done 413 * once, because the fields are idempotent across use 414 * of the inode, so let the slab aware of that. 415 */ 416 void inode_init_once(struct inode *inode) 417 { 418 memset(inode, 0, sizeof(*inode)); 419 INIT_HLIST_NODE(&inode->i_hash); 420 INIT_LIST_HEAD(&inode->i_devices); 421 INIT_LIST_HEAD(&inode->i_io_list); 422 INIT_LIST_HEAD(&inode->i_wb_list); 423 INIT_LIST_HEAD(&inode->i_lru); 424 INIT_LIST_HEAD(&inode->i_sb_list); 425 __address_space_init_once(&inode->i_data); 426 i_size_ordered_init(inode); 427 } 428 EXPORT_SYMBOL(inode_init_once); 429 430 static void init_once(void *foo) 431 { 432 struct inode *inode = (struct inode *) foo; 433 434 inode_init_once(inode); 435 } 436 437 /* 438 * inode->i_lock must be held 439 */ 440 void __iget(struct inode *inode) 441 { 442 atomic_inc(&inode->i_count); 443 } 444 445 /* 446 * get additional reference to inode; caller must already hold one. 447 */ 448 void ihold(struct inode *inode) 449 { 450 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 451 } 452 EXPORT_SYMBOL(ihold); 453 454 static void __inode_add_lru(struct inode *inode, bool rotate) 455 { 456 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE)) 457 return; 458 if (atomic_read(&inode->i_count)) 459 return; 460 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 461 return; 462 if (!mapping_shrinkable(&inode->i_data)) 463 return; 464 465 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) 466 this_cpu_inc(nr_unused); 467 else if (rotate) 468 inode->i_state |= I_REFERENCED; 469 } 470 471 /* 472 * Add inode to LRU if needed (inode is unused and clean). 473 * 474 * Needs inode->i_lock held. 475 */ 476 void inode_add_lru(struct inode *inode) 477 { 478 __inode_add_lru(inode, false); 479 } 480 481 static void inode_lru_list_del(struct inode *inode) 482 { 483 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) 484 this_cpu_dec(nr_unused); 485 } 486 487 /** 488 * inode_sb_list_add - add inode to the superblock list of inodes 489 * @inode: inode to add 490 */ 491 void inode_sb_list_add(struct inode *inode) 492 { 493 spin_lock(&inode->i_sb->s_inode_list_lock); 494 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 495 spin_unlock(&inode->i_sb->s_inode_list_lock); 496 } 497 EXPORT_SYMBOL_GPL(inode_sb_list_add); 498 499 static inline void inode_sb_list_del(struct inode *inode) 500 { 501 if (!list_empty(&inode->i_sb_list)) { 502 spin_lock(&inode->i_sb->s_inode_list_lock); 503 list_del_init(&inode->i_sb_list); 504 spin_unlock(&inode->i_sb->s_inode_list_lock); 505 } 506 } 507 508 static unsigned long hash(struct super_block *sb, unsigned long hashval) 509 { 510 unsigned long tmp; 511 512 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 513 L1_CACHE_BYTES; 514 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 515 return tmp & i_hash_mask; 516 } 517 518 /** 519 * __insert_inode_hash - hash an inode 520 * @inode: unhashed inode 521 * @hashval: unsigned long value used to locate this object in the 522 * inode_hashtable. 523 * 524 * Add an inode to the inode hash for this superblock. 525 */ 526 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 527 { 528 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 529 530 spin_lock(&inode_hash_lock); 531 spin_lock(&inode->i_lock); 532 hlist_add_head_rcu(&inode->i_hash, b); 533 spin_unlock(&inode->i_lock); 534 spin_unlock(&inode_hash_lock); 535 } 536 EXPORT_SYMBOL(__insert_inode_hash); 537 538 /** 539 * __remove_inode_hash - remove an inode from the hash 540 * @inode: inode to unhash 541 * 542 * Remove an inode from the superblock. 543 */ 544 void __remove_inode_hash(struct inode *inode) 545 { 546 spin_lock(&inode_hash_lock); 547 spin_lock(&inode->i_lock); 548 hlist_del_init_rcu(&inode->i_hash); 549 spin_unlock(&inode->i_lock); 550 spin_unlock(&inode_hash_lock); 551 } 552 EXPORT_SYMBOL(__remove_inode_hash); 553 554 void dump_mapping(const struct address_space *mapping) 555 { 556 struct inode *host; 557 const struct address_space_operations *a_ops; 558 struct hlist_node *dentry_first; 559 struct dentry *dentry_ptr; 560 struct dentry dentry; 561 unsigned long ino; 562 563 /* 564 * If mapping is an invalid pointer, we don't want to crash 565 * accessing it, so probe everything depending on it carefully. 566 */ 567 if (get_kernel_nofault(host, &mapping->host) || 568 get_kernel_nofault(a_ops, &mapping->a_ops)) { 569 pr_warn("invalid mapping:%px\n", mapping); 570 return; 571 } 572 573 if (!host) { 574 pr_warn("aops:%ps\n", a_ops); 575 return; 576 } 577 578 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) || 579 get_kernel_nofault(ino, &host->i_ino)) { 580 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host); 581 return; 582 } 583 584 if (!dentry_first) { 585 pr_warn("aops:%ps ino:%lx\n", a_ops, ino); 586 return; 587 } 588 589 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias); 590 if (get_kernel_nofault(dentry, dentry_ptr)) { 591 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n", 592 a_ops, ino, dentry_ptr); 593 return; 594 } 595 596 /* 597 * if dentry is corrupted, the %pd handler may still crash, 598 * but it's unlikely that we reach here with a corrupt mapping 599 */ 600 pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry); 601 } 602 603 void clear_inode(struct inode *inode) 604 { 605 /* 606 * We have to cycle the i_pages lock here because reclaim can be in the 607 * process of removing the last page (in __filemap_remove_folio()) 608 * and we must not free the mapping under it. 609 */ 610 xa_lock_irq(&inode->i_data.i_pages); 611 BUG_ON(inode->i_data.nrpages); 612 /* 613 * Almost always, mapping_empty(&inode->i_data) here; but there are 614 * two known and long-standing ways in which nodes may get left behind 615 * (when deep radix-tree node allocation failed partway; or when THP 616 * collapse_file() failed). Until those two known cases are cleaned up, 617 * or a cleanup function is called here, do not BUG_ON(!mapping_empty), 618 * nor even WARN_ON(!mapping_empty). 619 */ 620 xa_unlock_irq(&inode->i_data.i_pages); 621 BUG_ON(!list_empty(&inode->i_data.private_list)); 622 BUG_ON(!(inode->i_state & I_FREEING)); 623 BUG_ON(inode->i_state & I_CLEAR); 624 BUG_ON(!list_empty(&inode->i_wb_list)); 625 /* don't need i_lock here, no concurrent mods to i_state */ 626 inode->i_state = I_FREEING | I_CLEAR; 627 } 628 EXPORT_SYMBOL(clear_inode); 629 630 /* 631 * Free the inode passed in, removing it from the lists it is still connected 632 * to. We remove any pages still attached to the inode and wait for any IO that 633 * is still in progress before finally destroying the inode. 634 * 635 * An inode must already be marked I_FREEING so that we avoid the inode being 636 * moved back onto lists if we race with other code that manipulates the lists 637 * (e.g. writeback_single_inode). The caller is responsible for setting this. 638 * 639 * An inode must already be removed from the LRU list before being evicted from 640 * the cache. This should occur atomically with setting the I_FREEING state 641 * flag, so no inodes here should ever be on the LRU when being evicted. 642 */ 643 static void evict(struct inode *inode) 644 { 645 const struct super_operations *op = inode->i_sb->s_op; 646 647 BUG_ON(!(inode->i_state & I_FREEING)); 648 BUG_ON(!list_empty(&inode->i_lru)); 649 650 if (!list_empty(&inode->i_io_list)) 651 inode_io_list_del(inode); 652 653 inode_sb_list_del(inode); 654 655 /* 656 * Wait for flusher thread to be done with the inode so that filesystem 657 * does not start destroying it while writeback is still running. Since 658 * the inode has I_FREEING set, flusher thread won't start new work on 659 * the inode. We just have to wait for running writeback to finish. 660 */ 661 inode_wait_for_writeback(inode); 662 663 if (op->evict_inode) { 664 op->evict_inode(inode); 665 } else { 666 truncate_inode_pages_final(&inode->i_data); 667 clear_inode(inode); 668 } 669 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 670 cd_forget(inode); 671 672 remove_inode_hash(inode); 673 674 spin_lock(&inode->i_lock); 675 wake_up_bit(&inode->i_state, __I_NEW); 676 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 677 spin_unlock(&inode->i_lock); 678 679 destroy_inode(inode); 680 } 681 682 /* 683 * dispose_list - dispose of the contents of a local list 684 * @head: the head of the list to free 685 * 686 * Dispose-list gets a local list with local inodes in it, so it doesn't 687 * need to worry about list corruption and SMP locks. 688 */ 689 static void dispose_list(struct list_head *head) 690 { 691 while (!list_empty(head)) { 692 struct inode *inode; 693 694 inode = list_first_entry(head, struct inode, i_lru); 695 list_del_init(&inode->i_lru); 696 697 evict(inode); 698 cond_resched(); 699 } 700 } 701 702 /** 703 * evict_inodes - evict all evictable inodes for a superblock 704 * @sb: superblock to operate on 705 * 706 * Make sure that no inodes with zero refcount are retained. This is 707 * called by superblock shutdown after having SB_ACTIVE flag removed, 708 * so any inode reaching zero refcount during or after that call will 709 * be immediately evicted. 710 */ 711 void evict_inodes(struct super_block *sb) 712 { 713 struct inode *inode, *next; 714 LIST_HEAD(dispose); 715 716 again: 717 spin_lock(&sb->s_inode_list_lock); 718 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 719 if (atomic_read(&inode->i_count)) 720 continue; 721 722 spin_lock(&inode->i_lock); 723 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 724 spin_unlock(&inode->i_lock); 725 continue; 726 } 727 728 inode->i_state |= I_FREEING; 729 inode_lru_list_del(inode); 730 spin_unlock(&inode->i_lock); 731 list_add(&inode->i_lru, &dispose); 732 733 /* 734 * We can have a ton of inodes to evict at unmount time given 735 * enough memory, check to see if we need to go to sleep for a 736 * bit so we don't livelock. 737 */ 738 if (need_resched()) { 739 spin_unlock(&sb->s_inode_list_lock); 740 cond_resched(); 741 dispose_list(&dispose); 742 goto again; 743 } 744 } 745 spin_unlock(&sb->s_inode_list_lock); 746 747 dispose_list(&dispose); 748 } 749 EXPORT_SYMBOL_GPL(evict_inodes); 750 751 /** 752 * invalidate_inodes - attempt to free all inodes on a superblock 753 * @sb: superblock to operate on 754 * @kill_dirty: flag to guide handling of dirty inodes 755 * 756 * Attempts to free all inodes for a given superblock. If there were any 757 * busy inodes return a non-zero value, else zero. 758 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 759 * them as busy. 760 */ 761 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 762 { 763 int busy = 0; 764 struct inode *inode, *next; 765 LIST_HEAD(dispose); 766 767 again: 768 spin_lock(&sb->s_inode_list_lock); 769 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 770 spin_lock(&inode->i_lock); 771 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 772 spin_unlock(&inode->i_lock); 773 continue; 774 } 775 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) { 776 spin_unlock(&inode->i_lock); 777 busy = 1; 778 continue; 779 } 780 if (atomic_read(&inode->i_count)) { 781 spin_unlock(&inode->i_lock); 782 busy = 1; 783 continue; 784 } 785 786 inode->i_state |= I_FREEING; 787 inode_lru_list_del(inode); 788 spin_unlock(&inode->i_lock); 789 list_add(&inode->i_lru, &dispose); 790 if (need_resched()) { 791 spin_unlock(&sb->s_inode_list_lock); 792 cond_resched(); 793 dispose_list(&dispose); 794 goto again; 795 } 796 } 797 spin_unlock(&sb->s_inode_list_lock); 798 799 dispose_list(&dispose); 800 801 return busy; 802 } 803 804 /* 805 * Isolate the inode from the LRU in preparation for freeing it. 806 * 807 * If the inode has the I_REFERENCED flag set, then it means that it has been 808 * used recently - the flag is set in iput_final(). When we encounter such an 809 * inode, clear the flag and move it to the back of the LRU so it gets another 810 * pass through the LRU before it gets reclaimed. This is necessary because of 811 * the fact we are doing lazy LRU updates to minimise lock contention so the 812 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 813 * with this flag set because they are the inodes that are out of order. 814 */ 815 static enum lru_status inode_lru_isolate(struct list_head *item, 816 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 817 { 818 struct list_head *freeable = arg; 819 struct inode *inode = container_of(item, struct inode, i_lru); 820 821 /* 822 * We are inverting the lru lock/inode->i_lock here, so use a 823 * trylock. If we fail to get the lock, just skip it. 824 */ 825 if (!spin_trylock(&inode->i_lock)) 826 return LRU_SKIP; 827 828 /* 829 * Inodes can get referenced, redirtied, or repopulated while 830 * they're already on the LRU, and this can make them 831 * unreclaimable for a while. Remove them lazily here; iput, 832 * sync, or the last page cache deletion will requeue them. 833 */ 834 if (atomic_read(&inode->i_count) || 835 (inode->i_state & ~I_REFERENCED) || 836 !mapping_shrinkable(&inode->i_data)) { 837 list_lru_isolate(lru, &inode->i_lru); 838 spin_unlock(&inode->i_lock); 839 this_cpu_dec(nr_unused); 840 return LRU_REMOVED; 841 } 842 843 /* Recently referenced inodes get one more pass */ 844 if (inode->i_state & I_REFERENCED) { 845 inode->i_state &= ~I_REFERENCED; 846 spin_unlock(&inode->i_lock); 847 return LRU_ROTATE; 848 } 849 850 /* 851 * On highmem systems, mapping_shrinkable() permits dropping 852 * page cache in order to free up struct inodes: lowmem might 853 * be under pressure before the cache inside the highmem zone. 854 */ 855 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) { 856 __iget(inode); 857 spin_unlock(&inode->i_lock); 858 spin_unlock(lru_lock); 859 if (remove_inode_buffers(inode)) { 860 unsigned long reap; 861 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 862 if (current_is_kswapd()) 863 __count_vm_events(KSWAPD_INODESTEAL, reap); 864 else 865 __count_vm_events(PGINODESTEAL, reap); 866 mm_account_reclaimed_pages(reap); 867 } 868 iput(inode); 869 spin_lock(lru_lock); 870 return LRU_RETRY; 871 } 872 873 WARN_ON(inode->i_state & I_NEW); 874 inode->i_state |= I_FREEING; 875 list_lru_isolate_move(lru, &inode->i_lru, freeable); 876 spin_unlock(&inode->i_lock); 877 878 this_cpu_dec(nr_unused); 879 return LRU_REMOVED; 880 } 881 882 /* 883 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 884 * This is called from the superblock shrinker function with a number of inodes 885 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 886 * then are freed outside inode_lock by dispose_list(). 887 */ 888 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 889 { 890 LIST_HEAD(freeable); 891 long freed; 892 893 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 894 inode_lru_isolate, &freeable); 895 dispose_list(&freeable); 896 return freed; 897 } 898 899 static void __wait_on_freeing_inode(struct inode *inode); 900 /* 901 * Called with the inode lock held. 902 */ 903 static struct inode *find_inode(struct super_block *sb, 904 struct hlist_head *head, 905 int (*test)(struct inode *, void *), 906 void *data) 907 { 908 struct inode *inode = NULL; 909 910 repeat: 911 hlist_for_each_entry(inode, head, i_hash) { 912 if (inode->i_sb != sb) 913 continue; 914 if (!test(inode, data)) 915 continue; 916 spin_lock(&inode->i_lock); 917 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 918 __wait_on_freeing_inode(inode); 919 goto repeat; 920 } 921 if (unlikely(inode->i_state & I_CREATING)) { 922 spin_unlock(&inode->i_lock); 923 return ERR_PTR(-ESTALE); 924 } 925 __iget(inode); 926 spin_unlock(&inode->i_lock); 927 return inode; 928 } 929 return NULL; 930 } 931 932 /* 933 * find_inode_fast is the fast path version of find_inode, see the comment at 934 * iget_locked for details. 935 */ 936 static struct inode *find_inode_fast(struct super_block *sb, 937 struct hlist_head *head, unsigned long ino) 938 { 939 struct inode *inode = NULL; 940 941 repeat: 942 hlist_for_each_entry(inode, head, i_hash) { 943 if (inode->i_ino != ino) 944 continue; 945 if (inode->i_sb != sb) 946 continue; 947 spin_lock(&inode->i_lock); 948 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 949 __wait_on_freeing_inode(inode); 950 goto repeat; 951 } 952 if (unlikely(inode->i_state & I_CREATING)) { 953 spin_unlock(&inode->i_lock); 954 return ERR_PTR(-ESTALE); 955 } 956 __iget(inode); 957 spin_unlock(&inode->i_lock); 958 return inode; 959 } 960 return NULL; 961 } 962 963 /* 964 * Each cpu owns a range of LAST_INO_BATCH numbers. 965 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 966 * to renew the exhausted range. 967 * 968 * This does not significantly increase overflow rate because every CPU can 969 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 970 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 971 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 972 * overflow rate by 2x, which does not seem too significant. 973 * 974 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 975 * error if st_ino won't fit in target struct field. Use 32bit counter 976 * here to attempt to avoid that. 977 */ 978 #define LAST_INO_BATCH 1024 979 static DEFINE_PER_CPU(unsigned int, last_ino); 980 981 unsigned int get_next_ino(void) 982 { 983 unsigned int *p = &get_cpu_var(last_ino); 984 unsigned int res = *p; 985 986 #ifdef CONFIG_SMP 987 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 988 static atomic_t shared_last_ino; 989 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 990 991 res = next - LAST_INO_BATCH; 992 } 993 #endif 994 995 res++; 996 /* get_next_ino should not provide a 0 inode number */ 997 if (unlikely(!res)) 998 res++; 999 *p = res; 1000 put_cpu_var(last_ino); 1001 return res; 1002 } 1003 EXPORT_SYMBOL(get_next_ino); 1004 1005 /** 1006 * new_inode_pseudo - obtain an inode 1007 * @sb: superblock 1008 * 1009 * Allocates a new inode for given superblock. 1010 * Inode wont be chained in superblock s_inodes list 1011 * This means : 1012 * - fs can't be unmount 1013 * - quotas, fsnotify, writeback can't work 1014 */ 1015 struct inode *new_inode_pseudo(struct super_block *sb) 1016 { 1017 struct inode *inode = alloc_inode(sb); 1018 1019 if (inode) { 1020 spin_lock(&inode->i_lock); 1021 inode->i_state = 0; 1022 spin_unlock(&inode->i_lock); 1023 } 1024 return inode; 1025 } 1026 1027 /** 1028 * new_inode - obtain an inode 1029 * @sb: superblock 1030 * 1031 * Allocates a new inode for given superblock. The default gfp_mask 1032 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 1033 * If HIGHMEM pages are unsuitable or it is known that pages allocated 1034 * for the page cache are not reclaimable or migratable, 1035 * mapping_set_gfp_mask() must be called with suitable flags on the 1036 * newly created inode's mapping 1037 * 1038 */ 1039 struct inode *new_inode(struct super_block *sb) 1040 { 1041 struct inode *inode; 1042 1043 inode = new_inode_pseudo(sb); 1044 if (inode) 1045 inode_sb_list_add(inode); 1046 return inode; 1047 } 1048 EXPORT_SYMBOL(new_inode); 1049 1050 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1051 void lockdep_annotate_inode_mutex_key(struct inode *inode) 1052 { 1053 if (S_ISDIR(inode->i_mode)) { 1054 struct file_system_type *type = inode->i_sb->s_type; 1055 1056 /* Set new key only if filesystem hasn't already changed it */ 1057 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 1058 /* 1059 * ensure nobody is actually holding i_mutex 1060 */ 1061 // mutex_destroy(&inode->i_mutex); 1062 init_rwsem(&inode->i_rwsem); 1063 lockdep_set_class(&inode->i_rwsem, 1064 &type->i_mutex_dir_key); 1065 } 1066 } 1067 } 1068 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 1069 #endif 1070 1071 /** 1072 * unlock_new_inode - clear the I_NEW state and wake up any waiters 1073 * @inode: new inode to unlock 1074 * 1075 * Called when the inode is fully initialised to clear the new state of the 1076 * inode and wake up anyone waiting for the inode to finish initialisation. 1077 */ 1078 void unlock_new_inode(struct inode *inode) 1079 { 1080 lockdep_annotate_inode_mutex_key(inode); 1081 spin_lock(&inode->i_lock); 1082 WARN_ON(!(inode->i_state & I_NEW)); 1083 inode->i_state &= ~I_NEW & ~I_CREATING; 1084 smp_mb(); 1085 wake_up_bit(&inode->i_state, __I_NEW); 1086 spin_unlock(&inode->i_lock); 1087 } 1088 EXPORT_SYMBOL(unlock_new_inode); 1089 1090 void discard_new_inode(struct inode *inode) 1091 { 1092 lockdep_annotate_inode_mutex_key(inode); 1093 spin_lock(&inode->i_lock); 1094 WARN_ON(!(inode->i_state & I_NEW)); 1095 inode->i_state &= ~I_NEW; 1096 smp_mb(); 1097 wake_up_bit(&inode->i_state, __I_NEW); 1098 spin_unlock(&inode->i_lock); 1099 iput(inode); 1100 } 1101 EXPORT_SYMBOL(discard_new_inode); 1102 1103 /** 1104 * lock_two_inodes - lock two inodes (may be regular files but also dirs) 1105 * 1106 * Lock any non-NULL argument. The caller must make sure that if he is passing 1107 * in two directories, one is not ancestor of the other. Zero, one or two 1108 * objects may be locked by this function. 1109 * 1110 * @inode1: first inode to lock 1111 * @inode2: second inode to lock 1112 * @subclass1: inode lock subclass for the first lock obtained 1113 * @subclass2: inode lock subclass for the second lock obtained 1114 */ 1115 void lock_two_inodes(struct inode *inode1, struct inode *inode2, 1116 unsigned subclass1, unsigned subclass2) 1117 { 1118 if (!inode1 || !inode2) { 1119 /* 1120 * Make sure @subclass1 will be used for the acquired lock. 1121 * This is not strictly necessary (no current caller cares) but 1122 * let's keep things consistent. 1123 */ 1124 if (!inode1) 1125 swap(inode1, inode2); 1126 goto lock; 1127 } 1128 1129 /* 1130 * If one object is directory and the other is not, we must make sure 1131 * to lock directory first as the other object may be its child. 1132 */ 1133 if (S_ISDIR(inode2->i_mode) == S_ISDIR(inode1->i_mode)) { 1134 if (inode1 > inode2) 1135 swap(inode1, inode2); 1136 } else if (!S_ISDIR(inode1->i_mode)) 1137 swap(inode1, inode2); 1138 lock: 1139 if (inode1) 1140 inode_lock_nested(inode1, subclass1); 1141 if (inode2 && inode2 != inode1) 1142 inode_lock_nested(inode2, subclass2); 1143 } 1144 1145 /** 1146 * lock_two_nondirectories - take two i_mutexes on non-directory objects 1147 * 1148 * Lock any non-NULL argument. Passed objects must not be directories. 1149 * Zero, one or two objects may be locked by this function. 1150 * 1151 * @inode1: first inode to lock 1152 * @inode2: second inode to lock 1153 */ 1154 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1155 { 1156 if (inode1) 1157 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1158 if (inode2) 1159 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1160 lock_two_inodes(inode1, inode2, I_MUTEX_NORMAL, I_MUTEX_NONDIR2); 1161 } 1162 EXPORT_SYMBOL(lock_two_nondirectories); 1163 1164 /** 1165 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1166 * @inode1: first inode to unlock 1167 * @inode2: second inode to unlock 1168 */ 1169 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1170 { 1171 if (inode1) { 1172 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1173 inode_unlock(inode1); 1174 } 1175 if (inode2 && inode2 != inode1) { 1176 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1177 inode_unlock(inode2); 1178 } 1179 } 1180 EXPORT_SYMBOL(unlock_two_nondirectories); 1181 1182 /** 1183 * inode_insert5 - obtain an inode from a mounted file system 1184 * @inode: pre-allocated inode to use for insert to cache 1185 * @hashval: hash value (usually inode number) to get 1186 * @test: callback used for comparisons between inodes 1187 * @set: callback used to initialize a new struct inode 1188 * @data: opaque data pointer to pass to @test and @set 1189 * 1190 * Search for the inode specified by @hashval and @data in the inode cache, 1191 * and if present it is return it with an increased reference count. This is 1192 * a variant of iget5_locked() for callers that don't want to fail on memory 1193 * allocation of inode. 1194 * 1195 * If the inode is not in cache, insert the pre-allocated inode to cache and 1196 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1197 * to fill it in before unlocking it via unlock_new_inode(). 1198 * 1199 * Note both @test and @set are called with the inode_hash_lock held, so can't 1200 * sleep. 1201 */ 1202 struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1203 int (*test)(struct inode *, void *), 1204 int (*set)(struct inode *, void *), void *data) 1205 { 1206 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1207 struct inode *old; 1208 1209 again: 1210 spin_lock(&inode_hash_lock); 1211 old = find_inode(inode->i_sb, head, test, data); 1212 if (unlikely(old)) { 1213 /* 1214 * Uhhuh, somebody else created the same inode under us. 1215 * Use the old inode instead of the preallocated one. 1216 */ 1217 spin_unlock(&inode_hash_lock); 1218 if (IS_ERR(old)) 1219 return NULL; 1220 wait_on_inode(old); 1221 if (unlikely(inode_unhashed(old))) { 1222 iput(old); 1223 goto again; 1224 } 1225 return old; 1226 } 1227 1228 if (set && unlikely(set(inode, data))) { 1229 inode = NULL; 1230 goto unlock; 1231 } 1232 1233 /* 1234 * Return the locked inode with I_NEW set, the 1235 * caller is responsible for filling in the contents 1236 */ 1237 spin_lock(&inode->i_lock); 1238 inode->i_state |= I_NEW; 1239 hlist_add_head_rcu(&inode->i_hash, head); 1240 spin_unlock(&inode->i_lock); 1241 1242 /* 1243 * Add inode to the sb list if it's not already. It has I_NEW at this 1244 * point, so it should be safe to test i_sb_list locklessly. 1245 */ 1246 if (list_empty(&inode->i_sb_list)) 1247 inode_sb_list_add(inode); 1248 unlock: 1249 spin_unlock(&inode_hash_lock); 1250 1251 return inode; 1252 } 1253 EXPORT_SYMBOL(inode_insert5); 1254 1255 /** 1256 * iget5_locked - obtain an inode from a mounted file system 1257 * @sb: super block of file system 1258 * @hashval: hash value (usually inode number) to get 1259 * @test: callback used for comparisons between inodes 1260 * @set: callback used to initialize a new struct inode 1261 * @data: opaque data pointer to pass to @test and @set 1262 * 1263 * Search for the inode specified by @hashval and @data in the inode cache, 1264 * and if present it is return it with an increased reference count. This is 1265 * a generalized version of iget_locked() for file systems where the inode 1266 * number is not sufficient for unique identification of an inode. 1267 * 1268 * If the inode is not in cache, allocate a new inode and return it locked, 1269 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1270 * before unlocking it via unlock_new_inode(). 1271 * 1272 * Note both @test and @set are called with the inode_hash_lock held, so can't 1273 * sleep. 1274 */ 1275 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1276 int (*test)(struct inode *, void *), 1277 int (*set)(struct inode *, void *), void *data) 1278 { 1279 struct inode *inode = ilookup5(sb, hashval, test, data); 1280 1281 if (!inode) { 1282 struct inode *new = alloc_inode(sb); 1283 1284 if (new) { 1285 new->i_state = 0; 1286 inode = inode_insert5(new, hashval, test, set, data); 1287 if (unlikely(inode != new)) 1288 destroy_inode(new); 1289 } 1290 } 1291 return inode; 1292 } 1293 EXPORT_SYMBOL(iget5_locked); 1294 1295 /** 1296 * iget_locked - obtain an inode from a mounted file system 1297 * @sb: super block of file system 1298 * @ino: inode number to get 1299 * 1300 * Search for the inode specified by @ino in the inode cache and if present 1301 * return it with an increased reference count. This is for file systems 1302 * where the inode number is sufficient for unique identification of an inode. 1303 * 1304 * If the inode is not in cache, allocate a new inode and return it locked, 1305 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1306 * before unlocking it via unlock_new_inode(). 1307 */ 1308 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1309 { 1310 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1311 struct inode *inode; 1312 again: 1313 spin_lock(&inode_hash_lock); 1314 inode = find_inode_fast(sb, head, ino); 1315 spin_unlock(&inode_hash_lock); 1316 if (inode) { 1317 if (IS_ERR(inode)) 1318 return NULL; 1319 wait_on_inode(inode); 1320 if (unlikely(inode_unhashed(inode))) { 1321 iput(inode); 1322 goto again; 1323 } 1324 return inode; 1325 } 1326 1327 inode = alloc_inode(sb); 1328 if (inode) { 1329 struct inode *old; 1330 1331 spin_lock(&inode_hash_lock); 1332 /* We released the lock, so.. */ 1333 old = find_inode_fast(sb, head, ino); 1334 if (!old) { 1335 inode->i_ino = ino; 1336 spin_lock(&inode->i_lock); 1337 inode->i_state = I_NEW; 1338 hlist_add_head_rcu(&inode->i_hash, head); 1339 spin_unlock(&inode->i_lock); 1340 inode_sb_list_add(inode); 1341 spin_unlock(&inode_hash_lock); 1342 1343 /* Return the locked inode with I_NEW set, the 1344 * caller is responsible for filling in the contents 1345 */ 1346 return inode; 1347 } 1348 1349 /* 1350 * Uhhuh, somebody else created the same inode under 1351 * us. Use the old inode instead of the one we just 1352 * allocated. 1353 */ 1354 spin_unlock(&inode_hash_lock); 1355 destroy_inode(inode); 1356 if (IS_ERR(old)) 1357 return NULL; 1358 inode = old; 1359 wait_on_inode(inode); 1360 if (unlikely(inode_unhashed(inode))) { 1361 iput(inode); 1362 goto again; 1363 } 1364 } 1365 return inode; 1366 } 1367 EXPORT_SYMBOL(iget_locked); 1368 1369 /* 1370 * search the inode cache for a matching inode number. 1371 * If we find one, then the inode number we are trying to 1372 * allocate is not unique and so we should not use it. 1373 * 1374 * Returns 1 if the inode number is unique, 0 if it is not. 1375 */ 1376 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1377 { 1378 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1379 struct inode *inode; 1380 1381 hlist_for_each_entry_rcu(inode, b, i_hash) { 1382 if (inode->i_ino == ino && inode->i_sb == sb) 1383 return 0; 1384 } 1385 return 1; 1386 } 1387 1388 /** 1389 * iunique - get a unique inode number 1390 * @sb: superblock 1391 * @max_reserved: highest reserved inode number 1392 * 1393 * Obtain an inode number that is unique on the system for a given 1394 * superblock. This is used by file systems that have no natural 1395 * permanent inode numbering system. An inode number is returned that 1396 * is higher than the reserved limit but unique. 1397 * 1398 * BUGS: 1399 * With a large number of inodes live on the file system this function 1400 * currently becomes quite slow. 1401 */ 1402 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1403 { 1404 /* 1405 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1406 * error if st_ino won't fit in target struct field. Use 32bit counter 1407 * here to attempt to avoid that. 1408 */ 1409 static DEFINE_SPINLOCK(iunique_lock); 1410 static unsigned int counter; 1411 ino_t res; 1412 1413 rcu_read_lock(); 1414 spin_lock(&iunique_lock); 1415 do { 1416 if (counter <= max_reserved) 1417 counter = max_reserved + 1; 1418 res = counter++; 1419 } while (!test_inode_iunique(sb, res)); 1420 spin_unlock(&iunique_lock); 1421 rcu_read_unlock(); 1422 1423 return res; 1424 } 1425 EXPORT_SYMBOL(iunique); 1426 1427 struct inode *igrab(struct inode *inode) 1428 { 1429 spin_lock(&inode->i_lock); 1430 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1431 __iget(inode); 1432 spin_unlock(&inode->i_lock); 1433 } else { 1434 spin_unlock(&inode->i_lock); 1435 /* 1436 * Handle the case where s_op->clear_inode is not been 1437 * called yet, and somebody is calling igrab 1438 * while the inode is getting freed. 1439 */ 1440 inode = NULL; 1441 } 1442 return inode; 1443 } 1444 EXPORT_SYMBOL(igrab); 1445 1446 /** 1447 * ilookup5_nowait - search for an inode in the inode cache 1448 * @sb: super block of file system to search 1449 * @hashval: hash value (usually inode number) to search for 1450 * @test: callback used for comparisons between inodes 1451 * @data: opaque data pointer to pass to @test 1452 * 1453 * Search for the inode specified by @hashval and @data in the inode cache. 1454 * If the inode is in the cache, the inode is returned with an incremented 1455 * reference count. 1456 * 1457 * Note: I_NEW is not waited upon so you have to be very careful what you do 1458 * with the returned inode. You probably should be using ilookup5() instead. 1459 * 1460 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1461 */ 1462 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1463 int (*test)(struct inode *, void *), void *data) 1464 { 1465 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1466 struct inode *inode; 1467 1468 spin_lock(&inode_hash_lock); 1469 inode = find_inode(sb, head, test, data); 1470 spin_unlock(&inode_hash_lock); 1471 1472 return IS_ERR(inode) ? NULL : inode; 1473 } 1474 EXPORT_SYMBOL(ilookup5_nowait); 1475 1476 /** 1477 * ilookup5 - search for an inode in the inode cache 1478 * @sb: super block of file system to search 1479 * @hashval: hash value (usually inode number) to search for 1480 * @test: callback used for comparisons between inodes 1481 * @data: opaque data pointer to pass to @test 1482 * 1483 * Search for the inode specified by @hashval and @data in the inode cache, 1484 * and if the inode is in the cache, return the inode with an incremented 1485 * reference count. Waits on I_NEW before returning the inode. 1486 * returned with an incremented reference count. 1487 * 1488 * This is a generalized version of ilookup() for file systems where the 1489 * inode number is not sufficient for unique identification of an inode. 1490 * 1491 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1492 */ 1493 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1494 int (*test)(struct inode *, void *), void *data) 1495 { 1496 struct inode *inode; 1497 again: 1498 inode = ilookup5_nowait(sb, hashval, test, data); 1499 if (inode) { 1500 wait_on_inode(inode); 1501 if (unlikely(inode_unhashed(inode))) { 1502 iput(inode); 1503 goto again; 1504 } 1505 } 1506 return inode; 1507 } 1508 EXPORT_SYMBOL(ilookup5); 1509 1510 /** 1511 * ilookup - search for an inode in the inode cache 1512 * @sb: super block of file system to search 1513 * @ino: inode number to search for 1514 * 1515 * Search for the inode @ino in the inode cache, and if the inode is in the 1516 * cache, the inode is returned with an incremented reference count. 1517 */ 1518 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1519 { 1520 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1521 struct inode *inode; 1522 again: 1523 spin_lock(&inode_hash_lock); 1524 inode = find_inode_fast(sb, head, ino); 1525 spin_unlock(&inode_hash_lock); 1526 1527 if (inode) { 1528 if (IS_ERR(inode)) 1529 return NULL; 1530 wait_on_inode(inode); 1531 if (unlikely(inode_unhashed(inode))) { 1532 iput(inode); 1533 goto again; 1534 } 1535 } 1536 return inode; 1537 } 1538 EXPORT_SYMBOL(ilookup); 1539 1540 /** 1541 * find_inode_nowait - find an inode in the inode cache 1542 * @sb: super block of file system to search 1543 * @hashval: hash value (usually inode number) to search for 1544 * @match: callback used for comparisons between inodes 1545 * @data: opaque data pointer to pass to @match 1546 * 1547 * Search for the inode specified by @hashval and @data in the inode 1548 * cache, where the helper function @match will return 0 if the inode 1549 * does not match, 1 if the inode does match, and -1 if the search 1550 * should be stopped. The @match function must be responsible for 1551 * taking the i_lock spin_lock and checking i_state for an inode being 1552 * freed or being initialized, and incrementing the reference count 1553 * before returning 1. It also must not sleep, since it is called with 1554 * the inode_hash_lock spinlock held. 1555 * 1556 * This is a even more generalized version of ilookup5() when the 1557 * function must never block --- find_inode() can block in 1558 * __wait_on_freeing_inode() --- or when the caller can not increment 1559 * the reference count because the resulting iput() might cause an 1560 * inode eviction. The tradeoff is that the @match funtion must be 1561 * very carefully implemented. 1562 */ 1563 struct inode *find_inode_nowait(struct super_block *sb, 1564 unsigned long hashval, 1565 int (*match)(struct inode *, unsigned long, 1566 void *), 1567 void *data) 1568 { 1569 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1570 struct inode *inode, *ret_inode = NULL; 1571 int mval; 1572 1573 spin_lock(&inode_hash_lock); 1574 hlist_for_each_entry(inode, head, i_hash) { 1575 if (inode->i_sb != sb) 1576 continue; 1577 mval = match(inode, hashval, data); 1578 if (mval == 0) 1579 continue; 1580 if (mval == 1) 1581 ret_inode = inode; 1582 goto out; 1583 } 1584 out: 1585 spin_unlock(&inode_hash_lock); 1586 return ret_inode; 1587 } 1588 EXPORT_SYMBOL(find_inode_nowait); 1589 1590 /** 1591 * find_inode_rcu - find an inode in the inode cache 1592 * @sb: Super block of file system to search 1593 * @hashval: Key to hash 1594 * @test: Function to test match on an inode 1595 * @data: Data for test function 1596 * 1597 * Search for the inode specified by @hashval and @data in the inode cache, 1598 * where the helper function @test will return 0 if the inode does not match 1599 * and 1 if it does. The @test function must be responsible for taking the 1600 * i_lock spin_lock and checking i_state for an inode being freed or being 1601 * initialized. 1602 * 1603 * If successful, this will return the inode for which the @test function 1604 * returned 1 and NULL otherwise. 1605 * 1606 * The @test function is not permitted to take a ref on any inode presented. 1607 * It is also not permitted to sleep. 1608 * 1609 * The caller must hold the RCU read lock. 1610 */ 1611 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, 1612 int (*test)(struct inode *, void *), void *data) 1613 { 1614 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1615 struct inode *inode; 1616 1617 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1618 "suspicious find_inode_rcu() usage"); 1619 1620 hlist_for_each_entry_rcu(inode, head, i_hash) { 1621 if (inode->i_sb == sb && 1622 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) && 1623 test(inode, data)) 1624 return inode; 1625 } 1626 return NULL; 1627 } 1628 EXPORT_SYMBOL(find_inode_rcu); 1629 1630 /** 1631 * find_inode_by_ino_rcu - Find an inode in the inode cache 1632 * @sb: Super block of file system to search 1633 * @ino: The inode number to match 1634 * 1635 * Search for the inode specified by @hashval and @data in the inode cache, 1636 * where the helper function @test will return 0 if the inode does not match 1637 * and 1 if it does. The @test function must be responsible for taking the 1638 * i_lock spin_lock and checking i_state for an inode being freed or being 1639 * initialized. 1640 * 1641 * If successful, this will return the inode for which the @test function 1642 * returned 1 and NULL otherwise. 1643 * 1644 * The @test function is not permitted to take a ref on any inode presented. 1645 * It is also not permitted to sleep. 1646 * 1647 * The caller must hold the RCU read lock. 1648 */ 1649 struct inode *find_inode_by_ino_rcu(struct super_block *sb, 1650 unsigned long ino) 1651 { 1652 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1653 struct inode *inode; 1654 1655 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1656 "suspicious find_inode_by_ino_rcu() usage"); 1657 1658 hlist_for_each_entry_rcu(inode, head, i_hash) { 1659 if (inode->i_ino == ino && 1660 inode->i_sb == sb && 1661 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE))) 1662 return inode; 1663 } 1664 return NULL; 1665 } 1666 EXPORT_SYMBOL(find_inode_by_ino_rcu); 1667 1668 int insert_inode_locked(struct inode *inode) 1669 { 1670 struct super_block *sb = inode->i_sb; 1671 ino_t ino = inode->i_ino; 1672 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1673 1674 while (1) { 1675 struct inode *old = NULL; 1676 spin_lock(&inode_hash_lock); 1677 hlist_for_each_entry(old, head, i_hash) { 1678 if (old->i_ino != ino) 1679 continue; 1680 if (old->i_sb != sb) 1681 continue; 1682 spin_lock(&old->i_lock); 1683 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1684 spin_unlock(&old->i_lock); 1685 continue; 1686 } 1687 break; 1688 } 1689 if (likely(!old)) { 1690 spin_lock(&inode->i_lock); 1691 inode->i_state |= I_NEW | I_CREATING; 1692 hlist_add_head_rcu(&inode->i_hash, head); 1693 spin_unlock(&inode->i_lock); 1694 spin_unlock(&inode_hash_lock); 1695 return 0; 1696 } 1697 if (unlikely(old->i_state & I_CREATING)) { 1698 spin_unlock(&old->i_lock); 1699 spin_unlock(&inode_hash_lock); 1700 return -EBUSY; 1701 } 1702 __iget(old); 1703 spin_unlock(&old->i_lock); 1704 spin_unlock(&inode_hash_lock); 1705 wait_on_inode(old); 1706 if (unlikely(!inode_unhashed(old))) { 1707 iput(old); 1708 return -EBUSY; 1709 } 1710 iput(old); 1711 } 1712 } 1713 EXPORT_SYMBOL(insert_inode_locked); 1714 1715 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1716 int (*test)(struct inode *, void *), void *data) 1717 { 1718 struct inode *old; 1719 1720 inode->i_state |= I_CREATING; 1721 old = inode_insert5(inode, hashval, test, NULL, data); 1722 1723 if (old != inode) { 1724 iput(old); 1725 return -EBUSY; 1726 } 1727 return 0; 1728 } 1729 EXPORT_SYMBOL(insert_inode_locked4); 1730 1731 1732 int generic_delete_inode(struct inode *inode) 1733 { 1734 return 1; 1735 } 1736 EXPORT_SYMBOL(generic_delete_inode); 1737 1738 /* 1739 * Called when we're dropping the last reference 1740 * to an inode. 1741 * 1742 * Call the FS "drop_inode()" function, defaulting to 1743 * the legacy UNIX filesystem behaviour. If it tells 1744 * us to evict inode, do so. Otherwise, retain inode 1745 * in cache if fs is alive, sync and evict if fs is 1746 * shutting down. 1747 */ 1748 static void iput_final(struct inode *inode) 1749 { 1750 struct super_block *sb = inode->i_sb; 1751 const struct super_operations *op = inode->i_sb->s_op; 1752 unsigned long state; 1753 int drop; 1754 1755 WARN_ON(inode->i_state & I_NEW); 1756 1757 if (op->drop_inode) 1758 drop = op->drop_inode(inode); 1759 else 1760 drop = generic_drop_inode(inode); 1761 1762 if (!drop && 1763 !(inode->i_state & I_DONTCACHE) && 1764 (sb->s_flags & SB_ACTIVE)) { 1765 __inode_add_lru(inode, true); 1766 spin_unlock(&inode->i_lock); 1767 return; 1768 } 1769 1770 state = inode->i_state; 1771 if (!drop) { 1772 WRITE_ONCE(inode->i_state, state | I_WILL_FREE); 1773 spin_unlock(&inode->i_lock); 1774 1775 write_inode_now(inode, 1); 1776 1777 spin_lock(&inode->i_lock); 1778 state = inode->i_state; 1779 WARN_ON(state & I_NEW); 1780 state &= ~I_WILL_FREE; 1781 } 1782 1783 WRITE_ONCE(inode->i_state, state | I_FREEING); 1784 if (!list_empty(&inode->i_lru)) 1785 inode_lru_list_del(inode); 1786 spin_unlock(&inode->i_lock); 1787 1788 evict(inode); 1789 } 1790 1791 /** 1792 * iput - put an inode 1793 * @inode: inode to put 1794 * 1795 * Puts an inode, dropping its usage count. If the inode use count hits 1796 * zero, the inode is then freed and may also be destroyed. 1797 * 1798 * Consequently, iput() can sleep. 1799 */ 1800 void iput(struct inode *inode) 1801 { 1802 if (!inode) 1803 return; 1804 BUG_ON(inode->i_state & I_CLEAR); 1805 retry: 1806 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1807 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1808 atomic_inc(&inode->i_count); 1809 spin_unlock(&inode->i_lock); 1810 trace_writeback_lazytime_iput(inode); 1811 mark_inode_dirty_sync(inode); 1812 goto retry; 1813 } 1814 iput_final(inode); 1815 } 1816 } 1817 EXPORT_SYMBOL(iput); 1818 1819 #ifdef CONFIG_BLOCK 1820 /** 1821 * bmap - find a block number in a file 1822 * @inode: inode owning the block number being requested 1823 * @block: pointer containing the block to find 1824 * 1825 * Replaces the value in ``*block`` with the block number on the device holding 1826 * corresponding to the requested block number in the file. 1827 * That is, asked for block 4 of inode 1 the function will replace the 1828 * 4 in ``*block``, with disk block relative to the disk start that holds that 1829 * block of the file. 1830 * 1831 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a 1832 * hole, returns 0 and ``*block`` is also set to 0. 1833 */ 1834 int bmap(struct inode *inode, sector_t *block) 1835 { 1836 if (!inode->i_mapping->a_ops->bmap) 1837 return -EINVAL; 1838 1839 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); 1840 return 0; 1841 } 1842 EXPORT_SYMBOL(bmap); 1843 #endif 1844 1845 /* 1846 * With relative atime, only update atime if the previous atime is 1847 * earlier than or equal to either the ctime or mtime, 1848 * or if at least a day has passed since the last atime update. 1849 */ 1850 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1851 struct timespec64 now) 1852 { 1853 1854 if (!(mnt->mnt_flags & MNT_RELATIME)) 1855 return 1; 1856 /* 1857 * Is mtime younger than or equal to atime? If yes, update atime: 1858 */ 1859 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1860 return 1; 1861 /* 1862 * Is ctime younger than or equal to atime? If yes, update atime: 1863 */ 1864 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1865 return 1; 1866 1867 /* 1868 * Is the previous atime value older than a day? If yes, 1869 * update atime: 1870 */ 1871 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1872 return 1; 1873 /* 1874 * Good, we can skip the atime update: 1875 */ 1876 return 0; 1877 } 1878 1879 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags) 1880 { 1881 int dirty_flags = 0; 1882 1883 if (flags & (S_ATIME | S_CTIME | S_MTIME)) { 1884 if (flags & S_ATIME) 1885 inode->i_atime = *time; 1886 if (flags & S_CTIME) 1887 inode->i_ctime = *time; 1888 if (flags & S_MTIME) 1889 inode->i_mtime = *time; 1890 1891 if (inode->i_sb->s_flags & SB_LAZYTIME) 1892 dirty_flags |= I_DIRTY_TIME; 1893 else 1894 dirty_flags |= I_DIRTY_SYNC; 1895 } 1896 1897 if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false)) 1898 dirty_flags |= I_DIRTY_SYNC; 1899 1900 __mark_inode_dirty(inode, dirty_flags); 1901 return 0; 1902 } 1903 EXPORT_SYMBOL(generic_update_time); 1904 1905 /* 1906 * This does the actual work of updating an inodes time or version. Must have 1907 * had called mnt_want_write() before calling this. 1908 */ 1909 int inode_update_time(struct inode *inode, struct timespec64 *time, int flags) 1910 { 1911 if (inode->i_op->update_time) 1912 return inode->i_op->update_time(inode, time, flags); 1913 return generic_update_time(inode, time, flags); 1914 } 1915 EXPORT_SYMBOL(inode_update_time); 1916 1917 /** 1918 * atime_needs_update - update the access time 1919 * @path: the &struct path to update 1920 * @inode: inode to update 1921 * 1922 * Update the accessed time on an inode and mark it for writeback. 1923 * This function automatically handles read only file systems and media, 1924 * as well as the "noatime" flag and inode specific "noatime" markers. 1925 */ 1926 bool atime_needs_update(const struct path *path, struct inode *inode) 1927 { 1928 struct vfsmount *mnt = path->mnt; 1929 struct timespec64 now; 1930 1931 if (inode->i_flags & S_NOATIME) 1932 return false; 1933 1934 /* Atime updates will likely cause i_uid and i_gid to be written 1935 * back improprely if their true value is unknown to the vfs. 1936 */ 1937 if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode)) 1938 return false; 1939 1940 if (IS_NOATIME(inode)) 1941 return false; 1942 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 1943 return false; 1944 1945 if (mnt->mnt_flags & MNT_NOATIME) 1946 return false; 1947 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1948 return false; 1949 1950 now = current_time(inode); 1951 1952 if (!relatime_need_update(mnt, inode, now)) 1953 return false; 1954 1955 if (timespec64_equal(&inode->i_atime, &now)) 1956 return false; 1957 1958 return true; 1959 } 1960 1961 void touch_atime(const struct path *path) 1962 { 1963 struct vfsmount *mnt = path->mnt; 1964 struct inode *inode = d_inode(path->dentry); 1965 struct timespec64 now; 1966 1967 if (!atime_needs_update(path, inode)) 1968 return; 1969 1970 if (!sb_start_write_trylock(inode->i_sb)) 1971 return; 1972 1973 if (__mnt_want_write(mnt) != 0) 1974 goto skip_update; 1975 /* 1976 * File systems can error out when updating inodes if they need to 1977 * allocate new space to modify an inode (such is the case for 1978 * Btrfs), but since we touch atime while walking down the path we 1979 * really don't care if we failed to update the atime of the file, 1980 * so just ignore the return value. 1981 * We may also fail on filesystems that have the ability to make parts 1982 * of the fs read only, e.g. subvolumes in Btrfs. 1983 */ 1984 now = current_time(inode); 1985 inode_update_time(inode, &now, S_ATIME); 1986 __mnt_drop_write(mnt); 1987 skip_update: 1988 sb_end_write(inode->i_sb); 1989 } 1990 EXPORT_SYMBOL(touch_atime); 1991 1992 /* 1993 * Return mask of changes for notify_change() that need to be done as a 1994 * response to write or truncate. Return 0 if nothing has to be changed. 1995 * Negative value on error (change should be denied). 1996 */ 1997 int dentry_needs_remove_privs(struct mnt_idmap *idmap, 1998 struct dentry *dentry) 1999 { 2000 struct inode *inode = d_inode(dentry); 2001 int mask = 0; 2002 int ret; 2003 2004 if (IS_NOSEC(inode)) 2005 return 0; 2006 2007 mask = setattr_should_drop_suidgid(idmap, inode); 2008 ret = security_inode_need_killpriv(dentry); 2009 if (ret < 0) 2010 return ret; 2011 if (ret) 2012 mask |= ATTR_KILL_PRIV; 2013 return mask; 2014 } 2015 2016 static int __remove_privs(struct mnt_idmap *idmap, 2017 struct dentry *dentry, int kill) 2018 { 2019 struct iattr newattrs; 2020 2021 newattrs.ia_valid = ATTR_FORCE | kill; 2022 /* 2023 * Note we call this on write, so notify_change will not 2024 * encounter any conflicting delegations: 2025 */ 2026 return notify_change(idmap, dentry, &newattrs, NULL); 2027 } 2028 2029 static int __file_remove_privs(struct file *file, unsigned int flags) 2030 { 2031 struct dentry *dentry = file_dentry(file); 2032 struct inode *inode = file_inode(file); 2033 int error = 0; 2034 int kill; 2035 2036 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) 2037 return 0; 2038 2039 kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry); 2040 if (kill < 0) 2041 return kill; 2042 2043 if (kill) { 2044 if (flags & IOCB_NOWAIT) 2045 return -EAGAIN; 2046 2047 error = __remove_privs(file_mnt_idmap(file), dentry, kill); 2048 } 2049 2050 if (!error) 2051 inode_has_no_xattr(inode); 2052 return error; 2053 } 2054 2055 /** 2056 * file_remove_privs - remove special file privileges (suid, capabilities) 2057 * @file: file to remove privileges from 2058 * 2059 * When file is modified by a write or truncation ensure that special 2060 * file privileges are removed. 2061 * 2062 * Return: 0 on success, negative errno on failure. 2063 */ 2064 int file_remove_privs(struct file *file) 2065 { 2066 return __file_remove_privs(file, 0); 2067 } 2068 EXPORT_SYMBOL(file_remove_privs); 2069 2070 static int inode_needs_update_time(struct inode *inode, struct timespec64 *now) 2071 { 2072 int sync_it = 0; 2073 2074 /* First try to exhaust all avenues to not sync */ 2075 if (IS_NOCMTIME(inode)) 2076 return 0; 2077 2078 if (!timespec64_equal(&inode->i_mtime, now)) 2079 sync_it = S_MTIME; 2080 2081 if (!timespec64_equal(&inode->i_ctime, now)) 2082 sync_it |= S_CTIME; 2083 2084 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 2085 sync_it |= S_VERSION; 2086 2087 return sync_it; 2088 } 2089 2090 static int __file_update_time(struct file *file, struct timespec64 *now, 2091 int sync_mode) 2092 { 2093 int ret = 0; 2094 struct inode *inode = file_inode(file); 2095 2096 /* try to update time settings */ 2097 if (!__mnt_want_write_file(file)) { 2098 ret = inode_update_time(inode, now, sync_mode); 2099 __mnt_drop_write_file(file); 2100 } 2101 2102 return ret; 2103 } 2104 2105 /** 2106 * file_update_time - update mtime and ctime time 2107 * @file: file accessed 2108 * 2109 * Update the mtime and ctime members of an inode and mark the inode for 2110 * writeback. Note that this function is meant exclusively for usage in 2111 * the file write path of filesystems, and filesystems may choose to 2112 * explicitly ignore updates via this function with the _NOCMTIME inode 2113 * flag, e.g. for network filesystem where these imestamps are handled 2114 * by the server. This can return an error for file systems who need to 2115 * allocate space in order to update an inode. 2116 * 2117 * Return: 0 on success, negative errno on failure. 2118 */ 2119 int file_update_time(struct file *file) 2120 { 2121 int ret; 2122 struct inode *inode = file_inode(file); 2123 struct timespec64 now = current_time(inode); 2124 2125 ret = inode_needs_update_time(inode, &now); 2126 if (ret <= 0) 2127 return ret; 2128 2129 return __file_update_time(file, &now, ret); 2130 } 2131 EXPORT_SYMBOL(file_update_time); 2132 2133 /** 2134 * file_modified_flags - handle mandated vfs changes when modifying a file 2135 * @file: file that was modified 2136 * @flags: kiocb flags 2137 * 2138 * When file has been modified ensure that special 2139 * file privileges are removed and time settings are updated. 2140 * 2141 * If IOCB_NOWAIT is set, special file privileges will not be removed and 2142 * time settings will not be updated. It will return -EAGAIN. 2143 * 2144 * Context: Caller must hold the file's inode lock. 2145 * 2146 * Return: 0 on success, negative errno on failure. 2147 */ 2148 static int file_modified_flags(struct file *file, int flags) 2149 { 2150 int ret; 2151 struct inode *inode = file_inode(file); 2152 struct timespec64 now = current_time(inode); 2153 2154 /* 2155 * Clear the security bits if the process is not being run by root. 2156 * This keeps people from modifying setuid and setgid binaries. 2157 */ 2158 ret = __file_remove_privs(file, flags); 2159 if (ret) 2160 return ret; 2161 2162 if (unlikely(file->f_mode & FMODE_NOCMTIME)) 2163 return 0; 2164 2165 ret = inode_needs_update_time(inode, &now); 2166 if (ret <= 0) 2167 return ret; 2168 if (flags & IOCB_NOWAIT) 2169 return -EAGAIN; 2170 2171 return __file_update_time(file, &now, ret); 2172 } 2173 2174 /** 2175 * file_modified - handle mandated vfs changes when modifying a file 2176 * @file: file that was modified 2177 * 2178 * When file has been modified ensure that special 2179 * file privileges are removed and time settings are updated. 2180 * 2181 * Context: Caller must hold the file's inode lock. 2182 * 2183 * Return: 0 on success, negative errno on failure. 2184 */ 2185 int file_modified(struct file *file) 2186 { 2187 return file_modified_flags(file, 0); 2188 } 2189 EXPORT_SYMBOL(file_modified); 2190 2191 /** 2192 * kiocb_modified - handle mandated vfs changes when modifying a file 2193 * @iocb: iocb that was modified 2194 * 2195 * When file has been modified ensure that special 2196 * file privileges are removed and time settings are updated. 2197 * 2198 * Context: Caller must hold the file's inode lock. 2199 * 2200 * Return: 0 on success, negative errno on failure. 2201 */ 2202 int kiocb_modified(struct kiocb *iocb) 2203 { 2204 return file_modified_flags(iocb->ki_filp, iocb->ki_flags); 2205 } 2206 EXPORT_SYMBOL_GPL(kiocb_modified); 2207 2208 int inode_needs_sync(struct inode *inode) 2209 { 2210 if (IS_SYNC(inode)) 2211 return 1; 2212 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 2213 return 1; 2214 return 0; 2215 } 2216 EXPORT_SYMBOL(inode_needs_sync); 2217 2218 /* 2219 * If we try to find an inode in the inode hash while it is being 2220 * deleted, we have to wait until the filesystem completes its 2221 * deletion before reporting that it isn't found. This function waits 2222 * until the deletion _might_ have completed. Callers are responsible 2223 * to recheck inode state. 2224 * 2225 * It doesn't matter if I_NEW is not set initially, a call to 2226 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 2227 * will DTRT. 2228 */ 2229 static void __wait_on_freeing_inode(struct inode *inode) 2230 { 2231 wait_queue_head_t *wq; 2232 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 2233 wq = bit_waitqueue(&inode->i_state, __I_NEW); 2234 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2235 spin_unlock(&inode->i_lock); 2236 spin_unlock(&inode_hash_lock); 2237 schedule(); 2238 finish_wait(wq, &wait.wq_entry); 2239 spin_lock(&inode_hash_lock); 2240 } 2241 2242 static __initdata unsigned long ihash_entries; 2243 static int __init set_ihash_entries(char *str) 2244 { 2245 if (!str) 2246 return 0; 2247 ihash_entries = simple_strtoul(str, &str, 0); 2248 return 1; 2249 } 2250 __setup("ihash_entries=", set_ihash_entries); 2251 2252 /* 2253 * Initialize the waitqueues and inode hash table. 2254 */ 2255 void __init inode_init_early(void) 2256 { 2257 /* If hashes are distributed across NUMA nodes, defer 2258 * hash allocation until vmalloc space is available. 2259 */ 2260 if (hashdist) 2261 return; 2262 2263 inode_hashtable = 2264 alloc_large_system_hash("Inode-cache", 2265 sizeof(struct hlist_head), 2266 ihash_entries, 2267 14, 2268 HASH_EARLY | HASH_ZERO, 2269 &i_hash_shift, 2270 &i_hash_mask, 2271 0, 2272 0); 2273 } 2274 2275 void __init inode_init(void) 2276 { 2277 /* inode slab cache */ 2278 inode_cachep = kmem_cache_create("inode_cache", 2279 sizeof(struct inode), 2280 0, 2281 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2282 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 2283 init_once); 2284 2285 /* Hash may have been set up in inode_init_early */ 2286 if (!hashdist) 2287 return; 2288 2289 inode_hashtable = 2290 alloc_large_system_hash("Inode-cache", 2291 sizeof(struct hlist_head), 2292 ihash_entries, 2293 14, 2294 HASH_ZERO, 2295 &i_hash_shift, 2296 &i_hash_mask, 2297 0, 2298 0); 2299 } 2300 2301 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 2302 { 2303 inode->i_mode = mode; 2304 if (S_ISCHR(mode)) { 2305 inode->i_fop = &def_chr_fops; 2306 inode->i_rdev = rdev; 2307 } else if (S_ISBLK(mode)) { 2308 if (IS_ENABLED(CONFIG_BLOCK)) 2309 inode->i_fop = &def_blk_fops; 2310 inode->i_rdev = rdev; 2311 } else if (S_ISFIFO(mode)) 2312 inode->i_fop = &pipefifo_fops; 2313 else if (S_ISSOCK(mode)) 2314 ; /* leave it no_open_fops */ 2315 else 2316 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 2317 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2318 inode->i_ino); 2319 } 2320 EXPORT_SYMBOL(init_special_inode); 2321 2322 /** 2323 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2324 * @idmap: idmap of the mount the inode was created from 2325 * @inode: New inode 2326 * @dir: Directory inode 2327 * @mode: mode of the new inode 2328 * 2329 * If the inode has been created through an idmapped mount the idmap of 2330 * the vfsmount must be passed through @idmap. This function will then take 2331 * care to map the inode according to @idmap before checking permissions 2332 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission 2333 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap. 2334 */ 2335 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 2336 const struct inode *dir, umode_t mode) 2337 { 2338 inode_fsuid_set(inode, idmap); 2339 if (dir && dir->i_mode & S_ISGID) { 2340 inode->i_gid = dir->i_gid; 2341 2342 /* Directories are special, and always inherit S_ISGID */ 2343 if (S_ISDIR(mode)) 2344 mode |= S_ISGID; 2345 } else 2346 inode_fsgid_set(inode, idmap); 2347 inode->i_mode = mode; 2348 } 2349 EXPORT_SYMBOL(inode_init_owner); 2350 2351 /** 2352 * inode_owner_or_capable - check current task permissions to inode 2353 * @idmap: idmap of the mount the inode was found from 2354 * @inode: inode being checked 2355 * 2356 * Return true if current either has CAP_FOWNER in a namespace with the 2357 * inode owner uid mapped, or owns the file. 2358 * 2359 * If the inode has been found through an idmapped mount the idmap of 2360 * the vfsmount must be passed through @idmap. This function will then take 2361 * care to map the inode according to @idmap before checking permissions. 2362 * On non-idmapped mounts or if permission checking is to be performed on the 2363 * raw inode simply passs @nop_mnt_idmap. 2364 */ 2365 bool inode_owner_or_capable(struct mnt_idmap *idmap, 2366 const struct inode *inode) 2367 { 2368 vfsuid_t vfsuid; 2369 struct user_namespace *ns; 2370 2371 vfsuid = i_uid_into_vfsuid(idmap, inode); 2372 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 2373 return true; 2374 2375 ns = current_user_ns(); 2376 if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER)) 2377 return true; 2378 return false; 2379 } 2380 EXPORT_SYMBOL(inode_owner_or_capable); 2381 2382 /* 2383 * Direct i/o helper functions 2384 */ 2385 static void __inode_dio_wait(struct inode *inode) 2386 { 2387 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2388 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2389 2390 do { 2391 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); 2392 if (atomic_read(&inode->i_dio_count)) 2393 schedule(); 2394 } while (atomic_read(&inode->i_dio_count)); 2395 finish_wait(wq, &q.wq_entry); 2396 } 2397 2398 /** 2399 * inode_dio_wait - wait for outstanding DIO requests to finish 2400 * @inode: inode to wait for 2401 * 2402 * Waits for all pending direct I/O requests to finish so that we can 2403 * proceed with a truncate or equivalent operation. 2404 * 2405 * Must be called under a lock that serializes taking new references 2406 * to i_dio_count, usually by inode->i_mutex. 2407 */ 2408 void inode_dio_wait(struct inode *inode) 2409 { 2410 if (atomic_read(&inode->i_dio_count)) 2411 __inode_dio_wait(inode); 2412 } 2413 EXPORT_SYMBOL(inode_dio_wait); 2414 2415 /* 2416 * inode_set_flags - atomically set some inode flags 2417 * 2418 * Note: the caller should be holding i_mutex, or else be sure that 2419 * they have exclusive access to the inode structure (i.e., while the 2420 * inode is being instantiated). The reason for the cmpxchg() loop 2421 * --- which wouldn't be necessary if all code paths which modify 2422 * i_flags actually followed this rule, is that there is at least one 2423 * code path which doesn't today so we use cmpxchg() out of an abundance 2424 * of caution. 2425 * 2426 * In the long run, i_mutex is overkill, and we should probably look 2427 * at using the i_lock spinlock to protect i_flags, and then make sure 2428 * it is so documented in include/linux/fs.h and that all code follows 2429 * the locking convention!! 2430 */ 2431 void inode_set_flags(struct inode *inode, unsigned int flags, 2432 unsigned int mask) 2433 { 2434 WARN_ON_ONCE(flags & ~mask); 2435 set_mask_bits(&inode->i_flags, mask, flags); 2436 } 2437 EXPORT_SYMBOL(inode_set_flags); 2438 2439 void inode_nohighmem(struct inode *inode) 2440 { 2441 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2442 } 2443 EXPORT_SYMBOL(inode_nohighmem); 2444 2445 /** 2446 * timestamp_truncate - Truncate timespec to a granularity 2447 * @t: Timespec 2448 * @inode: inode being updated 2449 * 2450 * Truncate a timespec to the granularity supported by the fs 2451 * containing the inode. Always rounds down. gran must 2452 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2453 */ 2454 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) 2455 { 2456 struct super_block *sb = inode->i_sb; 2457 unsigned int gran = sb->s_time_gran; 2458 2459 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); 2460 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) 2461 t.tv_nsec = 0; 2462 2463 /* Avoid division in the common cases 1 ns and 1 s. */ 2464 if (gran == 1) 2465 ; /* nothing */ 2466 else if (gran == NSEC_PER_SEC) 2467 t.tv_nsec = 0; 2468 else if (gran > 1 && gran < NSEC_PER_SEC) 2469 t.tv_nsec -= t.tv_nsec % gran; 2470 else 2471 WARN(1, "invalid file time granularity: %u", gran); 2472 return t; 2473 } 2474 EXPORT_SYMBOL(timestamp_truncate); 2475 2476 /** 2477 * current_time - Return FS time 2478 * @inode: inode. 2479 * 2480 * Return the current time truncated to the time granularity supported by 2481 * the fs. 2482 * 2483 * Note that inode and inode->sb cannot be NULL. 2484 * Otherwise, the function warns and returns time without truncation. 2485 */ 2486 struct timespec64 current_time(struct inode *inode) 2487 { 2488 struct timespec64 now; 2489 2490 ktime_get_coarse_real_ts64(&now); 2491 2492 if (unlikely(!inode->i_sb)) { 2493 WARN(1, "current_time() called with uninitialized super_block in the inode"); 2494 return now; 2495 } 2496 2497 return timestamp_truncate(now, inode); 2498 } 2499 EXPORT_SYMBOL(current_time); 2500 2501 /** 2502 * in_group_or_capable - check whether caller is CAP_FSETID privileged 2503 * @idmap: idmap of the mount @inode was found from 2504 * @inode: inode to check 2505 * @vfsgid: the new/current vfsgid of @inode 2506 * 2507 * Check wether @vfsgid is in the caller's group list or if the caller is 2508 * privileged with CAP_FSETID over @inode. This can be used to determine 2509 * whether the setgid bit can be kept or must be dropped. 2510 * 2511 * Return: true if the caller is sufficiently privileged, false if not. 2512 */ 2513 bool in_group_or_capable(struct mnt_idmap *idmap, 2514 const struct inode *inode, vfsgid_t vfsgid) 2515 { 2516 if (vfsgid_in_group_p(vfsgid)) 2517 return true; 2518 if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID)) 2519 return true; 2520 return false; 2521 } 2522 2523 /** 2524 * mode_strip_sgid - handle the sgid bit for non-directories 2525 * @idmap: idmap of the mount the inode was created from 2526 * @dir: parent directory inode 2527 * @mode: mode of the file to be created in @dir 2528 * 2529 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit 2530 * raised and @dir has the S_ISGID bit raised ensure that the caller is 2531 * either in the group of the parent directory or they have CAP_FSETID 2532 * in their user namespace and are privileged over the parent directory. 2533 * In all other cases, strip the S_ISGID bit from @mode. 2534 * 2535 * Return: the new mode to use for the file 2536 */ 2537 umode_t mode_strip_sgid(struct mnt_idmap *idmap, 2538 const struct inode *dir, umode_t mode) 2539 { 2540 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP)) 2541 return mode; 2542 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID)) 2543 return mode; 2544 if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir))) 2545 return mode; 2546 return mode & ~S_ISGID; 2547 } 2548 EXPORT_SYMBOL(mode_strip_sgid); 2549