xref: /openbmc/linux/fs/inode.c (revision 2e7c04aec86758e0adfcad4a24c86593b45807a3)
1 /*
2  * (C) 1997 Linus Torvalds
3  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4  */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <linux/iversion.h>
22 #include <trace/events/writeback.h>
23 #include "internal.h"
24 
25 /*
26  * Inode locking rules:
27  *
28  * inode->i_lock protects:
29  *   inode->i_state, inode->i_hash, __iget()
30  * Inode LRU list locks protect:
31  *   inode->i_sb->s_inode_lru, inode->i_lru
32  * inode->i_sb->s_inode_list_lock protects:
33  *   inode->i_sb->s_inodes, inode->i_sb_list
34  * bdi->wb.list_lock protects:
35  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
36  * inode_hash_lock protects:
37  *   inode_hashtable, inode->i_hash
38  *
39  * Lock ordering:
40  *
41  * inode->i_sb->s_inode_list_lock
42  *   inode->i_lock
43  *     Inode LRU list locks
44  *
45  * bdi->wb.list_lock
46  *   inode->i_lock
47  *
48  * inode_hash_lock
49  *   inode->i_sb->s_inode_list_lock
50  *   inode->i_lock
51  *
52  * iunique_lock
53  *   inode_hash_lock
54  */
55 
56 static unsigned int i_hash_mask __read_mostly;
57 static unsigned int i_hash_shift __read_mostly;
58 static struct hlist_head *inode_hashtable __read_mostly;
59 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
60 
61 /*
62  * Empty aops. Can be used for the cases where the user does not
63  * define any of the address_space operations.
64  */
65 const struct address_space_operations empty_aops = {
66 };
67 EXPORT_SYMBOL(empty_aops);
68 
69 /*
70  * Statistics gathering..
71  */
72 struct inodes_stat_t inodes_stat;
73 
74 static DEFINE_PER_CPU(unsigned long, nr_inodes);
75 static DEFINE_PER_CPU(unsigned long, nr_unused);
76 
77 static struct kmem_cache *inode_cachep __read_mostly;
78 
79 static long get_nr_inodes(void)
80 {
81 	int i;
82 	long sum = 0;
83 	for_each_possible_cpu(i)
84 		sum += per_cpu(nr_inodes, i);
85 	return sum < 0 ? 0 : sum;
86 }
87 
88 static inline long get_nr_inodes_unused(void)
89 {
90 	int i;
91 	long sum = 0;
92 	for_each_possible_cpu(i)
93 		sum += per_cpu(nr_unused, i);
94 	return sum < 0 ? 0 : sum;
95 }
96 
97 long get_nr_dirty_inodes(void)
98 {
99 	/* not actually dirty inodes, but a wild approximation */
100 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
101 	return nr_dirty > 0 ? nr_dirty : 0;
102 }
103 
104 /*
105  * Handle nr_inode sysctl
106  */
107 #ifdef CONFIG_SYSCTL
108 int proc_nr_inodes(struct ctl_table *table, int write,
109 		   void __user *buffer, size_t *lenp, loff_t *ppos)
110 {
111 	inodes_stat.nr_inodes = get_nr_inodes();
112 	inodes_stat.nr_unused = get_nr_inodes_unused();
113 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
114 }
115 #endif
116 
117 static int no_open(struct inode *inode, struct file *file)
118 {
119 	return -ENXIO;
120 }
121 
122 /**
123  * inode_init_always - perform inode structure initialisation
124  * @sb: superblock inode belongs to
125  * @inode: inode to initialise
126  *
127  * These are initializations that need to be done on every inode
128  * allocation as the fields are not initialised by slab allocation.
129  */
130 int inode_init_always(struct super_block *sb, struct inode *inode)
131 {
132 	static const struct inode_operations empty_iops;
133 	static const struct file_operations no_open_fops = {.open = no_open};
134 	struct address_space *const mapping = &inode->i_data;
135 
136 	inode->i_sb = sb;
137 	inode->i_blkbits = sb->s_blocksize_bits;
138 	inode->i_flags = 0;
139 	atomic_set(&inode->i_count, 1);
140 	inode->i_op = &empty_iops;
141 	inode->i_fop = &no_open_fops;
142 	inode->__i_nlink = 1;
143 	inode->i_opflags = 0;
144 	if (sb->s_xattr)
145 		inode->i_opflags |= IOP_XATTR;
146 	i_uid_write(inode, 0);
147 	i_gid_write(inode, 0);
148 	atomic_set(&inode->i_writecount, 0);
149 	inode->i_size = 0;
150 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
151 	inode->i_blocks = 0;
152 	inode->i_bytes = 0;
153 	inode->i_generation = 0;
154 	inode->i_pipe = NULL;
155 	inode->i_bdev = NULL;
156 	inode->i_cdev = NULL;
157 	inode->i_link = NULL;
158 	inode->i_dir_seq = 0;
159 	inode->i_rdev = 0;
160 	inode->dirtied_when = 0;
161 
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 	inode->i_wb_frn_winner = 0;
164 	inode->i_wb_frn_avg_time = 0;
165 	inode->i_wb_frn_history = 0;
166 #endif
167 
168 	if (security_inode_alloc(inode))
169 		goto out;
170 	spin_lock_init(&inode->i_lock);
171 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
172 
173 	init_rwsem(&inode->i_rwsem);
174 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
175 
176 	atomic_set(&inode->i_dio_count, 0);
177 
178 	mapping->a_ops = &empty_aops;
179 	mapping->host = inode;
180 	mapping->flags = 0;
181 	mapping->wb_err = 0;
182 	atomic_set(&mapping->i_mmap_writable, 0);
183 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
184 	mapping->private_data = NULL;
185 	mapping->writeback_index = 0;
186 	inode->i_private = NULL;
187 	inode->i_mapping = mapping;
188 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
189 #ifdef CONFIG_FS_POSIX_ACL
190 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
191 #endif
192 
193 #ifdef CONFIG_FSNOTIFY
194 	inode->i_fsnotify_mask = 0;
195 #endif
196 	inode->i_flctx = NULL;
197 	this_cpu_inc(nr_inodes);
198 
199 	return 0;
200 out:
201 	return -ENOMEM;
202 }
203 EXPORT_SYMBOL(inode_init_always);
204 
205 static struct inode *alloc_inode(struct super_block *sb)
206 {
207 	struct inode *inode;
208 
209 	if (sb->s_op->alloc_inode)
210 		inode = sb->s_op->alloc_inode(sb);
211 	else
212 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
213 
214 	if (!inode)
215 		return NULL;
216 
217 	if (unlikely(inode_init_always(sb, inode))) {
218 		if (inode->i_sb->s_op->destroy_inode)
219 			inode->i_sb->s_op->destroy_inode(inode);
220 		else
221 			kmem_cache_free(inode_cachep, inode);
222 		return NULL;
223 	}
224 
225 	return inode;
226 }
227 
228 void free_inode_nonrcu(struct inode *inode)
229 {
230 	kmem_cache_free(inode_cachep, inode);
231 }
232 EXPORT_SYMBOL(free_inode_nonrcu);
233 
234 void __destroy_inode(struct inode *inode)
235 {
236 	BUG_ON(inode_has_buffers(inode));
237 	inode_detach_wb(inode);
238 	security_inode_free(inode);
239 	fsnotify_inode_delete(inode);
240 	locks_free_lock_context(inode);
241 	if (!inode->i_nlink) {
242 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
243 		atomic_long_dec(&inode->i_sb->s_remove_count);
244 	}
245 
246 #ifdef CONFIG_FS_POSIX_ACL
247 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
248 		posix_acl_release(inode->i_acl);
249 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
250 		posix_acl_release(inode->i_default_acl);
251 #endif
252 	this_cpu_dec(nr_inodes);
253 }
254 EXPORT_SYMBOL(__destroy_inode);
255 
256 static void i_callback(struct rcu_head *head)
257 {
258 	struct inode *inode = container_of(head, struct inode, i_rcu);
259 	kmem_cache_free(inode_cachep, inode);
260 }
261 
262 static void destroy_inode(struct inode *inode)
263 {
264 	BUG_ON(!list_empty(&inode->i_lru));
265 	__destroy_inode(inode);
266 	if (inode->i_sb->s_op->destroy_inode)
267 		inode->i_sb->s_op->destroy_inode(inode);
268 	else
269 		call_rcu(&inode->i_rcu, i_callback);
270 }
271 
272 /**
273  * drop_nlink - directly drop an inode's link count
274  * @inode: inode
275  *
276  * This is a low-level filesystem helper to replace any
277  * direct filesystem manipulation of i_nlink.  In cases
278  * where we are attempting to track writes to the
279  * filesystem, a decrement to zero means an imminent
280  * write when the file is truncated and actually unlinked
281  * on the filesystem.
282  */
283 void drop_nlink(struct inode *inode)
284 {
285 	WARN_ON(inode->i_nlink == 0);
286 	inode->__i_nlink--;
287 	if (!inode->i_nlink)
288 		atomic_long_inc(&inode->i_sb->s_remove_count);
289 }
290 EXPORT_SYMBOL(drop_nlink);
291 
292 /**
293  * clear_nlink - directly zero an inode's link count
294  * @inode: inode
295  *
296  * This is a low-level filesystem helper to replace any
297  * direct filesystem manipulation of i_nlink.  See
298  * drop_nlink() for why we care about i_nlink hitting zero.
299  */
300 void clear_nlink(struct inode *inode)
301 {
302 	if (inode->i_nlink) {
303 		inode->__i_nlink = 0;
304 		atomic_long_inc(&inode->i_sb->s_remove_count);
305 	}
306 }
307 EXPORT_SYMBOL(clear_nlink);
308 
309 /**
310  * set_nlink - directly set an inode's link count
311  * @inode: inode
312  * @nlink: new nlink (should be non-zero)
313  *
314  * This is a low-level filesystem helper to replace any
315  * direct filesystem manipulation of i_nlink.
316  */
317 void set_nlink(struct inode *inode, unsigned int nlink)
318 {
319 	if (!nlink) {
320 		clear_nlink(inode);
321 	} else {
322 		/* Yes, some filesystems do change nlink from zero to one */
323 		if (inode->i_nlink == 0)
324 			atomic_long_dec(&inode->i_sb->s_remove_count);
325 
326 		inode->__i_nlink = nlink;
327 	}
328 }
329 EXPORT_SYMBOL(set_nlink);
330 
331 /**
332  * inc_nlink - directly increment an inode's link count
333  * @inode: inode
334  *
335  * This is a low-level filesystem helper to replace any
336  * direct filesystem manipulation of i_nlink.  Currently,
337  * it is only here for parity with dec_nlink().
338  */
339 void inc_nlink(struct inode *inode)
340 {
341 	if (unlikely(inode->i_nlink == 0)) {
342 		WARN_ON(!(inode->i_state & I_LINKABLE));
343 		atomic_long_dec(&inode->i_sb->s_remove_count);
344 	}
345 
346 	inode->__i_nlink++;
347 }
348 EXPORT_SYMBOL(inc_nlink);
349 
350 static void __address_space_init_once(struct address_space *mapping)
351 {
352 	INIT_RADIX_TREE(&mapping->i_pages, GFP_ATOMIC | __GFP_ACCOUNT);
353 	init_rwsem(&mapping->i_mmap_rwsem);
354 	INIT_LIST_HEAD(&mapping->private_list);
355 	spin_lock_init(&mapping->private_lock);
356 	mapping->i_mmap = RB_ROOT_CACHED;
357 }
358 
359 void address_space_init_once(struct address_space *mapping)
360 {
361 	memset(mapping, 0, sizeof(*mapping));
362 	__address_space_init_once(mapping);
363 }
364 EXPORT_SYMBOL(address_space_init_once);
365 
366 /*
367  * These are initializations that only need to be done
368  * once, because the fields are idempotent across use
369  * of the inode, so let the slab aware of that.
370  */
371 void inode_init_once(struct inode *inode)
372 {
373 	memset(inode, 0, sizeof(*inode));
374 	INIT_HLIST_NODE(&inode->i_hash);
375 	INIT_LIST_HEAD(&inode->i_devices);
376 	INIT_LIST_HEAD(&inode->i_io_list);
377 	INIT_LIST_HEAD(&inode->i_wb_list);
378 	INIT_LIST_HEAD(&inode->i_lru);
379 	__address_space_init_once(&inode->i_data);
380 	i_size_ordered_init(inode);
381 }
382 EXPORT_SYMBOL(inode_init_once);
383 
384 static void init_once(void *foo)
385 {
386 	struct inode *inode = (struct inode *) foo;
387 
388 	inode_init_once(inode);
389 }
390 
391 /*
392  * inode->i_lock must be held
393  */
394 void __iget(struct inode *inode)
395 {
396 	atomic_inc(&inode->i_count);
397 }
398 
399 /*
400  * get additional reference to inode; caller must already hold one.
401  */
402 void ihold(struct inode *inode)
403 {
404 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
405 }
406 EXPORT_SYMBOL(ihold);
407 
408 static void inode_lru_list_add(struct inode *inode)
409 {
410 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
411 		this_cpu_inc(nr_unused);
412 	else
413 		inode->i_state |= I_REFERENCED;
414 }
415 
416 /*
417  * Add inode to LRU if needed (inode is unused and clean).
418  *
419  * Needs inode->i_lock held.
420  */
421 void inode_add_lru(struct inode *inode)
422 {
423 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
424 				I_FREEING | I_WILL_FREE)) &&
425 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
426 		inode_lru_list_add(inode);
427 }
428 
429 
430 static void inode_lru_list_del(struct inode *inode)
431 {
432 
433 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
434 		this_cpu_dec(nr_unused);
435 }
436 
437 /**
438  * inode_sb_list_add - add inode to the superblock list of inodes
439  * @inode: inode to add
440  */
441 void inode_sb_list_add(struct inode *inode)
442 {
443 	spin_lock(&inode->i_sb->s_inode_list_lock);
444 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
445 	spin_unlock(&inode->i_sb->s_inode_list_lock);
446 }
447 EXPORT_SYMBOL_GPL(inode_sb_list_add);
448 
449 static inline void inode_sb_list_del(struct inode *inode)
450 {
451 	if (!list_empty(&inode->i_sb_list)) {
452 		spin_lock(&inode->i_sb->s_inode_list_lock);
453 		list_del_init(&inode->i_sb_list);
454 		spin_unlock(&inode->i_sb->s_inode_list_lock);
455 	}
456 }
457 
458 static unsigned long hash(struct super_block *sb, unsigned long hashval)
459 {
460 	unsigned long tmp;
461 
462 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
463 			L1_CACHE_BYTES;
464 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
465 	return tmp & i_hash_mask;
466 }
467 
468 /**
469  *	__insert_inode_hash - hash an inode
470  *	@inode: unhashed inode
471  *	@hashval: unsigned long value used to locate this object in the
472  *		inode_hashtable.
473  *
474  *	Add an inode to the inode hash for this superblock.
475  */
476 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
477 {
478 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
479 
480 	spin_lock(&inode_hash_lock);
481 	spin_lock(&inode->i_lock);
482 	hlist_add_head(&inode->i_hash, b);
483 	spin_unlock(&inode->i_lock);
484 	spin_unlock(&inode_hash_lock);
485 }
486 EXPORT_SYMBOL(__insert_inode_hash);
487 
488 /**
489  *	__remove_inode_hash - remove an inode from the hash
490  *	@inode: inode to unhash
491  *
492  *	Remove an inode from the superblock.
493  */
494 void __remove_inode_hash(struct inode *inode)
495 {
496 	spin_lock(&inode_hash_lock);
497 	spin_lock(&inode->i_lock);
498 	hlist_del_init(&inode->i_hash);
499 	spin_unlock(&inode->i_lock);
500 	spin_unlock(&inode_hash_lock);
501 }
502 EXPORT_SYMBOL(__remove_inode_hash);
503 
504 void clear_inode(struct inode *inode)
505 {
506 	/*
507 	 * We have to cycle the i_pages lock here because reclaim can be in the
508 	 * process of removing the last page (in __delete_from_page_cache())
509 	 * and we must not free the mapping under it.
510 	 */
511 	xa_lock_irq(&inode->i_data.i_pages);
512 	BUG_ON(inode->i_data.nrpages);
513 	BUG_ON(inode->i_data.nrexceptional);
514 	xa_unlock_irq(&inode->i_data.i_pages);
515 	BUG_ON(!list_empty(&inode->i_data.private_list));
516 	BUG_ON(!(inode->i_state & I_FREEING));
517 	BUG_ON(inode->i_state & I_CLEAR);
518 	BUG_ON(!list_empty(&inode->i_wb_list));
519 	/* don't need i_lock here, no concurrent mods to i_state */
520 	inode->i_state = I_FREEING | I_CLEAR;
521 }
522 EXPORT_SYMBOL(clear_inode);
523 
524 /*
525  * Free the inode passed in, removing it from the lists it is still connected
526  * to. We remove any pages still attached to the inode and wait for any IO that
527  * is still in progress before finally destroying the inode.
528  *
529  * An inode must already be marked I_FREEING so that we avoid the inode being
530  * moved back onto lists if we race with other code that manipulates the lists
531  * (e.g. writeback_single_inode). The caller is responsible for setting this.
532  *
533  * An inode must already be removed from the LRU list before being evicted from
534  * the cache. This should occur atomically with setting the I_FREEING state
535  * flag, so no inodes here should ever be on the LRU when being evicted.
536  */
537 static void evict(struct inode *inode)
538 {
539 	const struct super_operations *op = inode->i_sb->s_op;
540 
541 	BUG_ON(!(inode->i_state & I_FREEING));
542 	BUG_ON(!list_empty(&inode->i_lru));
543 
544 	if (!list_empty(&inode->i_io_list))
545 		inode_io_list_del(inode);
546 
547 	inode_sb_list_del(inode);
548 
549 	/*
550 	 * Wait for flusher thread to be done with the inode so that filesystem
551 	 * does not start destroying it while writeback is still running. Since
552 	 * the inode has I_FREEING set, flusher thread won't start new work on
553 	 * the inode.  We just have to wait for running writeback to finish.
554 	 */
555 	inode_wait_for_writeback(inode);
556 
557 	if (op->evict_inode) {
558 		op->evict_inode(inode);
559 	} else {
560 		truncate_inode_pages_final(&inode->i_data);
561 		clear_inode(inode);
562 	}
563 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
564 		bd_forget(inode);
565 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
566 		cd_forget(inode);
567 
568 	remove_inode_hash(inode);
569 
570 	spin_lock(&inode->i_lock);
571 	wake_up_bit(&inode->i_state, __I_NEW);
572 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
573 	spin_unlock(&inode->i_lock);
574 
575 	destroy_inode(inode);
576 }
577 
578 /*
579  * dispose_list - dispose of the contents of a local list
580  * @head: the head of the list to free
581  *
582  * Dispose-list gets a local list with local inodes in it, so it doesn't
583  * need to worry about list corruption and SMP locks.
584  */
585 static void dispose_list(struct list_head *head)
586 {
587 	while (!list_empty(head)) {
588 		struct inode *inode;
589 
590 		inode = list_first_entry(head, struct inode, i_lru);
591 		list_del_init(&inode->i_lru);
592 
593 		evict(inode);
594 		cond_resched();
595 	}
596 }
597 
598 /**
599  * evict_inodes	- evict all evictable inodes for a superblock
600  * @sb:		superblock to operate on
601  *
602  * Make sure that no inodes with zero refcount are retained.  This is
603  * called by superblock shutdown after having SB_ACTIVE flag removed,
604  * so any inode reaching zero refcount during or after that call will
605  * be immediately evicted.
606  */
607 void evict_inodes(struct super_block *sb)
608 {
609 	struct inode *inode, *next;
610 	LIST_HEAD(dispose);
611 
612 again:
613 	spin_lock(&sb->s_inode_list_lock);
614 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
615 		if (atomic_read(&inode->i_count))
616 			continue;
617 
618 		spin_lock(&inode->i_lock);
619 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
620 			spin_unlock(&inode->i_lock);
621 			continue;
622 		}
623 
624 		inode->i_state |= I_FREEING;
625 		inode_lru_list_del(inode);
626 		spin_unlock(&inode->i_lock);
627 		list_add(&inode->i_lru, &dispose);
628 
629 		/*
630 		 * We can have a ton of inodes to evict at unmount time given
631 		 * enough memory, check to see if we need to go to sleep for a
632 		 * bit so we don't livelock.
633 		 */
634 		if (need_resched()) {
635 			spin_unlock(&sb->s_inode_list_lock);
636 			cond_resched();
637 			dispose_list(&dispose);
638 			goto again;
639 		}
640 	}
641 	spin_unlock(&sb->s_inode_list_lock);
642 
643 	dispose_list(&dispose);
644 }
645 EXPORT_SYMBOL_GPL(evict_inodes);
646 
647 /**
648  * invalidate_inodes	- attempt to free all inodes on a superblock
649  * @sb:		superblock to operate on
650  * @kill_dirty: flag to guide handling of dirty inodes
651  *
652  * Attempts to free all inodes for a given superblock.  If there were any
653  * busy inodes return a non-zero value, else zero.
654  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
655  * them as busy.
656  */
657 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
658 {
659 	int busy = 0;
660 	struct inode *inode, *next;
661 	LIST_HEAD(dispose);
662 
663 	spin_lock(&sb->s_inode_list_lock);
664 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
665 		spin_lock(&inode->i_lock);
666 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
667 			spin_unlock(&inode->i_lock);
668 			continue;
669 		}
670 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
671 			spin_unlock(&inode->i_lock);
672 			busy = 1;
673 			continue;
674 		}
675 		if (atomic_read(&inode->i_count)) {
676 			spin_unlock(&inode->i_lock);
677 			busy = 1;
678 			continue;
679 		}
680 
681 		inode->i_state |= I_FREEING;
682 		inode_lru_list_del(inode);
683 		spin_unlock(&inode->i_lock);
684 		list_add(&inode->i_lru, &dispose);
685 	}
686 	spin_unlock(&sb->s_inode_list_lock);
687 
688 	dispose_list(&dispose);
689 
690 	return busy;
691 }
692 
693 /*
694  * Isolate the inode from the LRU in preparation for freeing it.
695  *
696  * Any inodes which are pinned purely because of attached pagecache have their
697  * pagecache removed.  If the inode has metadata buffers attached to
698  * mapping->private_list then try to remove them.
699  *
700  * If the inode has the I_REFERENCED flag set, then it means that it has been
701  * used recently - the flag is set in iput_final(). When we encounter such an
702  * inode, clear the flag and move it to the back of the LRU so it gets another
703  * pass through the LRU before it gets reclaimed. This is necessary because of
704  * the fact we are doing lazy LRU updates to minimise lock contention so the
705  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
706  * with this flag set because they are the inodes that are out of order.
707  */
708 static enum lru_status inode_lru_isolate(struct list_head *item,
709 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
710 {
711 	struct list_head *freeable = arg;
712 	struct inode	*inode = container_of(item, struct inode, i_lru);
713 
714 	/*
715 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
716 	 * If we fail to get the lock, just skip it.
717 	 */
718 	if (!spin_trylock(&inode->i_lock))
719 		return LRU_SKIP;
720 
721 	/*
722 	 * Referenced or dirty inodes are still in use. Give them another pass
723 	 * through the LRU as we canot reclaim them now.
724 	 */
725 	if (atomic_read(&inode->i_count) ||
726 	    (inode->i_state & ~I_REFERENCED)) {
727 		list_lru_isolate(lru, &inode->i_lru);
728 		spin_unlock(&inode->i_lock);
729 		this_cpu_dec(nr_unused);
730 		return LRU_REMOVED;
731 	}
732 
733 	/* recently referenced inodes get one more pass */
734 	if (inode->i_state & I_REFERENCED) {
735 		inode->i_state &= ~I_REFERENCED;
736 		spin_unlock(&inode->i_lock);
737 		return LRU_ROTATE;
738 	}
739 
740 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
741 		__iget(inode);
742 		spin_unlock(&inode->i_lock);
743 		spin_unlock(lru_lock);
744 		if (remove_inode_buffers(inode)) {
745 			unsigned long reap;
746 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
747 			if (current_is_kswapd())
748 				__count_vm_events(KSWAPD_INODESTEAL, reap);
749 			else
750 				__count_vm_events(PGINODESTEAL, reap);
751 			if (current->reclaim_state)
752 				current->reclaim_state->reclaimed_slab += reap;
753 		}
754 		iput(inode);
755 		spin_lock(lru_lock);
756 		return LRU_RETRY;
757 	}
758 
759 	WARN_ON(inode->i_state & I_NEW);
760 	inode->i_state |= I_FREEING;
761 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
762 	spin_unlock(&inode->i_lock);
763 
764 	this_cpu_dec(nr_unused);
765 	return LRU_REMOVED;
766 }
767 
768 /*
769  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
770  * This is called from the superblock shrinker function with a number of inodes
771  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
772  * then are freed outside inode_lock by dispose_list().
773  */
774 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
775 {
776 	LIST_HEAD(freeable);
777 	long freed;
778 
779 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
780 				     inode_lru_isolate, &freeable);
781 	dispose_list(&freeable);
782 	return freed;
783 }
784 
785 static void __wait_on_freeing_inode(struct inode *inode);
786 /*
787  * Called with the inode lock held.
788  */
789 static struct inode *find_inode(struct super_block *sb,
790 				struct hlist_head *head,
791 				int (*test)(struct inode *, void *),
792 				void *data)
793 {
794 	struct inode *inode = NULL;
795 
796 repeat:
797 	hlist_for_each_entry(inode, head, i_hash) {
798 		if (inode->i_sb != sb)
799 			continue;
800 		if (!test(inode, data))
801 			continue;
802 		spin_lock(&inode->i_lock);
803 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
804 			__wait_on_freeing_inode(inode);
805 			goto repeat;
806 		}
807 		if (unlikely(inode->i_state & I_CREATING)) {
808 			spin_unlock(&inode->i_lock);
809 			return ERR_PTR(-ESTALE);
810 		}
811 		__iget(inode);
812 		spin_unlock(&inode->i_lock);
813 		return inode;
814 	}
815 	return NULL;
816 }
817 
818 /*
819  * find_inode_fast is the fast path version of find_inode, see the comment at
820  * iget_locked for details.
821  */
822 static struct inode *find_inode_fast(struct super_block *sb,
823 				struct hlist_head *head, unsigned long ino)
824 {
825 	struct inode *inode = NULL;
826 
827 repeat:
828 	hlist_for_each_entry(inode, head, i_hash) {
829 		if (inode->i_ino != ino)
830 			continue;
831 		if (inode->i_sb != sb)
832 			continue;
833 		spin_lock(&inode->i_lock);
834 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
835 			__wait_on_freeing_inode(inode);
836 			goto repeat;
837 		}
838 		if (unlikely(inode->i_state & I_CREATING)) {
839 			spin_unlock(&inode->i_lock);
840 			return ERR_PTR(-ESTALE);
841 		}
842 		__iget(inode);
843 		spin_unlock(&inode->i_lock);
844 		return inode;
845 	}
846 	return NULL;
847 }
848 
849 /*
850  * Each cpu owns a range of LAST_INO_BATCH numbers.
851  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
852  * to renew the exhausted range.
853  *
854  * This does not significantly increase overflow rate because every CPU can
855  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
856  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
857  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
858  * overflow rate by 2x, which does not seem too significant.
859  *
860  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
861  * error if st_ino won't fit in target struct field. Use 32bit counter
862  * here to attempt to avoid that.
863  */
864 #define LAST_INO_BATCH 1024
865 static DEFINE_PER_CPU(unsigned int, last_ino);
866 
867 unsigned int get_next_ino(void)
868 {
869 	unsigned int *p = &get_cpu_var(last_ino);
870 	unsigned int res = *p;
871 
872 #ifdef CONFIG_SMP
873 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
874 		static atomic_t shared_last_ino;
875 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
876 
877 		res = next - LAST_INO_BATCH;
878 	}
879 #endif
880 
881 	res++;
882 	/* get_next_ino should not provide a 0 inode number */
883 	if (unlikely(!res))
884 		res++;
885 	*p = res;
886 	put_cpu_var(last_ino);
887 	return res;
888 }
889 EXPORT_SYMBOL(get_next_ino);
890 
891 /**
892  *	new_inode_pseudo 	- obtain an inode
893  *	@sb: superblock
894  *
895  *	Allocates a new inode for given superblock.
896  *	Inode wont be chained in superblock s_inodes list
897  *	This means :
898  *	- fs can't be unmount
899  *	- quotas, fsnotify, writeback can't work
900  */
901 struct inode *new_inode_pseudo(struct super_block *sb)
902 {
903 	struct inode *inode = alloc_inode(sb);
904 
905 	if (inode) {
906 		spin_lock(&inode->i_lock);
907 		inode->i_state = 0;
908 		spin_unlock(&inode->i_lock);
909 		INIT_LIST_HEAD(&inode->i_sb_list);
910 	}
911 	return inode;
912 }
913 
914 /**
915  *	new_inode 	- obtain an inode
916  *	@sb: superblock
917  *
918  *	Allocates a new inode for given superblock. The default gfp_mask
919  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
920  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
921  *	for the page cache are not reclaimable or migratable,
922  *	mapping_set_gfp_mask() must be called with suitable flags on the
923  *	newly created inode's mapping
924  *
925  */
926 struct inode *new_inode(struct super_block *sb)
927 {
928 	struct inode *inode;
929 
930 	spin_lock_prefetch(&sb->s_inode_list_lock);
931 
932 	inode = new_inode_pseudo(sb);
933 	if (inode)
934 		inode_sb_list_add(inode);
935 	return inode;
936 }
937 EXPORT_SYMBOL(new_inode);
938 
939 #ifdef CONFIG_DEBUG_LOCK_ALLOC
940 void lockdep_annotate_inode_mutex_key(struct inode *inode)
941 {
942 	if (S_ISDIR(inode->i_mode)) {
943 		struct file_system_type *type = inode->i_sb->s_type;
944 
945 		/* Set new key only if filesystem hasn't already changed it */
946 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
947 			/*
948 			 * ensure nobody is actually holding i_mutex
949 			 */
950 			// mutex_destroy(&inode->i_mutex);
951 			init_rwsem(&inode->i_rwsem);
952 			lockdep_set_class(&inode->i_rwsem,
953 					  &type->i_mutex_dir_key);
954 		}
955 	}
956 }
957 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
958 #endif
959 
960 /**
961  * unlock_new_inode - clear the I_NEW state and wake up any waiters
962  * @inode:	new inode to unlock
963  *
964  * Called when the inode is fully initialised to clear the new state of the
965  * inode and wake up anyone waiting for the inode to finish initialisation.
966  */
967 void unlock_new_inode(struct inode *inode)
968 {
969 	lockdep_annotate_inode_mutex_key(inode);
970 	spin_lock(&inode->i_lock);
971 	WARN_ON(!(inode->i_state & I_NEW));
972 	inode->i_state &= ~I_NEW & ~I_CREATING;
973 	smp_mb();
974 	wake_up_bit(&inode->i_state, __I_NEW);
975 	spin_unlock(&inode->i_lock);
976 }
977 EXPORT_SYMBOL(unlock_new_inode);
978 
979 void discard_new_inode(struct inode *inode)
980 {
981 	lockdep_annotate_inode_mutex_key(inode);
982 	spin_lock(&inode->i_lock);
983 	WARN_ON(!(inode->i_state & I_NEW));
984 	inode->i_state &= ~I_NEW;
985 	smp_mb();
986 	wake_up_bit(&inode->i_state, __I_NEW);
987 	spin_unlock(&inode->i_lock);
988 	iput(inode);
989 }
990 EXPORT_SYMBOL(discard_new_inode);
991 
992 /**
993  * lock_two_nondirectories - take two i_mutexes on non-directory objects
994  *
995  * Lock any non-NULL argument that is not a directory.
996  * Zero, one or two objects may be locked by this function.
997  *
998  * @inode1: first inode to lock
999  * @inode2: second inode to lock
1000  */
1001 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1002 {
1003 	if (inode1 > inode2)
1004 		swap(inode1, inode2);
1005 
1006 	if (inode1 && !S_ISDIR(inode1->i_mode))
1007 		inode_lock(inode1);
1008 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1009 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1010 }
1011 EXPORT_SYMBOL(lock_two_nondirectories);
1012 
1013 /**
1014  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1015  * @inode1: first inode to unlock
1016  * @inode2: second inode to unlock
1017  */
1018 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1019 {
1020 	if (inode1 && !S_ISDIR(inode1->i_mode))
1021 		inode_unlock(inode1);
1022 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1023 		inode_unlock(inode2);
1024 }
1025 EXPORT_SYMBOL(unlock_two_nondirectories);
1026 
1027 /**
1028  * inode_insert5 - obtain an inode from a mounted file system
1029  * @inode:	pre-allocated inode to use for insert to cache
1030  * @hashval:	hash value (usually inode number) to get
1031  * @test:	callback used for comparisons between inodes
1032  * @set:	callback used to initialize a new struct inode
1033  * @data:	opaque data pointer to pass to @test and @set
1034  *
1035  * Search for the inode specified by @hashval and @data in the inode cache,
1036  * and if present it is return it with an increased reference count. This is
1037  * a variant of iget5_locked() for callers that don't want to fail on memory
1038  * allocation of inode.
1039  *
1040  * If the inode is not in cache, insert the pre-allocated inode to cache and
1041  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1042  * to fill it in before unlocking it via unlock_new_inode().
1043  *
1044  * Note both @test and @set are called with the inode_hash_lock held, so can't
1045  * sleep.
1046  */
1047 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1048 			    int (*test)(struct inode *, void *),
1049 			    int (*set)(struct inode *, void *), void *data)
1050 {
1051 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1052 	struct inode *old;
1053 	bool creating = inode->i_state & I_CREATING;
1054 
1055 again:
1056 	spin_lock(&inode_hash_lock);
1057 	old = find_inode(inode->i_sb, head, test, data);
1058 	if (unlikely(old)) {
1059 		/*
1060 		 * Uhhuh, somebody else created the same inode under us.
1061 		 * Use the old inode instead of the preallocated one.
1062 		 */
1063 		spin_unlock(&inode_hash_lock);
1064 		if (IS_ERR(old))
1065 			return NULL;
1066 		wait_on_inode(old);
1067 		if (unlikely(inode_unhashed(old))) {
1068 			iput(old);
1069 			goto again;
1070 		}
1071 		return old;
1072 	}
1073 
1074 	if (set && unlikely(set(inode, data))) {
1075 		inode = NULL;
1076 		goto unlock;
1077 	}
1078 
1079 	/*
1080 	 * Return the locked inode with I_NEW set, the
1081 	 * caller is responsible for filling in the contents
1082 	 */
1083 	spin_lock(&inode->i_lock);
1084 	inode->i_state |= I_NEW;
1085 	hlist_add_head(&inode->i_hash, head);
1086 	spin_unlock(&inode->i_lock);
1087 	if (!creating)
1088 		inode_sb_list_add(inode);
1089 unlock:
1090 	spin_unlock(&inode_hash_lock);
1091 
1092 	return inode;
1093 }
1094 EXPORT_SYMBOL(inode_insert5);
1095 
1096 /**
1097  * iget5_locked - obtain an inode from a mounted file system
1098  * @sb:		super block of file system
1099  * @hashval:	hash value (usually inode number) to get
1100  * @test:	callback used for comparisons between inodes
1101  * @set:	callback used to initialize a new struct inode
1102  * @data:	opaque data pointer to pass to @test and @set
1103  *
1104  * Search for the inode specified by @hashval and @data in the inode cache,
1105  * and if present it is return it with an increased reference count. This is
1106  * a generalized version of iget_locked() for file systems where the inode
1107  * number is not sufficient for unique identification of an inode.
1108  *
1109  * If the inode is not in cache, allocate a new inode and return it locked,
1110  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1111  * before unlocking it via unlock_new_inode().
1112  *
1113  * Note both @test and @set are called with the inode_hash_lock held, so can't
1114  * sleep.
1115  */
1116 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1117 		int (*test)(struct inode *, void *),
1118 		int (*set)(struct inode *, void *), void *data)
1119 {
1120 	struct inode *inode = ilookup5(sb, hashval, test, data);
1121 
1122 	if (!inode) {
1123 		struct inode *new = alloc_inode(sb);
1124 
1125 		if (new) {
1126 			new->i_state = 0;
1127 			inode = inode_insert5(new, hashval, test, set, data);
1128 			if (unlikely(inode != new))
1129 				destroy_inode(new);
1130 		}
1131 	}
1132 	return inode;
1133 }
1134 EXPORT_SYMBOL(iget5_locked);
1135 
1136 /**
1137  * iget_locked - obtain an inode from a mounted file system
1138  * @sb:		super block of file system
1139  * @ino:	inode number to get
1140  *
1141  * Search for the inode specified by @ino in the inode cache and if present
1142  * return it with an increased reference count. This is for file systems
1143  * where the inode number is sufficient for unique identification of an inode.
1144  *
1145  * If the inode is not in cache, allocate a new inode and return it locked,
1146  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1147  * before unlocking it via unlock_new_inode().
1148  */
1149 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1150 {
1151 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1152 	struct inode *inode;
1153 again:
1154 	spin_lock(&inode_hash_lock);
1155 	inode = find_inode_fast(sb, head, ino);
1156 	spin_unlock(&inode_hash_lock);
1157 	if (inode) {
1158 		if (IS_ERR(inode))
1159 			return NULL;
1160 		wait_on_inode(inode);
1161 		if (unlikely(inode_unhashed(inode))) {
1162 			iput(inode);
1163 			goto again;
1164 		}
1165 		return inode;
1166 	}
1167 
1168 	inode = alloc_inode(sb);
1169 	if (inode) {
1170 		struct inode *old;
1171 
1172 		spin_lock(&inode_hash_lock);
1173 		/* We released the lock, so.. */
1174 		old = find_inode_fast(sb, head, ino);
1175 		if (!old) {
1176 			inode->i_ino = ino;
1177 			spin_lock(&inode->i_lock);
1178 			inode->i_state = I_NEW;
1179 			hlist_add_head(&inode->i_hash, head);
1180 			spin_unlock(&inode->i_lock);
1181 			inode_sb_list_add(inode);
1182 			spin_unlock(&inode_hash_lock);
1183 
1184 			/* Return the locked inode with I_NEW set, the
1185 			 * caller is responsible for filling in the contents
1186 			 */
1187 			return inode;
1188 		}
1189 
1190 		/*
1191 		 * Uhhuh, somebody else created the same inode under
1192 		 * us. Use the old inode instead of the one we just
1193 		 * allocated.
1194 		 */
1195 		spin_unlock(&inode_hash_lock);
1196 		destroy_inode(inode);
1197 		if (IS_ERR(old))
1198 			return NULL;
1199 		inode = old;
1200 		wait_on_inode(inode);
1201 		if (unlikely(inode_unhashed(inode))) {
1202 			iput(inode);
1203 			goto again;
1204 		}
1205 	}
1206 	return inode;
1207 }
1208 EXPORT_SYMBOL(iget_locked);
1209 
1210 /*
1211  * search the inode cache for a matching inode number.
1212  * If we find one, then the inode number we are trying to
1213  * allocate is not unique and so we should not use it.
1214  *
1215  * Returns 1 if the inode number is unique, 0 if it is not.
1216  */
1217 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1218 {
1219 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1220 	struct inode *inode;
1221 
1222 	spin_lock(&inode_hash_lock);
1223 	hlist_for_each_entry(inode, b, i_hash) {
1224 		if (inode->i_ino == ino && inode->i_sb == sb) {
1225 			spin_unlock(&inode_hash_lock);
1226 			return 0;
1227 		}
1228 	}
1229 	spin_unlock(&inode_hash_lock);
1230 
1231 	return 1;
1232 }
1233 
1234 /**
1235  *	iunique - get a unique inode number
1236  *	@sb: superblock
1237  *	@max_reserved: highest reserved inode number
1238  *
1239  *	Obtain an inode number that is unique on the system for a given
1240  *	superblock. This is used by file systems that have no natural
1241  *	permanent inode numbering system. An inode number is returned that
1242  *	is higher than the reserved limit but unique.
1243  *
1244  *	BUGS:
1245  *	With a large number of inodes live on the file system this function
1246  *	currently becomes quite slow.
1247  */
1248 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1249 {
1250 	/*
1251 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1252 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1253 	 * here to attempt to avoid that.
1254 	 */
1255 	static DEFINE_SPINLOCK(iunique_lock);
1256 	static unsigned int counter;
1257 	ino_t res;
1258 
1259 	spin_lock(&iunique_lock);
1260 	do {
1261 		if (counter <= max_reserved)
1262 			counter = max_reserved + 1;
1263 		res = counter++;
1264 	} while (!test_inode_iunique(sb, res));
1265 	spin_unlock(&iunique_lock);
1266 
1267 	return res;
1268 }
1269 EXPORT_SYMBOL(iunique);
1270 
1271 struct inode *igrab(struct inode *inode)
1272 {
1273 	spin_lock(&inode->i_lock);
1274 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1275 		__iget(inode);
1276 		spin_unlock(&inode->i_lock);
1277 	} else {
1278 		spin_unlock(&inode->i_lock);
1279 		/*
1280 		 * Handle the case where s_op->clear_inode is not been
1281 		 * called yet, and somebody is calling igrab
1282 		 * while the inode is getting freed.
1283 		 */
1284 		inode = NULL;
1285 	}
1286 	return inode;
1287 }
1288 EXPORT_SYMBOL(igrab);
1289 
1290 /**
1291  * ilookup5_nowait - search for an inode in the inode cache
1292  * @sb:		super block of file system to search
1293  * @hashval:	hash value (usually inode number) to search for
1294  * @test:	callback used for comparisons between inodes
1295  * @data:	opaque data pointer to pass to @test
1296  *
1297  * Search for the inode specified by @hashval and @data in the inode cache.
1298  * If the inode is in the cache, the inode is returned with an incremented
1299  * reference count.
1300  *
1301  * Note: I_NEW is not waited upon so you have to be very careful what you do
1302  * with the returned inode.  You probably should be using ilookup5() instead.
1303  *
1304  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1305  */
1306 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1307 		int (*test)(struct inode *, void *), void *data)
1308 {
1309 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1310 	struct inode *inode;
1311 
1312 	spin_lock(&inode_hash_lock);
1313 	inode = find_inode(sb, head, test, data);
1314 	spin_unlock(&inode_hash_lock);
1315 
1316 	return IS_ERR(inode) ? NULL : inode;
1317 }
1318 EXPORT_SYMBOL(ilookup5_nowait);
1319 
1320 /**
1321  * ilookup5 - search for an inode in the inode cache
1322  * @sb:		super block of file system to search
1323  * @hashval:	hash value (usually inode number) to search for
1324  * @test:	callback used for comparisons between inodes
1325  * @data:	opaque data pointer to pass to @test
1326  *
1327  * Search for the inode specified by @hashval and @data in the inode cache,
1328  * and if the inode is in the cache, return the inode with an incremented
1329  * reference count.  Waits on I_NEW before returning the inode.
1330  * returned with an incremented reference count.
1331  *
1332  * This is a generalized version of ilookup() for file systems where the
1333  * inode number is not sufficient for unique identification of an inode.
1334  *
1335  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1336  */
1337 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1338 		int (*test)(struct inode *, void *), void *data)
1339 {
1340 	struct inode *inode;
1341 again:
1342 	inode = ilookup5_nowait(sb, hashval, test, data);
1343 	if (inode) {
1344 		wait_on_inode(inode);
1345 		if (unlikely(inode_unhashed(inode))) {
1346 			iput(inode);
1347 			goto again;
1348 		}
1349 	}
1350 	return inode;
1351 }
1352 EXPORT_SYMBOL(ilookup5);
1353 
1354 /**
1355  * ilookup - search for an inode in the inode cache
1356  * @sb:		super block of file system to search
1357  * @ino:	inode number to search for
1358  *
1359  * Search for the inode @ino in the inode cache, and if the inode is in the
1360  * cache, the inode is returned with an incremented reference count.
1361  */
1362 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1363 {
1364 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1365 	struct inode *inode;
1366 again:
1367 	spin_lock(&inode_hash_lock);
1368 	inode = find_inode_fast(sb, head, ino);
1369 	spin_unlock(&inode_hash_lock);
1370 
1371 	if (inode) {
1372 		if (IS_ERR(inode))
1373 			return NULL;
1374 		wait_on_inode(inode);
1375 		if (unlikely(inode_unhashed(inode))) {
1376 			iput(inode);
1377 			goto again;
1378 		}
1379 	}
1380 	return inode;
1381 }
1382 EXPORT_SYMBOL(ilookup);
1383 
1384 /**
1385  * find_inode_nowait - find an inode in the inode cache
1386  * @sb:		super block of file system to search
1387  * @hashval:	hash value (usually inode number) to search for
1388  * @match:	callback used for comparisons between inodes
1389  * @data:	opaque data pointer to pass to @match
1390  *
1391  * Search for the inode specified by @hashval and @data in the inode
1392  * cache, where the helper function @match will return 0 if the inode
1393  * does not match, 1 if the inode does match, and -1 if the search
1394  * should be stopped.  The @match function must be responsible for
1395  * taking the i_lock spin_lock and checking i_state for an inode being
1396  * freed or being initialized, and incrementing the reference count
1397  * before returning 1.  It also must not sleep, since it is called with
1398  * the inode_hash_lock spinlock held.
1399  *
1400  * This is a even more generalized version of ilookup5() when the
1401  * function must never block --- find_inode() can block in
1402  * __wait_on_freeing_inode() --- or when the caller can not increment
1403  * the reference count because the resulting iput() might cause an
1404  * inode eviction.  The tradeoff is that the @match funtion must be
1405  * very carefully implemented.
1406  */
1407 struct inode *find_inode_nowait(struct super_block *sb,
1408 				unsigned long hashval,
1409 				int (*match)(struct inode *, unsigned long,
1410 					     void *),
1411 				void *data)
1412 {
1413 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1414 	struct inode *inode, *ret_inode = NULL;
1415 	int mval;
1416 
1417 	spin_lock(&inode_hash_lock);
1418 	hlist_for_each_entry(inode, head, i_hash) {
1419 		if (inode->i_sb != sb)
1420 			continue;
1421 		mval = match(inode, hashval, data);
1422 		if (mval == 0)
1423 			continue;
1424 		if (mval == 1)
1425 			ret_inode = inode;
1426 		goto out;
1427 	}
1428 out:
1429 	spin_unlock(&inode_hash_lock);
1430 	return ret_inode;
1431 }
1432 EXPORT_SYMBOL(find_inode_nowait);
1433 
1434 int insert_inode_locked(struct inode *inode)
1435 {
1436 	struct super_block *sb = inode->i_sb;
1437 	ino_t ino = inode->i_ino;
1438 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1439 
1440 	while (1) {
1441 		struct inode *old = NULL;
1442 		spin_lock(&inode_hash_lock);
1443 		hlist_for_each_entry(old, head, i_hash) {
1444 			if (old->i_ino != ino)
1445 				continue;
1446 			if (old->i_sb != sb)
1447 				continue;
1448 			spin_lock(&old->i_lock);
1449 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1450 				spin_unlock(&old->i_lock);
1451 				continue;
1452 			}
1453 			break;
1454 		}
1455 		if (likely(!old)) {
1456 			spin_lock(&inode->i_lock);
1457 			inode->i_state |= I_NEW | I_CREATING;
1458 			hlist_add_head(&inode->i_hash, head);
1459 			spin_unlock(&inode->i_lock);
1460 			spin_unlock(&inode_hash_lock);
1461 			return 0;
1462 		}
1463 		if (unlikely(old->i_state & I_CREATING)) {
1464 			spin_unlock(&old->i_lock);
1465 			spin_unlock(&inode_hash_lock);
1466 			return -EBUSY;
1467 		}
1468 		__iget(old);
1469 		spin_unlock(&old->i_lock);
1470 		spin_unlock(&inode_hash_lock);
1471 		wait_on_inode(old);
1472 		if (unlikely(!inode_unhashed(old))) {
1473 			iput(old);
1474 			return -EBUSY;
1475 		}
1476 		iput(old);
1477 	}
1478 }
1479 EXPORT_SYMBOL(insert_inode_locked);
1480 
1481 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1482 		int (*test)(struct inode *, void *), void *data)
1483 {
1484 	struct inode *old;
1485 
1486 	inode->i_state |= I_CREATING;
1487 	old = inode_insert5(inode, hashval, test, NULL, data);
1488 
1489 	if (old != inode) {
1490 		iput(old);
1491 		return -EBUSY;
1492 	}
1493 	return 0;
1494 }
1495 EXPORT_SYMBOL(insert_inode_locked4);
1496 
1497 
1498 int generic_delete_inode(struct inode *inode)
1499 {
1500 	return 1;
1501 }
1502 EXPORT_SYMBOL(generic_delete_inode);
1503 
1504 /*
1505  * Called when we're dropping the last reference
1506  * to an inode.
1507  *
1508  * Call the FS "drop_inode()" function, defaulting to
1509  * the legacy UNIX filesystem behaviour.  If it tells
1510  * us to evict inode, do so.  Otherwise, retain inode
1511  * in cache if fs is alive, sync and evict if fs is
1512  * shutting down.
1513  */
1514 static void iput_final(struct inode *inode)
1515 {
1516 	struct super_block *sb = inode->i_sb;
1517 	const struct super_operations *op = inode->i_sb->s_op;
1518 	int drop;
1519 
1520 	WARN_ON(inode->i_state & I_NEW);
1521 
1522 	if (op->drop_inode)
1523 		drop = op->drop_inode(inode);
1524 	else
1525 		drop = generic_drop_inode(inode);
1526 
1527 	if (!drop && (sb->s_flags & SB_ACTIVE)) {
1528 		inode_add_lru(inode);
1529 		spin_unlock(&inode->i_lock);
1530 		return;
1531 	}
1532 
1533 	if (!drop) {
1534 		inode->i_state |= I_WILL_FREE;
1535 		spin_unlock(&inode->i_lock);
1536 		write_inode_now(inode, 1);
1537 		spin_lock(&inode->i_lock);
1538 		WARN_ON(inode->i_state & I_NEW);
1539 		inode->i_state &= ~I_WILL_FREE;
1540 	}
1541 
1542 	inode->i_state |= I_FREEING;
1543 	if (!list_empty(&inode->i_lru))
1544 		inode_lru_list_del(inode);
1545 	spin_unlock(&inode->i_lock);
1546 
1547 	evict(inode);
1548 }
1549 
1550 /**
1551  *	iput	- put an inode
1552  *	@inode: inode to put
1553  *
1554  *	Puts an inode, dropping its usage count. If the inode use count hits
1555  *	zero, the inode is then freed and may also be destroyed.
1556  *
1557  *	Consequently, iput() can sleep.
1558  */
1559 void iput(struct inode *inode)
1560 {
1561 	if (!inode)
1562 		return;
1563 	BUG_ON(inode->i_state & I_CLEAR);
1564 retry:
1565 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1566 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1567 			atomic_inc(&inode->i_count);
1568 			spin_unlock(&inode->i_lock);
1569 			trace_writeback_lazytime_iput(inode);
1570 			mark_inode_dirty_sync(inode);
1571 			goto retry;
1572 		}
1573 		iput_final(inode);
1574 	}
1575 }
1576 EXPORT_SYMBOL(iput);
1577 
1578 /**
1579  *	bmap	- find a block number in a file
1580  *	@inode: inode of file
1581  *	@block: block to find
1582  *
1583  *	Returns the block number on the device holding the inode that
1584  *	is the disk block number for the block of the file requested.
1585  *	That is, asked for block 4 of inode 1 the function will return the
1586  *	disk block relative to the disk start that holds that block of the
1587  *	file.
1588  */
1589 sector_t bmap(struct inode *inode, sector_t block)
1590 {
1591 	sector_t res = 0;
1592 	if (inode->i_mapping->a_ops->bmap)
1593 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1594 	return res;
1595 }
1596 EXPORT_SYMBOL(bmap);
1597 
1598 /*
1599  * With relative atime, only update atime if the previous atime is
1600  * earlier than either the ctime or mtime or if at least a day has
1601  * passed since the last atime update.
1602  */
1603 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1604 			     struct timespec now)
1605 {
1606 
1607 	if (!(mnt->mnt_flags & MNT_RELATIME))
1608 		return 1;
1609 	/*
1610 	 * Is mtime younger than atime? If yes, update atime:
1611 	 */
1612 	if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1613 		return 1;
1614 	/*
1615 	 * Is ctime younger than atime? If yes, update atime:
1616 	 */
1617 	if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1618 		return 1;
1619 
1620 	/*
1621 	 * Is the previous atime value older than a day? If yes,
1622 	 * update atime:
1623 	 */
1624 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1625 		return 1;
1626 	/*
1627 	 * Good, we can skip the atime update:
1628 	 */
1629 	return 0;
1630 }
1631 
1632 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1633 {
1634 	int iflags = I_DIRTY_TIME;
1635 	bool dirty = false;
1636 
1637 	if (flags & S_ATIME)
1638 		inode->i_atime = *time;
1639 	if (flags & S_VERSION)
1640 		dirty = inode_maybe_inc_iversion(inode, false);
1641 	if (flags & S_CTIME)
1642 		inode->i_ctime = *time;
1643 	if (flags & S_MTIME)
1644 		inode->i_mtime = *time;
1645 	if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1646 	    !(inode->i_sb->s_flags & SB_LAZYTIME))
1647 		dirty = true;
1648 
1649 	if (dirty)
1650 		iflags |= I_DIRTY_SYNC;
1651 	__mark_inode_dirty(inode, iflags);
1652 	return 0;
1653 }
1654 EXPORT_SYMBOL(generic_update_time);
1655 
1656 /*
1657  * This does the actual work of updating an inodes time or version.  Must have
1658  * had called mnt_want_write() before calling this.
1659  */
1660 static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1661 {
1662 	int (*update_time)(struct inode *, struct timespec64 *, int);
1663 
1664 	update_time = inode->i_op->update_time ? inode->i_op->update_time :
1665 		generic_update_time;
1666 
1667 	return update_time(inode, time, flags);
1668 }
1669 
1670 /**
1671  *	touch_atime	-	update the access time
1672  *	@path: the &struct path to update
1673  *	@inode: inode to update
1674  *
1675  *	Update the accessed time on an inode and mark it for writeback.
1676  *	This function automatically handles read only file systems and media,
1677  *	as well as the "noatime" flag and inode specific "noatime" markers.
1678  */
1679 bool atime_needs_update(const struct path *path, struct inode *inode)
1680 {
1681 	struct vfsmount *mnt = path->mnt;
1682 	struct timespec64 now;
1683 
1684 	if (inode->i_flags & S_NOATIME)
1685 		return false;
1686 
1687 	/* Atime updates will likely cause i_uid and i_gid to be written
1688 	 * back improprely if their true value is unknown to the vfs.
1689 	 */
1690 	if (HAS_UNMAPPED_ID(inode))
1691 		return false;
1692 
1693 	if (IS_NOATIME(inode))
1694 		return false;
1695 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1696 		return false;
1697 
1698 	if (mnt->mnt_flags & MNT_NOATIME)
1699 		return false;
1700 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1701 		return false;
1702 
1703 	now = current_time(inode);
1704 
1705 	if (!relatime_need_update(mnt, inode, timespec64_to_timespec(now)))
1706 		return false;
1707 
1708 	if (timespec64_equal(&inode->i_atime, &now))
1709 		return false;
1710 
1711 	return true;
1712 }
1713 
1714 void touch_atime(const struct path *path)
1715 {
1716 	struct vfsmount *mnt = path->mnt;
1717 	struct inode *inode = d_inode(path->dentry);
1718 	struct timespec64 now;
1719 
1720 	if (!atime_needs_update(path, inode))
1721 		return;
1722 
1723 	if (!sb_start_write_trylock(inode->i_sb))
1724 		return;
1725 
1726 	if (__mnt_want_write(mnt) != 0)
1727 		goto skip_update;
1728 	/*
1729 	 * File systems can error out when updating inodes if they need to
1730 	 * allocate new space to modify an inode (such is the case for
1731 	 * Btrfs), but since we touch atime while walking down the path we
1732 	 * really don't care if we failed to update the atime of the file,
1733 	 * so just ignore the return value.
1734 	 * We may also fail on filesystems that have the ability to make parts
1735 	 * of the fs read only, e.g. subvolumes in Btrfs.
1736 	 */
1737 	now = current_time(inode);
1738 	update_time(inode, &now, S_ATIME);
1739 	__mnt_drop_write(mnt);
1740 skip_update:
1741 	sb_end_write(inode->i_sb);
1742 }
1743 EXPORT_SYMBOL(touch_atime);
1744 
1745 /*
1746  * The logic we want is
1747  *
1748  *	if suid or (sgid and xgrp)
1749  *		remove privs
1750  */
1751 int should_remove_suid(struct dentry *dentry)
1752 {
1753 	umode_t mode = d_inode(dentry)->i_mode;
1754 	int kill = 0;
1755 
1756 	/* suid always must be killed */
1757 	if (unlikely(mode & S_ISUID))
1758 		kill = ATTR_KILL_SUID;
1759 
1760 	/*
1761 	 * sgid without any exec bits is just a mandatory locking mark; leave
1762 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1763 	 */
1764 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1765 		kill |= ATTR_KILL_SGID;
1766 
1767 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1768 		return kill;
1769 
1770 	return 0;
1771 }
1772 EXPORT_SYMBOL(should_remove_suid);
1773 
1774 /*
1775  * Return mask of changes for notify_change() that need to be done as a
1776  * response to write or truncate. Return 0 if nothing has to be changed.
1777  * Negative value on error (change should be denied).
1778  */
1779 int dentry_needs_remove_privs(struct dentry *dentry)
1780 {
1781 	struct inode *inode = d_inode(dentry);
1782 	int mask = 0;
1783 	int ret;
1784 
1785 	if (IS_NOSEC(inode))
1786 		return 0;
1787 
1788 	mask = should_remove_suid(dentry);
1789 	ret = security_inode_need_killpriv(dentry);
1790 	if (ret < 0)
1791 		return ret;
1792 	if (ret)
1793 		mask |= ATTR_KILL_PRIV;
1794 	return mask;
1795 }
1796 
1797 static int __remove_privs(struct dentry *dentry, int kill)
1798 {
1799 	struct iattr newattrs;
1800 
1801 	newattrs.ia_valid = ATTR_FORCE | kill;
1802 	/*
1803 	 * Note we call this on write, so notify_change will not
1804 	 * encounter any conflicting delegations:
1805 	 */
1806 	return notify_change(dentry, &newattrs, NULL);
1807 }
1808 
1809 /*
1810  * Remove special file priviledges (suid, capabilities) when file is written
1811  * to or truncated.
1812  */
1813 int file_remove_privs(struct file *file)
1814 {
1815 	struct dentry *dentry = file_dentry(file);
1816 	struct inode *inode = file_inode(file);
1817 	int kill;
1818 	int error = 0;
1819 
1820 	/* Fast path for nothing security related */
1821 	if (IS_NOSEC(inode))
1822 		return 0;
1823 
1824 	kill = dentry_needs_remove_privs(dentry);
1825 	if (kill < 0)
1826 		return kill;
1827 	if (kill)
1828 		error = __remove_privs(dentry, kill);
1829 	if (!error)
1830 		inode_has_no_xattr(inode);
1831 
1832 	return error;
1833 }
1834 EXPORT_SYMBOL(file_remove_privs);
1835 
1836 /**
1837  *	file_update_time	-	update mtime and ctime time
1838  *	@file: file accessed
1839  *
1840  *	Update the mtime and ctime members of an inode and mark the inode
1841  *	for writeback.  Note that this function is meant exclusively for
1842  *	usage in the file write path of filesystems, and filesystems may
1843  *	choose to explicitly ignore update via this function with the
1844  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1845  *	timestamps are handled by the server.  This can return an error for
1846  *	file systems who need to allocate space in order to update an inode.
1847  */
1848 
1849 int file_update_time(struct file *file)
1850 {
1851 	struct inode *inode = file_inode(file);
1852 	struct timespec64 now;
1853 	int sync_it = 0;
1854 	int ret;
1855 
1856 	/* First try to exhaust all avenues to not sync */
1857 	if (IS_NOCMTIME(inode))
1858 		return 0;
1859 
1860 	now = current_time(inode);
1861 	if (!timespec64_equal(&inode->i_mtime, &now))
1862 		sync_it = S_MTIME;
1863 
1864 	if (!timespec64_equal(&inode->i_ctime, &now))
1865 		sync_it |= S_CTIME;
1866 
1867 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1868 		sync_it |= S_VERSION;
1869 
1870 	if (!sync_it)
1871 		return 0;
1872 
1873 	/* Finally allowed to write? Takes lock. */
1874 	if (__mnt_want_write_file(file))
1875 		return 0;
1876 
1877 	ret = update_time(inode, &now, sync_it);
1878 	__mnt_drop_write_file(file);
1879 
1880 	return ret;
1881 }
1882 EXPORT_SYMBOL(file_update_time);
1883 
1884 int inode_needs_sync(struct inode *inode)
1885 {
1886 	if (IS_SYNC(inode))
1887 		return 1;
1888 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1889 		return 1;
1890 	return 0;
1891 }
1892 EXPORT_SYMBOL(inode_needs_sync);
1893 
1894 /*
1895  * If we try to find an inode in the inode hash while it is being
1896  * deleted, we have to wait until the filesystem completes its
1897  * deletion before reporting that it isn't found.  This function waits
1898  * until the deletion _might_ have completed.  Callers are responsible
1899  * to recheck inode state.
1900  *
1901  * It doesn't matter if I_NEW is not set initially, a call to
1902  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1903  * will DTRT.
1904  */
1905 static void __wait_on_freeing_inode(struct inode *inode)
1906 {
1907 	wait_queue_head_t *wq;
1908 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1909 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1910 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1911 	spin_unlock(&inode->i_lock);
1912 	spin_unlock(&inode_hash_lock);
1913 	schedule();
1914 	finish_wait(wq, &wait.wq_entry);
1915 	spin_lock(&inode_hash_lock);
1916 }
1917 
1918 static __initdata unsigned long ihash_entries;
1919 static int __init set_ihash_entries(char *str)
1920 {
1921 	if (!str)
1922 		return 0;
1923 	ihash_entries = simple_strtoul(str, &str, 0);
1924 	return 1;
1925 }
1926 __setup("ihash_entries=", set_ihash_entries);
1927 
1928 /*
1929  * Initialize the waitqueues and inode hash table.
1930  */
1931 void __init inode_init_early(void)
1932 {
1933 	/* If hashes are distributed across NUMA nodes, defer
1934 	 * hash allocation until vmalloc space is available.
1935 	 */
1936 	if (hashdist)
1937 		return;
1938 
1939 	inode_hashtable =
1940 		alloc_large_system_hash("Inode-cache",
1941 					sizeof(struct hlist_head),
1942 					ihash_entries,
1943 					14,
1944 					HASH_EARLY | HASH_ZERO,
1945 					&i_hash_shift,
1946 					&i_hash_mask,
1947 					0,
1948 					0);
1949 }
1950 
1951 void __init inode_init(void)
1952 {
1953 	/* inode slab cache */
1954 	inode_cachep = kmem_cache_create("inode_cache",
1955 					 sizeof(struct inode),
1956 					 0,
1957 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1958 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1959 					 init_once);
1960 
1961 	/* Hash may have been set up in inode_init_early */
1962 	if (!hashdist)
1963 		return;
1964 
1965 	inode_hashtable =
1966 		alloc_large_system_hash("Inode-cache",
1967 					sizeof(struct hlist_head),
1968 					ihash_entries,
1969 					14,
1970 					HASH_ZERO,
1971 					&i_hash_shift,
1972 					&i_hash_mask,
1973 					0,
1974 					0);
1975 }
1976 
1977 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1978 {
1979 	inode->i_mode = mode;
1980 	if (S_ISCHR(mode)) {
1981 		inode->i_fop = &def_chr_fops;
1982 		inode->i_rdev = rdev;
1983 	} else if (S_ISBLK(mode)) {
1984 		inode->i_fop = &def_blk_fops;
1985 		inode->i_rdev = rdev;
1986 	} else if (S_ISFIFO(mode))
1987 		inode->i_fop = &pipefifo_fops;
1988 	else if (S_ISSOCK(mode))
1989 		;	/* leave it no_open_fops */
1990 	else
1991 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1992 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1993 				  inode->i_ino);
1994 }
1995 EXPORT_SYMBOL(init_special_inode);
1996 
1997 /**
1998  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1999  * @inode: New inode
2000  * @dir: Directory inode
2001  * @mode: mode of the new inode
2002  */
2003 void inode_init_owner(struct inode *inode, const struct inode *dir,
2004 			umode_t mode)
2005 {
2006 	inode->i_uid = current_fsuid();
2007 	if (dir && dir->i_mode & S_ISGID) {
2008 		inode->i_gid = dir->i_gid;
2009 
2010 		/* Directories are special, and always inherit S_ISGID */
2011 		if (S_ISDIR(mode))
2012 			mode |= S_ISGID;
2013 		else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2014 			 !in_group_p(inode->i_gid) &&
2015 			 !capable_wrt_inode_uidgid(dir, CAP_FSETID))
2016 			mode &= ~S_ISGID;
2017 	} else
2018 		inode->i_gid = current_fsgid();
2019 	inode->i_mode = mode;
2020 }
2021 EXPORT_SYMBOL(inode_init_owner);
2022 
2023 /**
2024  * inode_owner_or_capable - check current task permissions to inode
2025  * @inode: inode being checked
2026  *
2027  * Return true if current either has CAP_FOWNER in a namespace with the
2028  * inode owner uid mapped, or owns the file.
2029  */
2030 bool inode_owner_or_capable(const struct inode *inode)
2031 {
2032 	struct user_namespace *ns;
2033 
2034 	if (uid_eq(current_fsuid(), inode->i_uid))
2035 		return true;
2036 
2037 	ns = current_user_ns();
2038 	if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2039 		return true;
2040 	return false;
2041 }
2042 EXPORT_SYMBOL(inode_owner_or_capable);
2043 
2044 /*
2045  * Direct i/o helper functions
2046  */
2047 static void __inode_dio_wait(struct inode *inode)
2048 {
2049 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2050 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2051 
2052 	do {
2053 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2054 		if (atomic_read(&inode->i_dio_count))
2055 			schedule();
2056 	} while (atomic_read(&inode->i_dio_count));
2057 	finish_wait(wq, &q.wq_entry);
2058 }
2059 
2060 /**
2061  * inode_dio_wait - wait for outstanding DIO requests to finish
2062  * @inode: inode to wait for
2063  *
2064  * Waits for all pending direct I/O requests to finish so that we can
2065  * proceed with a truncate or equivalent operation.
2066  *
2067  * Must be called under a lock that serializes taking new references
2068  * to i_dio_count, usually by inode->i_mutex.
2069  */
2070 void inode_dio_wait(struct inode *inode)
2071 {
2072 	if (atomic_read(&inode->i_dio_count))
2073 		__inode_dio_wait(inode);
2074 }
2075 EXPORT_SYMBOL(inode_dio_wait);
2076 
2077 /*
2078  * inode_set_flags - atomically set some inode flags
2079  *
2080  * Note: the caller should be holding i_mutex, or else be sure that
2081  * they have exclusive access to the inode structure (i.e., while the
2082  * inode is being instantiated).  The reason for the cmpxchg() loop
2083  * --- which wouldn't be necessary if all code paths which modify
2084  * i_flags actually followed this rule, is that there is at least one
2085  * code path which doesn't today so we use cmpxchg() out of an abundance
2086  * of caution.
2087  *
2088  * In the long run, i_mutex is overkill, and we should probably look
2089  * at using the i_lock spinlock to protect i_flags, and then make sure
2090  * it is so documented in include/linux/fs.h and that all code follows
2091  * the locking convention!!
2092  */
2093 void inode_set_flags(struct inode *inode, unsigned int flags,
2094 		     unsigned int mask)
2095 {
2096 	unsigned int old_flags, new_flags;
2097 
2098 	WARN_ON_ONCE(flags & ~mask);
2099 	do {
2100 		old_flags = READ_ONCE(inode->i_flags);
2101 		new_flags = (old_flags & ~mask) | flags;
2102 	} while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2103 				  new_flags) != old_flags));
2104 }
2105 EXPORT_SYMBOL(inode_set_flags);
2106 
2107 void inode_nohighmem(struct inode *inode)
2108 {
2109 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2110 }
2111 EXPORT_SYMBOL(inode_nohighmem);
2112 
2113 /**
2114  * timespec64_trunc - Truncate timespec64 to a granularity
2115  * @t: Timespec64
2116  * @gran: Granularity in ns.
2117  *
2118  * Truncate a timespec64 to a granularity. Always rounds down. gran must
2119  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2120  */
2121 struct timespec64 timespec64_trunc(struct timespec64 t, unsigned gran)
2122 {
2123 	/* Avoid division in the common cases 1 ns and 1 s. */
2124 	if (gran == 1) {
2125 		/* nothing */
2126 	} else if (gran == NSEC_PER_SEC) {
2127 		t.tv_nsec = 0;
2128 	} else if (gran > 1 && gran < NSEC_PER_SEC) {
2129 		t.tv_nsec -= t.tv_nsec % gran;
2130 	} else {
2131 		WARN(1, "illegal file time granularity: %u", gran);
2132 	}
2133 	return t;
2134 }
2135 EXPORT_SYMBOL(timespec64_trunc);
2136 
2137 /**
2138  * current_time - Return FS time
2139  * @inode: inode.
2140  *
2141  * Return the current time truncated to the time granularity supported by
2142  * the fs.
2143  *
2144  * Note that inode and inode->sb cannot be NULL.
2145  * Otherwise, the function warns and returns time without truncation.
2146  */
2147 struct timespec64 current_time(struct inode *inode)
2148 {
2149 	struct timespec64 now = current_kernel_time64();
2150 
2151 	if (unlikely(!inode->i_sb)) {
2152 		WARN(1, "current_time() called with uninitialized super_block in the inode");
2153 		return now;
2154 	}
2155 
2156 	return timespec64_trunc(now, inode->i_sb->s_time_gran);
2157 }
2158 EXPORT_SYMBOL(current_time);
2159