xref: /openbmc/linux/fs/inode.c (revision 2bdd5238)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * (C) 1997 Linus Torvalds
4  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5  */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fsnotify.h>
16 #include <linux/mount.h>
17 #include <linux/posix_acl.h>
18 #include <linux/prefetch.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <trace/events/writeback.h>
24 #include "internal.h"
25 
26 /*
27  * Inode locking rules:
28  *
29  * inode->i_lock protects:
30  *   inode->i_state, inode->i_hash, __iget()
31  * Inode LRU list locks protect:
32  *   inode->i_sb->s_inode_lru, inode->i_lru
33  * inode->i_sb->s_inode_list_lock protects:
34  *   inode->i_sb->s_inodes, inode->i_sb_list
35  * bdi->wb.list_lock protects:
36  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37  * inode_hash_lock protects:
38  *   inode_hashtable, inode->i_hash
39  *
40  * Lock ordering:
41  *
42  * inode->i_sb->s_inode_list_lock
43  *   inode->i_lock
44  *     Inode LRU list locks
45  *
46  * bdi->wb.list_lock
47  *   inode->i_lock
48  *
49  * inode_hash_lock
50  *   inode->i_sb->s_inode_list_lock
51  *   inode->i_lock
52  *
53  * iunique_lock
54  *   inode_hash_lock
55  */
56 
57 static unsigned int i_hash_mask __read_mostly;
58 static unsigned int i_hash_shift __read_mostly;
59 static struct hlist_head *inode_hashtable __read_mostly;
60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61 
62 /*
63  * Empty aops. Can be used for the cases where the user does not
64  * define any of the address_space operations.
65  */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69 
70 /*
71  * Statistics gathering..
72  */
73 struct inodes_stat_t inodes_stat;
74 
75 static DEFINE_PER_CPU(unsigned long, nr_inodes);
76 static DEFINE_PER_CPU(unsigned long, nr_unused);
77 
78 static struct kmem_cache *inode_cachep __read_mostly;
79 
80 static long get_nr_inodes(void)
81 {
82 	int i;
83 	long sum = 0;
84 	for_each_possible_cpu(i)
85 		sum += per_cpu(nr_inodes, i);
86 	return sum < 0 ? 0 : sum;
87 }
88 
89 static inline long get_nr_inodes_unused(void)
90 {
91 	int i;
92 	long sum = 0;
93 	for_each_possible_cpu(i)
94 		sum += per_cpu(nr_unused, i);
95 	return sum < 0 ? 0 : sum;
96 }
97 
98 long get_nr_dirty_inodes(void)
99 {
100 	/* not actually dirty inodes, but a wild approximation */
101 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
102 	return nr_dirty > 0 ? nr_dirty : 0;
103 }
104 
105 /*
106  * Handle nr_inode sysctl
107  */
108 #ifdef CONFIG_SYSCTL
109 int proc_nr_inodes(struct ctl_table *table, int write,
110 		   void *buffer, size_t *lenp, loff_t *ppos)
111 {
112 	inodes_stat.nr_inodes = get_nr_inodes();
113 	inodes_stat.nr_unused = get_nr_inodes_unused();
114 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116 #endif
117 
118 static int no_open(struct inode *inode, struct file *file)
119 {
120 	return -ENXIO;
121 }
122 
123 /**
124  * inode_init_always - perform inode structure initialisation
125  * @sb: superblock inode belongs to
126  * @inode: inode to initialise
127  *
128  * These are initializations that need to be done on every inode
129  * allocation as the fields are not initialised by slab allocation.
130  */
131 int inode_init_always(struct super_block *sb, struct inode *inode)
132 {
133 	static const struct inode_operations empty_iops;
134 	static const struct file_operations no_open_fops = {.open = no_open};
135 	struct address_space *const mapping = &inode->i_data;
136 
137 	inode->i_sb = sb;
138 	inode->i_blkbits = sb->s_blocksize_bits;
139 	inode->i_flags = 0;
140 	atomic64_set(&inode->i_sequence, 0);
141 	atomic_set(&inode->i_count, 1);
142 	inode->i_op = &empty_iops;
143 	inode->i_fop = &no_open_fops;
144 	inode->i_ino = 0;
145 	inode->__i_nlink = 1;
146 	inode->i_opflags = 0;
147 	if (sb->s_xattr)
148 		inode->i_opflags |= IOP_XATTR;
149 	i_uid_write(inode, 0);
150 	i_gid_write(inode, 0);
151 	atomic_set(&inode->i_writecount, 0);
152 	inode->i_size = 0;
153 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
154 	inode->i_blocks = 0;
155 	inode->i_bytes = 0;
156 	inode->i_generation = 0;
157 	inode->i_pipe = NULL;
158 	inode->i_cdev = NULL;
159 	inode->i_link = NULL;
160 	inode->i_dir_seq = 0;
161 	inode->i_rdev = 0;
162 	inode->dirtied_when = 0;
163 
164 #ifdef CONFIG_CGROUP_WRITEBACK
165 	inode->i_wb_frn_winner = 0;
166 	inode->i_wb_frn_avg_time = 0;
167 	inode->i_wb_frn_history = 0;
168 #endif
169 
170 	if (security_inode_alloc(inode))
171 		goto out;
172 	spin_lock_init(&inode->i_lock);
173 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
174 
175 	init_rwsem(&inode->i_rwsem);
176 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
177 
178 	atomic_set(&inode->i_dio_count, 0);
179 
180 	mapping->a_ops = &empty_aops;
181 	mapping->host = inode;
182 	mapping->flags = 0;
183 	if (sb->s_type->fs_flags & FS_THP_SUPPORT)
184 		__set_bit(AS_THP_SUPPORT, &mapping->flags);
185 	mapping->wb_err = 0;
186 	atomic_set(&mapping->i_mmap_writable, 0);
187 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
188 	atomic_set(&mapping->nr_thps, 0);
189 #endif
190 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
191 	mapping->private_data = NULL;
192 	mapping->writeback_index = 0;
193 	__init_rwsem(&mapping->invalidate_lock, "mapping.invalidate_lock",
194 		     &sb->s_type->invalidate_lock_key);
195 	inode->i_private = NULL;
196 	inode->i_mapping = mapping;
197 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
198 #ifdef CONFIG_FS_POSIX_ACL
199 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
200 #endif
201 
202 #ifdef CONFIG_FSNOTIFY
203 	inode->i_fsnotify_mask = 0;
204 #endif
205 	inode->i_flctx = NULL;
206 	this_cpu_inc(nr_inodes);
207 
208 	return 0;
209 out:
210 	return -ENOMEM;
211 }
212 EXPORT_SYMBOL(inode_init_always);
213 
214 void free_inode_nonrcu(struct inode *inode)
215 {
216 	kmem_cache_free(inode_cachep, inode);
217 }
218 EXPORT_SYMBOL(free_inode_nonrcu);
219 
220 static void i_callback(struct rcu_head *head)
221 {
222 	struct inode *inode = container_of(head, struct inode, i_rcu);
223 	if (inode->free_inode)
224 		inode->free_inode(inode);
225 	else
226 		free_inode_nonrcu(inode);
227 }
228 
229 static struct inode *alloc_inode(struct super_block *sb)
230 {
231 	const struct super_operations *ops = sb->s_op;
232 	struct inode *inode;
233 
234 	if (ops->alloc_inode)
235 		inode = ops->alloc_inode(sb);
236 	else
237 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
238 
239 	if (!inode)
240 		return NULL;
241 
242 	if (unlikely(inode_init_always(sb, inode))) {
243 		if (ops->destroy_inode) {
244 			ops->destroy_inode(inode);
245 			if (!ops->free_inode)
246 				return NULL;
247 		}
248 		inode->free_inode = ops->free_inode;
249 		i_callback(&inode->i_rcu);
250 		return NULL;
251 	}
252 
253 	return inode;
254 }
255 
256 void __destroy_inode(struct inode *inode)
257 {
258 	BUG_ON(inode_has_buffers(inode));
259 	inode_detach_wb(inode);
260 	security_inode_free(inode);
261 	fsnotify_inode_delete(inode);
262 	locks_free_lock_context(inode);
263 	if (!inode->i_nlink) {
264 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
265 		atomic_long_dec(&inode->i_sb->s_remove_count);
266 	}
267 
268 #ifdef CONFIG_FS_POSIX_ACL
269 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
270 		posix_acl_release(inode->i_acl);
271 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
272 		posix_acl_release(inode->i_default_acl);
273 #endif
274 	this_cpu_dec(nr_inodes);
275 }
276 EXPORT_SYMBOL(__destroy_inode);
277 
278 static void destroy_inode(struct inode *inode)
279 {
280 	const struct super_operations *ops = inode->i_sb->s_op;
281 
282 	BUG_ON(!list_empty(&inode->i_lru));
283 	__destroy_inode(inode);
284 	if (ops->destroy_inode) {
285 		ops->destroy_inode(inode);
286 		if (!ops->free_inode)
287 			return;
288 	}
289 	inode->free_inode = ops->free_inode;
290 	call_rcu(&inode->i_rcu, i_callback);
291 }
292 
293 /**
294  * drop_nlink - directly drop an inode's link count
295  * @inode: inode
296  *
297  * This is a low-level filesystem helper to replace any
298  * direct filesystem manipulation of i_nlink.  In cases
299  * where we are attempting to track writes to the
300  * filesystem, a decrement to zero means an imminent
301  * write when the file is truncated and actually unlinked
302  * on the filesystem.
303  */
304 void drop_nlink(struct inode *inode)
305 {
306 	WARN_ON(inode->i_nlink == 0);
307 	inode->__i_nlink--;
308 	if (!inode->i_nlink)
309 		atomic_long_inc(&inode->i_sb->s_remove_count);
310 }
311 EXPORT_SYMBOL(drop_nlink);
312 
313 /**
314  * clear_nlink - directly zero an inode's link count
315  * @inode: inode
316  *
317  * This is a low-level filesystem helper to replace any
318  * direct filesystem manipulation of i_nlink.  See
319  * drop_nlink() for why we care about i_nlink hitting zero.
320  */
321 void clear_nlink(struct inode *inode)
322 {
323 	if (inode->i_nlink) {
324 		inode->__i_nlink = 0;
325 		atomic_long_inc(&inode->i_sb->s_remove_count);
326 	}
327 }
328 EXPORT_SYMBOL(clear_nlink);
329 
330 /**
331  * set_nlink - directly set an inode's link count
332  * @inode: inode
333  * @nlink: new nlink (should be non-zero)
334  *
335  * This is a low-level filesystem helper to replace any
336  * direct filesystem manipulation of i_nlink.
337  */
338 void set_nlink(struct inode *inode, unsigned int nlink)
339 {
340 	if (!nlink) {
341 		clear_nlink(inode);
342 	} else {
343 		/* Yes, some filesystems do change nlink from zero to one */
344 		if (inode->i_nlink == 0)
345 			atomic_long_dec(&inode->i_sb->s_remove_count);
346 
347 		inode->__i_nlink = nlink;
348 	}
349 }
350 EXPORT_SYMBOL(set_nlink);
351 
352 /**
353  * inc_nlink - directly increment an inode's link count
354  * @inode: inode
355  *
356  * This is a low-level filesystem helper to replace any
357  * direct filesystem manipulation of i_nlink.  Currently,
358  * it is only here for parity with dec_nlink().
359  */
360 void inc_nlink(struct inode *inode)
361 {
362 	if (unlikely(inode->i_nlink == 0)) {
363 		WARN_ON(!(inode->i_state & I_LINKABLE));
364 		atomic_long_dec(&inode->i_sb->s_remove_count);
365 	}
366 
367 	inode->__i_nlink++;
368 }
369 EXPORT_SYMBOL(inc_nlink);
370 
371 static void __address_space_init_once(struct address_space *mapping)
372 {
373 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
374 	init_rwsem(&mapping->i_mmap_rwsem);
375 	INIT_LIST_HEAD(&mapping->private_list);
376 	spin_lock_init(&mapping->private_lock);
377 	mapping->i_mmap = RB_ROOT_CACHED;
378 }
379 
380 void address_space_init_once(struct address_space *mapping)
381 {
382 	memset(mapping, 0, sizeof(*mapping));
383 	__address_space_init_once(mapping);
384 }
385 EXPORT_SYMBOL(address_space_init_once);
386 
387 /*
388  * These are initializations that only need to be done
389  * once, because the fields are idempotent across use
390  * of the inode, so let the slab aware of that.
391  */
392 void inode_init_once(struct inode *inode)
393 {
394 	memset(inode, 0, sizeof(*inode));
395 	INIT_HLIST_NODE(&inode->i_hash);
396 	INIT_LIST_HEAD(&inode->i_devices);
397 	INIT_LIST_HEAD(&inode->i_io_list);
398 	INIT_LIST_HEAD(&inode->i_wb_list);
399 	INIT_LIST_HEAD(&inode->i_lru);
400 	__address_space_init_once(&inode->i_data);
401 	i_size_ordered_init(inode);
402 }
403 EXPORT_SYMBOL(inode_init_once);
404 
405 static void init_once(void *foo)
406 {
407 	struct inode *inode = (struct inode *) foo;
408 
409 	inode_init_once(inode);
410 }
411 
412 /*
413  * inode->i_lock must be held
414  */
415 void __iget(struct inode *inode)
416 {
417 	atomic_inc(&inode->i_count);
418 }
419 
420 /*
421  * get additional reference to inode; caller must already hold one.
422  */
423 void ihold(struct inode *inode)
424 {
425 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
426 }
427 EXPORT_SYMBOL(ihold);
428 
429 static void inode_lru_list_add(struct inode *inode)
430 {
431 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
432 		this_cpu_inc(nr_unused);
433 	else
434 		inode->i_state |= I_REFERENCED;
435 }
436 
437 /*
438  * Add inode to LRU if needed (inode is unused and clean).
439  *
440  * Needs inode->i_lock held.
441  */
442 void inode_add_lru(struct inode *inode)
443 {
444 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
445 				I_FREEING | I_WILL_FREE)) &&
446 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
447 		inode_lru_list_add(inode);
448 }
449 
450 
451 static void inode_lru_list_del(struct inode *inode)
452 {
453 
454 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
455 		this_cpu_dec(nr_unused);
456 }
457 
458 /**
459  * inode_sb_list_add - add inode to the superblock list of inodes
460  * @inode: inode to add
461  */
462 void inode_sb_list_add(struct inode *inode)
463 {
464 	spin_lock(&inode->i_sb->s_inode_list_lock);
465 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
466 	spin_unlock(&inode->i_sb->s_inode_list_lock);
467 }
468 EXPORT_SYMBOL_GPL(inode_sb_list_add);
469 
470 static inline void inode_sb_list_del(struct inode *inode)
471 {
472 	if (!list_empty(&inode->i_sb_list)) {
473 		spin_lock(&inode->i_sb->s_inode_list_lock);
474 		list_del_init(&inode->i_sb_list);
475 		spin_unlock(&inode->i_sb->s_inode_list_lock);
476 	}
477 }
478 
479 static unsigned long hash(struct super_block *sb, unsigned long hashval)
480 {
481 	unsigned long tmp;
482 
483 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
484 			L1_CACHE_BYTES;
485 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
486 	return tmp & i_hash_mask;
487 }
488 
489 /**
490  *	__insert_inode_hash - hash an inode
491  *	@inode: unhashed inode
492  *	@hashval: unsigned long value used to locate this object in the
493  *		inode_hashtable.
494  *
495  *	Add an inode to the inode hash for this superblock.
496  */
497 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
498 {
499 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
500 
501 	spin_lock(&inode_hash_lock);
502 	spin_lock(&inode->i_lock);
503 	hlist_add_head_rcu(&inode->i_hash, b);
504 	spin_unlock(&inode->i_lock);
505 	spin_unlock(&inode_hash_lock);
506 }
507 EXPORT_SYMBOL(__insert_inode_hash);
508 
509 /**
510  *	__remove_inode_hash - remove an inode from the hash
511  *	@inode: inode to unhash
512  *
513  *	Remove an inode from the superblock.
514  */
515 void __remove_inode_hash(struct inode *inode)
516 {
517 	spin_lock(&inode_hash_lock);
518 	spin_lock(&inode->i_lock);
519 	hlist_del_init_rcu(&inode->i_hash);
520 	spin_unlock(&inode->i_lock);
521 	spin_unlock(&inode_hash_lock);
522 }
523 EXPORT_SYMBOL(__remove_inode_hash);
524 
525 void clear_inode(struct inode *inode)
526 {
527 	/*
528 	 * We have to cycle the i_pages lock here because reclaim can be in the
529 	 * process of removing the last page (in __delete_from_page_cache())
530 	 * and we must not free the mapping under it.
531 	 */
532 	xa_lock_irq(&inode->i_data.i_pages);
533 	BUG_ON(inode->i_data.nrpages);
534 	/*
535 	 * Almost always, mapping_empty(&inode->i_data) here; but there are
536 	 * two known and long-standing ways in which nodes may get left behind
537 	 * (when deep radix-tree node allocation failed partway; or when THP
538 	 * collapse_file() failed). Until those two known cases are cleaned up,
539 	 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
540 	 * nor even WARN_ON(!mapping_empty).
541 	 */
542 	xa_unlock_irq(&inode->i_data.i_pages);
543 	BUG_ON(!list_empty(&inode->i_data.private_list));
544 	BUG_ON(!(inode->i_state & I_FREEING));
545 	BUG_ON(inode->i_state & I_CLEAR);
546 	BUG_ON(!list_empty(&inode->i_wb_list));
547 	/* don't need i_lock here, no concurrent mods to i_state */
548 	inode->i_state = I_FREEING | I_CLEAR;
549 }
550 EXPORT_SYMBOL(clear_inode);
551 
552 /*
553  * Free the inode passed in, removing it from the lists it is still connected
554  * to. We remove any pages still attached to the inode and wait for any IO that
555  * is still in progress before finally destroying the inode.
556  *
557  * An inode must already be marked I_FREEING so that we avoid the inode being
558  * moved back onto lists if we race with other code that manipulates the lists
559  * (e.g. writeback_single_inode). The caller is responsible for setting this.
560  *
561  * An inode must already be removed from the LRU list before being evicted from
562  * the cache. This should occur atomically with setting the I_FREEING state
563  * flag, so no inodes here should ever be on the LRU when being evicted.
564  */
565 static void evict(struct inode *inode)
566 {
567 	const struct super_operations *op = inode->i_sb->s_op;
568 
569 	BUG_ON(!(inode->i_state & I_FREEING));
570 	BUG_ON(!list_empty(&inode->i_lru));
571 
572 	if (!list_empty(&inode->i_io_list))
573 		inode_io_list_del(inode);
574 
575 	inode_sb_list_del(inode);
576 
577 	/*
578 	 * Wait for flusher thread to be done with the inode so that filesystem
579 	 * does not start destroying it while writeback is still running. Since
580 	 * the inode has I_FREEING set, flusher thread won't start new work on
581 	 * the inode.  We just have to wait for running writeback to finish.
582 	 */
583 	inode_wait_for_writeback(inode);
584 
585 	if (op->evict_inode) {
586 		op->evict_inode(inode);
587 	} else {
588 		truncate_inode_pages_final(&inode->i_data);
589 		clear_inode(inode);
590 	}
591 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
592 		cd_forget(inode);
593 
594 	remove_inode_hash(inode);
595 
596 	spin_lock(&inode->i_lock);
597 	wake_up_bit(&inode->i_state, __I_NEW);
598 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
599 	spin_unlock(&inode->i_lock);
600 
601 	destroy_inode(inode);
602 }
603 
604 /*
605  * dispose_list - dispose of the contents of a local list
606  * @head: the head of the list to free
607  *
608  * Dispose-list gets a local list with local inodes in it, so it doesn't
609  * need to worry about list corruption and SMP locks.
610  */
611 static void dispose_list(struct list_head *head)
612 {
613 	while (!list_empty(head)) {
614 		struct inode *inode;
615 
616 		inode = list_first_entry(head, struct inode, i_lru);
617 		list_del_init(&inode->i_lru);
618 
619 		evict(inode);
620 		cond_resched();
621 	}
622 }
623 
624 /**
625  * evict_inodes	- evict all evictable inodes for a superblock
626  * @sb:		superblock to operate on
627  *
628  * Make sure that no inodes with zero refcount are retained.  This is
629  * called by superblock shutdown after having SB_ACTIVE flag removed,
630  * so any inode reaching zero refcount during or after that call will
631  * be immediately evicted.
632  */
633 void evict_inodes(struct super_block *sb)
634 {
635 	struct inode *inode, *next;
636 	LIST_HEAD(dispose);
637 
638 again:
639 	spin_lock(&sb->s_inode_list_lock);
640 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
641 		if (atomic_read(&inode->i_count))
642 			continue;
643 
644 		spin_lock(&inode->i_lock);
645 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
646 			spin_unlock(&inode->i_lock);
647 			continue;
648 		}
649 
650 		inode->i_state |= I_FREEING;
651 		inode_lru_list_del(inode);
652 		spin_unlock(&inode->i_lock);
653 		list_add(&inode->i_lru, &dispose);
654 
655 		/*
656 		 * We can have a ton of inodes to evict at unmount time given
657 		 * enough memory, check to see if we need to go to sleep for a
658 		 * bit so we don't livelock.
659 		 */
660 		if (need_resched()) {
661 			spin_unlock(&sb->s_inode_list_lock);
662 			cond_resched();
663 			dispose_list(&dispose);
664 			goto again;
665 		}
666 	}
667 	spin_unlock(&sb->s_inode_list_lock);
668 
669 	dispose_list(&dispose);
670 }
671 EXPORT_SYMBOL_GPL(evict_inodes);
672 
673 /**
674  * invalidate_inodes	- attempt to free all inodes on a superblock
675  * @sb:		superblock to operate on
676  * @kill_dirty: flag to guide handling of dirty inodes
677  *
678  * Attempts to free all inodes for a given superblock.  If there were any
679  * busy inodes return a non-zero value, else zero.
680  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
681  * them as busy.
682  */
683 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
684 {
685 	int busy = 0;
686 	struct inode *inode, *next;
687 	LIST_HEAD(dispose);
688 
689 again:
690 	spin_lock(&sb->s_inode_list_lock);
691 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
692 		spin_lock(&inode->i_lock);
693 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
694 			spin_unlock(&inode->i_lock);
695 			continue;
696 		}
697 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
698 			spin_unlock(&inode->i_lock);
699 			busy = 1;
700 			continue;
701 		}
702 		if (atomic_read(&inode->i_count)) {
703 			spin_unlock(&inode->i_lock);
704 			busy = 1;
705 			continue;
706 		}
707 
708 		inode->i_state |= I_FREEING;
709 		inode_lru_list_del(inode);
710 		spin_unlock(&inode->i_lock);
711 		list_add(&inode->i_lru, &dispose);
712 		if (need_resched()) {
713 			spin_unlock(&sb->s_inode_list_lock);
714 			cond_resched();
715 			dispose_list(&dispose);
716 			goto again;
717 		}
718 	}
719 	spin_unlock(&sb->s_inode_list_lock);
720 
721 	dispose_list(&dispose);
722 
723 	return busy;
724 }
725 
726 /*
727  * Isolate the inode from the LRU in preparation for freeing it.
728  *
729  * Any inodes which are pinned purely because of attached pagecache have their
730  * pagecache removed.  If the inode has metadata buffers attached to
731  * mapping->private_list then try to remove them.
732  *
733  * If the inode has the I_REFERENCED flag set, then it means that it has been
734  * used recently - the flag is set in iput_final(). When we encounter such an
735  * inode, clear the flag and move it to the back of the LRU so it gets another
736  * pass through the LRU before it gets reclaimed. This is necessary because of
737  * the fact we are doing lazy LRU updates to minimise lock contention so the
738  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
739  * with this flag set because they are the inodes that are out of order.
740  */
741 static enum lru_status inode_lru_isolate(struct list_head *item,
742 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
743 {
744 	struct list_head *freeable = arg;
745 	struct inode	*inode = container_of(item, struct inode, i_lru);
746 
747 	/*
748 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
749 	 * If we fail to get the lock, just skip it.
750 	 */
751 	if (!spin_trylock(&inode->i_lock))
752 		return LRU_SKIP;
753 
754 	/*
755 	 * Referenced or dirty inodes are still in use. Give them another pass
756 	 * through the LRU as we canot reclaim them now.
757 	 */
758 	if (atomic_read(&inode->i_count) ||
759 	    (inode->i_state & ~I_REFERENCED)) {
760 		list_lru_isolate(lru, &inode->i_lru);
761 		spin_unlock(&inode->i_lock);
762 		this_cpu_dec(nr_unused);
763 		return LRU_REMOVED;
764 	}
765 
766 	/* recently referenced inodes get one more pass */
767 	if (inode->i_state & I_REFERENCED) {
768 		inode->i_state &= ~I_REFERENCED;
769 		spin_unlock(&inode->i_lock);
770 		return LRU_ROTATE;
771 	}
772 
773 	if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
774 		__iget(inode);
775 		spin_unlock(&inode->i_lock);
776 		spin_unlock(lru_lock);
777 		if (remove_inode_buffers(inode)) {
778 			unsigned long reap;
779 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
780 			if (current_is_kswapd())
781 				__count_vm_events(KSWAPD_INODESTEAL, reap);
782 			else
783 				__count_vm_events(PGINODESTEAL, reap);
784 			if (current->reclaim_state)
785 				current->reclaim_state->reclaimed_slab += reap;
786 		}
787 		iput(inode);
788 		spin_lock(lru_lock);
789 		return LRU_RETRY;
790 	}
791 
792 	WARN_ON(inode->i_state & I_NEW);
793 	inode->i_state |= I_FREEING;
794 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
795 	spin_unlock(&inode->i_lock);
796 
797 	this_cpu_dec(nr_unused);
798 	return LRU_REMOVED;
799 }
800 
801 /*
802  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
803  * This is called from the superblock shrinker function with a number of inodes
804  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
805  * then are freed outside inode_lock by dispose_list().
806  */
807 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
808 {
809 	LIST_HEAD(freeable);
810 	long freed;
811 
812 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
813 				     inode_lru_isolate, &freeable);
814 	dispose_list(&freeable);
815 	return freed;
816 }
817 
818 static void __wait_on_freeing_inode(struct inode *inode);
819 /*
820  * Called with the inode lock held.
821  */
822 static struct inode *find_inode(struct super_block *sb,
823 				struct hlist_head *head,
824 				int (*test)(struct inode *, void *),
825 				void *data)
826 {
827 	struct inode *inode = NULL;
828 
829 repeat:
830 	hlist_for_each_entry(inode, head, i_hash) {
831 		if (inode->i_sb != sb)
832 			continue;
833 		if (!test(inode, data))
834 			continue;
835 		spin_lock(&inode->i_lock);
836 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
837 			__wait_on_freeing_inode(inode);
838 			goto repeat;
839 		}
840 		if (unlikely(inode->i_state & I_CREATING)) {
841 			spin_unlock(&inode->i_lock);
842 			return ERR_PTR(-ESTALE);
843 		}
844 		__iget(inode);
845 		spin_unlock(&inode->i_lock);
846 		return inode;
847 	}
848 	return NULL;
849 }
850 
851 /*
852  * find_inode_fast is the fast path version of find_inode, see the comment at
853  * iget_locked for details.
854  */
855 static struct inode *find_inode_fast(struct super_block *sb,
856 				struct hlist_head *head, unsigned long ino)
857 {
858 	struct inode *inode = NULL;
859 
860 repeat:
861 	hlist_for_each_entry(inode, head, i_hash) {
862 		if (inode->i_ino != ino)
863 			continue;
864 		if (inode->i_sb != sb)
865 			continue;
866 		spin_lock(&inode->i_lock);
867 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
868 			__wait_on_freeing_inode(inode);
869 			goto repeat;
870 		}
871 		if (unlikely(inode->i_state & I_CREATING)) {
872 			spin_unlock(&inode->i_lock);
873 			return ERR_PTR(-ESTALE);
874 		}
875 		__iget(inode);
876 		spin_unlock(&inode->i_lock);
877 		return inode;
878 	}
879 	return NULL;
880 }
881 
882 /*
883  * Each cpu owns a range of LAST_INO_BATCH numbers.
884  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
885  * to renew the exhausted range.
886  *
887  * This does not significantly increase overflow rate because every CPU can
888  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
889  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
890  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
891  * overflow rate by 2x, which does not seem too significant.
892  *
893  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
894  * error if st_ino won't fit in target struct field. Use 32bit counter
895  * here to attempt to avoid that.
896  */
897 #define LAST_INO_BATCH 1024
898 static DEFINE_PER_CPU(unsigned int, last_ino);
899 
900 unsigned int get_next_ino(void)
901 {
902 	unsigned int *p = &get_cpu_var(last_ino);
903 	unsigned int res = *p;
904 
905 #ifdef CONFIG_SMP
906 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
907 		static atomic_t shared_last_ino;
908 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
909 
910 		res = next - LAST_INO_BATCH;
911 	}
912 #endif
913 
914 	res++;
915 	/* get_next_ino should not provide a 0 inode number */
916 	if (unlikely(!res))
917 		res++;
918 	*p = res;
919 	put_cpu_var(last_ino);
920 	return res;
921 }
922 EXPORT_SYMBOL(get_next_ino);
923 
924 /**
925  *	new_inode_pseudo 	- obtain an inode
926  *	@sb: superblock
927  *
928  *	Allocates a new inode for given superblock.
929  *	Inode wont be chained in superblock s_inodes list
930  *	This means :
931  *	- fs can't be unmount
932  *	- quotas, fsnotify, writeback can't work
933  */
934 struct inode *new_inode_pseudo(struct super_block *sb)
935 {
936 	struct inode *inode = alloc_inode(sb);
937 
938 	if (inode) {
939 		spin_lock(&inode->i_lock);
940 		inode->i_state = 0;
941 		spin_unlock(&inode->i_lock);
942 		INIT_LIST_HEAD(&inode->i_sb_list);
943 	}
944 	return inode;
945 }
946 
947 /**
948  *	new_inode 	- obtain an inode
949  *	@sb: superblock
950  *
951  *	Allocates a new inode for given superblock. The default gfp_mask
952  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
953  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
954  *	for the page cache are not reclaimable or migratable,
955  *	mapping_set_gfp_mask() must be called with suitable flags on the
956  *	newly created inode's mapping
957  *
958  */
959 struct inode *new_inode(struct super_block *sb)
960 {
961 	struct inode *inode;
962 
963 	spin_lock_prefetch(&sb->s_inode_list_lock);
964 
965 	inode = new_inode_pseudo(sb);
966 	if (inode)
967 		inode_sb_list_add(inode);
968 	return inode;
969 }
970 EXPORT_SYMBOL(new_inode);
971 
972 #ifdef CONFIG_DEBUG_LOCK_ALLOC
973 void lockdep_annotate_inode_mutex_key(struct inode *inode)
974 {
975 	if (S_ISDIR(inode->i_mode)) {
976 		struct file_system_type *type = inode->i_sb->s_type;
977 
978 		/* Set new key only if filesystem hasn't already changed it */
979 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
980 			/*
981 			 * ensure nobody is actually holding i_mutex
982 			 */
983 			// mutex_destroy(&inode->i_mutex);
984 			init_rwsem(&inode->i_rwsem);
985 			lockdep_set_class(&inode->i_rwsem,
986 					  &type->i_mutex_dir_key);
987 		}
988 	}
989 }
990 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
991 #endif
992 
993 /**
994  * unlock_new_inode - clear the I_NEW state and wake up any waiters
995  * @inode:	new inode to unlock
996  *
997  * Called when the inode is fully initialised to clear the new state of the
998  * inode and wake up anyone waiting for the inode to finish initialisation.
999  */
1000 void unlock_new_inode(struct inode *inode)
1001 {
1002 	lockdep_annotate_inode_mutex_key(inode);
1003 	spin_lock(&inode->i_lock);
1004 	WARN_ON(!(inode->i_state & I_NEW));
1005 	inode->i_state &= ~I_NEW & ~I_CREATING;
1006 	smp_mb();
1007 	wake_up_bit(&inode->i_state, __I_NEW);
1008 	spin_unlock(&inode->i_lock);
1009 }
1010 EXPORT_SYMBOL(unlock_new_inode);
1011 
1012 void discard_new_inode(struct inode *inode)
1013 {
1014 	lockdep_annotate_inode_mutex_key(inode);
1015 	spin_lock(&inode->i_lock);
1016 	WARN_ON(!(inode->i_state & I_NEW));
1017 	inode->i_state &= ~I_NEW;
1018 	smp_mb();
1019 	wake_up_bit(&inode->i_state, __I_NEW);
1020 	spin_unlock(&inode->i_lock);
1021 	iput(inode);
1022 }
1023 EXPORT_SYMBOL(discard_new_inode);
1024 
1025 /**
1026  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1027  *
1028  * Lock any non-NULL argument that is not a directory.
1029  * Zero, one or two objects may be locked by this function.
1030  *
1031  * @inode1: first inode to lock
1032  * @inode2: second inode to lock
1033  */
1034 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1035 {
1036 	if (inode1 > inode2)
1037 		swap(inode1, inode2);
1038 
1039 	if (inode1 && !S_ISDIR(inode1->i_mode))
1040 		inode_lock(inode1);
1041 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1042 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1043 }
1044 EXPORT_SYMBOL(lock_two_nondirectories);
1045 
1046 /**
1047  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1048  * @inode1: first inode to unlock
1049  * @inode2: second inode to unlock
1050  */
1051 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1052 {
1053 	if (inode1 && !S_ISDIR(inode1->i_mode))
1054 		inode_unlock(inode1);
1055 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1056 		inode_unlock(inode2);
1057 }
1058 EXPORT_SYMBOL(unlock_two_nondirectories);
1059 
1060 /**
1061  * inode_insert5 - obtain an inode from a mounted file system
1062  * @inode:	pre-allocated inode to use for insert to cache
1063  * @hashval:	hash value (usually inode number) to get
1064  * @test:	callback used for comparisons between inodes
1065  * @set:	callback used to initialize a new struct inode
1066  * @data:	opaque data pointer to pass to @test and @set
1067  *
1068  * Search for the inode specified by @hashval and @data in the inode cache,
1069  * and if present it is return it with an increased reference count. This is
1070  * a variant of iget5_locked() for callers that don't want to fail on memory
1071  * allocation of inode.
1072  *
1073  * If the inode is not in cache, insert the pre-allocated inode to cache and
1074  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1075  * to fill it in before unlocking it via unlock_new_inode().
1076  *
1077  * Note both @test and @set are called with the inode_hash_lock held, so can't
1078  * sleep.
1079  */
1080 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1081 			    int (*test)(struct inode *, void *),
1082 			    int (*set)(struct inode *, void *), void *data)
1083 {
1084 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1085 	struct inode *old;
1086 	bool creating = inode->i_state & I_CREATING;
1087 
1088 again:
1089 	spin_lock(&inode_hash_lock);
1090 	old = find_inode(inode->i_sb, head, test, data);
1091 	if (unlikely(old)) {
1092 		/*
1093 		 * Uhhuh, somebody else created the same inode under us.
1094 		 * Use the old inode instead of the preallocated one.
1095 		 */
1096 		spin_unlock(&inode_hash_lock);
1097 		if (IS_ERR(old))
1098 			return NULL;
1099 		wait_on_inode(old);
1100 		if (unlikely(inode_unhashed(old))) {
1101 			iput(old);
1102 			goto again;
1103 		}
1104 		return old;
1105 	}
1106 
1107 	if (set && unlikely(set(inode, data))) {
1108 		inode = NULL;
1109 		goto unlock;
1110 	}
1111 
1112 	/*
1113 	 * Return the locked inode with I_NEW set, the
1114 	 * caller is responsible for filling in the contents
1115 	 */
1116 	spin_lock(&inode->i_lock);
1117 	inode->i_state |= I_NEW;
1118 	hlist_add_head_rcu(&inode->i_hash, head);
1119 	spin_unlock(&inode->i_lock);
1120 	if (!creating)
1121 		inode_sb_list_add(inode);
1122 unlock:
1123 	spin_unlock(&inode_hash_lock);
1124 
1125 	return inode;
1126 }
1127 EXPORT_SYMBOL(inode_insert5);
1128 
1129 /**
1130  * iget5_locked - obtain an inode from a mounted file system
1131  * @sb:		super block of file system
1132  * @hashval:	hash value (usually inode number) to get
1133  * @test:	callback used for comparisons between inodes
1134  * @set:	callback used to initialize a new struct inode
1135  * @data:	opaque data pointer to pass to @test and @set
1136  *
1137  * Search for the inode specified by @hashval and @data in the inode cache,
1138  * and if present it is return it with an increased reference count. This is
1139  * a generalized version of iget_locked() for file systems where the inode
1140  * number is not sufficient for unique identification of an inode.
1141  *
1142  * If the inode is not in cache, allocate a new inode and return it locked,
1143  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1144  * before unlocking it via unlock_new_inode().
1145  *
1146  * Note both @test and @set are called with the inode_hash_lock held, so can't
1147  * sleep.
1148  */
1149 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1150 		int (*test)(struct inode *, void *),
1151 		int (*set)(struct inode *, void *), void *data)
1152 {
1153 	struct inode *inode = ilookup5(sb, hashval, test, data);
1154 
1155 	if (!inode) {
1156 		struct inode *new = alloc_inode(sb);
1157 
1158 		if (new) {
1159 			new->i_state = 0;
1160 			inode = inode_insert5(new, hashval, test, set, data);
1161 			if (unlikely(inode != new))
1162 				destroy_inode(new);
1163 		}
1164 	}
1165 	return inode;
1166 }
1167 EXPORT_SYMBOL(iget5_locked);
1168 
1169 /**
1170  * iget_locked - obtain an inode from a mounted file system
1171  * @sb:		super block of file system
1172  * @ino:	inode number to get
1173  *
1174  * Search for the inode specified by @ino in the inode cache and if present
1175  * return it with an increased reference count. This is for file systems
1176  * where the inode number is sufficient for unique identification of an inode.
1177  *
1178  * If the inode is not in cache, allocate a new inode and return it locked,
1179  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1180  * before unlocking it via unlock_new_inode().
1181  */
1182 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1183 {
1184 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1185 	struct inode *inode;
1186 again:
1187 	spin_lock(&inode_hash_lock);
1188 	inode = find_inode_fast(sb, head, ino);
1189 	spin_unlock(&inode_hash_lock);
1190 	if (inode) {
1191 		if (IS_ERR(inode))
1192 			return NULL;
1193 		wait_on_inode(inode);
1194 		if (unlikely(inode_unhashed(inode))) {
1195 			iput(inode);
1196 			goto again;
1197 		}
1198 		return inode;
1199 	}
1200 
1201 	inode = alloc_inode(sb);
1202 	if (inode) {
1203 		struct inode *old;
1204 
1205 		spin_lock(&inode_hash_lock);
1206 		/* We released the lock, so.. */
1207 		old = find_inode_fast(sb, head, ino);
1208 		if (!old) {
1209 			inode->i_ino = ino;
1210 			spin_lock(&inode->i_lock);
1211 			inode->i_state = I_NEW;
1212 			hlist_add_head_rcu(&inode->i_hash, head);
1213 			spin_unlock(&inode->i_lock);
1214 			inode_sb_list_add(inode);
1215 			spin_unlock(&inode_hash_lock);
1216 
1217 			/* Return the locked inode with I_NEW set, the
1218 			 * caller is responsible for filling in the contents
1219 			 */
1220 			return inode;
1221 		}
1222 
1223 		/*
1224 		 * Uhhuh, somebody else created the same inode under
1225 		 * us. Use the old inode instead of the one we just
1226 		 * allocated.
1227 		 */
1228 		spin_unlock(&inode_hash_lock);
1229 		destroy_inode(inode);
1230 		if (IS_ERR(old))
1231 			return NULL;
1232 		inode = old;
1233 		wait_on_inode(inode);
1234 		if (unlikely(inode_unhashed(inode))) {
1235 			iput(inode);
1236 			goto again;
1237 		}
1238 	}
1239 	return inode;
1240 }
1241 EXPORT_SYMBOL(iget_locked);
1242 
1243 /*
1244  * search the inode cache for a matching inode number.
1245  * If we find one, then the inode number we are trying to
1246  * allocate is not unique and so we should not use it.
1247  *
1248  * Returns 1 if the inode number is unique, 0 if it is not.
1249  */
1250 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1251 {
1252 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1253 	struct inode *inode;
1254 
1255 	hlist_for_each_entry_rcu(inode, b, i_hash) {
1256 		if (inode->i_ino == ino && inode->i_sb == sb)
1257 			return 0;
1258 	}
1259 	return 1;
1260 }
1261 
1262 /**
1263  *	iunique - get a unique inode number
1264  *	@sb: superblock
1265  *	@max_reserved: highest reserved inode number
1266  *
1267  *	Obtain an inode number that is unique on the system for a given
1268  *	superblock. This is used by file systems that have no natural
1269  *	permanent inode numbering system. An inode number is returned that
1270  *	is higher than the reserved limit but unique.
1271  *
1272  *	BUGS:
1273  *	With a large number of inodes live on the file system this function
1274  *	currently becomes quite slow.
1275  */
1276 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1277 {
1278 	/*
1279 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1280 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1281 	 * here to attempt to avoid that.
1282 	 */
1283 	static DEFINE_SPINLOCK(iunique_lock);
1284 	static unsigned int counter;
1285 	ino_t res;
1286 
1287 	rcu_read_lock();
1288 	spin_lock(&iunique_lock);
1289 	do {
1290 		if (counter <= max_reserved)
1291 			counter = max_reserved + 1;
1292 		res = counter++;
1293 	} while (!test_inode_iunique(sb, res));
1294 	spin_unlock(&iunique_lock);
1295 	rcu_read_unlock();
1296 
1297 	return res;
1298 }
1299 EXPORT_SYMBOL(iunique);
1300 
1301 struct inode *igrab(struct inode *inode)
1302 {
1303 	spin_lock(&inode->i_lock);
1304 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1305 		__iget(inode);
1306 		spin_unlock(&inode->i_lock);
1307 	} else {
1308 		spin_unlock(&inode->i_lock);
1309 		/*
1310 		 * Handle the case where s_op->clear_inode is not been
1311 		 * called yet, and somebody is calling igrab
1312 		 * while the inode is getting freed.
1313 		 */
1314 		inode = NULL;
1315 	}
1316 	return inode;
1317 }
1318 EXPORT_SYMBOL(igrab);
1319 
1320 /**
1321  * ilookup5_nowait - search for an inode in the inode cache
1322  * @sb:		super block of file system to search
1323  * @hashval:	hash value (usually inode number) to search for
1324  * @test:	callback used for comparisons between inodes
1325  * @data:	opaque data pointer to pass to @test
1326  *
1327  * Search for the inode specified by @hashval and @data in the inode cache.
1328  * If the inode is in the cache, the inode is returned with an incremented
1329  * reference count.
1330  *
1331  * Note: I_NEW is not waited upon so you have to be very careful what you do
1332  * with the returned inode.  You probably should be using ilookup5() instead.
1333  *
1334  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1335  */
1336 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1337 		int (*test)(struct inode *, void *), void *data)
1338 {
1339 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1340 	struct inode *inode;
1341 
1342 	spin_lock(&inode_hash_lock);
1343 	inode = find_inode(sb, head, test, data);
1344 	spin_unlock(&inode_hash_lock);
1345 
1346 	return IS_ERR(inode) ? NULL : inode;
1347 }
1348 EXPORT_SYMBOL(ilookup5_nowait);
1349 
1350 /**
1351  * ilookup5 - search for an inode in the inode cache
1352  * @sb:		super block of file system to search
1353  * @hashval:	hash value (usually inode number) to search for
1354  * @test:	callback used for comparisons between inodes
1355  * @data:	opaque data pointer to pass to @test
1356  *
1357  * Search for the inode specified by @hashval and @data in the inode cache,
1358  * and if the inode is in the cache, return the inode with an incremented
1359  * reference count.  Waits on I_NEW before returning the inode.
1360  * returned with an incremented reference count.
1361  *
1362  * This is a generalized version of ilookup() for file systems where the
1363  * inode number is not sufficient for unique identification of an inode.
1364  *
1365  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1366  */
1367 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1368 		int (*test)(struct inode *, void *), void *data)
1369 {
1370 	struct inode *inode;
1371 again:
1372 	inode = ilookup5_nowait(sb, hashval, test, data);
1373 	if (inode) {
1374 		wait_on_inode(inode);
1375 		if (unlikely(inode_unhashed(inode))) {
1376 			iput(inode);
1377 			goto again;
1378 		}
1379 	}
1380 	return inode;
1381 }
1382 EXPORT_SYMBOL(ilookup5);
1383 
1384 /**
1385  * ilookup - search for an inode in the inode cache
1386  * @sb:		super block of file system to search
1387  * @ino:	inode number to search for
1388  *
1389  * Search for the inode @ino in the inode cache, and if the inode is in the
1390  * cache, the inode is returned with an incremented reference count.
1391  */
1392 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1393 {
1394 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1395 	struct inode *inode;
1396 again:
1397 	spin_lock(&inode_hash_lock);
1398 	inode = find_inode_fast(sb, head, ino);
1399 	spin_unlock(&inode_hash_lock);
1400 
1401 	if (inode) {
1402 		if (IS_ERR(inode))
1403 			return NULL;
1404 		wait_on_inode(inode);
1405 		if (unlikely(inode_unhashed(inode))) {
1406 			iput(inode);
1407 			goto again;
1408 		}
1409 	}
1410 	return inode;
1411 }
1412 EXPORT_SYMBOL(ilookup);
1413 
1414 /**
1415  * find_inode_nowait - find an inode in the inode cache
1416  * @sb:		super block of file system to search
1417  * @hashval:	hash value (usually inode number) to search for
1418  * @match:	callback used for comparisons between inodes
1419  * @data:	opaque data pointer to pass to @match
1420  *
1421  * Search for the inode specified by @hashval and @data in the inode
1422  * cache, where the helper function @match will return 0 if the inode
1423  * does not match, 1 if the inode does match, and -1 if the search
1424  * should be stopped.  The @match function must be responsible for
1425  * taking the i_lock spin_lock and checking i_state for an inode being
1426  * freed or being initialized, and incrementing the reference count
1427  * before returning 1.  It also must not sleep, since it is called with
1428  * the inode_hash_lock spinlock held.
1429  *
1430  * This is a even more generalized version of ilookup5() when the
1431  * function must never block --- find_inode() can block in
1432  * __wait_on_freeing_inode() --- or when the caller can not increment
1433  * the reference count because the resulting iput() might cause an
1434  * inode eviction.  The tradeoff is that the @match funtion must be
1435  * very carefully implemented.
1436  */
1437 struct inode *find_inode_nowait(struct super_block *sb,
1438 				unsigned long hashval,
1439 				int (*match)(struct inode *, unsigned long,
1440 					     void *),
1441 				void *data)
1442 {
1443 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1444 	struct inode *inode, *ret_inode = NULL;
1445 	int mval;
1446 
1447 	spin_lock(&inode_hash_lock);
1448 	hlist_for_each_entry(inode, head, i_hash) {
1449 		if (inode->i_sb != sb)
1450 			continue;
1451 		mval = match(inode, hashval, data);
1452 		if (mval == 0)
1453 			continue;
1454 		if (mval == 1)
1455 			ret_inode = inode;
1456 		goto out;
1457 	}
1458 out:
1459 	spin_unlock(&inode_hash_lock);
1460 	return ret_inode;
1461 }
1462 EXPORT_SYMBOL(find_inode_nowait);
1463 
1464 /**
1465  * find_inode_rcu - find an inode in the inode cache
1466  * @sb:		Super block of file system to search
1467  * @hashval:	Key to hash
1468  * @test:	Function to test match on an inode
1469  * @data:	Data for test function
1470  *
1471  * Search for the inode specified by @hashval and @data in the inode cache,
1472  * where the helper function @test will return 0 if the inode does not match
1473  * and 1 if it does.  The @test function must be responsible for taking the
1474  * i_lock spin_lock and checking i_state for an inode being freed or being
1475  * initialized.
1476  *
1477  * If successful, this will return the inode for which the @test function
1478  * returned 1 and NULL otherwise.
1479  *
1480  * The @test function is not permitted to take a ref on any inode presented.
1481  * It is also not permitted to sleep.
1482  *
1483  * The caller must hold the RCU read lock.
1484  */
1485 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1486 			     int (*test)(struct inode *, void *), void *data)
1487 {
1488 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1489 	struct inode *inode;
1490 
1491 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1492 			 "suspicious find_inode_rcu() usage");
1493 
1494 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1495 		if (inode->i_sb == sb &&
1496 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1497 		    test(inode, data))
1498 			return inode;
1499 	}
1500 	return NULL;
1501 }
1502 EXPORT_SYMBOL(find_inode_rcu);
1503 
1504 /**
1505  * find_inode_by_ino_rcu - Find an inode in the inode cache
1506  * @sb:		Super block of file system to search
1507  * @ino:	The inode number to match
1508  *
1509  * Search for the inode specified by @hashval and @data in the inode cache,
1510  * where the helper function @test will return 0 if the inode does not match
1511  * and 1 if it does.  The @test function must be responsible for taking the
1512  * i_lock spin_lock and checking i_state for an inode being freed or being
1513  * initialized.
1514  *
1515  * If successful, this will return the inode for which the @test function
1516  * returned 1 and NULL otherwise.
1517  *
1518  * The @test function is not permitted to take a ref on any inode presented.
1519  * It is also not permitted to sleep.
1520  *
1521  * The caller must hold the RCU read lock.
1522  */
1523 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1524 				    unsigned long ino)
1525 {
1526 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1527 	struct inode *inode;
1528 
1529 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1530 			 "suspicious find_inode_by_ino_rcu() usage");
1531 
1532 	hlist_for_each_entry_rcu(inode, head, i_hash) {
1533 		if (inode->i_ino == ino &&
1534 		    inode->i_sb == sb &&
1535 		    !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1536 		    return inode;
1537 	}
1538 	return NULL;
1539 }
1540 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1541 
1542 int insert_inode_locked(struct inode *inode)
1543 {
1544 	struct super_block *sb = inode->i_sb;
1545 	ino_t ino = inode->i_ino;
1546 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1547 
1548 	while (1) {
1549 		struct inode *old = NULL;
1550 		spin_lock(&inode_hash_lock);
1551 		hlist_for_each_entry(old, head, i_hash) {
1552 			if (old->i_ino != ino)
1553 				continue;
1554 			if (old->i_sb != sb)
1555 				continue;
1556 			spin_lock(&old->i_lock);
1557 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1558 				spin_unlock(&old->i_lock);
1559 				continue;
1560 			}
1561 			break;
1562 		}
1563 		if (likely(!old)) {
1564 			spin_lock(&inode->i_lock);
1565 			inode->i_state |= I_NEW | I_CREATING;
1566 			hlist_add_head_rcu(&inode->i_hash, head);
1567 			spin_unlock(&inode->i_lock);
1568 			spin_unlock(&inode_hash_lock);
1569 			return 0;
1570 		}
1571 		if (unlikely(old->i_state & I_CREATING)) {
1572 			spin_unlock(&old->i_lock);
1573 			spin_unlock(&inode_hash_lock);
1574 			return -EBUSY;
1575 		}
1576 		__iget(old);
1577 		spin_unlock(&old->i_lock);
1578 		spin_unlock(&inode_hash_lock);
1579 		wait_on_inode(old);
1580 		if (unlikely(!inode_unhashed(old))) {
1581 			iput(old);
1582 			return -EBUSY;
1583 		}
1584 		iput(old);
1585 	}
1586 }
1587 EXPORT_SYMBOL(insert_inode_locked);
1588 
1589 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1590 		int (*test)(struct inode *, void *), void *data)
1591 {
1592 	struct inode *old;
1593 
1594 	inode->i_state |= I_CREATING;
1595 	old = inode_insert5(inode, hashval, test, NULL, data);
1596 
1597 	if (old != inode) {
1598 		iput(old);
1599 		return -EBUSY;
1600 	}
1601 	return 0;
1602 }
1603 EXPORT_SYMBOL(insert_inode_locked4);
1604 
1605 
1606 int generic_delete_inode(struct inode *inode)
1607 {
1608 	return 1;
1609 }
1610 EXPORT_SYMBOL(generic_delete_inode);
1611 
1612 /*
1613  * Called when we're dropping the last reference
1614  * to an inode.
1615  *
1616  * Call the FS "drop_inode()" function, defaulting to
1617  * the legacy UNIX filesystem behaviour.  If it tells
1618  * us to evict inode, do so.  Otherwise, retain inode
1619  * in cache if fs is alive, sync and evict if fs is
1620  * shutting down.
1621  */
1622 static void iput_final(struct inode *inode)
1623 {
1624 	struct super_block *sb = inode->i_sb;
1625 	const struct super_operations *op = inode->i_sb->s_op;
1626 	unsigned long state;
1627 	int drop;
1628 
1629 	WARN_ON(inode->i_state & I_NEW);
1630 
1631 	if (op->drop_inode)
1632 		drop = op->drop_inode(inode);
1633 	else
1634 		drop = generic_drop_inode(inode);
1635 
1636 	if (!drop &&
1637 	    !(inode->i_state & I_DONTCACHE) &&
1638 	    (sb->s_flags & SB_ACTIVE)) {
1639 		inode_add_lru(inode);
1640 		spin_unlock(&inode->i_lock);
1641 		return;
1642 	}
1643 
1644 	state = inode->i_state;
1645 	if (!drop) {
1646 		WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1647 		spin_unlock(&inode->i_lock);
1648 
1649 		write_inode_now(inode, 1);
1650 
1651 		spin_lock(&inode->i_lock);
1652 		state = inode->i_state;
1653 		WARN_ON(state & I_NEW);
1654 		state &= ~I_WILL_FREE;
1655 	}
1656 
1657 	WRITE_ONCE(inode->i_state, state | I_FREEING);
1658 	if (!list_empty(&inode->i_lru))
1659 		inode_lru_list_del(inode);
1660 	spin_unlock(&inode->i_lock);
1661 
1662 	evict(inode);
1663 }
1664 
1665 /**
1666  *	iput	- put an inode
1667  *	@inode: inode to put
1668  *
1669  *	Puts an inode, dropping its usage count. If the inode use count hits
1670  *	zero, the inode is then freed and may also be destroyed.
1671  *
1672  *	Consequently, iput() can sleep.
1673  */
1674 void iput(struct inode *inode)
1675 {
1676 	if (!inode)
1677 		return;
1678 	BUG_ON(inode->i_state & I_CLEAR);
1679 retry:
1680 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1681 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1682 			atomic_inc(&inode->i_count);
1683 			spin_unlock(&inode->i_lock);
1684 			trace_writeback_lazytime_iput(inode);
1685 			mark_inode_dirty_sync(inode);
1686 			goto retry;
1687 		}
1688 		iput_final(inode);
1689 	}
1690 }
1691 EXPORT_SYMBOL(iput);
1692 
1693 #ifdef CONFIG_BLOCK
1694 /**
1695  *	bmap	- find a block number in a file
1696  *	@inode:  inode owning the block number being requested
1697  *	@block: pointer containing the block to find
1698  *
1699  *	Replaces the value in ``*block`` with the block number on the device holding
1700  *	corresponding to the requested block number in the file.
1701  *	That is, asked for block 4 of inode 1 the function will replace the
1702  *	4 in ``*block``, with disk block relative to the disk start that holds that
1703  *	block of the file.
1704  *
1705  *	Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1706  *	hole, returns 0 and ``*block`` is also set to 0.
1707  */
1708 int bmap(struct inode *inode, sector_t *block)
1709 {
1710 	if (!inode->i_mapping->a_ops->bmap)
1711 		return -EINVAL;
1712 
1713 	*block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1714 	return 0;
1715 }
1716 EXPORT_SYMBOL(bmap);
1717 #endif
1718 
1719 /*
1720  * With relative atime, only update atime if the previous atime is
1721  * earlier than either the ctime or mtime or if at least a day has
1722  * passed since the last atime update.
1723  */
1724 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1725 			     struct timespec64 now)
1726 {
1727 
1728 	if (!(mnt->mnt_flags & MNT_RELATIME))
1729 		return 1;
1730 	/*
1731 	 * Is mtime younger than atime? If yes, update atime:
1732 	 */
1733 	if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1734 		return 1;
1735 	/*
1736 	 * Is ctime younger than atime? If yes, update atime:
1737 	 */
1738 	if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1739 		return 1;
1740 
1741 	/*
1742 	 * Is the previous atime value older than a day? If yes,
1743 	 * update atime:
1744 	 */
1745 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1746 		return 1;
1747 	/*
1748 	 * Good, we can skip the atime update:
1749 	 */
1750 	return 0;
1751 }
1752 
1753 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1754 {
1755 	int dirty_flags = 0;
1756 
1757 	if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
1758 		if (flags & S_ATIME)
1759 			inode->i_atime = *time;
1760 		if (flags & S_CTIME)
1761 			inode->i_ctime = *time;
1762 		if (flags & S_MTIME)
1763 			inode->i_mtime = *time;
1764 
1765 		if (inode->i_sb->s_flags & SB_LAZYTIME)
1766 			dirty_flags |= I_DIRTY_TIME;
1767 		else
1768 			dirty_flags |= I_DIRTY_SYNC;
1769 	}
1770 
1771 	if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
1772 		dirty_flags |= I_DIRTY_SYNC;
1773 
1774 	__mark_inode_dirty(inode, dirty_flags);
1775 	return 0;
1776 }
1777 EXPORT_SYMBOL(generic_update_time);
1778 
1779 /*
1780  * This does the actual work of updating an inodes time or version.  Must have
1781  * had called mnt_want_write() before calling this.
1782  */
1783 static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1784 {
1785 	if (inode->i_op->update_time)
1786 		return inode->i_op->update_time(inode, time, flags);
1787 	return generic_update_time(inode, time, flags);
1788 }
1789 
1790 /**
1791  *	atime_needs_update	-	update the access time
1792  *	@path: the &struct path to update
1793  *	@inode: inode to update
1794  *
1795  *	Update the accessed time on an inode and mark it for writeback.
1796  *	This function automatically handles read only file systems and media,
1797  *	as well as the "noatime" flag and inode specific "noatime" markers.
1798  */
1799 bool atime_needs_update(const struct path *path, struct inode *inode)
1800 {
1801 	struct vfsmount *mnt = path->mnt;
1802 	struct timespec64 now;
1803 
1804 	if (inode->i_flags & S_NOATIME)
1805 		return false;
1806 
1807 	/* Atime updates will likely cause i_uid and i_gid to be written
1808 	 * back improprely if their true value is unknown to the vfs.
1809 	 */
1810 	if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode))
1811 		return false;
1812 
1813 	if (IS_NOATIME(inode))
1814 		return false;
1815 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1816 		return false;
1817 
1818 	if (mnt->mnt_flags & MNT_NOATIME)
1819 		return false;
1820 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1821 		return false;
1822 
1823 	now = current_time(inode);
1824 
1825 	if (!relatime_need_update(mnt, inode, now))
1826 		return false;
1827 
1828 	if (timespec64_equal(&inode->i_atime, &now))
1829 		return false;
1830 
1831 	return true;
1832 }
1833 
1834 void touch_atime(const struct path *path)
1835 {
1836 	struct vfsmount *mnt = path->mnt;
1837 	struct inode *inode = d_inode(path->dentry);
1838 	struct timespec64 now;
1839 
1840 	if (!atime_needs_update(path, inode))
1841 		return;
1842 
1843 	if (!sb_start_write_trylock(inode->i_sb))
1844 		return;
1845 
1846 	if (__mnt_want_write(mnt) != 0)
1847 		goto skip_update;
1848 	/*
1849 	 * File systems can error out when updating inodes if they need to
1850 	 * allocate new space to modify an inode (such is the case for
1851 	 * Btrfs), but since we touch atime while walking down the path we
1852 	 * really don't care if we failed to update the atime of the file,
1853 	 * so just ignore the return value.
1854 	 * We may also fail on filesystems that have the ability to make parts
1855 	 * of the fs read only, e.g. subvolumes in Btrfs.
1856 	 */
1857 	now = current_time(inode);
1858 	update_time(inode, &now, S_ATIME);
1859 	__mnt_drop_write(mnt);
1860 skip_update:
1861 	sb_end_write(inode->i_sb);
1862 }
1863 EXPORT_SYMBOL(touch_atime);
1864 
1865 /*
1866  * The logic we want is
1867  *
1868  *	if suid or (sgid and xgrp)
1869  *		remove privs
1870  */
1871 int should_remove_suid(struct dentry *dentry)
1872 {
1873 	umode_t mode = d_inode(dentry)->i_mode;
1874 	int kill = 0;
1875 
1876 	/* suid always must be killed */
1877 	if (unlikely(mode & S_ISUID))
1878 		kill = ATTR_KILL_SUID;
1879 
1880 	/*
1881 	 * sgid without any exec bits is just a mandatory locking mark; leave
1882 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1883 	 */
1884 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1885 		kill |= ATTR_KILL_SGID;
1886 
1887 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1888 		return kill;
1889 
1890 	return 0;
1891 }
1892 EXPORT_SYMBOL(should_remove_suid);
1893 
1894 /*
1895  * Return mask of changes for notify_change() that need to be done as a
1896  * response to write or truncate. Return 0 if nothing has to be changed.
1897  * Negative value on error (change should be denied).
1898  */
1899 int dentry_needs_remove_privs(struct dentry *dentry)
1900 {
1901 	struct inode *inode = d_inode(dentry);
1902 	int mask = 0;
1903 	int ret;
1904 
1905 	if (IS_NOSEC(inode))
1906 		return 0;
1907 
1908 	mask = should_remove_suid(dentry);
1909 	ret = security_inode_need_killpriv(dentry);
1910 	if (ret < 0)
1911 		return ret;
1912 	if (ret)
1913 		mask |= ATTR_KILL_PRIV;
1914 	return mask;
1915 }
1916 
1917 static int __remove_privs(struct user_namespace *mnt_userns,
1918 			  struct dentry *dentry, int kill)
1919 {
1920 	struct iattr newattrs;
1921 
1922 	newattrs.ia_valid = ATTR_FORCE | kill;
1923 	/*
1924 	 * Note we call this on write, so notify_change will not
1925 	 * encounter any conflicting delegations:
1926 	 */
1927 	return notify_change(mnt_userns, dentry, &newattrs, NULL);
1928 }
1929 
1930 /*
1931  * Remove special file priviledges (suid, capabilities) when file is written
1932  * to or truncated.
1933  */
1934 int file_remove_privs(struct file *file)
1935 {
1936 	struct dentry *dentry = file_dentry(file);
1937 	struct inode *inode = file_inode(file);
1938 	int kill;
1939 	int error = 0;
1940 
1941 	/*
1942 	 * Fast path for nothing security related.
1943 	 * As well for non-regular files, e.g. blkdev inodes.
1944 	 * For example, blkdev_write_iter() might get here
1945 	 * trying to remove privs which it is not allowed to.
1946 	 */
1947 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1948 		return 0;
1949 
1950 	kill = dentry_needs_remove_privs(dentry);
1951 	if (kill < 0)
1952 		return kill;
1953 	if (kill)
1954 		error = __remove_privs(file_mnt_user_ns(file), dentry, kill);
1955 	if (!error)
1956 		inode_has_no_xattr(inode);
1957 
1958 	return error;
1959 }
1960 EXPORT_SYMBOL(file_remove_privs);
1961 
1962 /**
1963  *	file_update_time	-	update mtime and ctime time
1964  *	@file: file accessed
1965  *
1966  *	Update the mtime and ctime members of an inode and mark the inode
1967  *	for writeback.  Note that this function is meant exclusively for
1968  *	usage in the file write path of filesystems, and filesystems may
1969  *	choose to explicitly ignore update via this function with the
1970  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1971  *	timestamps are handled by the server.  This can return an error for
1972  *	file systems who need to allocate space in order to update an inode.
1973  */
1974 
1975 int file_update_time(struct file *file)
1976 {
1977 	struct inode *inode = file_inode(file);
1978 	struct timespec64 now;
1979 	int sync_it = 0;
1980 	int ret;
1981 
1982 	/* First try to exhaust all avenues to not sync */
1983 	if (IS_NOCMTIME(inode))
1984 		return 0;
1985 
1986 	now = current_time(inode);
1987 	if (!timespec64_equal(&inode->i_mtime, &now))
1988 		sync_it = S_MTIME;
1989 
1990 	if (!timespec64_equal(&inode->i_ctime, &now))
1991 		sync_it |= S_CTIME;
1992 
1993 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1994 		sync_it |= S_VERSION;
1995 
1996 	if (!sync_it)
1997 		return 0;
1998 
1999 	/* Finally allowed to write? Takes lock. */
2000 	if (__mnt_want_write_file(file))
2001 		return 0;
2002 
2003 	ret = update_time(inode, &now, sync_it);
2004 	__mnt_drop_write_file(file);
2005 
2006 	return ret;
2007 }
2008 EXPORT_SYMBOL(file_update_time);
2009 
2010 /* Caller must hold the file's inode lock */
2011 int file_modified(struct file *file)
2012 {
2013 	int err;
2014 
2015 	/*
2016 	 * Clear the security bits if the process is not being run by root.
2017 	 * This keeps people from modifying setuid and setgid binaries.
2018 	 */
2019 	err = file_remove_privs(file);
2020 	if (err)
2021 		return err;
2022 
2023 	if (unlikely(file->f_mode & FMODE_NOCMTIME))
2024 		return 0;
2025 
2026 	return file_update_time(file);
2027 }
2028 EXPORT_SYMBOL(file_modified);
2029 
2030 int inode_needs_sync(struct inode *inode)
2031 {
2032 	if (IS_SYNC(inode))
2033 		return 1;
2034 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2035 		return 1;
2036 	return 0;
2037 }
2038 EXPORT_SYMBOL(inode_needs_sync);
2039 
2040 /*
2041  * If we try to find an inode in the inode hash while it is being
2042  * deleted, we have to wait until the filesystem completes its
2043  * deletion before reporting that it isn't found.  This function waits
2044  * until the deletion _might_ have completed.  Callers are responsible
2045  * to recheck inode state.
2046  *
2047  * It doesn't matter if I_NEW is not set initially, a call to
2048  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2049  * will DTRT.
2050  */
2051 static void __wait_on_freeing_inode(struct inode *inode)
2052 {
2053 	wait_queue_head_t *wq;
2054 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2055 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
2056 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2057 	spin_unlock(&inode->i_lock);
2058 	spin_unlock(&inode_hash_lock);
2059 	schedule();
2060 	finish_wait(wq, &wait.wq_entry);
2061 	spin_lock(&inode_hash_lock);
2062 }
2063 
2064 static __initdata unsigned long ihash_entries;
2065 static int __init set_ihash_entries(char *str)
2066 {
2067 	if (!str)
2068 		return 0;
2069 	ihash_entries = simple_strtoul(str, &str, 0);
2070 	return 1;
2071 }
2072 __setup("ihash_entries=", set_ihash_entries);
2073 
2074 /*
2075  * Initialize the waitqueues and inode hash table.
2076  */
2077 void __init inode_init_early(void)
2078 {
2079 	/* If hashes are distributed across NUMA nodes, defer
2080 	 * hash allocation until vmalloc space is available.
2081 	 */
2082 	if (hashdist)
2083 		return;
2084 
2085 	inode_hashtable =
2086 		alloc_large_system_hash("Inode-cache",
2087 					sizeof(struct hlist_head),
2088 					ihash_entries,
2089 					14,
2090 					HASH_EARLY | HASH_ZERO,
2091 					&i_hash_shift,
2092 					&i_hash_mask,
2093 					0,
2094 					0);
2095 }
2096 
2097 void __init inode_init(void)
2098 {
2099 	/* inode slab cache */
2100 	inode_cachep = kmem_cache_create("inode_cache",
2101 					 sizeof(struct inode),
2102 					 0,
2103 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2104 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2105 					 init_once);
2106 
2107 	/* Hash may have been set up in inode_init_early */
2108 	if (!hashdist)
2109 		return;
2110 
2111 	inode_hashtable =
2112 		alloc_large_system_hash("Inode-cache",
2113 					sizeof(struct hlist_head),
2114 					ihash_entries,
2115 					14,
2116 					HASH_ZERO,
2117 					&i_hash_shift,
2118 					&i_hash_mask,
2119 					0,
2120 					0);
2121 }
2122 
2123 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2124 {
2125 	inode->i_mode = mode;
2126 	if (S_ISCHR(mode)) {
2127 		inode->i_fop = &def_chr_fops;
2128 		inode->i_rdev = rdev;
2129 	} else if (S_ISBLK(mode)) {
2130 		inode->i_fop = &def_blk_fops;
2131 		inode->i_rdev = rdev;
2132 	} else if (S_ISFIFO(mode))
2133 		inode->i_fop = &pipefifo_fops;
2134 	else if (S_ISSOCK(mode))
2135 		;	/* leave it no_open_fops */
2136 	else
2137 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2138 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2139 				  inode->i_ino);
2140 }
2141 EXPORT_SYMBOL(init_special_inode);
2142 
2143 /**
2144  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2145  * @mnt_userns:	User namespace of the mount the inode was created from
2146  * @inode: New inode
2147  * @dir: Directory inode
2148  * @mode: mode of the new inode
2149  *
2150  * If the inode has been created through an idmapped mount the user namespace of
2151  * the vfsmount must be passed through @mnt_userns. This function will then take
2152  * care to map the inode according to @mnt_userns before checking permissions
2153  * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2154  * checking is to be performed on the raw inode simply passs init_user_ns.
2155  */
2156 void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode,
2157 		      const struct inode *dir, umode_t mode)
2158 {
2159 	inode_fsuid_set(inode, mnt_userns);
2160 	if (dir && dir->i_mode & S_ISGID) {
2161 		inode->i_gid = dir->i_gid;
2162 
2163 		/* Directories are special, and always inherit S_ISGID */
2164 		if (S_ISDIR(mode))
2165 			mode |= S_ISGID;
2166 		else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2167 			 !in_group_p(i_gid_into_mnt(mnt_userns, dir)) &&
2168 			 !capable_wrt_inode_uidgid(mnt_userns, dir, CAP_FSETID))
2169 			mode &= ~S_ISGID;
2170 	} else
2171 		inode_fsgid_set(inode, mnt_userns);
2172 	inode->i_mode = mode;
2173 }
2174 EXPORT_SYMBOL(inode_init_owner);
2175 
2176 /**
2177  * inode_owner_or_capable - check current task permissions to inode
2178  * @mnt_userns:	user namespace of the mount the inode was found from
2179  * @inode: inode being checked
2180  *
2181  * Return true if current either has CAP_FOWNER in a namespace with the
2182  * inode owner uid mapped, or owns the file.
2183  *
2184  * If the inode has been found through an idmapped mount the user namespace of
2185  * the vfsmount must be passed through @mnt_userns. This function will then take
2186  * care to map the inode according to @mnt_userns before checking permissions.
2187  * On non-idmapped mounts or if permission checking is to be performed on the
2188  * raw inode simply passs init_user_ns.
2189  */
2190 bool inode_owner_or_capable(struct user_namespace *mnt_userns,
2191 			    const struct inode *inode)
2192 {
2193 	kuid_t i_uid;
2194 	struct user_namespace *ns;
2195 
2196 	i_uid = i_uid_into_mnt(mnt_userns, inode);
2197 	if (uid_eq(current_fsuid(), i_uid))
2198 		return true;
2199 
2200 	ns = current_user_ns();
2201 	if (kuid_has_mapping(ns, i_uid) && ns_capable(ns, CAP_FOWNER))
2202 		return true;
2203 	return false;
2204 }
2205 EXPORT_SYMBOL(inode_owner_or_capable);
2206 
2207 /*
2208  * Direct i/o helper functions
2209  */
2210 static void __inode_dio_wait(struct inode *inode)
2211 {
2212 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2213 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2214 
2215 	do {
2216 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2217 		if (atomic_read(&inode->i_dio_count))
2218 			schedule();
2219 	} while (atomic_read(&inode->i_dio_count));
2220 	finish_wait(wq, &q.wq_entry);
2221 }
2222 
2223 /**
2224  * inode_dio_wait - wait for outstanding DIO requests to finish
2225  * @inode: inode to wait for
2226  *
2227  * Waits for all pending direct I/O requests to finish so that we can
2228  * proceed with a truncate or equivalent operation.
2229  *
2230  * Must be called under a lock that serializes taking new references
2231  * to i_dio_count, usually by inode->i_mutex.
2232  */
2233 void inode_dio_wait(struct inode *inode)
2234 {
2235 	if (atomic_read(&inode->i_dio_count))
2236 		__inode_dio_wait(inode);
2237 }
2238 EXPORT_SYMBOL(inode_dio_wait);
2239 
2240 /*
2241  * inode_set_flags - atomically set some inode flags
2242  *
2243  * Note: the caller should be holding i_mutex, or else be sure that
2244  * they have exclusive access to the inode structure (i.e., while the
2245  * inode is being instantiated).  The reason for the cmpxchg() loop
2246  * --- which wouldn't be necessary if all code paths which modify
2247  * i_flags actually followed this rule, is that there is at least one
2248  * code path which doesn't today so we use cmpxchg() out of an abundance
2249  * of caution.
2250  *
2251  * In the long run, i_mutex is overkill, and we should probably look
2252  * at using the i_lock spinlock to protect i_flags, and then make sure
2253  * it is so documented in include/linux/fs.h and that all code follows
2254  * the locking convention!!
2255  */
2256 void inode_set_flags(struct inode *inode, unsigned int flags,
2257 		     unsigned int mask)
2258 {
2259 	WARN_ON_ONCE(flags & ~mask);
2260 	set_mask_bits(&inode->i_flags, mask, flags);
2261 }
2262 EXPORT_SYMBOL(inode_set_flags);
2263 
2264 void inode_nohighmem(struct inode *inode)
2265 {
2266 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2267 }
2268 EXPORT_SYMBOL(inode_nohighmem);
2269 
2270 /**
2271  * timestamp_truncate - Truncate timespec to a granularity
2272  * @t: Timespec
2273  * @inode: inode being updated
2274  *
2275  * Truncate a timespec to the granularity supported by the fs
2276  * containing the inode. Always rounds down. gran must
2277  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2278  */
2279 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2280 {
2281 	struct super_block *sb = inode->i_sb;
2282 	unsigned int gran = sb->s_time_gran;
2283 
2284 	t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2285 	if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2286 		t.tv_nsec = 0;
2287 
2288 	/* Avoid division in the common cases 1 ns and 1 s. */
2289 	if (gran == 1)
2290 		; /* nothing */
2291 	else if (gran == NSEC_PER_SEC)
2292 		t.tv_nsec = 0;
2293 	else if (gran > 1 && gran < NSEC_PER_SEC)
2294 		t.tv_nsec -= t.tv_nsec % gran;
2295 	else
2296 		WARN(1, "invalid file time granularity: %u", gran);
2297 	return t;
2298 }
2299 EXPORT_SYMBOL(timestamp_truncate);
2300 
2301 /**
2302  * current_time - Return FS time
2303  * @inode: inode.
2304  *
2305  * Return the current time truncated to the time granularity supported by
2306  * the fs.
2307  *
2308  * Note that inode and inode->sb cannot be NULL.
2309  * Otherwise, the function warns and returns time without truncation.
2310  */
2311 struct timespec64 current_time(struct inode *inode)
2312 {
2313 	struct timespec64 now;
2314 
2315 	ktime_get_coarse_real_ts64(&now);
2316 
2317 	if (unlikely(!inode->i_sb)) {
2318 		WARN(1, "current_time() called with uninitialized super_block in the inode");
2319 		return now;
2320 	}
2321 
2322 	return timestamp_truncate(now, inode);
2323 }
2324 EXPORT_SYMBOL(current_time);
2325