1 /* 2 * (C) 1997 Linus Torvalds 3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 4 */ 5 #include <linux/fs.h> 6 #include <linux/mm.h> 7 #include <linux/dcache.h> 8 #include <linux/init.h> 9 #include <linux/slab.h> 10 #include <linux/writeback.h> 11 #include <linux/module.h> 12 #include <linux/backing-dev.h> 13 #include <linux/wait.h> 14 #include <linux/rwsem.h> 15 #include <linux/hash.h> 16 #include <linux/swap.h> 17 #include <linux/security.h> 18 #include <linux/pagemap.h> 19 #include <linux/cdev.h> 20 #include <linux/bootmem.h> 21 #include <linux/fsnotify.h> 22 #include <linux/mount.h> 23 #include <linux/async.h> 24 #include <linux/posix_acl.h> 25 #include <linux/prefetch.h> 26 #include <linux/ima.h> 27 #include <linux/cred.h> 28 #include <linux/buffer_head.h> /* for inode_has_buffers */ 29 #include "internal.h" 30 31 /* 32 * Inode locking rules: 33 * 34 * inode->i_lock protects: 35 * inode->i_state, inode->i_hash, __iget() 36 * inode_lru_lock protects: 37 * inode_lru, inode->i_lru 38 * inode_sb_list_lock protects: 39 * sb->s_inodes, inode->i_sb_list 40 * inode_wb_list_lock protects: 41 * bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list 42 * inode_hash_lock protects: 43 * inode_hashtable, inode->i_hash 44 * 45 * Lock ordering: 46 * 47 * inode_sb_list_lock 48 * inode->i_lock 49 * inode_lru_lock 50 * 51 * inode_wb_list_lock 52 * inode->i_lock 53 * 54 * inode_hash_lock 55 * inode_sb_list_lock 56 * inode->i_lock 57 * 58 * iunique_lock 59 * inode_hash_lock 60 */ 61 62 static unsigned int i_hash_mask __read_mostly; 63 static unsigned int i_hash_shift __read_mostly; 64 static struct hlist_head *inode_hashtable __read_mostly; 65 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 66 67 static LIST_HEAD(inode_lru); 68 static DEFINE_SPINLOCK(inode_lru_lock); 69 70 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock); 71 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_wb_list_lock); 72 73 /* 74 * iprune_sem provides exclusion between the icache shrinking and the 75 * umount path. 76 * 77 * We don't actually need it to protect anything in the umount path, 78 * but only need to cycle through it to make sure any inode that 79 * prune_icache took off the LRU list has been fully torn down by the 80 * time we are past evict_inodes. 81 */ 82 static DECLARE_RWSEM(iprune_sem); 83 84 /* 85 * Empty aops. Can be used for the cases where the user does not 86 * define any of the address_space operations. 87 */ 88 const struct address_space_operations empty_aops = { 89 }; 90 EXPORT_SYMBOL(empty_aops); 91 92 /* 93 * Statistics gathering.. 94 */ 95 struct inodes_stat_t inodes_stat; 96 97 static DEFINE_PER_CPU(unsigned int, nr_inodes); 98 99 static struct kmem_cache *inode_cachep __read_mostly; 100 101 static int get_nr_inodes(void) 102 { 103 int i; 104 int sum = 0; 105 for_each_possible_cpu(i) 106 sum += per_cpu(nr_inodes, i); 107 return sum < 0 ? 0 : sum; 108 } 109 110 static inline int get_nr_inodes_unused(void) 111 { 112 return inodes_stat.nr_unused; 113 } 114 115 int get_nr_dirty_inodes(void) 116 { 117 /* not actually dirty inodes, but a wild approximation */ 118 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 119 return nr_dirty > 0 ? nr_dirty : 0; 120 } 121 122 /* 123 * Handle nr_inode sysctl 124 */ 125 #ifdef CONFIG_SYSCTL 126 int proc_nr_inodes(ctl_table *table, int write, 127 void __user *buffer, size_t *lenp, loff_t *ppos) 128 { 129 inodes_stat.nr_inodes = get_nr_inodes(); 130 return proc_dointvec(table, write, buffer, lenp, ppos); 131 } 132 #endif 133 134 /** 135 * inode_init_always - perform inode structure intialisation 136 * @sb: superblock inode belongs to 137 * @inode: inode to initialise 138 * 139 * These are initializations that need to be done on every inode 140 * allocation as the fields are not initialised by slab allocation. 141 */ 142 int inode_init_always(struct super_block *sb, struct inode *inode) 143 { 144 static const struct inode_operations empty_iops; 145 static const struct file_operations empty_fops; 146 struct address_space *const mapping = &inode->i_data; 147 148 inode->i_sb = sb; 149 inode->i_blkbits = sb->s_blocksize_bits; 150 inode->i_flags = 0; 151 atomic_set(&inode->i_count, 1); 152 inode->i_op = &empty_iops; 153 inode->i_fop = &empty_fops; 154 inode->i_nlink = 1; 155 inode->i_uid = 0; 156 inode->i_gid = 0; 157 atomic_set(&inode->i_writecount, 0); 158 inode->i_size = 0; 159 inode->i_blocks = 0; 160 inode->i_bytes = 0; 161 inode->i_generation = 0; 162 #ifdef CONFIG_QUOTA 163 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot)); 164 #endif 165 inode->i_pipe = NULL; 166 inode->i_bdev = NULL; 167 inode->i_cdev = NULL; 168 inode->i_rdev = 0; 169 inode->dirtied_when = 0; 170 171 if (security_inode_alloc(inode)) 172 goto out; 173 spin_lock_init(&inode->i_lock); 174 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 175 176 mutex_init(&inode->i_mutex); 177 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 178 179 init_rwsem(&inode->i_alloc_sem); 180 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key); 181 182 mapping->a_ops = &empty_aops; 183 mapping->host = inode; 184 mapping->flags = 0; 185 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 186 mapping->assoc_mapping = NULL; 187 mapping->backing_dev_info = &default_backing_dev_info; 188 mapping->writeback_index = 0; 189 190 /* 191 * If the block_device provides a backing_dev_info for client 192 * inodes then use that. Otherwise the inode share the bdev's 193 * backing_dev_info. 194 */ 195 if (sb->s_bdev) { 196 struct backing_dev_info *bdi; 197 198 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info; 199 mapping->backing_dev_info = bdi; 200 } 201 inode->i_private = NULL; 202 inode->i_mapping = mapping; 203 #ifdef CONFIG_FS_POSIX_ACL 204 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 205 #endif 206 207 #ifdef CONFIG_FSNOTIFY 208 inode->i_fsnotify_mask = 0; 209 #endif 210 211 this_cpu_inc(nr_inodes); 212 213 return 0; 214 out: 215 return -ENOMEM; 216 } 217 EXPORT_SYMBOL(inode_init_always); 218 219 static struct inode *alloc_inode(struct super_block *sb) 220 { 221 struct inode *inode; 222 223 if (sb->s_op->alloc_inode) 224 inode = sb->s_op->alloc_inode(sb); 225 else 226 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 227 228 if (!inode) 229 return NULL; 230 231 if (unlikely(inode_init_always(sb, inode))) { 232 if (inode->i_sb->s_op->destroy_inode) 233 inode->i_sb->s_op->destroy_inode(inode); 234 else 235 kmem_cache_free(inode_cachep, inode); 236 return NULL; 237 } 238 239 return inode; 240 } 241 242 void free_inode_nonrcu(struct inode *inode) 243 { 244 kmem_cache_free(inode_cachep, inode); 245 } 246 EXPORT_SYMBOL(free_inode_nonrcu); 247 248 void __destroy_inode(struct inode *inode) 249 { 250 BUG_ON(inode_has_buffers(inode)); 251 security_inode_free(inode); 252 fsnotify_inode_delete(inode); 253 #ifdef CONFIG_FS_POSIX_ACL 254 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED) 255 posix_acl_release(inode->i_acl); 256 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED) 257 posix_acl_release(inode->i_default_acl); 258 #endif 259 this_cpu_dec(nr_inodes); 260 } 261 EXPORT_SYMBOL(__destroy_inode); 262 263 static void i_callback(struct rcu_head *head) 264 { 265 struct inode *inode = container_of(head, struct inode, i_rcu); 266 INIT_LIST_HEAD(&inode->i_dentry); 267 kmem_cache_free(inode_cachep, inode); 268 } 269 270 static void destroy_inode(struct inode *inode) 271 { 272 BUG_ON(!list_empty(&inode->i_lru)); 273 __destroy_inode(inode); 274 if (inode->i_sb->s_op->destroy_inode) 275 inode->i_sb->s_op->destroy_inode(inode); 276 else 277 call_rcu(&inode->i_rcu, i_callback); 278 } 279 280 void address_space_init_once(struct address_space *mapping) 281 { 282 memset(mapping, 0, sizeof(*mapping)); 283 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC); 284 spin_lock_init(&mapping->tree_lock); 285 mutex_init(&mapping->i_mmap_mutex); 286 INIT_LIST_HEAD(&mapping->private_list); 287 spin_lock_init(&mapping->private_lock); 288 INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap); 289 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear); 290 } 291 EXPORT_SYMBOL(address_space_init_once); 292 293 /* 294 * These are initializations that only need to be done 295 * once, because the fields are idempotent across use 296 * of the inode, so let the slab aware of that. 297 */ 298 void inode_init_once(struct inode *inode) 299 { 300 memset(inode, 0, sizeof(*inode)); 301 INIT_HLIST_NODE(&inode->i_hash); 302 INIT_LIST_HEAD(&inode->i_dentry); 303 INIT_LIST_HEAD(&inode->i_devices); 304 INIT_LIST_HEAD(&inode->i_wb_list); 305 INIT_LIST_HEAD(&inode->i_lru); 306 address_space_init_once(&inode->i_data); 307 i_size_ordered_init(inode); 308 #ifdef CONFIG_FSNOTIFY 309 INIT_HLIST_HEAD(&inode->i_fsnotify_marks); 310 #endif 311 } 312 EXPORT_SYMBOL(inode_init_once); 313 314 static void init_once(void *foo) 315 { 316 struct inode *inode = (struct inode *) foo; 317 318 inode_init_once(inode); 319 } 320 321 /* 322 * inode->i_lock must be held 323 */ 324 void __iget(struct inode *inode) 325 { 326 atomic_inc(&inode->i_count); 327 } 328 329 /* 330 * get additional reference to inode; caller must already hold one. 331 */ 332 void ihold(struct inode *inode) 333 { 334 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 335 } 336 EXPORT_SYMBOL(ihold); 337 338 static void inode_lru_list_add(struct inode *inode) 339 { 340 spin_lock(&inode_lru_lock); 341 if (list_empty(&inode->i_lru)) { 342 list_add(&inode->i_lru, &inode_lru); 343 inodes_stat.nr_unused++; 344 } 345 spin_unlock(&inode_lru_lock); 346 } 347 348 static void inode_lru_list_del(struct inode *inode) 349 { 350 spin_lock(&inode_lru_lock); 351 if (!list_empty(&inode->i_lru)) { 352 list_del_init(&inode->i_lru); 353 inodes_stat.nr_unused--; 354 } 355 spin_unlock(&inode_lru_lock); 356 } 357 358 /** 359 * inode_sb_list_add - add inode to the superblock list of inodes 360 * @inode: inode to add 361 */ 362 void inode_sb_list_add(struct inode *inode) 363 { 364 spin_lock(&inode_sb_list_lock); 365 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 366 spin_unlock(&inode_sb_list_lock); 367 } 368 EXPORT_SYMBOL_GPL(inode_sb_list_add); 369 370 static inline void inode_sb_list_del(struct inode *inode) 371 { 372 spin_lock(&inode_sb_list_lock); 373 list_del_init(&inode->i_sb_list); 374 spin_unlock(&inode_sb_list_lock); 375 } 376 377 static unsigned long hash(struct super_block *sb, unsigned long hashval) 378 { 379 unsigned long tmp; 380 381 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 382 L1_CACHE_BYTES; 383 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 384 return tmp & i_hash_mask; 385 } 386 387 /** 388 * __insert_inode_hash - hash an inode 389 * @inode: unhashed inode 390 * @hashval: unsigned long value used to locate this object in the 391 * inode_hashtable. 392 * 393 * Add an inode to the inode hash for this superblock. 394 */ 395 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 396 { 397 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 398 399 spin_lock(&inode_hash_lock); 400 spin_lock(&inode->i_lock); 401 hlist_add_head(&inode->i_hash, b); 402 spin_unlock(&inode->i_lock); 403 spin_unlock(&inode_hash_lock); 404 } 405 EXPORT_SYMBOL(__insert_inode_hash); 406 407 /** 408 * remove_inode_hash - remove an inode from the hash 409 * @inode: inode to unhash 410 * 411 * Remove an inode from the superblock. 412 */ 413 void remove_inode_hash(struct inode *inode) 414 { 415 spin_lock(&inode_hash_lock); 416 spin_lock(&inode->i_lock); 417 hlist_del_init(&inode->i_hash); 418 spin_unlock(&inode->i_lock); 419 spin_unlock(&inode_hash_lock); 420 } 421 EXPORT_SYMBOL(remove_inode_hash); 422 423 void end_writeback(struct inode *inode) 424 { 425 might_sleep(); 426 BUG_ON(inode->i_data.nrpages); 427 BUG_ON(!list_empty(&inode->i_data.private_list)); 428 BUG_ON(!(inode->i_state & I_FREEING)); 429 BUG_ON(inode->i_state & I_CLEAR); 430 inode_sync_wait(inode); 431 /* don't need i_lock here, no concurrent mods to i_state */ 432 inode->i_state = I_FREEING | I_CLEAR; 433 } 434 EXPORT_SYMBOL(end_writeback); 435 436 /* 437 * Free the inode passed in, removing it from the lists it is still connected 438 * to. We remove any pages still attached to the inode and wait for any IO that 439 * is still in progress before finally destroying the inode. 440 * 441 * An inode must already be marked I_FREEING so that we avoid the inode being 442 * moved back onto lists if we race with other code that manipulates the lists 443 * (e.g. writeback_single_inode). The caller is responsible for setting this. 444 * 445 * An inode must already be removed from the LRU list before being evicted from 446 * the cache. This should occur atomically with setting the I_FREEING state 447 * flag, so no inodes here should ever be on the LRU when being evicted. 448 */ 449 static void evict(struct inode *inode) 450 { 451 const struct super_operations *op = inode->i_sb->s_op; 452 453 BUG_ON(!(inode->i_state & I_FREEING)); 454 BUG_ON(!list_empty(&inode->i_lru)); 455 456 inode_wb_list_del(inode); 457 inode_sb_list_del(inode); 458 459 if (op->evict_inode) { 460 op->evict_inode(inode); 461 } else { 462 if (inode->i_data.nrpages) 463 truncate_inode_pages(&inode->i_data, 0); 464 end_writeback(inode); 465 } 466 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 467 bd_forget(inode); 468 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 469 cd_forget(inode); 470 471 remove_inode_hash(inode); 472 473 spin_lock(&inode->i_lock); 474 wake_up_bit(&inode->i_state, __I_NEW); 475 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 476 spin_unlock(&inode->i_lock); 477 478 destroy_inode(inode); 479 } 480 481 /* 482 * dispose_list - dispose of the contents of a local list 483 * @head: the head of the list to free 484 * 485 * Dispose-list gets a local list with local inodes in it, so it doesn't 486 * need to worry about list corruption and SMP locks. 487 */ 488 static void dispose_list(struct list_head *head) 489 { 490 while (!list_empty(head)) { 491 struct inode *inode; 492 493 inode = list_first_entry(head, struct inode, i_lru); 494 list_del_init(&inode->i_lru); 495 496 evict(inode); 497 } 498 } 499 500 /** 501 * evict_inodes - evict all evictable inodes for a superblock 502 * @sb: superblock to operate on 503 * 504 * Make sure that no inodes with zero refcount are retained. This is 505 * called by superblock shutdown after having MS_ACTIVE flag removed, 506 * so any inode reaching zero refcount during or after that call will 507 * be immediately evicted. 508 */ 509 void evict_inodes(struct super_block *sb) 510 { 511 struct inode *inode, *next; 512 LIST_HEAD(dispose); 513 514 spin_lock(&inode_sb_list_lock); 515 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 516 if (atomic_read(&inode->i_count)) 517 continue; 518 519 spin_lock(&inode->i_lock); 520 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 521 spin_unlock(&inode->i_lock); 522 continue; 523 } 524 525 inode->i_state |= I_FREEING; 526 inode_lru_list_del(inode); 527 spin_unlock(&inode->i_lock); 528 list_add(&inode->i_lru, &dispose); 529 } 530 spin_unlock(&inode_sb_list_lock); 531 532 dispose_list(&dispose); 533 534 /* 535 * Cycle through iprune_sem to make sure any inode that prune_icache 536 * moved off the list before we took the lock has been fully torn 537 * down. 538 */ 539 down_write(&iprune_sem); 540 up_write(&iprune_sem); 541 } 542 543 /** 544 * invalidate_inodes - attempt to free all inodes on a superblock 545 * @sb: superblock to operate on 546 * @kill_dirty: flag to guide handling of dirty inodes 547 * 548 * Attempts to free all inodes for a given superblock. If there were any 549 * busy inodes return a non-zero value, else zero. 550 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 551 * them as busy. 552 */ 553 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 554 { 555 int busy = 0; 556 struct inode *inode, *next; 557 LIST_HEAD(dispose); 558 559 spin_lock(&inode_sb_list_lock); 560 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 561 spin_lock(&inode->i_lock); 562 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 563 spin_unlock(&inode->i_lock); 564 continue; 565 } 566 if (inode->i_state & I_DIRTY && !kill_dirty) { 567 spin_unlock(&inode->i_lock); 568 busy = 1; 569 continue; 570 } 571 if (atomic_read(&inode->i_count)) { 572 spin_unlock(&inode->i_lock); 573 busy = 1; 574 continue; 575 } 576 577 inode->i_state |= I_FREEING; 578 inode_lru_list_del(inode); 579 spin_unlock(&inode->i_lock); 580 list_add(&inode->i_lru, &dispose); 581 } 582 spin_unlock(&inode_sb_list_lock); 583 584 dispose_list(&dispose); 585 586 return busy; 587 } 588 589 static int can_unuse(struct inode *inode) 590 { 591 if (inode->i_state & ~I_REFERENCED) 592 return 0; 593 if (inode_has_buffers(inode)) 594 return 0; 595 if (atomic_read(&inode->i_count)) 596 return 0; 597 if (inode->i_data.nrpages) 598 return 0; 599 return 1; 600 } 601 602 /* 603 * Scan `goal' inodes on the unused list for freeable ones. They are moved to a 604 * temporary list and then are freed outside inode_lru_lock by dispose_list(). 605 * 606 * Any inodes which are pinned purely because of attached pagecache have their 607 * pagecache removed. If the inode has metadata buffers attached to 608 * mapping->private_list then try to remove them. 609 * 610 * If the inode has the I_REFERENCED flag set, then it means that it has been 611 * used recently - the flag is set in iput_final(). When we encounter such an 612 * inode, clear the flag and move it to the back of the LRU so it gets another 613 * pass through the LRU before it gets reclaimed. This is necessary because of 614 * the fact we are doing lazy LRU updates to minimise lock contention so the 615 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 616 * with this flag set because they are the inodes that are out of order. 617 */ 618 static void prune_icache(int nr_to_scan) 619 { 620 LIST_HEAD(freeable); 621 int nr_scanned; 622 unsigned long reap = 0; 623 624 down_read(&iprune_sem); 625 spin_lock(&inode_lru_lock); 626 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) { 627 struct inode *inode; 628 629 if (list_empty(&inode_lru)) 630 break; 631 632 inode = list_entry(inode_lru.prev, struct inode, i_lru); 633 634 /* 635 * we are inverting the inode_lru_lock/inode->i_lock here, 636 * so use a trylock. If we fail to get the lock, just move the 637 * inode to the back of the list so we don't spin on it. 638 */ 639 if (!spin_trylock(&inode->i_lock)) { 640 list_move(&inode->i_lru, &inode_lru); 641 continue; 642 } 643 644 /* 645 * Referenced or dirty inodes are still in use. Give them 646 * another pass through the LRU as we canot reclaim them now. 647 */ 648 if (atomic_read(&inode->i_count) || 649 (inode->i_state & ~I_REFERENCED)) { 650 list_del_init(&inode->i_lru); 651 spin_unlock(&inode->i_lock); 652 inodes_stat.nr_unused--; 653 continue; 654 } 655 656 /* recently referenced inodes get one more pass */ 657 if (inode->i_state & I_REFERENCED) { 658 inode->i_state &= ~I_REFERENCED; 659 list_move(&inode->i_lru, &inode_lru); 660 spin_unlock(&inode->i_lock); 661 continue; 662 } 663 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 664 __iget(inode); 665 spin_unlock(&inode->i_lock); 666 spin_unlock(&inode_lru_lock); 667 if (remove_inode_buffers(inode)) 668 reap += invalidate_mapping_pages(&inode->i_data, 669 0, -1); 670 iput(inode); 671 spin_lock(&inode_lru_lock); 672 673 if (inode != list_entry(inode_lru.next, 674 struct inode, i_lru)) 675 continue; /* wrong inode or list_empty */ 676 /* avoid lock inversions with trylock */ 677 if (!spin_trylock(&inode->i_lock)) 678 continue; 679 if (!can_unuse(inode)) { 680 spin_unlock(&inode->i_lock); 681 continue; 682 } 683 } 684 WARN_ON(inode->i_state & I_NEW); 685 inode->i_state |= I_FREEING; 686 spin_unlock(&inode->i_lock); 687 688 list_move(&inode->i_lru, &freeable); 689 inodes_stat.nr_unused--; 690 } 691 if (current_is_kswapd()) 692 __count_vm_events(KSWAPD_INODESTEAL, reap); 693 else 694 __count_vm_events(PGINODESTEAL, reap); 695 spin_unlock(&inode_lru_lock); 696 697 dispose_list(&freeable); 698 up_read(&iprune_sem); 699 } 700 701 /* 702 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here, 703 * "unused" means that no dentries are referring to the inodes: the files are 704 * not open and the dcache references to those inodes have already been 705 * reclaimed. 706 * 707 * This function is passed the number of inodes to scan, and it returns the 708 * total number of remaining possibly-reclaimable inodes. 709 */ 710 static int shrink_icache_memory(struct shrinker *shrink, 711 struct shrink_control *sc) 712 { 713 int nr = sc->nr_to_scan; 714 gfp_t gfp_mask = sc->gfp_mask; 715 716 if (nr) { 717 /* 718 * Nasty deadlock avoidance. We may hold various FS locks, 719 * and we don't want to recurse into the FS that called us 720 * in clear_inode() and friends.. 721 */ 722 if (!(gfp_mask & __GFP_FS)) 723 return -1; 724 prune_icache(nr); 725 } 726 return (get_nr_inodes_unused() / 100) * sysctl_vfs_cache_pressure; 727 } 728 729 static struct shrinker icache_shrinker = { 730 .shrink = shrink_icache_memory, 731 .seeks = DEFAULT_SEEKS, 732 }; 733 734 static void __wait_on_freeing_inode(struct inode *inode); 735 /* 736 * Called with the inode lock held. 737 */ 738 static struct inode *find_inode(struct super_block *sb, 739 struct hlist_head *head, 740 int (*test)(struct inode *, void *), 741 void *data) 742 { 743 struct hlist_node *node; 744 struct inode *inode = NULL; 745 746 repeat: 747 hlist_for_each_entry(inode, node, head, i_hash) { 748 spin_lock(&inode->i_lock); 749 if (inode->i_sb != sb) { 750 spin_unlock(&inode->i_lock); 751 continue; 752 } 753 if (!test(inode, data)) { 754 spin_unlock(&inode->i_lock); 755 continue; 756 } 757 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 758 __wait_on_freeing_inode(inode); 759 goto repeat; 760 } 761 __iget(inode); 762 spin_unlock(&inode->i_lock); 763 return inode; 764 } 765 return NULL; 766 } 767 768 /* 769 * find_inode_fast is the fast path version of find_inode, see the comment at 770 * iget_locked for details. 771 */ 772 static struct inode *find_inode_fast(struct super_block *sb, 773 struct hlist_head *head, unsigned long ino) 774 { 775 struct hlist_node *node; 776 struct inode *inode = NULL; 777 778 repeat: 779 hlist_for_each_entry(inode, node, head, i_hash) { 780 spin_lock(&inode->i_lock); 781 if (inode->i_ino != ino) { 782 spin_unlock(&inode->i_lock); 783 continue; 784 } 785 if (inode->i_sb != sb) { 786 spin_unlock(&inode->i_lock); 787 continue; 788 } 789 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 790 __wait_on_freeing_inode(inode); 791 goto repeat; 792 } 793 __iget(inode); 794 spin_unlock(&inode->i_lock); 795 return inode; 796 } 797 return NULL; 798 } 799 800 /* 801 * Each cpu owns a range of LAST_INO_BATCH numbers. 802 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 803 * to renew the exhausted range. 804 * 805 * This does not significantly increase overflow rate because every CPU can 806 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 807 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 808 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 809 * overflow rate by 2x, which does not seem too significant. 810 * 811 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 812 * error if st_ino won't fit in target struct field. Use 32bit counter 813 * here to attempt to avoid that. 814 */ 815 #define LAST_INO_BATCH 1024 816 static DEFINE_PER_CPU(unsigned int, last_ino); 817 818 unsigned int get_next_ino(void) 819 { 820 unsigned int *p = &get_cpu_var(last_ino); 821 unsigned int res = *p; 822 823 #ifdef CONFIG_SMP 824 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 825 static atomic_t shared_last_ino; 826 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 827 828 res = next - LAST_INO_BATCH; 829 } 830 #endif 831 832 *p = ++res; 833 put_cpu_var(last_ino); 834 return res; 835 } 836 EXPORT_SYMBOL(get_next_ino); 837 838 /** 839 * new_inode - obtain an inode 840 * @sb: superblock 841 * 842 * Allocates a new inode for given superblock. The default gfp_mask 843 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 844 * If HIGHMEM pages are unsuitable or it is known that pages allocated 845 * for the page cache are not reclaimable or migratable, 846 * mapping_set_gfp_mask() must be called with suitable flags on the 847 * newly created inode's mapping 848 * 849 */ 850 struct inode *new_inode(struct super_block *sb) 851 { 852 struct inode *inode; 853 854 spin_lock_prefetch(&inode_sb_list_lock); 855 856 inode = alloc_inode(sb); 857 if (inode) { 858 spin_lock(&inode->i_lock); 859 inode->i_state = 0; 860 spin_unlock(&inode->i_lock); 861 inode_sb_list_add(inode); 862 } 863 return inode; 864 } 865 EXPORT_SYMBOL(new_inode); 866 867 /** 868 * unlock_new_inode - clear the I_NEW state and wake up any waiters 869 * @inode: new inode to unlock 870 * 871 * Called when the inode is fully initialised to clear the new state of the 872 * inode and wake up anyone waiting for the inode to finish initialisation. 873 */ 874 void unlock_new_inode(struct inode *inode) 875 { 876 #ifdef CONFIG_DEBUG_LOCK_ALLOC 877 if (S_ISDIR(inode->i_mode)) { 878 struct file_system_type *type = inode->i_sb->s_type; 879 880 /* Set new key only if filesystem hasn't already changed it */ 881 if (!lockdep_match_class(&inode->i_mutex, 882 &type->i_mutex_key)) { 883 /* 884 * ensure nobody is actually holding i_mutex 885 */ 886 mutex_destroy(&inode->i_mutex); 887 mutex_init(&inode->i_mutex); 888 lockdep_set_class(&inode->i_mutex, 889 &type->i_mutex_dir_key); 890 } 891 } 892 #endif 893 spin_lock(&inode->i_lock); 894 WARN_ON(!(inode->i_state & I_NEW)); 895 inode->i_state &= ~I_NEW; 896 wake_up_bit(&inode->i_state, __I_NEW); 897 spin_unlock(&inode->i_lock); 898 } 899 EXPORT_SYMBOL(unlock_new_inode); 900 901 /** 902 * iget5_locked - obtain an inode from a mounted file system 903 * @sb: super block of file system 904 * @hashval: hash value (usually inode number) to get 905 * @test: callback used for comparisons between inodes 906 * @set: callback used to initialize a new struct inode 907 * @data: opaque data pointer to pass to @test and @set 908 * 909 * Search for the inode specified by @hashval and @data in the inode cache, 910 * and if present it is return it with an increased reference count. This is 911 * a generalized version of iget_locked() for file systems where the inode 912 * number is not sufficient for unique identification of an inode. 913 * 914 * If the inode is not in cache, allocate a new inode and return it locked, 915 * hashed, and with the I_NEW flag set. The file system gets to fill it in 916 * before unlocking it via unlock_new_inode(). 917 * 918 * Note both @test and @set are called with the inode_hash_lock held, so can't 919 * sleep. 920 */ 921 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 922 int (*test)(struct inode *, void *), 923 int (*set)(struct inode *, void *), void *data) 924 { 925 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 926 struct inode *inode; 927 928 spin_lock(&inode_hash_lock); 929 inode = find_inode(sb, head, test, data); 930 spin_unlock(&inode_hash_lock); 931 932 if (inode) { 933 wait_on_inode(inode); 934 return inode; 935 } 936 937 inode = alloc_inode(sb); 938 if (inode) { 939 struct inode *old; 940 941 spin_lock(&inode_hash_lock); 942 /* We released the lock, so.. */ 943 old = find_inode(sb, head, test, data); 944 if (!old) { 945 if (set(inode, data)) 946 goto set_failed; 947 948 spin_lock(&inode->i_lock); 949 inode->i_state = I_NEW; 950 hlist_add_head(&inode->i_hash, head); 951 spin_unlock(&inode->i_lock); 952 inode_sb_list_add(inode); 953 spin_unlock(&inode_hash_lock); 954 955 /* Return the locked inode with I_NEW set, the 956 * caller is responsible for filling in the contents 957 */ 958 return inode; 959 } 960 961 /* 962 * Uhhuh, somebody else created the same inode under 963 * us. Use the old inode instead of the one we just 964 * allocated. 965 */ 966 spin_unlock(&inode_hash_lock); 967 destroy_inode(inode); 968 inode = old; 969 wait_on_inode(inode); 970 } 971 return inode; 972 973 set_failed: 974 spin_unlock(&inode_hash_lock); 975 destroy_inode(inode); 976 return NULL; 977 } 978 EXPORT_SYMBOL(iget5_locked); 979 980 /** 981 * iget_locked - obtain an inode from a mounted file system 982 * @sb: super block of file system 983 * @ino: inode number to get 984 * 985 * Search for the inode specified by @ino in the inode cache and if present 986 * return it with an increased reference count. This is for file systems 987 * where the inode number is sufficient for unique identification of an inode. 988 * 989 * If the inode is not in cache, allocate a new inode and return it locked, 990 * hashed, and with the I_NEW flag set. The file system gets to fill it in 991 * before unlocking it via unlock_new_inode(). 992 */ 993 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 994 { 995 struct hlist_head *head = inode_hashtable + hash(sb, ino); 996 struct inode *inode; 997 998 spin_lock(&inode_hash_lock); 999 inode = find_inode_fast(sb, head, ino); 1000 spin_unlock(&inode_hash_lock); 1001 if (inode) { 1002 wait_on_inode(inode); 1003 return inode; 1004 } 1005 1006 inode = alloc_inode(sb); 1007 if (inode) { 1008 struct inode *old; 1009 1010 spin_lock(&inode_hash_lock); 1011 /* We released the lock, so.. */ 1012 old = find_inode_fast(sb, head, ino); 1013 if (!old) { 1014 inode->i_ino = ino; 1015 spin_lock(&inode->i_lock); 1016 inode->i_state = I_NEW; 1017 hlist_add_head(&inode->i_hash, head); 1018 spin_unlock(&inode->i_lock); 1019 inode_sb_list_add(inode); 1020 spin_unlock(&inode_hash_lock); 1021 1022 /* Return the locked inode with I_NEW set, the 1023 * caller is responsible for filling in the contents 1024 */ 1025 return inode; 1026 } 1027 1028 /* 1029 * Uhhuh, somebody else created the same inode under 1030 * us. Use the old inode instead of the one we just 1031 * allocated. 1032 */ 1033 spin_unlock(&inode_hash_lock); 1034 destroy_inode(inode); 1035 inode = old; 1036 wait_on_inode(inode); 1037 } 1038 return inode; 1039 } 1040 EXPORT_SYMBOL(iget_locked); 1041 1042 /* 1043 * search the inode cache for a matching inode number. 1044 * If we find one, then the inode number we are trying to 1045 * allocate is not unique and so we should not use it. 1046 * 1047 * Returns 1 if the inode number is unique, 0 if it is not. 1048 */ 1049 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1050 { 1051 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1052 struct hlist_node *node; 1053 struct inode *inode; 1054 1055 spin_lock(&inode_hash_lock); 1056 hlist_for_each_entry(inode, node, b, i_hash) { 1057 if (inode->i_ino == ino && inode->i_sb == sb) { 1058 spin_unlock(&inode_hash_lock); 1059 return 0; 1060 } 1061 } 1062 spin_unlock(&inode_hash_lock); 1063 1064 return 1; 1065 } 1066 1067 /** 1068 * iunique - get a unique inode number 1069 * @sb: superblock 1070 * @max_reserved: highest reserved inode number 1071 * 1072 * Obtain an inode number that is unique on the system for a given 1073 * superblock. This is used by file systems that have no natural 1074 * permanent inode numbering system. An inode number is returned that 1075 * is higher than the reserved limit but unique. 1076 * 1077 * BUGS: 1078 * With a large number of inodes live on the file system this function 1079 * currently becomes quite slow. 1080 */ 1081 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1082 { 1083 /* 1084 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1085 * error if st_ino won't fit in target struct field. Use 32bit counter 1086 * here to attempt to avoid that. 1087 */ 1088 static DEFINE_SPINLOCK(iunique_lock); 1089 static unsigned int counter; 1090 ino_t res; 1091 1092 spin_lock(&iunique_lock); 1093 do { 1094 if (counter <= max_reserved) 1095 counter = max_reserved + 1; 1096 res = counter++; 1097 } while (!test_inode_iunique(sb, res)); 1098 spin_unlock(&iunique_lock); 1099 1100 return res; 1101 } 1102 EXPORT_SYMBOL(iunique); 1103 1104 struct inode *igrab(struct inode *inode) 1105 { 1106 spin_lock(&inode->i_lock); 1107 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1108 __iget(inode); 1109 spin_unlock(&inode->i_lock); 1110 } else { 1111 spin_unlock(&inode->i_lock); 1112 /* 1113 * Handle the case where s_op->clear_inode is not been 1114 * called yet, and somebody is calling igrab 1115 * while the inode is getting freed. 1116 */ 1117 inode = NULL; 1118 } 1119 return inode; 1120 } 1121 EXPORT_SYMBOL(igrab); 1122 1123 /** 1124 * ilookup5_nowait - search for an inode in the inode cache 1125 * @sb: super block of file system to search 1126 * @hashval: hash value (usually inode number) to search for 1127 * @test: callback used for comparisons between inodes 1128 * @data: opaque data pointer to pass to @test 1129 * 1130 * Search for the inode specified by @hashval and @data in the inode cache. 1131 * If the inode is in the cache, the inode is returned with an incremented 1132 * reference count. 1133 * 1134 * Note: I_NEW is not waited upon so you have to be very careful what you do 1135 * with the returned inode. You probably should be using ilookup5() instead. 1136 * 1137 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1138 */ 1139 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1140 int (*test)(struct inode *, void *), void *data) 1141 { 1142 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1143 struct inode *inode; 1144 1145 spin_lock(&inode_hash_lock); 1146 inode = find_inode(sb, head, test, data); 1147 spin_unlock(&inode_hash_lock); 1148 1149 return inode; 1150 } 1151 EXPORT_SYMBOL(ilookup5_nowait); 1152 1153 /** 1154 * ilookup5 - search for an inode in the inode cache 1155 * @sb: super block of file system to search 1156 * @hashval: hash value (usually inode number) to search for 1157 * @test: callback used for comparisons between inodes 1158 * @data: opaque data pointer to pass to @test 1159 * 1160 * Search for the inode specified by @hashval and @data in the inode cache, 1161 * and if the inode is in the cache, return the inode with an incremented 1162 * reference count. Waits on I_NEW before returning the inode. 1163 * returned with an incremented reference count. 1164 * 1165 * This is a generalized version of ilookup() for file systems where the 1166 * inode number is not sufficient for unique identification of an inode. 1167 * 1168 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1169 */ 1170 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1171 int (*test)(struct inode *, void *), void *data) 1172 { 1173 struct inode *inode = ilookup5_nowait(sb, hashval, test, data); 1174 1175 if (inode) 1176 wait_on_inode(inode); 1177 return inode; 1178 } 1179 EXPORT_SYMBOL(ilookup5); 1180 1181 /** 1182 * ilookup - search for an inode in the inode cache 1183 * @sb: super block of file system to search 1184 * @ino: inode number to search for 1185 * 1186 * Search for the inode @ino in the inode cache, and if the inode is in the 1187 * cache, the inode is returned with an incremented reference count. 1188 */ 1189 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1190 { 1191 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1192 struct inode *inode; 1193 1194 spin_lock(&inode_hash_lock); 1195 inode = find_inode_fast(sb, head, ino); 1196 spin_unlock(&inode_hash_lock); 1197 1198 if (inode) 1199 wait_on_inode(inode); 1200 return inode; 1201 } 1202 EXPORT_SYMBOL(ilookup); 1203 1204 int insert_inode_locked(struct inode *inode) 1205 { 1206 struct super_block *sb = inode->i_sb; 1207 ino_t ino = inode->i_ino; 1208 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1209 1210 while (1) { 1211 struct hlist_node *node; 1212 struct inode *old = NULL; 1213 spin_lock(&inode_hash_lock); 1214 hlist_for_each_entry(old, node, head, i_hash) { 1215 if (old->i_ino != ino) 1216 continue; 1217 if (old->i_sb != sb) 1218 continue; 1219 spin_lock(&old->i_lock); 1220 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1221 spin_unlock(&old->i_lock); 1222 continue; 1223 } 1224 break; 1225 } 1226 if (likely(!node)) { 1227 spin_lock(&inode->i_lock); 1228 inode->i_state |= I_NEW; 1229 hlist_add_head(&inode->i_hash, head); 1230 spin_unlock(&inode->i_lock); 1231 spin_unlock(&inode_hash_lock); 1232 return 0; 1233 } 1234 __iget(old); 1235 spin_unlock(&old->i_lock); 1236 spin_unlock(&inode_hash_lock); 1237 wait_on_inode(old); 1238 if (unlikely(!inode_unhashed(old))) { 1239 iput(old); 1240 return -EBUSY; 1241 } 1242 iput(old); 1243 } 1244 } 1245 EXPORT_SYMBOL(insert_inode_locked); 1246 1247 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1248 int (*test)(struct inode *, void *), void *data) 1249 { 1250 struct super_block *sb = inode->i_sb; 1251 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1252 1253 while (1) { 1254 struct hlist_node *node; 1255 struct inode *old = NULL; 1256 1257 spin_lock(&inode_hash_lock); 1258 hlist_for_each_entry(old, node, head, i_hash) { 1259 if (old->i_sb != sb) 1260 continue; 1261 if (!test(old, data)) 1262 continue; 1263 spin_lock(&old->i_lock); 1264 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1265 spin_unlock(&old->i_lock); 1266 continue; 1267 } 1268 break; 1269 } 1270 if (likely(!node)) { 1271 spin_lock(&inode->i_lock); 1272 inode->i_state |= I_NEW; 1273 hlist_add_head(&inode->i_hash, head); 1274 spin_unlock(&inode->i_lock); 1275 spin_unlock(&inode_hash_lock); 1276 return 0; 1277 } 1278 __iget(old); 1279 spin_unlock(&old->i_lock); 1280 spin_unlock(&inode_hash_lock); 1281 wait_on_inode(old); 1282 if (unlikely(!inode_unhashed(old))) { 1283 iput(old); 1284 return -EBUSY; 1285 } 1286 iput(old); 1287 } 1288 } 1289 EXPORT_SYMBOL(insert_inode_locked4); 1290 1291 1292 int generic_delete_inode(struct inode *inode) 1293 { 1294 return 1; 1295 } 1296 EXPORT_SYMBOL(generic_delete_inode); 1297 1298 /* 1299 * Normal UNIX filesystem behaviour: delete the 1300 * inode when the usage count drops to zero, and 1301 * i_nlink is zero. 1302 */ 1303 int generic_drop_inode(struct inode *inode) 1304 { 1305 return !inode->i_nlink || inode_unhashed(inode); 1306 } 1307 EXPORT_SYMBOL_GPL(generic_drop_inode); 1308 1309 /* 1310 * Called when we're dropping the last reference 1311 * to an inode. 1312 * 1313 * Call the FS "drop_inode()" function, defaulting to 1314 * the legacy UNIX filesystem behaviour. If it tells 1315 * us to evict inode, do so. Otherwise, retain inode 1316 * in cache if fs is alive, sync and evict if fs is 1317 * shutting down. 1318 */ 1319 static void iput_final(struct inode *inode) 1320 { 1321 struct super_block *sb = inode->i_sb; 1322 const struct super_operations *op = inode->i_sb->s_op; 1323 int drop; 1324 1325 WARN_ON(inode->i_state & I_NEW); 1326 1327 if (op && op->drop_inode) 1328 drop = op->drop_inode(inode); 1329 else 1330 drop = generic_drop_inode(inode); 1331 1332 if (!drop && (sb->s_flags & MS_ACTIVE)) { 1333 inode->i_state |= I_REFERENCED; 1334 if (!(inode->i_state & (I_DIRTY|I_SYNC))) 1335 inode_lru_list_add(inode); 1336 spin_unlock(&inode->i_lock); 1337 return; 1338 } 1339 1340 if (!drop) { 1341 inode->i_state |= I_WILL_FREE; 1342 spin_unlock(&inode->i_lock); 1343 write_inode_now(inode, 1); 1344 spin_lock(&inode->i_lock); 1345 WARN_ON(inode->i_state & I_NEW); 1346 inode->i_state &= ~I_WILL_FREE; 1347 } 1348 1349 inode->i_state |= I_FREEING; 1350 inode_lru_list_del(inode); 1351 spin_unlock(&inode->i_lock); 1352 1353 evict(inode); 1354 } 1355 1356 /** 1357 * iput - put an inode 1358 * @inode: inode to put 1359 * 1360 * Puts an inode, dropping its usage count. If the inode use count hits 1361 * zero, the inode is then freed and may also be destroyed. 1362 * 1363 * Consequently, iput() can sleep. 1364 */ 1365 void iput(struct inode *inode) 1366 { 1367 if (inode) { 1368 BUG_ON(inode->i_state & I_CLEAR); 1369 1370 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) 1371 iput_final(inode); 1372 } 1373 } 1374 EXPORT_SYMBOL(iput); 1375 1376 /** 1377 * bmap - find a block number in a file 1378 * @inode: inode of file 1379 * @block: block to find 1380 * 1381 * Returns the block number on the device holding the inode that 1382 * is the disk block number for the block of the file requested. 1383 * That is, asked for block 4 of inode 1 the function will return the 1384 * disk block relative to the disk start that holds that block of the 1385 * file. 1386 */ 1387 sector_t bmap(struct inode *inode, sector_t block) 1388 { 1389 sector_t res = 0; 1390 if (inode->i_mapping->a_ops->bmap) 1391 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1392 return res; 1393 } 1394 EXPORT_SYMBOL(bmap); 1395 1396 /* 1397 * With relative atime, only update atime if the previous atime is 1398 * earlier than either the ctime or mtime or if at least a day has 1399 * passed since the last atime update. 1400 */ 1401 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1402 struct timespec now) 1403 { 1404 1405 if (!(mnt->mnt_flags & MNT_RELATIME)) 1406 return 1; 1407 /* 1408 * Is mtime younger than atime? If yes, update atime: 1409 */ 1410 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1411 return 1; 1412 /* 1413 * Is ctime younger than atime? If yes, update atime: 1414 */ 1415 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1416 return 1; 1417 1418 /* 1419 * Is the previous atime value older than a day? If yes, 1420 * update atime: 1421 */ 1422 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1423 return 1; 1424 /* 1425 * Good, we can skip the atime update: 1426 */ 1427 return 0; 1428 } 1429 1430 /** 1431 * touch_atime - update the access time 1432 * @mnt: mount the inode is accessed on 1433 * @dentry: dentry accessed 1434 * 1435 * Update the accessed time on an inode and mark it for writeback. 1436 * This function automatically handles read only file systems and media, 1437 * as well as the "noatime" flag and inode specific "noatime" markers. 1438 */ 1439 void touch_atime(struct vfsmount *mnt, struct dentry *dentry) 1440 { 1441 struct inode *inode = dentry->d_inode; 1442 struct timespec now; 1443 1444 if (inode->i_flags & S_NOATIME) 1445 return; 1446 if (IS_NOATIME(inode)) 1447 return; 1448 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1449 return; 1450 1451 if (mnt->mnt_flags & MNT_NOATIME) 1452 return; 1453 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1454 return; 1455 1456 now = current_fs_time(inode->i_sb); 1457 1458 if (!relatime_need_update(mnt, inode, now)) 1459 return; 1460 1461 if (timespec_equal(&inode->i_atime, &now)) 1462 return; 1463 1464 if (mnt_want_write(mnt)) 1465 return; 1466 1467 inode->i_atime = now; 1468 mark_inode_dirty_sync(inode); 1469 mnt_drop_write(mnt); 1470 } 1471 EXPORT_SYMBOL(touch_atime); 1472 1473 /** 1474 * file_update_time - update mtime and ctime time 1475 * @file: file accessed 1476 * 1477 * Update the mtime and ctime members of an inode and mark the inode 1478 * for writeback. Note that this function is meant exclusively for 1479 * usage in the file write path of filesystems, and filesystems may 1480 * choose to explicitly ignore update via this function with the 1481 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1482 * timestamps are handled by the server. 1483 */ 1484 1485 void file_update_time(struct file *file) 1486 { 1487 struct inode *inode = file->f_path.dentry->d_inode; 1488 struct timespec now; 1489 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0; 1490 1491 /* First try to exhaust all avenues to not sync */ 1492 if (IS_NOCMTIME(inode)) 1493 return; 1494 1495 now = current_fs_time(inode->i_sb); 1496 if (!timespec_equal(&inode->i_mtime, &now)) 1497 sync_it = S_MTIME; 1498 1499 if (!timespec_equal(&inode->i_ctime, &now)) 1500 sync_it |= S_CTIME; 1501 1502 if (IS_I_VERSION(inode)) 1503 sync_it |= S_VERSION; 1504 1505 if (!sync_it) 1506 return; 1507 1508 /* Finally allowed to write? Takes lock. */ 1509 if (mnt_want_write_file(file)) 1510 return; 1511 1512 /* Only change inode inside the lock region */ 1513 if (sync_it & S_VERSION) 1514 inode_inc_iversion(inode); 1515 if (sync_it & S_CTIME) 1516 inode->i_ctime = now; 1517 if (sync_it & S_MTIME) 1518 inode->i_mtime = now; 1519 mark_inode_dirty_sync(inode); 1520 mnt_drop_write(file->f_path.mnt); 1521 } 1522 EXPORT_SYMBOL(file_update_time); 1523 1524 int inode_needs_sync(struct inode *inode) 1525 { 1526 if (IS_SYNC(inode)) 1527 return 1; 1528 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1529 return 1; 1530 return 0; 1531 } 1532 EXPORT_SYMBOL(inode_needs_sync); 1533 1534 int inode_wait(void *word) 1535 { 1536 schedule(); 1537 return 0; 1538 } 1539 EXPORT_SYMBOL(inode_wait); 1540 1541 /* 1542 * If we try to find an inode in the inode hash while it is being 1543 * deleted, we have to wait until the filesystem completes its 1544 * deletion before reporting that it isn't found. This function waits 1545 * until the deletion _might_ have completed. Callers are responsible 1546 * to recheck inode state. 1547 * 1548 * It doesn't matter if I_NEW is not set initially, a call to 1549 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 1550 * will DTRT. 1551 */ 1552 static void __wait_on_freeing_inode(struct inode *inode) 1553 { 1554 wait_queue_head_t *wq; 1555 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 1556 wq = bit_waitqueue(&inode->i_state, __I_NEW); 1557 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1558 spin_unlock(&inode->i_lock); 1559 spin_unlock(&inode_hash_lock); 1560 schedule(); 1561 finish_wait(wq, &wait.wait); 1562 spin_lock(&inode_hash_lock); 1563 } 1564 1565 static __initdata unsigned long ihash_entries; 1566 static int __init set_ihash_entries(char *str) 1567 { 1568 if (!str) 1569 return 0; 1570 ihash_entries = simple_strtoul(str, &str, 0); 1571 return 1; 1572 } 1573 __setup("ihash_entries=", set_ihash_entries); 1574 1575 /* 1576 * Initialize the waitqueues and inode hash table. 1577 */ 1578 void __init inode_init_early(void) 1579 { 1580 int loop; 1581 1582 /* If hashes are distributed across NUMA nodes, defer 1583 * hash allocation until vmalloc space is available. 1584 */ 1585 if (hashdist) 1586 return; 1587 1588 inode_hashtable = 1589 alloc_large_system_hash("Inode-cache", 1590 sizeof(struct hlist_head), 1591 ihash_entries, 1592 14, 1593 HASH_EARLY, 1594 &i_hash_shift, 1595 &i_hash_mask, 1596 0); 1597 1598 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1599 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1600 } 1601 1602 void __init inode_init(void) 1603 { 1604 int loop; 1605 1606 /* inode slab cache */ 1607 inode_cachep = kmem_cache_create("inode_cache", 1608 sizeof(struct inode), 1609 0, 1610 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1611 SLAB_MEM_SPREAD), 1612 init_once); 1613 register_shrinker(&icache_shrinker); 1614 1615 /* Hash may have been set up in inode_init_early */ 1616 if (!hashdist) 1617 return; 1618 1619 inode_hashtable = 1620 alloc_large_system_hash("Inode-cache", 1621 sizeof(struct hlist_head), 1622 ihash_entries, 1623 14, 1624 0, 1625 &i_hash_shift, 1626 &i_hash_mask, 1627 0); 1628 1629 for (loop = 0; loop < (1 << i_hash_shift); loop++) 1630 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1631 } 1632 1633 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1634 { 1635 inode->i_mode = mode; 1636 if (S_ISCHR(mode)) { 1637 inode->i_fop = &def_chr_fops; 1638 inode->i_rdev = rdev; 1639 } else if (S_ISBLK(mode)) { 1640 inode->i_fop = &def_blk_fops; 1641 inode->i_rdev = rdev; 1642 } else if (S_ISFIFO(mode)) 1643 inode->i_fop = &def_fifo_fops; 1644 else if (S_ISSOCK(mode)) 1645 inode->i_fop = &bad_sock_fops; 1646 else 1647 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 1648 " inode %s:%lu\n", mode, inode->i_sb->s_id, 1649 inode->i_ino); 1650 } 1651 EXPORT_SYMBOL(init_special_inode); 1652 1653 /** 1654 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 1655 * @inode: New inode 1656 * @dir: Directory inode 1657 * @mode: mode of the new inode 1658 */ 1659 void inode_init_owner(struct inode *inode, const struct inode *dir, 1660 mode_t mode) 1661 { 1662 inode->i_uid = current_fsuid(); 1663 if (dir && dir->i_mode & S_ISGID) { 1664 inode->i_gid = dir->i_gid; 1665 if (S_ISDIR(mode)) 1666 mode |= S_ISGID; 1667 } else 1668 inode->i_gid = current_fsgid(); 1669 inode->i_mode = mode; 1670 } 1671 EXPORT_SYMBOL(inode_init_owner); 1672 1673 /** 1674 * inode_owner_or_capable - check current task permissions to inode 1675 * @inode: inode being checked 1676 * 1677 * Return true if current either has CAP_FOWNER to the inode, or 1678 * owns the file. 1679 */ 1680 bool inode_owner_or_capable(const struct inode *inode) 1681 { 1682 struct user_namespace *ns = inode_userns(inode); 1683 1684 if (current_user_ns() == ns && current_fsuid() == inode->i_uid) 1685 return true; 1686 if (ns_capable(ns, CAP_FOWNER)) 1687 return true; 1688 return false; 1689 } 1690 EXPORT_SYMBOL(inode_owner_or_capable); 1691