xref: /openbmc/linux/fs/inode.c (revision 261a9af6)
1 /*
2  * (C) 1997 Linus Torvalds
3  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4  */
5 #include <linux/fs.h>
6 #include <linux/mm.h>
7 #include <linux/dcache.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/writeback.h>
11 #include <linux/module.h>
12 #include <linux/backing-dev.h>
13 #include <linux/wait.h>
14 #include <linux/rwsem.h>
15 #include <linux/hash.h>
16 #include <linux/swap.h>
17 #include <linux/security.h>
18 #include <linux/pagemap.h>
19 #include <linux/cdev.h>
20 #include <linux/bootmem.h>
21 #include <linux/fsnotify.h>
22 #include <linux/mount.h>
23 #include <linux/async.h>
24 #include <linux/posix_acl.h>
25 #include <linux/prefetch.h>
26 #include <linux/ima.h>
27 #include <linux/cred.h>
28 #include <linux/buffer_head.h> /* for inode_has_buffers */
29 #include "internal.h"
30 
31 /*
32  * Inode locking rules:
33  *
34  * inode->i_lock protects:
35  *   inode->i_state, inode->i_hash, __iget()
36  * inode_lru_lock protects:
37  *   inode_lru, inode->i_lru
38  * inode_sb_list_lock protects:
39  *   sb->s_inodes, inode->i_sb_list
40  * inode_wb_list_lock protects:
41  *   bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
42  * inode_hash_lock protects:
43  *   inode_hashtable, inode->i_hash
44  *
45  * Lock ordering:
46  *
47  * inode_sb_list_lock
48  *   inode->i_lock
49  *     inode_lru_lock
50  *
51  * inode_wb_list_lock
52  *   inode->i_lock
53  *
54  * inode_hash_lock
55  *   inode_sb_list_lock
56  *   inode->i_lock
57  *
58  * iunique_lock
59  *   inode_hash_lock
60  */
61 
62 static unsigned int i_hash_mask __read_mostly;
63 static unsigned int i_hash_shift __read_mostly;
64 static struct hlist_head *inode_hashtable __read_mostly;
65 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
66 
67 static LIST_HEAD(inode_lru);
68 static DEFINE_SPINLOCK(inode_lru_lock);
69 
70 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
71 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_wb_list_lock);
72 
73 /*
74  * iprune_sem provides exclusion between the icache shrinking and the
75  * umount path.
76  *
77  * We don't actually need it to protect anything in the umount path,
78  * but only need to cycle through it to make sure any inode that
79  * prune_icache took off the LRU list has been fully torn down by the
80  * time we are past evict_inodes.
81  */
82 static DECLARE_RWSEM(iprune_sem);
83 
84 /*
85  * Empty aops. Can be used for the cases where the user does not
86  * define any of the address_space operations.
87  */
88 const struct address_space_operations empty_aops = {
89 };
90 EXPORT_SYMBOL(empty_aops);
91 
92 /*
93  * Statistics gathering..
94  */
95 struct inodes_stat_t inodes_stat;
96 
97 static DEFINE_PER_CPU(unsigned int, nr_inodes);
98 
99 static struct kmem_cache *inode_cachep __read_mostly;
100 
101 static int get_nr_inodes(void)
102 {
103 	int i;
104 	int sum = 0;
105 	for_each_possible_cpu(i)
106 		sum += per_cpu(nr_inodes, i);
107 	return sum < 0 ? 0 : sum;
108 }
109 
110 static inline int get_nr_inodes_unused(void)
111 {
112 	return inodes_stat.nr_unused;
113 }
114 
115 int get_nr_dirty_inodes(void)
116 {
117 	/* not actually dirty inodes, but a wild approximation */
118 	int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
119 	return nr_dirty > 0 ? nr_dirty : 0;
120 }
121 
122 /*
123  * Handle nr_inode sysctl
124  */
125 #ifdef CONFIG_SYSCTL
126 int proc_nr_inodes(ctl_table *table, int write,
127 		   void __user *buffer, size_t *lenp, loff_t *ppos)
128 {
129 	inodes_stat.nr_inodes = get_nr_inodes();
130 	return proc_dointvec(table, write, buffer, lenp, ppos);
131 }
132 #endif
133 
134 /**
135  * inode_init_always - perform inode structure intialisation
136  * @sb: superblock inode belongs to
137  * @inode: inode to initialise
138  *
139  * These are initializations that need to be done on every inode
140  * allocation as the fields are not initialised by slab allocation.
141  */
142 int inode_init_always(struct super_block *sb, struct inode *inode)
143 {
144 	static const struct inode_operations empty_iops;
145 	static const struct file_operations empty_fops;
146 	struct address_space *const mapping = &inode->i_data;
147 
148 	inode->i_sb = sb;
149 	inode->i_blkbits = sb->s_blocksize_bits;
150 	inode->i_flags = 0;
151 	atomic_set(&inode->i_count, 1);
152 	inode->i_op = &empty_iops;
153 	inode->i_fop = &empty_fops;
154 	inode->i_nlink = 1;
155 	inode->i_uid = 0;
156 	inode->i_gid = 0;
157 	atomic_set(&inode->i_writecount, 0);
158 	inode->i_size = 0;
159 	inode->i_blocks = 0;
160 	inode->i_bytes = 0;
161 	inode->i_generation = 0;
162 #ifdef CONFIG_QUOTA
163 	memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
164 #endif
165 	inode->i_pipe = NULL;
166 	inode->i_bdev = NULL;
167 	inode->i_cdev = NULL;
168 	inode->i_rdev = 0;
169 	inode->dirtied_when = 0;
170 
171 	if (security_inode_alloc(inode))
172 		goto out;
173 	spin_lock_init(&inode->i_lock);
174 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
175 
176 	mutex_init(&inode->i_mutex);
177 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
178 
179 	init_rwsem(&inode->i_alloc_sem);
180 	lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
181 
182 	mapping->a_ops = &empty_aops;
183 	mapping->host = inode;
184 	mapping->flags = 0;
185 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
186 	mapping->assoc_mapping = NULL;
187 	mapping->backing_dev_info = &default_backing_dev_info;
188 	mapping->writeback_index = 0;
189 
190 	/*
191 	 * If the block_device provides a backing_dev_info for client
192 	 * inodes then use that.  Otherwise the inode share the bdev's
193 	 * backing_dev_info.
194 	 */
195 	if (sb->s_bdev) {
196 		struct backing_dev_info *bdi;
197 
198 		bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
199 		mapping->backing_dev_info = bdi;
200 	}
201 	inode->i_private = NULL;
202 	inode->i_mapping = mapping;
203 #ifdef CONFIG_FS_POSIX_ACL
204 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
205 #endif
206 
207 #ifdef CONFIG_FSNOTIFY
208 	inode->i_fsnotify_mask = 0;
209 #endif
210 
211 	this_cpu_inc(nr_inodes);
212 
213 	return 0;
214 out:
215 	return -ENOMEM;
216 }
217 EXPORT_SYMBOL(inode_init_always);
218 
219 static struct inode *alloc_inode(struct super_block *sb)
220 {
221 	struct inode *inode;
222 
223 	if (sb->s_op->alloc_inode)
224 		inode = sb->s_op->alloc_inode(sb);
225 	else
226 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
227 
228 	if (!inode)
229 		return NULL;
230 
231 	if (unlikely(inode_init_always(sb, inode))) {
232 		if (inode->i_sb->s_op->destroy_inode)
233 			inode->i_sb->s_op->destroy_inode(inode);
234 		else
235 			kmem_cache_free(inode_cachep, inode);
236 		return NULL;
237 	}
238 
239 	return inode;
240 }
241 
242 void free_inode_nonrcu(struct inode *inode)
243 {
244 	kmem_cache_free(inode_cachep, inode);
245 }
246 EXPORT_SYMBOL(free_inode_nonrcu);
247 
248 void __destroy_inode(struct inode *inode)
249 {
250 	BUG_ON(inode_has_buffers(inode));
251 	security_inode_free(inode);
252 	fsnotify_inode_delete(inode);
253 #ifdef CONFIG_FS_POSIX_ACL
254 	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
255 		posix_acl_release(inode->i_acl);
256 	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
257 		posix_acl_release(inode->i_default_acl);
258 #endif
259 	this_cpu_dec(nr_inodes);
260 }
261 EXPORT_SYMBOL(__destroy_inode);
262 
263 static void i_callback(struct rcu_head *head)
264 {
265 	struct inode *inode = container_of(head, struct inode, i_rcu);
266 	INIT_LIST_HEAD(&inode->i_dentry);
267 	kmem_cache_free(inode_cachep, inode);
268 }
269 
270 static void destroy_inode(struct inode *inode)
271 {
272 	BUG_ON(!list_empty(&inode->i_lru));
273 	__destroy_inode(inode);
274 	if (inode->i_sb->s_op->destroy_inode)
275 		inode->i_sb->s_op->destroy_inode(inode);
276 	else
277 		call_rcu(&inode->i_rcu, i_callback);
278 }
279 
280 void address_space_init_once(struct address_space *mapping)
281 {
282 	memset(mapping, 0, sizeof(*mapping));
283 	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
284 	spin_lock_init(&mapping->tree_lock);
285 	mutex_init(&mapping->i_mmap_mutex);
286 	INIT_LIST_HEAD(&mapping->private_list);
287 	spin_lock_init(&mapping->private_lock);
288 	INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap);
289 	INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
290 }
291 EXPORT_SYMBOL(address_space_init_once);
292 
293 /*
294  * These are initializations that only need to be done
295  * once, because the fields are idempotent across use
296  * of the inode, so let the slab aware of that.
297  */
298 void inode_init_once(struct inode *inode)
299 {
300 	memset(inode, 0, sizeof(*inode));
301 	INIT_HLIST_NODE(&inode->i_hash);
302 	INIT_LIST_HEAD(&inode->i_dentry);
303 	INIT_LIST_HEAD(&inode->i_devices);
304 	INIT_LIST_HEAD(&inode->i_wb_list);
305 	INIT_LIST_HEAD(&inode->i_lru);
306 	address_space_init_once(&inode->i_data);
307 	i_size_ordered_init(inode);
308 #ifdef CONFIG_FSNOTIFY
309 	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
310 #endif
311 }
312 EXPORT_SYMBOL(inode_init_once);
313 
314 static void init_once(void *foo)
315 {
316 	struct inode *inode = (struct inode *) foo;
317 
318 	inode_init_once(inode);
319 }
320 
321 /*
322  * inode->i_lock must be held
323  */
324 void __iget(struct inode *inode)
325 {
326 	atomic_inc(&inode->i_count);
327 }
328 
329 /*
330  * get additional reference to inode; caller must already hold one.
331  */
332 void ihold(struct inode *inode)
333 {
334 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
335 }
336 EXPORT_SYMBOL(ihold);
337 
338 static void inode_lru_list_add(struct inode *inode)
339 {
340 	spin_lock(&inode_lru_lock);
341 	if (list_empty(&inode->i_lru)) {
342 		list_add(&inode->i_lru, &inode_lru);
343 		inodes_stat.nr_unused++;
344 	}
345 	spin_unlock(&inode_lru_lock);
346 }
347 
348 static void inode_lru_list_del(struct inode *inode)
349 {
350 	spin_lock(&inode_lru_lock);
351 	if (!list_empty(&inode->i_lru)) {
352 		list_del_init(&inode->i_lru);
353 		inodes_stat.nr_unused--;
354 	}
355 	spin_unlock(&inode_lru_lock);
356 }
357 
358 /**
359  * inode_sb_list_add - add inode to the superblock list of inodes
360  * @inode: inode to add
361  */
362 void inode_sb_list_add(struct inode *inode)
363 {
364 	spin_lock(&inode_sb_list_lock);
365 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
366 	spin_unlock(&inode_sb_list_lock);
367 }
368 EXPORT_SYMBOL_GPL(inode_sb_list_add);
369 
370 static inline void inode_sb_list_del(struct inode *inode)
371 {
372 	spin_lock(&inode_sb_list_lock);
373 	list_del_init(&inode->i_sb_list);
374 	spin_unlock(&inode_sb_list_lock);
375 }
376 
377 static unsigned long hash(struct super_block *sb, unsigned long hashval)
378 {
379 	unsigned long tmp;
380 
381 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
382 			L1_CACHE_BYTES;
383 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
384 	return tmp & i_hash_mask;
385 }
386 
387 /**
388  *	__insert_inode_hash - hash an inode
389  *	@inode: unhashed inode
390  *	@hashval: unsigned long value used to locate this object in the
391  *		inode_hashtable.
392  *
393  *	Add an inode to the inode hash for this superblock.
394  */
395 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
396 {
397 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
398 
399 	spin_lock(&inode_hash_lock);
400 	spin_lock(&inode->i_lock);
401 	hlist_add_head(&inode->i_hash, b);
402 	spin_unlock(&inode->i_lock);
403 	spin_unlock(&inode_hash_lock);
404 }
405 EXPORT_SYMBOL(__insert_inode_hash);
406 
407 /**
408  *	remove_inode_hash - remove an inode from the hash
409  *	@inode: inode to unhash
410  *
411  *	Remove an inode from the superblock.
412  */
413 void remove_inode_hash(struct inode *inode)
414 {
415 	spin_lock(&inode_hash_lock);
416 	spin_lock(&inode->i_lock);
417 	hlist_del_init(&inode->i_hash);
418 	spin_unlock(&inode->i_lock);
419 	spin_unlock(&inode_hash_lock);
420 }
421 EXPORT_SYMBOL(remove_inode_hash);
422 
423 void end_writeback(struct inode *inode)
424 {
425 	might_sleep();
426 	BUG_ON(inode->i_data.nrpages);
427 	BUG_ON(!list_empty(&inode->i_data.private_list));
428 	BUG_ON(!(inode->i_state & I_FREEING));
429 	BUG_ON(inode->i_state & I_CLEAR);
430 	inode_sync_wait(inode);
431 	/* don't need i_lock here, no concurrent mods to i_state */
432 	inode->i_state = I_FREEING | I_CLEAR;
433 }
434 EXPORT_SYMBOL(end_writeback);
435 
436 /*
437  * Free the inode passed in, removing it from the lists it is still connected
438  * to. We remove any pages still attached to the inode and wait for any IO that
439  * is still in progress before finally destroying the inode.
440  *
441  * An inode must already be marked I_FREEING so that we avoid the inode being
442  * moved back onto lists if we race with other code that manipulates the lists
443  * (e.g. writeback_single_inode). The caller is responsible for setting this.
444  *
445  * An inode must already be removed from the LRU list before being evicted from
446  * the cache. This should occur atomically with setting the I_FREEING state
447  * flag, so no inodes here should ever be on the LRU when being evicted.
448  */
449 static void evict(struct inode *inode)
450 {
451 	const struct super_operations *op = inode->i_sb->s_op;
452 
453 	BUG_ON(!(inode->i_state & I_FREEING));
454 	BUG_ON(!list_empty(&inode->i_lru));
455 
456 	inode_wb_list_del(inode);
457 	inode_sb_list_del(inode);
458 
459 	if (op->evict_inode) {
460 		op->evict_inode(inode);
461 	} else {
462 		if (inode->i_data.nrpages)
463 			truncate_inode_pages(&inode->i_data, 0);
464 		end_writeback(inode);
465 	}
466 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
467 		bd_forget(inode);
468 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
469 		cd_forget(inode);
470 
471 	remove_inode_hash(inode);
472 
473 	spin_lock(&inode->i_lock);
474 	wake_up_bit(&inode->i_state, __I_NEW);
475 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
476 	spin_unlock(&inode->i_lock);
477 
478 	destroy_inode(inode);
479 }
480 
481 /*
482  * dispose_list - dispose of the contents of a local list
483  * @head: the head of the list to free
484  *
485  * Dispose-list gets a local list with local inodes in it, so it doesn't
486  * need to worry about list corruption and SMP locks.
487  */
488 static void dispose_list(struct list_head *head)
489 {
490 	while (!list_empty(head)) {
491 		struct inode *inode;
492 
493 		inode = list_first_entry(head, struct inode, i_lru);
494 		list_del_init(&inode->i_lru);
495 
496 		evict(inode);
497 	}
498 }
499 
500 /**
501  * evict_inodes	- evict all evictable inodes for a superblock
502  * @sb:		superblock to operate on
503  *
504  * Make sure that no inodes with zero refcount are retained.  This is
505  * called by superblock shutdown after having MS_ACTIVE flag removed,
506  * so any inode reaching zero refcount during or after that call will
507  * be immediately evicted.
508  */
509 void evict_inodes(struct super_block *sb)
510 {
511 	struct inode *inode, *next;
512 	LIST_HEAD(dispose);
513 
514 	spin_lock(&inode_sb_list_lock);
515 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
516 		if (atomic_read(&inode->i_count))
517 			continue;
518 
519 		spin_lock(&inode->i_lock);
520 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
521 			spin_unlock(&inode->i_lock);
522 			continue;
523 		}
524 
525 		inode->i_state |= I_FREEING;
526 		inode_lru_list_del(inode);
527 		spin_unlock(&inode->i_lock);
528 		list_add(&inode->i_lru, &dispose);
529 	}
530 	spin_unlock(&inode_sb_list_lock);
531 
532 	dispose_list(&dispose);
533 
534 	/*
535 	 * Cycle through iprune_sem to make sure any inode that prune_icache
536 	 * moved off the list before we took the lock has been fully torn
537 	 * down.
538 	 */
539 	down_write(&iprune_sem);
540 	up_write(&iprune_sem);
541 }
542 
543 /**
544  * invalidate_inodes	- attempt to free all inodes on a superblock
545  * @sb:		superblock to operate on
546  * @kill_dirty: flag to guide handling of dirty inodes
547  *
548  * Attempts to free all inodes for a given superblock.  If there were any
549  * busy inodes return a non-zero value, else zero.
550  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
551  * them as busy.
552  */
553 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
554 {
555 	int busy = 0;
556 	struct inode *inode, *next;
557 	LIST_HEAD(dispose);
558 
559 	spin_lock(&inode_sb_list_lock);
560 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
561 		spin_lock(&inode->i_lock);
562 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
563 			spin_unlock(&inode->i_lock);
564 			continue;
565 		}
566 		if (inode->i_state & I_DIRTY && !kill_dirty) {
567 			spin_unlock(&inode->i_lock);
568 			busy = 1;
569 			continue;
570 		}
571 		if (atomic_read(&inode->i_count)) {
572 			spin_unlock(&inode->i_lock);
573 			busy = 1;
574 			continue;
575 		}
576 
577 		inode->i_state |= I_FREEING;
578 		inode_lru_list_del(inode);
579 		spin_unlock(&inode->i_lock);
580 		list_add(&inode->i_lru, &dispose);
581 	}
582 	spin_unlock(&inode_sb_list_lock);
583 
584 	dispose_list(&dispose);
585 
586 	return busy;
587 }
588 
589 static int can_unuse(struct inode *inode)
590 {
591 	if (inode->i_state & ~I_REFERENCED)
592 		return 0;
593 	if (inode_has_buffers(inode))
594 		return 0;
595 	if (atomic_read(&inode->i_count))
596 		return 0;
597 	if (inode->i_data.nrpages)
598 		return 0;
599 	return 1;
600 }
601 
602 /*
603  * Scan `goal' inodes on the unused list for freeable ones. They are moved to a
604  * temporary list and then are freed outside inode_lru_lock by dispose_list().
605  *
606  * Any inodes which are pinned purely because of attached pagecache have their
607  * pagecache removed.  If the inode has metadata buffers attached to
608  * mapping->private_list then try to remove them.
609  *
610  * If the inode has the I_REFERENCED flag set, then it means that it has been
611  * used recently - the flag is set in iput_final(). When we encounter such an
612  * inode, clear the flag and move it to the back of the LRU so it gets another
613  * pass through the LRU before it gets reclaimed. This is necessary because of
614  * the fact we are doing lazy LRU updates to minimise lock contention so the
615  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
616  * with this flag set because they are the inodes that are out of order.
617  */
618 static void prune_icache(int nr_to_scan)
619 {
620 	LIST_HEAD(freeable);
621 	int nr_scanned;
622 	unsigned long reap = 0;
623 
624 	down_read(&iprune_sem);
625 	spin_lock(&inode_lru_lock);
626 	for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
627 		struct inode *inode;
628 
629 		if (list_empty(&inode_lru))
630 			break;
631 
632 		inode = list_entry(inode_lru.prev, struct inode, i_lru);
633 
634 		/*
635 		 * we are inverting the inode_lru_lock/inode->i_lock here,
636 		 * so use a trylock. If we fail to get the lock, just move the
637 		 * inode to the back of the list so we don't spin on it.
638 		 */
639 		if (!spin_trylock(&inode->i_lock)) {
640 			list_move(&inode->i_lru, &inode_lru);
641 			continue;
642 		}
643 
644 		/*
645 		 * Referenced or dirty inodes are still in use. Give them
646 		 * another pass through the LRU as we canot reclaim them now.
647 		 */
648 		if (atomic_read(&inode->i_count) ||
649 		    (inode->i_state & ~I_REFERENCED)) {
650 			list_del_init(&inode->i_lru);
651 			spin_unlock(&inode->i_lock);
652 			inodes_stat.nr_unused--;
653 			continue;
654 		}
655 
656 		/* recently referenced inodes get one more pass */
657 		if (inode->i_state & I_REFERENCED) {
658 			inode->i_state &= ~I_REFERENCED;
659 			list_move(&inode->i_lru, &inode_lru);
660 			spin_unlock(&inode->i_lock);
661 			continue;
662 		}
663 		if (inode_has_buffers(inode) || inode->i_data.nrpages) {
664 			__iget(inode);
665 			spin_unlock(&inode->i_lock);
666 			spin_unlock(&inode_lru_lock);
667 			if (remove_inode_buffers(inode))
668 				reap += invalidate_mapping_pages(&inode->i_data,
669 								0, -1);
670 			iput(inode);
671 			spin_lock(&inode_lru_lock);
672 
673 			if (inode != list_entry(inode_lru.next,
674 						struct inode, i_lru))
675 				continue;	/* wrong inode or list_empty */
676 			/* avoid lock inversions with trylock */
677 			if (!spin_trylock(&inode->i_lock))
678 				continue;
679 			if (!can_unuse(inode)) {
680 				spin_unlock(&inode->i_lock);
681 				continue;
682 			}
683 		}
684 		WARN_ON(inode->i_state & I_NEW);
685 		inode->i_state |= I_FREEING;
686 		spin_unlock(&inode->i_lock);
687 
688 		list_move(&inode->i_lru, &freeable);
689 		inodes_stat.nr_unused--;
690 	}
691 	if (current_is_kswapd())
692 		__count_vm_events(KSWAPD_INODESTEAL, reap);
693 	else
694 		__count_vm_events(PGINODESTEAL, reap);
695 	spin_unlock(&inode_lru_lock);
696 
697 	dispose_list(&freeable);
698 	up_read(&iprune_sem);
699 }
700 
701 /*
702  * shrink_icache_memory() will attempt to reclaim some unused inodes.  Here,
703  * "unused" means that no dentries are referring to the inodes: the files are
704  * not open and the dcache references to those inodes have already been
705  * reclaimed.
706  *
707  * This function is passed the number of inodes to scan, and it returns the
708  * total number of remaining possibly-reclaimable inodes.
709  */
710 static int shrink_icache_memory(struct shrinker *shrink,
711 				struct shrink_control *sc)
712 {
713 	int nr = sc->nr_to_scan;
714 	gfp_t gfp_mask = sc->gfp_mask;
715 
716 	if (nr) {
717 		/*
718 		 * Nasty deadlock avoidance.  We may hold various FS locks,
719 		 * and we don't want to recurse into the FS that called us
720 		 * in clear_inode() and friends..
721 		 */
722 		if (!(gfp_mask & __GFP_FS))
723 			return -1;
724 		prune_icache(nr);
725 	}
726 	return (get_nr_inodes_unused() / 100) * sysctl_vfs_cache_pressure;
727 }
728 
729 static struct shrinker icache_shrinker = {
730 	.shrink = shrink_icache_memory,
731 	.seeks = DEFAULT_SEEKS,
732 };
733 
734 static void __wait_on_freeing_inode(struct inode *inode);
735 /*
736  * Called with the inode lock held.
737  */
738 static struct inode *find_inode(struct super_block *sb,
739 				struct hlist_head *head,
740 				int (*test)(struct inode *, void *),
741 				void *data)
742 {
743 	struct hlist_node *node;
744 	struct inode *inode = NULL;
745 
746 repeat:
747 	hlist_for_each_entry(inode, node, head, i_hash) {
748 		spin_lock(&inode->i_lock);
749 		if (inode->i_sb != sb) {
750 			spin_unlock(&inode->i_lock);
751 			continue;
752 		}
753 		if (!test(inode, data)) {
754 			spin_unlock(&inode->i_lock);
755 			continue;
756 		}
757 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
758 			__wait_on_freeing_inode(inode);
759 			goto repeat;
760 		}
761 		__iget(inode);
762 		spin_unlock(&inode->i_lock);
763 		return inode;
764 	}
765 	return NULL;
766 }
767 
768 /*
769  * find_inode_fast is the fast path version of find_inode, see the comment at
770  * iget_locked for details.
771  */
772 static struct inode *find_inode_fast(struct super_block *sb,
773 				struct hlist_head *head, unsigned long ino)
774 {
775 	struct hlist_node *node;
776 	struct inode *inode = NULL;
777 
778 repeat:
779 	hlist_for_each_entry(inode, node, head, i_hash) {
780 		spin_lock(&inode->i_lock);
781 		if (inode->i_ino != ino) {
782 			spin_unlock(&inode->i_lock);
783 			continue;
784 		}
785 		if (inode->i_sb != sb) {
786 			spin_unlock(&inode->i_lock);
787 			continue;
788 		}
789 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
790 			__wait_on_freeing_inode(inode);
791 			goto repeat;
792 		}
793 		__iget(inode);
794 		spin_unlock(&inode->i_lock);
795 		return inode;
796 	}
797 	return NULL;
798 }
799 
800 /*
801  * Each cpu owns a range of LAST_INO_BATCH numbers.
802  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
803  * to renew the exhausted range.
804  *
805  * This does not significantly increase overflow rate because every CPU can
806  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
807  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
808  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
809  * overflow rate by 2x, which does not seem too significant.
810  *
811  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
812  * error if st_ino won't fit in target struct field. Use 32bit counter
813  * here to attempt to avoid that.
814  */
815 #define LAST_INO_BATCH 1024
816 static DEFINE_PER_CPU(unsigned int, last_ino);
817 
818 unsigned int get_next_ino(void)
819 {
820 	unsigned int *p = &get_cpu_var(last_ino);
821 	unsigned int res = *p;
822 
823 #ifdef CONFIG_SMP
824 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
825 		static atomic_t shared_last_ino;
826 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
827 
828 		res = next - LAST_INO_BATCH;
829 	}
830 #endif
831 
832 	*p = ++res;
833 	put_cpu_var(last_ino);
834 	return res;
835 }
836 EXPORT_SYMBOL(get_next_ino);
837 
838 /**
839  *	new_inode 	- obtain an inode
840  *	@sb: superblock
841  *
842  *	Allocates a new inode for given superblock. The default gfp_mask
843  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
844  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
845  *	for the page cache are not reclaimable or migratable,
846  *	mapping_set_gfp_mask() must be called with suitable flags on the
847  *	newly created inode's mapping
848  *
849  */
850 struct inode *new_inode(struct super_block *sb)
851 {
852 	struct inode *inode;
853 
854 	spin_lock_prefetch(&inode_sb_list_lock);
855 
856 	inode = alloc_inode(sb);
857 	if (inode) {
858 		spin_lock(&inode->i_lock);
859 		inode->i_state = 0;
860 		spin_unlock(&inode->i_lock);
861 		inode_sb_list_add(inode);
862 	}
863 	return inode;
864 }
865 EXPORT_SYMBOL(new_inode);
866 
867 /**
868  * unlock_new_inode - clear the I_NEW state and wake up any waiters
869  * @inode:	new inode to unlock
870  *
871  * Called when the inode is fully initialised to clear the new state of the
872  * inode and wake up anyone waiting for the inode to finish initialisation.
873  */
874 void unlock_new_inode(struct inode *inode)
875 {
876 #ifdef CONFIG_DEBUG_LOCK_ALLOC
877 	if (S_ISDIR(inode->i_mode)) {
878 		struct file_system_type *type = inode->i_sb->s_type;
879 
880 		/* Set new key only if filesystem hasn't already changed it */
881 		if (!lockdep_match_class(&inode->i_mutex,
882 		    &type->i_mutex_key)) {
883 			/*
884 			 * ensure nobody is actually holding i_mutex
885 			 */
886 			mutex_destroy(&inode->i_mutex);
887 			mutex_init(&inode->i_mutex);
888 			lockdep_set_class(&inode->i_mutex,
889 					  &type->i_mutex_dir_key);
890 		}
891 	}
892 #endif
893 	spin_lock(&inode->i_lock);
894 	WARN_ON(!(inode->i_state & I_NEW));
895 	inode->i_state &= ~I_NEW;
896 	wake_up_bit(&inode->i_state, __I_NEW);
897 	spin_unlock(&inode->i_lock);
898 }
899 EXPORT_SYMBOL(unlock_new_inode);
900 
901 /**
902  * iget5_locked - obtain an inode from a mounted file system
903  * @sb:		super block of file system
904  * @hashval:	hash value (usually inode number) to get
905  * @test:	callback used for comparisons between inodes
906  * @set:	callback used to initialize a new struct inode
907  * @data:	opaque data pointer to pass to @test and @set
908  *
909  * Search for the inode specified by @hashval and @data in the inode cache,
910  * and if present it is return it with an increased reference count. This is
911  * a generalized version of iget_locked() for file systems where the inode
912  * number is not sufficient for unique identification of an inode.
913  *
914  * If the inode is not in cache, allocate a new inode and return it locked,
915  * hashed, and with the I_NEW flag set. The file system gets to fill it in
916  * before unlocking it via unlock_new_inode().
917  *
918  * Note both @test and @set are called with the inode_hash_lock held, so can't
919  * sleep.
920  */
921 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
922 		int (*test)(struct inode *, void *),
923 		int (*set)(struct inode *, void *), void *data)
924 {
925 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
926 	struct inode *inode;
927 
928 	spin_lock(&inode_hash_lock);
929 	inode = find_inode(sb, head, test, data);
930 	spin_unlock(&inode_hash_lock);
931 
932 	if (inode) {
933 		wait_on_inode(inode);
934 		return inode;
935 	}
936 
937 	inode = alloc_inode(sb);
938 	if (inode) {
939 		struct inode *old;
940 
941 		spin_lock(&inode_hash_lock);
942 		/* We released the lock, so.. */
943 		old = find_inode(sb, head, test, data);
944 		if (!old) {
945 			if (set(inode, data))
946 				goto set_failed;
947 
948 			spin_lock(&inode->i_lock);
949 			inode->i_state = I_NEW;
950 			hlist_add_head(&inode->i_hash, head);
951 			spin_unlock(&inode->i_lock);
952 			inode_sb_list_add(inode);
953 			spin_unlock(&inode_hash_lock);
954 
955 			/* Return the locked inode with I_NEW set, the
956 			 * caller is responsible for filling in the contents
957 			 */
958 			return inode;
959 		}
960 
961 		/*
962 		 * Uhhuh, somebody else created the same inode under
963 		 * us. Use the old inode instead of the one we just
964 		 * allocated.
965 		 */
966 		spin_unlock(&inode_hash_lock);
967 		destroy_inode(inode);
968 		inode = old;
969 		wait_on_inode(inode);
970 	}
971 	return inode;
972 
973 set_failed:
974 	spin_unlock(&inode_hash_lock);
975 	destroy_inode(inode);
976 	return NULL;
977 }
978 EXPORT_SYMBOL(iget5_locked);
979 
980 /**
981  * iget_locked - obtain an inode from a mounted file system
982  * @sb:		super block of file system
983  * @ino:	inode number to get
984  *
985  * Search for the inode specified by @ino in the inode cache and if present
986  * return it with an increased reference count. This is for file systems
987  * where the inode number is sufficient for unique identification of an inode.
988  *
989  * If the inode is not in cache, allocate a new inode and return it locked,
990  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
991  * before unlocking it via unlock_new_inode().
992  */
993 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
994 {
995 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
996 	struct inode *inode;
997 
998 	spin_lock(&inode_hash_lock);
999 	inode = find_inode_fast(sb, head, ino);
1000 	spin_unlock(&inode_hash_lock);
1001 	if (inode) {
1002 		wait_on_inode(inode);
1003 		return inode;
1004 	}
1005 
1006 	inode = alloc_inode(sb);
1007 	if (inode) {
1008 		struct inode *old;
1009 
1010 		spin_lock(&inode_hash_lock);
1011 		/* We released the lock, so.. */
1012 		old = find_inode_fast(sb, head, ino);
1013 		if (!old) {
1014 			inode->i_ino = ino;
1015 			spin_lock(&inode->i_lock);
1016 			inode->i_state = I_NEW;
1017 			hlist_add_head(&inode->i_hash, head);
1018 			spin_unlock(&inode->i_lock);
1019 			inode_sb_list_add(inode);
1020 			spin_unlock(&inode_hash_lock);
1021 
1022 			/* Return the locked inode with I_NEW set, the
1023 			 * caller is responsible for filling in the contents
1024 			 */
1025 			return inode;
1026 		}
1027 
1028 		/*
1029 		 * Uhhuh, somebody else created the same inode under
1030 		 * us. Use the old inode instead of the one we just
1031 		 * allocated.
1032 		 */
1033 		spin_unlock(&inode_hash_lock);
1034 		destroy_inode(inode);
1035 		inode = old;
1036 		wait_on_inode(inode);
1037 	}
1038 	return inode;
1039 }
1040 EXPORT_SYMBOL(iget_locked);
1041 
1042 /*
1043  * search the inode cache for a matching inode number.
1044  * If we find one, then the inode number we are trying to
1045  * allocate is not unique and so we should not use it.
1046  *
1047  * Returns 1 if the inode number is unique, 0 if it is not.
1048  */
1049 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1050 {
1051 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1052 	struct hlist_node *node;
1053 	struct inode *inode;
1054 
1055 	spin_lock(&inode_hash_lock);
1056 	hlist_for_each_entry(inode, node, b, i_hash) {
1057 		if (inode->i_ino == ino && inode->i_sb == sb) {
1058 			spin_unlock(&inode_hash_lock);
1059 			return 0;
1060 		}
1061 	}
1062 	spin_unlock(&inode_hash_lock);
1063 
1064 	return 1;
1065 }
1066 
1067 /**
1068  *	iunique - get a unique inode number
1069  *	@sb: superblock
1070  *	@max_reserved: highest reserved inode number
1071  *
1072  *	Obtain an inode number that is unique on the system for a given
1073  *	superblock. This is used by file systems that have no natural
1074  *	permanent inode numbering system. An inode number is returned that
1075  *	is higher than the reserved limit but unique.
1076  *
1077  *	BUGS:
1078  *	With a large number of inodes live on the file system this function
1079  *	currently becomes quite slow.
1080  */
1081 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1082 {
1083 	/*
1084 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1085 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1086 	 * here to attempt to avoid that.
1087 	 */
1088 	static DEFINE_SPINLOCK(iunique_lock);
1089 	static unsigned int counter;
1090 	ino_t res;
1091 
1092 	spin_lock(&iunique_lock);
1093 	do {
1094 		if (counter <= max_reserved)
1095 			counter = max_reserved + 1;
1096 		res = counter++;
1097 	} while (!test_inode_iunique(sb, res));
1098 	spin_unlock(&iunique_lock);
1099 
1100 	return res;
1101 }
1102 EXPORT_SYMBOL(iunique);
1103 
1104 struct inode *igrab(struct inode *inode)
1105 {
1106 	spin_lock(&inode->i_lock);
1107 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1108 		__iget(inode);
1109 		spin_unlock(&inode->i_lock);
1110 	} else {
1111 		spin_unlock(&inode->i_lock);
1112 		/*
1113 		 * Handle the case where s_op->clear_inode is not been
1114 		 * called yet, and somebody is calling igrab
1115 		 * while the inode is getting freed.
1116 		 */
1117 		inode = NULL;
1118 	}
1119 	return inode;
1120 }
1121 EXPORT_SYMBOL(igrab);
1122 
1123 /**
1124  * ilookup5_nowait - search for an inode in the inode cache
1125  * @sb:		super block of file system to search
1126  * @hashval:	hash value (usually inode number) to search for
1127  * @test:	callback used for comparisons between inodes
1128  * @data:	opaque data pointer to pass to @test
1129  *
1130  * Search for the inode specified by @hashval and @data in the inode cache.
1131  * If the inode is in the cache, the inode is returned with an incremented
1132  * reference count.
1133  *
1134  * Note: I_NEW is not waited upon so you have to be very careful what you do
1135  * with the returned inode.  You probably should be using ilookup5() instead.
1136  *
1137  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1138  */
1139 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1140 		int (*test)(struct inode *, void *), void *data)
1141 {
1142 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1143 	struct inode *inode;
1144 
1145 	spin_lock(&inode_hash_lock);
1146 	inode = find_inode(sb, head, test, data);
1147 	spin_unlock(&inode_hash_lock);
1148 
1149 	return inode;
1150 }
1151 EXPORT_SYMBOL(ilookup5_nowait);
1152 
1153 /**
1154  * ilookup5 - search for an inode in the inode cache
1155  * @sb:		super block of file system to search
1156  * @hashval:	hash value (usually inode number) to search for
1157  * @test:	callback used for comparisons between inodes
1158  * @data:	opaque data pointer to pass to @test
1159  *
1160  * Search for the inode specified by @hashval and @data in the inode cache,
1161  * and if the inode is in the cache, return the inode with an incremented
1162  * reference count.  Waits on I_NEW before returning the inode.
1163  * returned with an incremented reference count.
1164  *
1165  * This is a generalized version of ilookup() for file systems where the
1166  * inode number is not sufficient for unique identification of an inode.
1167  *
1168  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1169  */
1170 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1171 		int (*test)(struct inode *, void *), void *data)
1172 {
1173 	struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1174 
1175 	if (inode)
1176 		wait_on_inode(inode);
1177 	return inode;
1178 }
1179 EXPORT_SYMBOL(ilookup5);
1180 
1181 /**
1182  * ilookup - search for an inode in the inode cache
1183  * @sb:		super block of file system to search
1184  * @ino:	inode number to search for
1185  *
1186  * Search for the inode @ino in the inode cache, and if the inode is in the
1187  * cache, the inode is returned with an incremented reference count.
1188  */
1189 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1190 {
1191 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1192 	struct inode *inode;
1193 
1194 	spin_lock(&inode_hash_lock);
1195 	inode = find_inode_fast(sb, head, ino);
1196 	spin_unlock(&inode_hash_lock);
1197 
1198 	if (inode)
1199 		wait_on_inode(inode);
1200 	return inode;
1201 }
1202 EXPORT_SYMBOL(ilookup);
1203 
1204 int insert_inode_locked(struct inode *inode)
1205 {
1206 	struct super_block *sb = inode->i_sb;
1207 	ino_t ino = inode->i_ino;
1208 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1209 
1210 	while (1) {
1211 		struct hlist_node *node;
1212 		struct inode *old = NULL;
1213 		spin_lock(&inode_hash_lock);
1214 		hlist_for_each_entry(old, node, head, i_hash) {
1215 			if (old->i_ino != ino)
1216 				continue;
1217 			if (old->i_sb != sb)
1218 				continue;
1219 			spin_lock(&old->i_lock);
1220 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1221 				spin_unlock(&old->i_lock);
1222 				continue;
1223 			}
1224 			break;
1225 		}
1226 		if (likely(!node)) {
1227 			spin_lock(&inode->i_lock);
1228 			inode->i_state |= I_NEW;
1229 			hlist_add_head(&inode->i_hash, head);
1230 			spin_unlock(&inode->i_lock);
1231 			spin_unlock(&inode_hash_lock);
1232 			return 0;
1233 		}
1234 		__iget(old);
1235 		spin_unlock(&old->i_lock);
1236 		spin_unlock(&inode_hash_lock);
1237 		wait_on_inode(old);
1238 		if (unlikely(!inode_unhashed(old))) {
1239 			iput(old);
1240 			return -EBUSY;
1241 		}
1242 		iput(old);
1243 	}
1244 }
1245 EXPORT_SYMBOL(insert_inode_locked);
1246 
1247 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1248 		int (*test)(struct inode *, void *), void *data)
1249 {
1250 	struct super_block *sb = inode->i_sb;
1251 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1252 
1253 	while (1) {
1254 		struct hlist_node *node;
1255 		struct inode *old = NULL;
1256 
1257 		spin_lock(&inode_hash_lock);
1258 		hlist_for_each_entry(old, node, head, i_hash) {
1259 			if (old->i_sb != sb)
1260 				continue;
1261 			if (!test(old, data))
1262 				continue;
1263 			spin_lock(&old->i_lock);
1264 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1265 				spin_unlock(&old->i_lock);
1266 				continue;
1267 			}
1268 			break;
1269 		}
1270 		if (likely(!node)) {
1271 			spin_lock(&inode->i_lock);
1272 			inode->i_state |= I_NEW;
1273 			hlist_add_head(&inode->i_hash, head);
1274 			spin_unlock(&inode->i_lock);
1275 			spin_unlock(&inode_hash_lock);
1276 			return 0;
1277 		}
1278 		__iget(old);
1279 		spin_unlock(&old->i_lock);
1280 		spin_unlock(&inode_hash_lock);
1281 		wait_on_inode(old);
1282 		if (unlikely(!inode_unhashed(old))) {
1283 			iput(old);
1284 			return -EBUSY;
1285 		}
1286 		iput(old);
1287 	}
1288 }
1289 EXPORT_SYMBOL(insert_inode_locked4);
1290 
1291 
1292 int generic_delete_inode(struct inode *inode)
1293 {
1294 	return 1;
1295 }
1296 EXPORT_SYMBOL(generic_delete_inode);
1297 
1298 /*
1299  * Normal UNIX filesystem behaviour: delete the
1300  * inode when the usage count drops to zero, and
1301  * i_nlink is zero.
1302  */
1303 int generic_drop_inode(struct inode *inode)
1304 {
1305 	return !inode->i_nlink || inode_unhashed(inode);
1306 }
1307 EXPORT_SYMBOL_GPL(generic_drop_inode);
1308 
1309 /*
1310  * Called when we're dropping the last reference
1311  * to an inode.
1312  *
1313  * Call the FS "drop_inode()" function, defaulting to
1314  * the legacy UNIX filesystem behaviour.  If it tells
1315  * us to evict inode, do so.  Otherwise, retain inode
1316  * in cache if fs is alive, sync and evict if fs is
1317  * shutting down.
1318  */
1319 static void iput_final(struct inode *inode)
1320 {
1321 	struct super_block *sb = inode->i_sb;
1322 	const struct super_operations *op = inode->i_sb->s_op;
1323 	int drop;
1324 
1325 	WARN_ON(inode->i_state & I_NEW);
1326 
1327 	if (op && op->drop_inode)
1328 		drop = op->drop_inode(inode);
1329 	else
1330 		drop = generic_drop_inode(inode);
1331 
1332 	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1333 		inode->i_state |= I_REFERENCED;
1334 		if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1335 			inode_lru_list_add(inode);
1336 		spin_unlock(&inode->i_lock);
1337 		return;
1338 	}
1339 
1340 	if (!drop) {
1341 		inode->i_state |= I_WILL_FREE;
1342 		spin_unlock(&inode->i_lock);
1343 		write_inode_now(inode, 1);
1344 		spin_lock(&inode->i_lock);
1345 		WARN_ON(inode->i_state & I_NEW);
1346 		inode->i_state &= ~I_WILL_FREE;
1347 	}
1348 
1349 	inode->i_state |= I_FREEING;
1350 	inode_lru_list_del(inode);
1351 	spin_unlock(&inode->i_lock);
1352 
1353 	evict(inode);
1354 }
1355 
1356 /**
1357  *	iput	- put an inode
1358  *	@inode: inode to put
1359  *
1360  *	Puts an inode, dropping its usage count. If the inode use count hits
1361  *	zero, the inode is then freed and may also be destroyed.
1362  *
1363  *	Consequently, iput() can sleep.
1364  */
1365 void iput(struct inode *inode)
1366 {
1367 	if (inode) {
1368 		BUG_ON(inode->i_state & I_CLEAR);
1369 
1370 		if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1371 			iput_final(inode);
1372 	}
1373 }
1374 EXPORT_SYMBOL(iput);
1375 
1376 /**
1377  *	bmap	- find a block number in a file
1378  *	@inode: inode of file
1379  *	@block: block to find
1380  *
1381  *	Returns the block number on the device holding the inode that
1382  *	is the disk block number for the block of the file requested.
1383  *	That is, asked for block 4 of inode 1 the function will return the
1384  *	disk block relative to the disk start that holds that block of the
1385  *	file.
1386  */
1387 sector_t bmap(struct inode *inode, sector_t block)
1388 {
1389 	sector_t res = 0;
1390 	if (inode->i_mapping->a_ops->bmap)
1391 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1392 	return res;
1393 }
1394 EXPORT_SYMBOL(bmap);
1395 
1396 /*
1397  * With relative atime, only update atime if the previous atime is
1398  * earlier than either the ctime or mtime or if at least a day has
1399  * passed since the last atime update.
1400  */
1401 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1402 			     struct timespec now)
1403 {
1404 
1405 	if (!(mnt->mnt_flags & MNT_RELATIME))
1406 		return 1;
1407 	/*
1408 	 * Is mtime younger than atime? If yes, update atime:
1409 	 */
1410 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1411 		return 1;
1412 	/*
1413 	 * Is ctime younger than atime? If yes, update atime:
1414 	 */
1415 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1416 		return 1;
1417 
1418 	/*
1419 	 * Is the previous atime value older than a day? If yes,
1420 	 * update atime:
1421 	 */
1422 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1423 		return 1;
1424 	/*
1425 	 * Good, we can skip the atime update:
1426 	 */
1427 	return 0;
1428 }
1429 
1430 /**
1431  *	touch_atime	-	update the access time
1432  *	@mnt: mount the inode is accessed on
1433  *	@dentry: dentry accessed
1434  *
1435  *	Update the accessed time on an inode and mark it for writeback.
1436  *	This function automatically handles read only file systems and media,
1437  *	as well as the "noatime" flag and inode specific "noatime" markers.
1438  */
1439 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1440 {
1441 	struct inode *inode = dentry->d_inode;
1442 	struct timespec now;
1443 
1444 	if (inode->i_flags & S_NOATIME)
1445 		return;
1446 	if (IS_NOATIME(inode))
1447 		return;
1448 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1449 		return;
1450 
1451 	if (mnt->mnt_flags & MNT_NOATIME)
1452 		return;
1453 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1454 		return;
1455 
1456 	now = current_fs_time(inode->i_sb);
1457 
1458 	if (!relatime_need_update(mnt, inode, now))
1459 		return;
1460 
1461 	if (timespec_equal(&inode->i_atime, &now))
1462 		return;
1463 
1464 	if (mnt_want_write(mnt))
1465 		return;
1466 
1467 	inode->i_atime = now;
1468 	mark_inode_dirty_sync(inode);
1469 	mnt_drop_write(mnt);
1470 }
1471 EXPORT_SYMBOL(touch_atime);
1472 
1473 /**
1474  *	file_update_time	-	update mtime and ctime time
1475  *	@file: file accessed
1476  *
1477  *	Update the mtime and ctime members of an inode and mark the inode
1478  *	for writeback.  Note that this function is meant exclusively for
1479  *	usage in the file write path of filesystems, and filesystems may
1480  *	choose to explicitly ignore update via this function with the
1481  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1482  *	timestamps are handled by the server.
1483  */
1484 
1485 void file_update_time(struct file *file)
1486 {
1487 	struct inode *inode = file->f_path.dentry->d_inode;
1488 	struct timespec now;
1489 	enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1490 
1491 	/* First try to exhaust all avenues to not sync */
1492 	if (IS_NOCMTIME(inode))
1493 		return;
1494 
1495 	now = current_fs_time(inode->i_sb);
1496 	if (!timespec_equal(&inode->i_mtime, &now))
1497 		sync_it = S_MTIME;
1498 
1499 	if (!timespec_equal(&inode->i_ctime, &now))
1500 		sync_it |= S_CTIME;
1501 
1502 	if (IS_I_VERSION(inode))
1503 		sync_it |= S_VERSION;
1504 
1505 	if (!sync_it)
1506 		return;
1507 
1508 	/* Finally allowed to write? Takes lock. */
1509 	if (mnt_want_write_file(file))
1510 		return;
1511 
1512 	/* Only change inode inside the lock region */
1513 	if (sync_it & S_VERSION)
1514 		inode_inc_iversion(inode);
1515 	if (sync_it & S_CTIME)
1516 		inode->i_ctime = now;
1517 	if (sync_it & S_MTIME)
1518 		inode->i_mtime = now;
1519 	mark_inode_dirty_sync(inode);
1520 	mnt_drop_write(file->f_path.mnt);
1521 }
1522 EXPORT_SYMBOL(file_update_time);
1523 
1524 int inode_needs_sync(struct inode *inode)
1525 {
1526 	if (IS_SYNC(inode))
1527 		return 1;
1528 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1529 		return 1;
1530 	return 0;
1531 }
1532 EXPORT_SYMBOL(inode_needs_sync);
1533 
1534 int inode_wait(void *word)
1535 {
1536 	schedule();
1537 	return 0;
1538 }
1539 EXPORT_SYMBOL(inode_wait);
1540 
1541 /*
1542  * If we try to find an inode in the inode hash while it is being
1543  * deleted, we have to wait until the filesystem completes its
1544  * deletion before reporting that it isn't found.  This function waits
1545  * until the deletion _might_ have completed.  Callers are responsible
1546  * to recheck inode state.
1547  *
1548  * It doesn't matter if I_NEW is not set initially, a call to
1549  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1550  * will DTRT.
1551  */
1552 static void __wait_on_freeing_inode(struct inode *inode)
1553 {
1554 	wait_queue_head_t *wq;
1555 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1556 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1557 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1558 	spin_unlock(&inode->i_lock);
1559 	spin_unlock(&inode_hash_lock);
1560 	schedule();
1561 	finish_wait(wq, &wait.wait);
1562 	spin_lock(&inode_hash_lock);
1563 }
1564 
1565 static __initdata unsigned long ihash_entries;
1566 static int __init set_ihash_entries(char *str)
1567 {
1568 	if (!str)
1569 		return 0;
1570 	ihash_entries = simple_strtoul(str, &str, 0);
1571 	return 1;
1572 }
1573 __setup("ihash_entries=", set_ihash_entries);
1574 
1575 /*
1576  * Initialize the waitqueues and inode hash table.
1577  */
1578 void __init inode_init_early(void)
1579 {
1580 	int loop;
1581 
1582 	/* If hashes are distributed across NUMA nodes, defer
1583 	 * hash allocation until vmalloc space is available.
1584 	 */
1585 	if (hashdist)
1586 		return;
1587 
1588 	inode_hashtable =
1589 		alloc_large_system_hash("Inode-cache",
1590 					sizeof(struct hlist_head),
1591 					ihash_entries,
1592 					14,
1593 					HASH_EARLY,
1594 					&i_hash_shift,
1595 					&i_hash_mask,
1596 					0);
1597 
1598 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1599 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1600 }
1601 
1602 void __init inode_init(void)
1603 {
1604 	int loop;
1605 
1606 	/* inode slab cache */
1607 	inode_cachep = kmem_cache_create("inode_cache",
1608 					 sizeof(struct inode),
1609 					 0,
1610 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1611 					 SLAB_MEM_SPREAD),
1612 					 init_once);
1613 	register_shrinker(&icache_shrinker);
1614 
1615 	/* Hash may have been set up in inode_init_early */
1616 	if (!hashdist)
1617 		return;
1618 
1619 	inode_hashtable =
1620 		alloc_large_system_hash("Inode-cache",
1621 					sizeof(struct hlist_head),
1622 					ihash_entries,
1623 					14,
1624 					0,
1625 					&i_hash_shift,
1626 					&i_hash_mask,
1627 					0);
1628 
1629 	for (loop = 0; loop < (1 << i_hash_shift); loop++)
1630 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1631 }
1632 
1633 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1634 {
1635 	inode->i_mode = mode;
1636 	if (S_ISCHR(mode)) {
1637 		inode->i_fop = &def_chr_fops;
1638 		inode->i_rdev = rdev;
1639 	} else if (S_ISBLK(mode)) {
1640 		inode->i_fop = &def_blk_fops;
1641 		inode->i_rdev = rdev;
1642 	} else if (S_ISFIFO(mode))
1643 		inode->i_fop = &def_fifo_fops;
1644 	else if (S_ISSOCK(mode))
1645 		inode->i_fop = &bad_sock_fops;
1646 	else
1647 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1648 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1649 				  inode->i_ino);
1650 }
1651 EXPORT_SYMBOL(init_special_inode);
1652 
1653 /**
1654  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1655  * @inode: New inode
1656  * @dir: Directory inode
1657  * @mode: mode of the new inode
1658  */
1659 void inode_init_owner(struct inode *inode, const struct inode *dir,
1660 			mode_t mode)
1661 {
1662 	inode->i_uid = current_fsuid();
1663 	if (dir && dir->i_mode & S_ISGID) {
1664 		inode->i_gid = dir->i_gid;
1665 		if (S_ISDIR(mode))
1666 			mode |= S_ISGID;
1667 	} else
1668 		inode->i_gid = current_fsgid();
1669 	inode->i_mode = mode;
1670 }
1671 EXPORT_SYMBOL(inode_init_owner);
1672 
1673 /**
1674  * inode_owner_or_capable - check current task permissions to inode
1675  * @inode: inode being checked
1676  *
1677  * Return true if current either has CAP_FOWNER to the inode, or
1678  * owns the file.
1679  */
1680 bool inode_owner_or_capable(const struct inode *inode)
1681 {
1682 	struct user_namespace *ns = inode_userns(inode);
1683 
1684 	if (current_user_ns() == ns && current_fsuid() == inode->i_uid)
1685 		return true;
1686 	if (ns_capable(ns, CAP_FOWNER))
1687 		return true;
1688 	return false;
1689 }
1690 EXPORT_SYMBOL(inode_owner_or_capable);
1691