1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) 1997 Linus Torvalds 4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 5 */ 6 #include <linux/export.h> 7 #include <linux/fs.h> 8 #include <linux/mm.h> 9 #include <linux/backing-dev.h> 10 #include <linux/hash.h> 11 #include <linux/swap.h> 12 #include <linux/security.h> 13 #include <linux/cdev.h> 14 #include <linux/memblock.h> 15 #include <linux/fsnotify.h> 16 #include <linux/mount.h> 17 #include <linux/posix_acl.h> 18 #include <linux/prefetch.h> 19 #include <linux/buffer_head.h> /* for inode_has_buffers */ 20 #include <linux/ratelimit.h> 21 #include <linux/list_lru.h> 22 #include <linux/iversion.h> 23 #include <trace/events/writeback.h> 24 #include "internal.h" 25 26 /* 27 * Inode locking rules: 28 * 29 * inode->i_lock protects: 30 * inode->i_state, inode->i_hash, __iget() 31 * Inode LRU list locks protect: 32 * inode->i_sb->s_inode_lru, inode->i_lru 33 * inode->i_sb->s_inode_list_lock protects: 34 * inode->i_sb->s_inodes, inode->i_sb_list 35 * bdi->wb.list_lock protects: 36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 37 * inode_hash_lock protects: 38 * inode_hashtable, inode->i_hash 39 * 40 * Lock ordering: 41 * 42 * inode->i_sb->s_inode_list_lock 43 * inode->i_lock 44 * Inode LRU list locks 45 * 46 * bdi->wb.list_lock 47 * inode->i_lock 48 * 49 * inode_hash_lock 50 * inode->i_sb->s_inode_list_lock 51 * inode->i_lock 52 * 53 * iunique_lock 54 * inode_hash_lock 55 */ 56 57 static unsigned int i_hash_mask __read_mostly; 58 static unsigned int i_hash_shift __read_mostly; 59 static struct hlist_head *inode_hashtable __read_mostly; 60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 61 62 /* 63 * Empty aops. Can be used for the cases where the user does not 64 * define any of the address_space operations. 65 */ 66 const struct address_space_operations empty_aops = { 67 }; 68 EXPORT_SYMBOL(empty_aops); 69 70 /* 71 * Statistics gathering.. 72 */ 73 struct inodes_stat_t inodes_stat; 74 75 static DEFINE_PER_CPU(unsigned long, nr_inodes); 76 static DEFINE_PER_CPU(unsigned long, nr_unused); 77 78 static struct kmem_cache *inode_cachep __read_mostly; 79 80 static long get_nr_inodes(void) 81 { 82 int i; 83 long sum = 0; 84 for_each_possible_cpu(i) 85 sum += per_cpu(nr_inodes, i); 86 return sum < 0 ? 0 : sum; 87 } 88 89 static inline long get_nr_inodes_unused(void) 90 { 91 int i; 92 long sum = 0; 93 for_each_possible_cpu(i) 94 sum += per_cpu(nr_unused, i); 95 return sum < 0 ? 0 : sum; 96 } 97 98 long get_nr_dirty_inodes(void) 99 { 100 /* not actually dirty inodes, but a wild approximation */ 101 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 102 return nr_dirty > 0 ? nr_dirty : 0; 103 } 104 105 /* 106 * Handle nr_inode sysctl 107 */ 108 #ifdef CONFIG_SYSCTL 109 int proc_nr_inodes(struct ctl_table *table, int write, 110 void *buffer, size_t *lenp, loff_t *ppos) 111 { 112 inodes_stat.nr_inodes = get_nr_inodes(); 113 inodes_stat.nr_unused = get_nr_inodes_unused(); 114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 115 } 116 #endif 117 118 static int no_open(struct inode *inode, struct file *file) 119 { 120 return -ENXIO; 121 } 122 123 /** 124 * inode_init_always - perform inode structure initialisation 125 * @sb: superblock inode belongs to 126 * @inode: inode to initialise 127 * 128 * These are initializations that need to be done on every inode 129 * allocation as the fields are not initialised by slab allocation. 130 */ 131 int inode_init_always(struct super_block *sb, struct inode *inode) 132 { 133 static const struct inode_operations empty_iops; 134 static const struct file_operations no_open_fops = {.open = no_open}; 135 struct address_space *const mapping = &inode->i_data; 136 137 inode->i_sb = sb; 138 inode->i_blkbits = sb->s_blocksize_bits; 139 inode->i_flags = 0; 140 atomic64_set(&inode->i_sequence, 0); 141 atomic_set(&inode->i_count, 1); 142 inode->i_op = &empty_iops; 143 inode->i_fop = &no_open_fops; 144 inode->i_ino = 0; 145 inode->__i_nlink = 1; 146 inode->i_opflags = 0; 147 if (sb->s_xattr) 148 inode->i_opflags |= IOP_XATTR; 149 i_uid_write(inode, 0); 150 i_gid_write(inode, 0); 151 atomic_set(&inode->i_writecount, 0); 152 inode->i_size = 0; 153 inode->i_write_hint = WRITE_LIFE_NOT_SET; 154 inode->i_blocks = 0; 155 inode->i_bytes = 0; 156 inode->i_generation = 0; 157 inode->i_pipe = NULL; 158 inode->i_cdev = NULL; 159 inode->i_link = NULL; 160 inode->i_dir_seq = 0; 161 inode->i_rdev = 0; 162 inode->dirtied_when = 0; 163 164 #ifdef CONFIG_CGROUP_WRITEBACK 165 inode->i_wb_frn_winner = 0; 166 inode->i_wb_frn_avg_time = 0; 167 inode->i_wb_frn_history = 0; 168 #endif 169 170 if (security_inode_alloc(inode)) 171 goto out; 172 spin_lock_init(&inode->i_lock); 173 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 174 175 init_rwsem(&inode->i_rwsem); 176 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 177 178 atomic_set(&inode->i_dio_count, 0); 179 180 mapping->a_ops = &empty_aops; 181 mapping->host = inode; 182 mapping->flags = 0; 183 if (sb->s_type->fs_flags & FS_THP_SUPPORT) 184 __set_bit(AS_THP_SUPPORT, &mapping->flags); 185 mapping->wb_err = 0; 186 atomic_set(&mapping->i_mmap_writable, 0); 187 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 188 atomic_set(&mapping->nr_thps, 0); 189 #endif 190 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 191 mapping->private_data = NULL; 192 mapping->writeback_index = 0; 193 __init_rwsem(&mapping->invalidate_lock, "mapping.invalidate_lock", 194 &sb->s_type->invalidate_lock_key); 195 inode->i_private = NULL; 196 inode->i_mapping = mapping; 197 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 198 #ifdef CONFIG_FS_POSIX_ACL 199 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 200 #endif 201 202 #ifdef CONFIG_FSNOTIFY 203 inode->i_fsnotify_mask = 0; 204 #endif 205 inode->i_flctx = NULL; 206 this_cpu_inc(nr_inodes); 207 208 return 0; 209 out: 210 return -ENOMEM; 211 } 212 EXPORT_SYMBOL(inode_init_always); 213 214 void free_inode_nonrcu(struct inode *inode) 215 { 216 kmem_cache_free(inode_cachep, inode); 217 } 218 EXPORT_SYMBOL(free_inode_nonrcu); 219 220 static void i_callback(struct rcu_head *head) 221 { 222 struct inode *inode = container_of(head, struct inode, i_rcu); 223 if (inode->free_inode) 224 inode->free_inode(inode); 225 else 226 free_inode_nonrcu(inode); 227 } 228 229 static struct inode *alloc_inode(struct super_block *sb) 230 { 231 const struct super_operations *ops = sb->s_op; 232 struct inode *inode; 233 234 if (ops->alloc_inode) 235 inode = ops->alloc_inode(sb); 236 else 237 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 238 239 if (!inode) 240 return NULL; 241 242 if (unlikely(inode_init_always(sb, inode))) { 243 if (ops->destroy_inode) { 244 ops->destroy_inode(inode); 245 if (!ops->free_inode) 246 return NULL; 247 } 248 inode->free_inode = ops->free_inode; 249 i_callback(&inode->i_rcu); 250 return NULL; 251 } 252 253 return inode; 254 } 255 256 void __destroy_inode(struct inode *inode) 257 { 258 BUG_ON(inode_has_buffers(inode)); 259 inode_detach_wb(inode); 260 security_inode_free(inode); 261 fsnotify_inode_delete(inode); 262 locks_free_lock_context(inode); 263 if (!inode->i_nlink) { 264 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 265 atomic_long_dec(&inode->i_sb->s_remove_count); 266 } 267 268 #ifdef CONFIG_FS_POSIX_ACL 269 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 270 posix_acl_release(inode->i_acl); 271 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 272 posix_acl_release(inode->i_default_acl); 273 #endif 274 this_cpu_dec(nr_inodes); 275 } 276 EXPORT_SYMBOL(__destroy_inode); 277 278 static void destroy_inode(struct inode *inode) 279 { 280 const struct super_operations *ops = inode->i_sb->s_op; 281 282 BUG_ON(!list_empty(&inode->i_lru)); 283 __destroy_inode(inode); 284 if (ops->destroy_inode) { 285 ops->destroy_inode(inode); 286 if (!ops->free_inode) 287 return; 288 } 289 inode->free_inode = ops->free_inode; 290 call_rcu(&inode->i_rcu, i_callback); 291 } 292 293 /** 294 * drop_nlink - directly drop an inode's link count 295 * @inode: inode 296 * 297 * This is a low-level filesystem helper to replace any 298 * direct filesystem manipulation of i_nlink. In cases 299 * where we are attempting to track writes to the 300 * filesystem, a decrement to zero means an imminent 301 * write when the file is truncated and actually unlinked 302 * on the filesystem. 303 */ 304 void drop_nlink(struct inode *inode) 305 { 306 WARN_ON(inode->i_nlink == 0); 307 inode->__i_nlink--; 308 if (!inode->i_nlink) 309 atomic_long_inc(&inode->i_sb->s_remove_count); 310 } 311 EXPORT_SYMBOL(drop_nlink); 312 313 /** 314 * clear_nlink - directly zero an inode's link count 315 * @inode: inode 316 * 317 * This is a low-level filesystem helper to replace any 318 * direct filesystem manipulation of i_nlink. See 319 * drop_nlink() for why we care about i_nlink hitting zero. 320 */ 321 void clear_nlink(struct inode *inode) 322 { 323 if (inode->i_nlink) { 324 inode->__i_nlink = 0; 325 atomic_long_inc(&inode->i_sb->s_remove_count); 326 } 327 } 328 EXPORT_SYMBOL(clear_nlink); 329 330 /** 331 * set_nlink - directly set an inode's link count 332 * @inode: inode 333 * @nlink: new nlink (should be non-zero) 334 * 335 * This is a low-level filesystem helper to replace any 336 * direct filesystem manipulation of i_nlink. 337 */ 338 void set_nlink(struct inode *inode, unsigned int nlink) 339 { 340 if (!nlink) { 341 clear_nlink(inode); 342 } else { 343 /* Yes, some filesystems do change nlink from zero to one */ 344 if (inode->i_nlink == 0) 345 atomic_long_dec(&inode->i_sb->s_remove_count); 346 347 inode->__i_nlink = nlink; 348 } 349 } 350 EXPORT_SYMBOL(set_nlink); 351 352 /** 353 * inc_nlink - directly increment an inode's link count 354 * @inode: inode 355 * 356 * This is a low-level filesystem helper to replace any 357 * direct filesystem manipulation of i_nlink. Currently, 358 * it is only here for parity with dec_nlink(). 359 */ 360 void inc_nlink(struct inode *inode) 361 { 362 if (unlikely(inode->i_nlink == 0)) { 363 WARN_ON(!(inode->i_state & I_LINKABLE)); 364 atomic_long_dec(&inode->i_sb->s_remove_count); 365 } 366 367 inode->__i_nlink++; 368 } 369 EXPORT_SYMBOL(inc_nlink); 370 371 static void __address_space_init_once(struct address_space *mapping) 372 { 373 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 374 init_rwsem(&mapping->i_mmap_rwsem); 375 INIT_LIST_HEAD(&mapping->private_list); 376 spin_lock_init(&mapping->private_lock); 377 mapping->i_mmap = RB_ROOT_CACHED; 378 } 379 380 void address_space_init_once(struct address_space *mapping) 381 { 382 memset(mapping, 0, sizeof(*mapping)); 383 __address_space_init_once(mapping); 384 } 385 EXPORT_SYMBOL(address_space_init_once); 386 387 /* 388 * These are initializations that only need to be done 389 * once, because the fields are idempotent across use 390 * of the inode, so let the slab aware of that. 391 */ 392 void inode_init_once(struct inode *inode) 393 { 394 memset(inode, 0, sizeof(*inode)); 395 INIT_HLIST_NODE(&inode->i_hash); 396 INIT_LIST_HEAD(&inode->i_devices); 397 INIT_LIST_HEAD(&inode->i_io_list); 398 INIT_LIST_HEAD(&inode->i_wb_list); 399 INIT_LIST_HEAD(&inode->i_lru); 400 __address_space_init_once(&inode->i_data); 401 i_size_ordered_init(inode); 402 } 403 EXPORT_SYMBOL(inode_init_once); 404 405 static void init_once(void *foo) 406 { 407 struct inode *inode = (struct inode *) foo; 408 409 inode_init_once(inode); 410 } 411 412 /* 413 * inode->i_lock must be held 414 */ 415 void __iget(struct inode *inode) 416 { 417 atomic_inc(&inode->i_count); 418 } 419 420 /* 421 * get additional reference to inode; caller must already hold one. 422 */ 423 void ihold(struct inode *inode) 424 { 425 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 426 } 427 EXPORT_SYMBOL(ihold); 428 429 static void inode_lru_list_add(struct inode *inode) 430 { 431 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) 432 this_cpu_inc(nr_unused); 433 else 434 inode->i_state |= I_REFERENCED; 435 } 436 437 /* 438 * Add inode to LRU if needed (inode is unused and clean). 439 * 440 * Needs inode->i_lock held. 441 */ 442 void inode_add_lru(struct inode *inode) 443 { 444 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC | 445 I_FREEING | I_WILL_FREE)) && 446 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE) 447 inode_lru_list_add(inode); 448 } 449 450 451 static void inode_lru_list_del(struct inode *inode) 452 { 453 454 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) 455 this_cpu_dec(nr_unused); 456 } 457 458 /** 459 * inode_sb_list_add - add inode to the superblock list of inodes 460 * @inode: inode to add 461 */ 462 void inode_sb_list_add(struct inode *inode) 463 { 464 spin_lock(&inode->i_sb->s_inode_list_lock); 465 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 466 spin_unlock(&inode->i_sb->s_inode_list_lock); 467 } 468 EXPORT_SYMBOL_GPL(inode_sb_list_add); 469 470 static inline void inode_sb_list_del(struct inode *inode) 471 { 472 if (!list_empty(&inode->i_sb_list)) { 473 spin_lock(&inode->i_sb->s_inode_list_lock); 474 list_del_init(&inode->i_sb_list); 475 spin_unlock(&inode->i_sb->s_inode_list_lock); 476 } 477 } 478 479 static unsigned long hash(struct super_block *sb, unsigned long hashval) 480 { 481 unsigned long tmp; 482 483 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 484 L1_CACHE_BYTES; 485 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 486 return tmp & i_hash_mask; 487 } 488 489 /** 490 * __insert_inode_hash - hash an inode 491 * @inode: unhashed inode 492 * @hashval: unsigned long value used to locate this object in the 493 * inode_hashtable. 494 * 495 * Add an inode to the inode hash for this superblock. 496 */ 497 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 498 { 499 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 500 501 spin_lock(&inode_hash_lock); 502 spin_lock(&inode->i_lock); 503 hlist_add_head_rcu(&inode->i_hash, b); 504 spin_unlock(&inode->i_lock); 505 spin_unlock(&inode_hash_lock); 506 } 507 EXPORT_SYMBOL(__insert_inode_hash); 508 509 /** 510 * __remove_inode_hash - remove an inode from the hash 511 * @inode: inode to unhash 512 * 513 * Remove an inode from the superblock. 514 */ 515 void __remove_inode_hash(struct inode *inode) 516 { 517 spin_lock(&inode_hash_lock); 518 spin_lock(&inode->i_lock); 519 hlist_del_init_rcu(&inode->i_hash); 520 spin_unlock(&inode->i_lock); 521 spin_unlock(&inode_hash_lock); 522 } 523 EXPORT_SYMBOL(__remove_inode_hash); 524 525 void clear_inode(struct inode *inode) 526 { 527 /* 528 * We have to cycle the i_pages lock here because reclaim can be in the 529 * process of removing the last page (in __delete_from_page_cache()) 530 * and we must not free the mapping under it. 531 */ 532 xa_lock_irq(&inode->i_data.i_pages); 533 BUG_ON(inode->i_data.nrpages); 534 /* 535 * Almost always, mapping_empty(&inode->i_data) here; but there are 536 * two known and long-standing ways in which nodes may get left behind 537 * (when deep radix-tree node allocation failed partway; or when THP 538 * collapse_file() failed). Until those two known cases are cleaned up, 539 * or a cleanup function is called here, do not BUG_ON(!mapping_empty), 540 * nor even WARN_ON(!mapping_empty). 541 */ 542 xa_unlock_irq(&inode->i_data.i_pages); 543 BUG_ON(!list_empty(&inode->i_data.private_list)); 544 BUG_ON(!(inode->i_state & I_FREEING)); 545 BUG_ON(inode->i_state & I_CLEAR); 546 BUG_ON(!list_empty(&inode->i_wb_list)); 547 /* don't need i_lock here, no concurrent mods to i_state */ 548 inode->i_state = I_FREEING | I_CLEAR; 549 } 550 EXPORT_SYMBOL(clear_inode); 551 552 /* 553 * Free the inode passed in, removing it from the lists it is still connected 554 * to. We remove any pages still attached to the inode and wait for any IO that 555 * is still in progress before finally destroying the inode. 556 * 557 * An inode must already be marked I_FREEING so that we avoid the inode being 558 * moved back onto lists if we race with other code that manipulates the lists 559 * (e.g. writeback_single_inode). The caller is responsible for setting this. 560 * 561 * An inode must already be removed from the LRU list before being evicted from 562 * the cache. This should occur atomically with setting the I_FREEING state 563 * flag, so no inodes here should ever be on the LRU when being evicted. 564 */ 565 static void evict(struct inode *inode) 566 { 567 const struct super_operations *op = inode->i_sb->s_op; 568 569 BUG_ON(!(inode->i_state & I_FREEING)); 570 BUG_ON(!list_empty(&inode->i_lru)); 571 572 if (!list_empty(&inode->i_io_list)) 573 inode_io_list_del(inode); 574 575 inode_sb_list_del(inode); 576 577 /* 578 * Wait for flusher thread to be done with the inode so that filesystem 579 * does not start destroying it while writeback is still running. Since 580 * the inode has I_FREEING set, flusher thread won't start new work on 581 * the inode. We just have to wait for running writeback to finish. 582 */ 583 inode_wait_for_writeback(inode); 584 585 if (op->evict_inode) { 586 op->evict_inode(inode); 587 } else { 588 truncate_inode_pages_final(&inode->i_data); 589 clear_inode(inode); 590 } 591 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 592 cd_forget(inode); 593 594 remove_inode_hash(inode); 595 596 spin_lock(&inode->i_lock); 597 wake_up_bit(&inode->i_state, __I_NEW); 598 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 599 spin_unlock(&inode->i_lock); 600 601 destroy_inode(inode); 602 } 603 604 /* 605 * dispose_list - dispose of the contents of a local list 606 * @head: the head of the list to free 607 * 608 * Dispose-list gets a local list with local inodes in it, so it doesn't 609 * need to worry about list corruption and SMP locks. 610 */ 611 static void dispose_list(struct list_head *head) 612 { 613 while (!list_empty(head)) { 614 struct inode *inode; 615 616 inode = list_first_entry(head, struct inode, i_lru); 617 list_del_init(&inode->i_lru); 618 619 evict(inode); 620 cond_resched(); 621 } 622 } 623 624 /** 625 * evict_inodes - evict all evictable inodes for a superblock 626 * @sb: superblock to operate on 627 * 628 * Make sure that no inodes with zero refcount are retained. This is 629 * called by superblock shutdown after having SB_ACTIVE flag removed, 630 * so any inode reaching zero refcount during or after that call will 631 * be immediately evicted. 632 */ 633 void evict_inodes(struct super_block *sb) 634 { 635 struct inode *inode, *next; 636 LIST_HEAD(dispose); 637 638 again: 639 spin_lock(&sb->s_inode_list_lock); 640 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 641 if (atomic_read(&inode->i_count)) 642 continue; 643 644 spin_lock(&inode->i_lock); 645 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 646 spin_unlock(&inode->i_lock); 647 continue; 648 } 649 650 inode->i_state |= I_FREEING; 651 inode_lru_list_del(inode); 652 spin_unlock(&inode->i_lock); 653 list_add(&inode->i_lru, &dispose); 654 655 /* 656 * We can have a ton of inodes to evict at unmount time given 657 * enough memory, check to see if we need to go to sleep for a 658 * bit so we don't livelock. 659 */ 660 if (need_resched()) { 661 spin_unlock(&sb->s_inode_list_lock); 662 cond_resched(); 663 dispose_list(&dispose); 664 goto again; 665 } 666 } 667 spin_unlock(&sb->s_inode_list_lock); 668 669 dispose_list(&dispose); 670 } 671 EXPORT_SYMBOL_GPL(evict_inodes); 672 673 /** 674 * invalidate_inodes - attempt to free all inodes on a superblock 675 * @sb: superblock to operate on 676 * @kill_dirty: flag to guide handling of dirty inodes 677 * 678 * Attempts to free all inodes for a given superblock. If there were any 679 * busy inodes return a non-zero value, else zero. 680 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 681 * them as busy. 682 */ 683 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 684 { 685 int busy = 0; 686 struct inode *inode, *next; 687 LIST_HEAD(dispose); 688 689 again: 690 spin_lock(&sb->s_inode_list_lock); 691 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 692 spin_lock(&inode->i_lock); 693 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 694 spin_unlock(&inode->i_lock); 695 continue; 696 } 697 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) { 698 spin_unlock(&inode->i_lock); 699 busy = 1; 700 continue; 701 } 702 if (atomic_read(&inode->i_count)) { 703 spin_unlock(&inode->i_lock); 704 busy = 1; 705 continue; 706 } 707 708 inode->i_state |= I_FREEING; 709 inode_lru_list_del(inode); 710 spin_unlock(&inode->i_lock); 711 list_add(&inode->i_lru, &dispose); 712 if (need_resched()) { 713 spin_unlock(&sb->s_inode_list_lock); 714 cond_resched(); 715 dispose_list(&dispose); 716 goto again; 717 } 718 } 719 spin_unlock(&sb->s_inode_list_lock); 720 721 dispose_list(&dispose); 722 723 return busy; 724 } 725 726 /* 727 * Isolate the inode from the LRU in preparation for freeing it. 728 * 729 * Any inodes which are pinned purely because of attached pagecache have their 730 * pagecache removed. If the inode has metadata buffers attached to 731 * mapping->private_list then try to remove them. 732 * 733 * If the inode has the I_REFERENCED flag set, then it means that it has been 734 * used recently - the flag is set in iput_final(). When we encounter such an 735 * inode, clear the flag and move it to the back of the LRU so it gets another 736 * pass through the LRU before it gets reclaimed. This is necessary because of 737 * the fact we are doing lazy LRU updates to minimise lock contention so the 738 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 739 * with this flag set because they are the inodes that are out of order. 740 */ 741 static enum lru_status inode_lru_isolate(struct list_head *item, 742 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 743 { 744 struct list_head *freeable = arg; 745 struct inode *inode = container_of(item, struct inode, i_lru); 746 747 /* 748 * we are inverting the lru lock/inode->i_lock here, so use a trylock. 749 * If we fail to get the lock, just skip it. 750 */ 751 if (!spin_trylock(&inode->i_lock)) 752 return LRU_SKIP; 753 754 /* 755 * Referenced or dirty inodes are still in use. Give them another pass 756 * through the LRU as we canot reclaim them now. 757 */ 758 if (atomic_read(&inode->i_count) || 759 (inode->i_state & ~I_REFERENCED)) { 760 list_lru_isolate(lru, &inode->i_lru); 761 spin_unlock(&inode->i_lock); 762 this_cpu_dec(nr_unused); 763 return LRU_REMOVED; 764 } 765 766 /* recently referenced inodes get one more pass */ 767 if (inode->i_state & I_REFERENCED) { 768 inode->i_state &= ~I_REFERENCED; 769 spin_unlock(&inode->i_lock); 770 return LRU_ROTATE; 771 } 772 773 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) { 774 __iget(inode); 775 spin_unlock(&inode->i_lock); 776 spin_unlock(lru_lock); 777 if (remove_inode_buffers(inode)) { 778 unsigned long reap; 779 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 780 if (current_is_kswapd()) 781 __count_vm_events(KSWAPD_INODESTEAL, reap); 782 else 783 __count_vm_events(PGINODESTEAL, reap); 784 if (current->reclaim_state) 785 current->reclaim_state->reclaimed_slab += reap; 786 } 787 iput(inode); 788 spin_lock(lru_lock); 789 return LRU_RETRY; 790 } 791 792 WARN_ON(inode->i_state & I_NEW); 793 inode->i_state |= I_FREEING; 794 list_lru_isolate_move(lru, &inode->i_lru, freeable); 795 spin_unlock(&inode->i_lock); 796 797 this_cpu_dec(nr_unused); 798 return LRU_REMOVED; 799 } 800 801 /* 802 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 803 * This is called from the superblock shrinker function with a number of inodes 804 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 805 * then are freed outside inode_lock by dispose_list(). 806 */ 807 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 808 { 809 LIST_HEAD(freeable); 810 long freed; 811 812 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 813 inode_lru_isolate, &freeable); 814 dispose_list(&freeable); 815 return freed; 816 } 817 818 static void __wait_on_freeing_inode(struct inode *inode); 819 /* 820 * Called with the inode lock held. 821 */ 822 static struct inode *find_inode(struct super_block *sb, 823 struct hlist_head *head, 824 int (*test)(struct inode *, void *), 825 void *data) 826 { 827 struct inode *inode = NULL; 828 829 repeat: 830 hlist_for_each_entry(inode, head, i_hash) { 831 if (inode->i_sb != sb) 832 continue; 833 if (!test(inode, data)) 834 continue; 835 spin_lock(&inode->i_lock); 836 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 837 __wait_on_freeing_inode(inode); 838 goto repeat; 839 } 840 if (unlikely(inode->i_state & I_CREATING)) { 841 spin_unlock(&inode->i_lock); 842 return ERR_PTR(-ESTALE); 843 } 844 __iget(inode); 845 spin_unlock(&inode->i_lock); 846 return inode; 847 } 848 return NULL; 849 } 850 851 /* 852 * find_inode_fast is the fast path version of find_inode, see the comment at 853 * iget_locked for details. 854 */ 855 static struct inode *find_inode_fast(struct super_block *sb, 856 struct hlist_head *head, unsigned long ino) 857 { 858 struct inode *inode = NULL; 859 860 repeat: 861 hlist_for_each_entry(inode, head, i_hash) { 862 if (inode->i_ino != ino) 863 continue; 864 if (inode->i_sb != sb) 865 continue; 866 spin_lock(&inode->i_lock); 867 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 868 __wait_on_freeing_inode(inode); 869 goto repeat; 870 } 871 if (unlikely(inode->i_state & I_CREATING)) { 872 spin_unlock(&inode->i_lock); 873 return ERR_PTR(-ESTALE); 874 } 875 __iget(inode); 876 spin_unlock(&inode->i_lock); 877 return inode; 878 } 879 return NULL; 880 } 881 882 /* 883 * Each cpu owns a range of LAST_INO_BATCH numbers. 884 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 885 * to renew the exhausted range. 886 * 887 * This does not significantly increase overflow rate because every CPU can 888 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 889 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 890 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 891 * overflow rate by 2x, which does not seem too significant. 892 * 893 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 894 * error if st_ino won't fit in target struct field. Use 32bit counter 895 * here to attempt to avoid that. 896 */ 897 #define LAST_INO_BATCH 1024 898 static DEFINE_PER_CPU(unsigned int, last_ino); 899 900 unsigned int get_next_ino(void) 901 { 902 unsigned int *p = &get_cpu_var(last_ino); 903 unsigned int res = *p; 904 905 #ifdef CONFIG_SMP 906 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 907 static atomic_t shared_last_ino; 908 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 909 910 res = next - LAST_INO_BATCH; 911 } 912 #endif 913 914 res++; 915 /* get_next_ino should not provide a 0 inode number */ 916 if (unlikely(!res)) 917 res++; 918 *p = res; 919 put_cpu_var(last_ino); 920 return res; 921 } 922 EXPORT_SYMBOL(get_next_ino); 923 924 /** 925 * new_inode_pseudo - obtain an inode 926 * @sb: superblock 927 * 928 * Allocates a new inode for given superblock. 929 * Inode wont be chained in superblock s_inodes list 930 * This means : 931 * - fs can't be unmount 932 * - quotas, fsnotify, writeback can't work 933 */ 934 struct inode *new_inode_pseudo(struct super_block *sb) 935 { 936 struct inode *inode = alloc_inode(sb); 937 938 if (inode) { 939 spin_lock(&inode->i_lock); 940 inode->i_state = 0; 941 spin_unlock(&inode->i_lock); 942 INIT_LIST_HEAD(&inode->i_sb_list); 943 } 944 return inode; 945 } 946 947 /** 948 * new_inode - obtain an inode 949 * @sb: superblock 950 * 951 * Allocates a new inode for given superblock. The default gfp_mask 952 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 953 * If HIGHMEM pages are unsuitable or it is known that pages allocated 954 * for the page cache are not reclaimable or migratable, 955 * mapping_set_gfp_mask() must be called with suitable flags on the 956 * newly created inode's mapping 957 * 958 */ 959 struct inode *new_inode(struct super_block *sb) 960 { 961 struct inode *inode; 962 963 spin_lock_prefetch(&sb->s_inode_list_lock); 964 965 inode = new_inode_pseudo(sb); 966 if (inode) 967 inode_sb_list_add(inode); 968 return inode; 969 } 970 EXPORT_SYMBOL(new_inode); 971 972 #ifdef CONFIG_DEBUG_LOCK_ALLOC 973 void lockdep_annotate_inode_mutex_key(struct inode *inode) 974 { 975 if (S_ISDIR(inode->i_mode)) { 976 struct file_system_type *type = inode->i_sb->s_type; 977 978 /* Set new key only if filesystem hasn't already changed it */ 979 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 980 /* 981 * ensure nobody is actually holding i_mutex 982 */ 983 // mutex_destroy(&inode->i_mutex); 984 init_rwsem(&inode->i_rwsem); 985 lockdep_set_class(&inode->i_rwsem, 986 &type->i_mutex_dir_key); 987 } 988 } 989 } 990 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 991 #endif 992 993 /** 994 * unlock_new_inode - clear the I_NEW state and wake up any waiters 995 * @inode: new inode to unlock 996 * 997 * Called when the inode is fully initialised to clear the new state of the 998 * inode and wake up anyone waiting for the inode to finish initialisation. 999 */ 1000 void unlock_new_inode(struct inode *inode) 1001 { 1002 lockdep_annotate_inode_mutex_key(inode); 1003 spin_lock(&inode->i_lock); 1004 WARN_ON(!(inode->i_state & I_NEW)); 1005 inode->i_state &= ~I_NEW & ~I_CREATING; 1006 smp_mb(); 1007 wake_up_bit(&inode->i_state, __I_NEW); 1008 spin_unlock(&inode->i_lock); 1009 } 1010 EXPORT_SYMBOL(unlock_new_inode); 1011 1012 void discard_new_inode(struct inode *inode) 1013 { 1014 lockdep_annotate_inode_mutex_key(inode); 1015 spin_lock(&inode->i_lock); 1016 WARN_ON(!(inode->i_state & I_NEW)); 1017 inode->i_state &= ~I_NEW; 1018 smp_mb(); 1019 wake_up_bit(&inode->i_state, __I_NEW); 1020 spin_unlock(&inode->i_lock); 1021 iput(inode); 1022 } 1023 EXPORT_SYMBOL(discard_new_inode); 1024 1025 /** 1026 * lock_two_nondirectories - take two i_mutexes on non-directory objects 1027 * 1028 * Lock any non-NULL argument that is not a directory. 1029 * Zero, one or two objects may be locked by this function. 1030 * 1031 * @inode1: first inode to lock 1032 * @inode2: second inode to lock 1033 */ 1034 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1035 { 1036 if (inode1 > inode2) 1037 swap(inode1, inode2); 1038 1039 if (inode1 && !S_ISDIR(inode1->i_mode)) 1040 inode_lock(inode1); 1041 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 1042 inode_lock_nested(inode2, I_MUTEX_NONDIR2); 1043 } 1044 EXPORT_SYMBOL(lock_two_nondirectories); 1045 1046 /** 1047 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1048 * @inode1: first inode to unlock 1049 * @inode2: second inode to unlock 1050 */ 1051 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1052 { 1053 if (inode1 && !S_ISDIR(inode1->i_mode)) 1054 inode_unlock(inode1); 1055 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 1056 inode_unlock(inode2); 1057 } 1058 EXPORT_SYMBOL(unlock_two_nondirectories); 1059 1060 /** 1061 * inode_insert5 - obtain an inode from a mounted file system 1062 * @inode: pre-allocated inode to use for insert to cache 1063 * @hashval: hash value (usually inode number) to get 1064 * @test: callback used for comparisons between inodes 1065 * @set: callback used to initialize a new struct inode 1066 * @data: opaque data pointer to pass to @test and @set 1067 * 1068 * Search for the inode specified by @hashval and @data in the inode cache, 1069 * and if present it is return it with an increased reference count. This is 1070 * a variant of iget5_locked() for callers that don't want to fail on memory 1071 * allocation of inode. 1072 * 1073 * If the inode is not in cache, insert the pre-allocated inode to cache and 1074 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1075 * to fill it in before unlocking it via unlock_new_inode(). 1076 * 1077 * Note both @test and @set are called with the inode_hash_lock held, so can't 1078 * sleep. 1079 */ 1080 struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1081 int (*test)(struct inode *, void *), 1082 int (*set)(struct inode *, void *), void *data) 1083 { 1084 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1085 struct inode *old; 1086 bool creating = inode->i_state & I_CREATING; 1087 1088 again: 1089 spin_lock(&inode_hash_lock); 1090 old = find_inode(inode->i_sb, head, test, data); 1091 if (unlikely(old)) { 1092 /* 1093 * Uhhuh, somebody else created the same inode under us. 1094 * Use the old inode instead of the preallocated one. 1095 */ 1096 spin_unlock(&inode_hash_lock); 1097 if (IS_ERR(old)) 1098 return NULL; 1099 wait_on_inode(old); 1100 if (unlikely(inode_unhashed(old))) { 1101 iput(old); 1102 goto again; 1103 } 1104 return old; 1105 } 1106 1107 if (set && unlikely(set(inode, data))) { 1108 inode = NULL; 1109 goto unlock; 1110 } 1111 1112 /* 1113 * Return the locked inode with I_NEW set, the 1114 * caller is responsible for filling in the contents 1115 */ 1116 spin_lock(&inode->i_lock); 1117 inode->i_state |= I_NEW; 1118 hlist_add_head_rcu(&inode->i_hash, head); 1119 spin_unlock(&inode->i_lock); 1120 if (!creating) 1121 inode_sb_list_add(inode); 1122 unlock: 1123 spin_unlock(&inode_hash_lock); 1124 1125 return inode; 1126 } 1127 EXPORT_SYMBOL(inode_insert5); 1128 1129 /** 1130 * iget5_locked - obtain an inode from a mounted file system 1131 * @sb: super block of file system 1132 * @hashval: hash value (usually inode number) to get 1133 * @test: callback used for comparisons between inodes 1134 * @set: callback used to initialize a new struct inode 1135 * @data: opaque data pointer to pass to @test and @set 1136 * 1137 * Search for the inode specified by @hashval and @data in the inode cache, 1138 * and if present it is return it with an increased reference count. This is 1139 * a generalized version of iget_locked() for file systems where the inode 1140 * number is not sufficient for unique identification of an inode. 1141 * 1142 * If the inode is not in cache, allocate a new inode and return it locked, 1143 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1144 * before unlocking it via unlock_new_inode(). 1145 * 1146 * Note both @test and @set are called with the inode_hash_lock held, so can't 1147 * sleep. 1148 */ 1149 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1150 int (*test)(struct inode *, void *), 1151 int (*set)(struct inode *, void *), void *data) 1152 { 1153 struct inode *inode = ilookup5(sb, hashval, test, data); 1154 1155 if (!inode) { 1156 struct inode *new = alloc_inode(sb); 1157 1158 if (new) { 1159 new->i_state = 0; 1160 inode = inode_insert5(new, hashval, test, set, data); 1161 if (unlikely(inode != new)) 1162 destroy_inode(new); 1163 } 1164 } 1165 return inode; 1166 } 1167 EXPORT_SYMBOL(iget5_locked); 1168 1169 /** 1170 * iget_locked - obtain an inode from a mounted file system 1171 * @sb: super block of file system 1172 * @ino: inode number to get 1173 * 1174 * Search for the inode specified by @ino in the inode cache and if present 1175 * return it with an increased reference count. This is for file systems 1176 * where the inode number is sufficient for unique identification of an inode. 1177 * 1178 * If the inode is not in cache, allocate a new inode and return it locked, 1179 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1180 * before unlocking it via unlock_new_inode(). 1181 */ 1182 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1183 { 1184 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1185 struct inode *inode; 1186 again: 1187 spin_lock(&inode_hash_lock); 1188 inode = find_inode_fast(sb, head, ino); 1189 spin_unlock(&inode_hash_lock); 1190 if (inode) { 1191 if (IS_ERR(inode)) 1192 return NULL; 1193 wait_on_inode(inode); 1194 if (unlikely(inode_unhashed(inode))) { 1195 iput(inode); 1196 goto again; 1197 } 1198 return inode; 1199 } 1200 1201 inode = alloc_inode(sb); 1202 if (inode) { 1203 struct inode *old; 1204 1205 spin_lock(&inode_hash_lock); 1206 /* We released the lock, so.. */ 1207 old = find_inode_fast(sb, head, ino); 1208 if (!old) { 1209 inode->i_ino = ino; 1210 spin_lock(&inode->i_lock); 1211 inode->i_state = I_NEW; 1212 hlist_add_head_rcu(&inode->i_hash, head); 1213 spin_unlock(&inode->i_lock); 1214 inode_sb_list_add(inode); 1215 spin_unlock(&inode_hash_lock); 1216 1217 /* Return the locked inode with I_NEW set, the 1218 * caller is responsible for filling in the contents 1219 */ 1220 return inode; 1221 } 1222 1223 /* 1224 * Uhhuh, somebody else created the same inode under 1225 * us. Use the old inode instead of the one we just 1226 * allocated. 1227 */ 1228 spin_unlock(&inode_hash_lock); 1229 destroy_inode(inode); 1230 if (IS_ERR(old)) 1231 return NULL; 1232 inode = old; 1233 wait_on_inode(inode); 1234 if (unlikely(inode_unhashed(inode))) { 1235 iput(inode); 1236 goto again; 1237 } 1238 } 1239 return inode; 1240 } 1241 EXPORT_SYMBOL(iget_locked); 1242 1243 /* 1244 * search the inode cache for a matching inode number. 1245 * If we find one, then the inode number we are trying to 1246 * allocate is not unique and so we should not use it. 1247 * 1248 * Returns 1 if the inode number is unique, 0 if it is not. 1249 */ 1250 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1251 { 1252 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1253 struct inode *inode; 1254 1255 hlist_for_each_entry_rcu(inode, b, i_hash) { 1256 if (inode->i_ino == ino && inode->i_sb == sb) 1257 return 0; 1258 } 1259 return 1; 1260 } 1261 1262 /** 1263 * iunique - get a unique inode number 1264 * @sb: superblock 1265 * @max_reserved: highest reserved inode number 1266 * 1267 * Obtain an inode number that is unique on the system for a given 1268 * superblock. This is used by file systems that have no natural 1269 * permanent inode numbering system. An inode number is returned that 1270 * is higher than the reserved limit but unique. 1271 * 1272 * BUGS: 1273 * With a large number of inodes live on the file system this function 1274 * currently becomes quite slow. 1275 */ 1276 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1277 { 1278 /* 1279 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1280 * error if st_ino won't fit in target struct field. Use 32bit counter 1281 * here to attempt to avoid that. 1282 */ 1283 static DEFINE_SPINLOCK(iunique_lock); 1284 static unsigned int counter; 1285 ino_t res; 1286 1287 rcu_read_lock(); 1288 spin_lock(&iunique_lock); 1289 do { 1290 if (counter <= max_reserved) 1291 counter = max_reserved + 1; 1292 res = counter++; 1293 } while (!test_inode_iunique(sb, res)); 1294 spin_unlock(&iunique_lock); 1295 rcu_read_unlock(); 1296 1297 return res; 1298 } 1299 EXPORT_SYMBOL(iunique); 1300 1301 struct inode *igrab(struct inode *inode) 1302 { 1303 spin_lock(&inode->i_lock); 1304 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1305 __iget(inode); 1306 spin_unlock(&inode->i_lock); 1307 } else { 1308 spin_unlock(&inode->i_lock); 1309 /* 1310 * Handle the case where s_op->clear_inode is not been 1311 * called yet, and somebody is calling igrab 1312 * while the inode is getting freed. 1313 */ 1314 inode = NULL; 1315 } 1316 return inode; 1317 } 1318 EXPORT_SYMBOL(igrab); 1319 1320 /** 1321 * ilookup5_nowait - search for an inode in the inode cache 1322 * @sb: super block of file system to search 1323 * @hashval: hash value (usually inode number) to search for 1324 * @test: callback used for comparisons between inodes 1325 * @data: opaque data pointer to pass to @test 1326 * 1327 * Search for the inode specified by @hashval and @data in the inode cache. 1328 * If the inode is in the cache, the inode is returned with an incremented 1329 * reference count. 1330 * 1331 * Note: I_NEW is not waited upon so you have to be very careful what you do 1332 * with the returned inode. You probably should be using ilookup5() instead. 1333 * 1334 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1335 */ 1336 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1337 int (*test)(struct inode *, void *), void *data) 1338 { 1339 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1340 struct inode *inode; 1341 1342 spin_lock(&inode_hash_lock); 1343 inode = find_inode(sb, head, test, data); 1344 spin_unlock(&inode_hash_lock); 1345 1346 return IS_ERR(inode) ? NULL : inode; 1347 } 1348 EXPORT_SYMBOL(ilookup5_nowait); 1349 1350 /** 1351 * ilookup5 - search for an inode in the inode cache 1352 * @sb: super block of file system to search 1353 * @hashval: hash value (usually inode number) to search for 1354 * @test: callback used for comparisons between inodes 1355 * @data: opaque data pointer to pass to @test 1356 * 1357 * Search for the inode specified by @hashval and @data in the inode cache, 1358 * and if the inode is in the cache, return the inode with an incremented 1359 * reference count. Waits on I_NEW before returning the inode. 1360 * returned with an incremented reference count. 1361 * 1362 * This is a generalized version of ilookup() for file systems where the 1363 * inode number is not sufficient for unique identification of an inode. 1364 * 1365 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1366 */ 1367 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1368 int (*test)(struct inode *, void *), void *data) 1369 { 1370 struct inode *inode; 1371 again: 1372 inode = ilookup5_nowait(sb, hashval, test, data); 1373 if (inode) { 1374 wait_on_inode(inode); 1375 if (unlikely(inode_unhashed(inode))) { 1376 iput(inode); 1377 goto again; 1378 } 1379 } 1380 return inode; 1381 } 1382 EXPORT_SYMBOL(ilookup5); 1383 1384 /** 1385 * ilookup - search for an inode in the inode cache 1386 * @sb: super block of file system to search 1387 * @ino: inode number to search for 1388 * 1389 * Search for the inode @ino in the inode cache, and if the inode is in the 1390 * cache, the inode is returned with an incremented reference count. 1391 */ 1392 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1393 { 1394 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1395 struct inode *inode; 1396 again: 1397 spin_lock(&inode_hash_lock); 1398 inode = find_inode_fast(sb, head, ino); 1399 spin_unlock(&inode_hash_lock); 1400 1401 if (inode) { 1402 if (IS_ERR(inode)) 1403 return NULL; 1404 wait_on_inode(inode); 1405 if (unlikely(inode_unhashed(inode))) { 1406 iput(inode); 1407 goto again; 1408 } 1409 } 1410 return inode; 1411 } 1412 EXPORT_SYMBOL(ilookup); 1413 1414 /** 1415 * find_inode_nowait - find an inode in the inode cache 1416 * @sb: super block of file system to search 1417 * @hashval: hash value (usually inode number) to search for 1418 * @match: callback used for comparisons between inodes 1419 * @data: opaque data pointer to pass to @match 1420 * 1421 * Search for the inode specified by @hashval and @data in the inode 1422 * cache, where the helper function @match will return 0 if the inode 1423 * does not match, 1 if the inode does match, and -1 if the search 1424 * should be stopped. The @match function must be responsible for 1425 * taking the i_lock spin_lock and checking i_state for an inode being 1426 * freed or being initialized, and incrementing the reference count 1427 * before returning 1. It also must not sleep, since it is called with 1428 * the inode_hash_lock spinlock held. 1429 * 1430 * This is a even more generalized version of ilookup5() when the 1431 * function must never block --- find_inode() can block in 1432 * __wait_on_freeing_inode() --- or when the caller can not increment 1433 * the reference count because the resulting iput() might cause an 1434 * inode eviction. The tradeoff is that the @match funtion must be 1435 * very carefully implemented. 1436 */ 1437 struct inode *find_inode_nowait(struct super_block *sb, 1438 unsigned long hashval, 1439 int (*match)(struct inode *, unsigned long, 1440 void *), 1441 void *data) 1442 { 1443 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1444 struct inode *inode, *ret_inode = NULL; 1445 int mval; 1446 1447 spin_lock(&inode_hash_lock); 1448 hlist_for_each_entry(inode, head, i_hash) { 1449 if (inode->i_sb != sb) 1450 continue; 1451 mval = match(inode, hashval, data); 1452 if (mval == 0) 1453 continue; 1454 if (mval == 1) 1455 ret_inode = inode; 1456 goto out; 1457 } 1458 out: 1459 spin_unlock(&inode_hash_lock); 1460 return ret_inode; 1461 } 1462 EXPORT_SYMBOL(find_inode_nowait); 1463 1464 /** 1465 * find_inode_rcu - find an inode in the inode cache 1466 * @sb: Super block of file system to search 1467 * @hashval: Key to hash 1468 * @test: Function to test match on an inode 1469 * @data: Data for test function 1470 * 1471 * Search for the inode specified by @hashval and @data in the inode cache, 1472 * where the helper function @test will return 0 if the inode does not match 1473 * and 1 if it does. The @test function must be responsible for taking the 1474 * i_lock spin_lock and checking i_state for an inode being freed or being 1475 * initialized. 1476 * 1477 * If successful, this will return the inode for which the @test function 1478 * returned 1 and NULL otherwise. 1479 * 1480 * The @test function is not permitted to take a ref on any inode presented. 1481 * It is also not permitted to sleep. 1482 * 1483 * The caller must hold the RCU read lock. 1484 */ 1485 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, 1486 int (*test)(struct inode *, void *), void *data) 1487 { 1488 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1489 struct inode *inode; 1490 1491 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1492 "suspicious find_inode_rcu() usage"); 1493 1494 hlist_for_each_entry_rcu(inode, head, i_hash) { 1495 if (inode->i_sb == sb && 1496 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) && 1497 test(inode, data)) 1498 return inode; 1499 } 1500 return NULL; 1501 } 1502 EXPORT_SYMBOL(find_inode_rcu); 1503 1504 /** 1505 * find_inode_by_ino_rcu - Find an inode in the inode cache 1506 * @sb: Super block of file system to search 1507 * @ino: The inode number to match 1508 * 1509 * Search for the inode specified by @hashval and @data in the inode cache, 1510 * where the helper function @test will return 0 if the inode does not match 1511 * and 1 if it does. The @test function must be responsible for taking the 1512 * i_lock spin_lock and checking i_state for an inode being freed or being 1513 * initialized. 1514 * 1515 * If successful, this will return the inode for which the @test function 1516 * returned 1 and NULL otherwise. 1517 * 1518 * The @test function is not permitted to take a ref on any inode presented. 1519 * It is also not permitted to sleep. 1520 * 1521 * The caller must hold the RCU read lock. 1522 */ 1523 struct inode *find_inode_by_ino_rcu(struct super_block *sb, 1524 unsigned long ino) 1525 { 1526 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1527 struct inode *inode; 1528 1529 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1530 "suspicious find_inode_by_ino_rcu() usage"); 1531 1532 hlist_for_each_entry_rcu(inode, head, i_hash) { 1533 if (inode->i_ino == ino && 1534 inode->i_sb == sb && 1535 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE))) 1536 return inode; 1537 } 1538 return NULL; 1539 } 1540 EXPORT_SYMBOL(find_inode_by_ino_rcu); 1541 1542 int insert_inode_locked(struct inode *inode) 1543 { 1544 struct super_block *sb = inode->i_sb; 1545 ino_t ino = inode->i_ino; 1546 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1547 1548 while (1) { 1549 struct inode *old = NULL; 1550 spin_lock(&inode_hash_lock); 1551 hlist_for_each_entry(old, head, i_hash) { 1552 if (old->i_ino != ino) 1553 continue; 1554 if (old->i_sb != sb) 1555 continue; 1556 spin_lock(&old->i_lock); 1557 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1558 spin_unlock(&old->i_lock); 1559 continue; 1560 } 1561 break; 1562 } 1563 if (likely(!old)) { 1564 spin_lock(&inode->i_lock); 1565 inode->i_state |= I_NEW | I_CREATING; 1566 hlist_add_head_rcu(&inode->i_hash, head); 1567 spin_unlock(&inode->i_lock); 1568 spin_unlock(&inode_hash_lock); 1569 return 0; 1570 } 1571 if (unlikely(old->i_state & I_CREATING)) { 1572 spin_unlock(&old->i_lock); 1573 spin_unlock(&inode_hash_lock); 1574 return -EBUSY; 1575 } 1576 __iget(old); 1577 spin_unlock(&old->i_lock); 1578 spin_unlock(&inode_hash_lock); 1579 wait_on_inode(old); 1580 if (unlikely(!inode_unhashed(old))) { 1581 iput(old); 1582 return -EBUSY; 1583 } 1584 iput(old); 1585 } 1586 } 1587 EXPORT_SYMBOL(insert_inode_locked); 1588 1589 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1590 int (*test)(struct inode *, void *), void *data) 1591 { 1592 struct inode *old; 1593 1594 inode->i_state |= I_CREATING; 1595 old = inode_insert5(inode, hashval, test, NULL, data); 1596 1597 if (old != inode) { 1598 iput(old); 1599 return -EBUSY; 1600 } 1601 return 0; 1602 } 1603 EXPORT_SYMBOL(insert_inode_locked4); 1604 1605 1606 int generic_delete_inode(struct inode *inode) 1607 { 1608 return 1; 1609 } 1610 EXPORT_SYMBOL(generic_delete_inode); 1611 1612 /* 1613 * Called when we're dropping the last reference 1614 * to an inode. 1615 * 1616 * Call the FS "drop_inode()" function, defaulting to 1617 * the legacy UNIX filesystem behaviour. If it tells 1618 * us to evict inode, do so. Otherwise, retain inode 1619 * in cache if fs is alive, sync and evict if fs is 1620 * shutting down. 1621 */ 1622 static void iput_final(struct inode *inode) 1623 { 1624 struct super_block *sb = inode->i_sb; 1625 const struct super_operations *op = inode->i_sb->s_op; 1626 unsigned long state; 1627 int drop; 1628 1629 WARN_ON(inode->i_state & I_NEW); 1630 1631 if (op->drop_inode) 1632 drop = op->drop_inode(inode); 1633 else 1634 drop = generic_drop_inode(inode); 1635 1636 if (!drop && 1637 !(inode->i_state & I_DONTCACHE) && 1638 (sb->s_flags & SB_ACTIVE)) { 1639 inode_add_lru(inode); 1640 spin_unlock(&inode->i_lock); 1641 return; 1642 } 1643 1644 state = inode->i_state; 1645 if (!drop) { 1646 WRITE_ONCE(inode->i_state, state | I_WILL_FREE); 1647 spin_unlock(&inode->i_lock); 1648 1649 write_inode_now(inode, 1); 1650 1651 spin_lock(&inode->i_lock); 1652 state = inode->i_state; 1653 WARN_ON(state & I_NEW); 1654 state &= ~I_WILL_FREE; 1655 } 1656 1657 WRITE_ONCE(inode->i_state, state | I_FREEING); 1658 if (!list_empty(&inode->i_lru)) 1659 inode_lru_list_del(inode); 1660 spin_unlock(&inode->i_lock); 1661 1662 evict(inode); 1663 } 1664 1665 /** 1666 * iput - put an inode 1667 * @inode: inode to put 1668 * 1669 * Puts an inode, dropping its usage count. If the inode use count hits 1670 * zero, the inode is then freed and may also be destroyed. 1671 * 1672 * Consequently, iput() can sleep. 1673 */ 1674 void iput(struct inode *inode) 1675 { 1676 if (!inode) 1677 return; 1678 BUG_ON(inode->i_state & I_CLEAR); 1679 retry: 1680 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1681 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1682 atomic_inc(&inode->i_count); 1683 spin_unlock(&inode->i_lock); 1684 trace_writeback_lazytime_iput(inode); 1685 mark_inode_dirty_sync(inode); 1686 goto retry; 1687 } 1688 iput_final(inode); 1689 } 1690 } 1691 EXPORT_SYMBOL(iput); 1692 1693 #ifdef CONFIG_BLOCK 1694 /** 1695 * bmap - find a block number in a file 1696 * @inode: inode owning the block number being requested 1697 * @block: pointer containing the block to find 1698 * 1699 * Replaces the value in ``*block`` with the block number on the device holding 1700 * corresponding to the requested block number in the file. 1701 * That is, asked for block 4 of inode 1 the function will replace the 1702 * 4 in ``*block``, with disk block relative to the disk start that holds that 1703 * block of the file. 1704 * 1705 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a 1706 * hole, returns 0 and ``*block`` is also set to 0. 1707 */ 1708 int bmap(struct inode *inode, sector_t *block) 1709 { 1710 if (!inode->i_mapping->a_ops->bmap) 1711 return -EINVAL; 1712 1713 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); 1714 return 0; 1715 } 1716 EXPORT_SYMBOL(bmap); 1717 #endif 1718 1719 /* 1720 * With relative atime, only update atime if the previous atime is 1721 * earlier than either the ctime or mtime or if at least a day has 1722 * passed since the last atime update. 1723 */ 1724 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1725 struct timespec64 now) 1726 { 1727 1728 if (!(mnt->mnt_flags & MNT_RELATIME)) 1729 return 1; 1730 /* 1731 * Is mtime younger than atime? If yes, update atime: 1732 */ 1733 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1734 return 1; 1735 /* 1736 * Is ctime younger than atime? If yes, update atime: 1737 */ 1738 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1739 return 1; 1740 1741 /* 1742 * Is the previous atime value older than a day? If yes, 1743 * update atime: 1744 */ 1745 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1746 return 1; 1747 /* 1748 * Good, we can skip the atime update: 1749 */ 1750 return 0; 1751 } 1752 1753 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags) 1754 { 1755 int dirty_flags = 0; 1756 1757 if (flags & (S_ATIME | S_CTIME | S_MTIME)) { 1758 if (flags & S_ATIME) 1759 inode->i_atime = *time; 1760 if (flags & S_CTIME) 1761 inode->i_ctime = *time; 1762 if (flags & S_MTIME) 1763 inode->i_mtime = *time; 1764 1765 if (inode->i_sb->s_flags & SB_LAZYTIME) 1766 dirty_flags |= I_DIRTY_TIME; 1767 else 1768 dirty_flags |= I_DIRTY_SYNC; 1769 } 1770 1771 if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false)) 1772 dirty_flags |= I_DIRTY_SYNC; 1773 1774 __mark_inode_dirty(inode, dirty_flags); 1775 return 0; 1776 } 1777 EXPORT_SYMBOL(generic_update_time); 1778 1779 /* 1780 * This does the actual work of updating an inodes time or version. Must have 1781 * had called mnt_want_write() before calling this. 1782 */ 1783 static int update_time(struct inode *inode, struct timespec64 *time, int flags) 1784 { 1785 if (inode->i_op->update_time) 1786 return inode->i_op->update_time(inode, time, flags); 1787 return generic_update_time(inode, time, flags); 1788 } 1789 1790 /** 1791 * atime_needs_update - update the access time 1792 * @path: the &struct path to update 1793 * @inode: inode to update 1794 * 1795 * Update the accessed time on an inode and mark it for writeback. 1796 * This function automatically handles read only file systems and media, 1797 * as well as the "noatime" flag and inode specific "noatime" markers. 1798 */ 1799 bool atime_needs_update(const struct path *path, struct inode *inode) 1800 { 1801 struct vfsmount *mnt = path->mnt; 1802 struct timespec64 now; 1803 1804 if (inode->i_flags & S_NOATIME) 1805 return false; 1806 1807 /* Atime updates will likely cause i_uid and i_gid to be written 1808 * back improprely if their true value is unknown to the vfs. 1809 */ 1810 if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode)) 1811 return false; 1812 1813 if (IS_NOATIME(inode)) 1814 return false; 1815 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 1816 return false; 1817 1818 if (mnt->mnt_flags & MNT_NOATIME) 1819 return false; 1820 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1821 return false; 1822 1823 now = current_time(inode); 1824 1825 if (!relatime_need_update(mnt, inode, now)) 1826 return false; 1827 1828 if (timespec64_equal(&inode->i_atime, &now)) 1829 return false; 1830 1831 return true; 1832 } 1833 1834 void touch_atime(const struct path *path) 1835 { 1836 struct vfsmount *mnt = path->mnt; 1837 struct inode *inode = d_inode(path->dentry); 1838 struct timespec64 now; 1839 1840 if (!atime_needs_update(path, inode)) 1841 return; 1842 1843 if (!sb_start_write_trylock(inode->i_sb)) 1844 return; 1845 1846 if (__mnt_want_write(mnt) != 0) 1847 goto skip_update; 1848 /* 1849 * File systems can error out when updating inodes if they need to 1850 * allocate new space to modify an inode (such is the case for 1851 * Btrfs), but since we touch atime while walking down the path we 1852 * really don't care if we failed to update the atime of the file, 1853 * so just ignore the return value. 1854 * We may also fail on filesystems that have the ability to make parts 1855 * of the fs read only, e.g. subvolumes in Btrfs. 1856 */ 1857 now = current_time(inode); 1858 update_time(inode, &now, S_ATIME); 1859 __mnt_drop_write(mnt); 1860 skip_update: 1861 sb_end_write(inode->i_sb); 1862 } 1863 EXPORT_SYMBOL(touch_atime); 1864 1865 /* 1866 * The logic we want is 1867 * 1868 * if suid or (sgid and xgrp) 1869 * remove privs 1870 */ 1871 int should_remove_suid(struct dentry *dentry) 1872 { 1873 umode_t mode = d_inode(dentry)->i_mode; 1874 int kill = 0; 1875 1876 /* suid always must be killed */ 1877 if (unlikely(mode & S_ISUID)) 1878 kill = ATTR_KILL_SUID; 1879 1880 /* 1881 * sgid without any exec bits is just a mandatory locking mark; leave 1882 * it alone. If some exec bits are set, it's a real sgid; kill it. 1883 */ 1884 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1885 kill |= ATTR_KILL_SGID; 1886 1887 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1888 return kill; 1889 1890 return 0; 1891 } 1892 EXPORT_SYMBOL(should_remove_suid); 1893 1894 /* 1895 * Return mask of changes for notify_change() that need to be done as a 1896 * response to write or truncate. Return 0 if nothing has to be changed. 1897 * Negative value on error (change should be denied). 1898 */ 1899 int dentry_needs_remove_privs(struct dentry *dentry) 1900 { 1901 struct inode *inode = d_inode(dentry); 1902 int mask = 0; 1903 int ret; 1904 1905 if (IS_NOSEC(inode)) 1906 return 0; 1907 1908 mask = should_remove_suid(dentry); 1909 ret = security_inode_need_killpriv(dentry); 1910 if (ret < 0) 1911 return ret; 1912 if (ret) 1913 mask |= ATTR_KILL_PRIV; 1914 return mask; 1915 } 1916 1917 static int __remove_privs(struct user_namespace *mnt_userns, 1918 struct dentry *dentry, int kill) 1919 { 1920 struct iattr newattrs; 1921 1922 newattrs.ia_valid = ATTR_FORCE | kill; 1923 /* 1924 * Note we call this on write, so notify_change will not 1925 * encounter any conflicting delegations: 1926 */ 1927 return notify_change(mnt_userns, dentry, &newattrs, NULL); 1928 } 1929 1930 /* 1931 * Remove special file priviledges (suid, capabilities) when file is written 1932 * to or truncated. 1933 */ 1934 int file_remove_privs(struct file *file) 1935 { 1936 struct dentry *dentry = file_dentry(file); 1937 struct inode *inode = file_inode(file); 1938 int kill; 1939 int error = 0; 1940 1941 /* 1942 * Fast path for nothing security related. 1943 * As well for non-regular files, e.g. blkdev inodes. 1944 * For example, blkdev_write_iter() might get here 1945 * trying to remove privs which it is not allowed to. 1946 */ 1947 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) 1948 return 0; 1949 1950 kill = dentry_needs_remove_privs(dentry); 1951 if (kill < 0) 1952 return kill; 1953 if (kill) 1954 error = __remove_privs(file_mnt_user_ns(file), dentry, kill); 1955 if (!error) 1956 inode_has_no_xattr(inode); 1957 1958 return error; 1959 } 1960 EXPORT_SYMBOL(file_remove_privs); 1961 1962 /** 1963 * file_update_time - update mtime and ctime time 1964 * @file: file accessed 1965 * 1966 * Update the mtime and ctime members of an inode and mark the inode 1967 * for writeback. Note that this function is meant exclusively for 1968 * usage in the file write path of filesystems, and filesystems may 1969 * choose to explicitly ignore update via this function with the 1970 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1971 * timestamps are handled by the server. This can return an error for 1972 * file systems who need to allocate space in order to update an inode. 1973 */ 1974 1975 int file_update_time(struct file *file) 1976 { 1977 struct inode *inode = file_inode(file); 1978 struct timespec64 now; 1979 int sync_it = 0; 1980 int ret; 1981 1982 /* First try to exhaust all avenues to not sync */ 1983 if (IS_NOCMTIME(inode)) 1984 return 0; 1985 1986 now = current_time(inode); 1987 if (!timespec64_equal(&inode->i_mtime, &now)) 1988 sync_it = S_MTIME; 1989 1990 if (!timespec64_equal(&inode->i_ctime, &now)) 1991 sync_it |= S_CTIME; 1992 1993 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 1994 sync_it |= S_VERSION; 1995 1996 if (!sync_it) 1997 return 0; 1998 1999 /* Finally allowed to write? Takes lock. */ 2000 if (__mnt_want_write_file(file)) 2001 return 0; 2002 2003 ret = update_time(inode, &now, sync_it); 2004 __mnt_drop_write_file(file); 2005 2006 return ret; 2007 } 2008 EXPORT_SYMBOL(file_update_time); 2009 2010 /* Caller must hold the file's inode lock */ 2011 int file_modified(struct file *file) 2012 { 2013 int err; 2014 2015 /* 2016 * Clear the security bits if the process is not being run by root. 2017 * This keeps people from modifying setuid and setgid binaries. 2018 */ 2019 err = file_remove_privs(file); 2020 if (err) 2021 return err; 2022 2023 if (unlikely(file->f_mode & FMODE_NOCMTIME)) 2024 return 0; 2025 2026 return file_update_time(file); 2027 } 2028 EXPORT_SYMBOL(file_modified); 2029 2030 int inode_needs_sync(struct inode *inode) 2031 { 2032 if (IS_SYNC(inode)) 2033 return 1; 2034 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 2035 return 1; 2036 return 0; 2037 } 2038 EXPORT_SYMBOL(inode_needs_sync); 2039 2040 /* 2041 * If we try to find an inode in the inode hash while it is being 2042 * deleted, we have to wait until the filesystem completes its 2043 * deletion before reporting that it isn't found. This function waits 2044 * until the deletion _might_ have completed. Callers are responsible 2045 * to recheck inode state. 2046 * 2047 * It doesn't matter if I_NEW is not set initially, a call to 2048 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 2049 * will DTRT. 2050 */ 2051 static void __wait_on_freeing_inode(struct inode *inode) 2052 { 2053 wait_queue_head_t *wq; 2054 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 2055 wq = bit_waitqueue(&inode->i_state, __I_NEW); 2056 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2057 spin_unlock(&inode->i_lock); 2058 spin_unlock(&inode_hash_lock); 2059 schedule(); 2060 finish_wait(wq, &wait.wq_entry); 2061 spin_lock(&inode_hash_lock); 2062 } 2063 2064 static __initdata unsigned long ihash_entries; 2065 static int __init set_ihash_entries(char *str) 2066 { 2067 if (!str) 2068 return 0; 2069 ihash_entries = simple_strtoul(str, &str, 0); 2070 return 1; 2071 } 2072 __setup("ihash_entries=", set_ihash_entries); 2073 2074 /* 2075 * Initialize the waitqueues and inode hash table. 2076 */ 2077 void __init inode_init_early(void) 2078 { 2079 /* If hashes are distributed across NUMA nodes, defer 2080 * hash allocation until vmalloc space is available. 2081 */ 2082 if (hashdist) 2083 return; 2084 2085 inode_hashtable = 2086 alloc_large_system_hash("Inode-cache", 2087 sizeof(struct hlist_head), 2088 ihash_entries, 2089 14, 2090 HASH_EARLY | HASH_ZERO, 2091 &i_hash_shift, 2092 &i_hash_mask, 2093 0, 2094 0); 2095 } 2096 2097 void __init inode_init(void) 2098 { 2099 /* inode slab cache */ 2100 inode_cachep = kmem_cache_create("inode_cache", 2101 sizeof(struct inode), 2102 0, 2103 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2104 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 2105 init_once); 2106 2107 /* Hash may have been set up in inode_init_early */ 2108 if (!hashdist) 2109 return; 2110 2111 inode_hashtable = 2112 alloc_large_system_hash("Inode-cache", 2113 sizeof(struct hlist_head), 2114 ihash_entries, 2115 14, 2116 HASH_ZERO, 2117 &i_hash_shift, 2118 &i_hash_mask, 2119 0, 2120 0); 2121 } 2122 2123 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 2124 { 2125 inode->i_mode = mode; 2126 if (S_ISCHR(mode)) { 2127 inode->i_fop = &def_chr_fops; 2128 inode->i_rdev = rdev; 2129 } else if (S_ISBLK(mode)) { 2130 inode->i_fop = &def_blk_fops; 2131 inode->i_rdev = rdev; 2132 } else if (S_ISFIFO(mode)) 2133 inode->i_fop = &pipefifo_fops; 2134 else if (S_ISSOCK(mode)) 2135 ; /* leave it no_open_fops */ 2136 else 2137 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 2138 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2139 inode->i_ino); 2140 } 2141 EXPORT_SYMBOL(init_special_inode); 2142 2143 /** 2144 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2145 * @mnt_userns: User namespace of the mount the inode was created from 2146 * @inode: New inode 2147 * @dir: Directory inode 2148 * @mode: mode of the new inode 2149 * 2150 * If the inode has been created through an idmapped mount the user namespace of 2151 * the vfsmount must be passed through @mnt_userns. This function will then take 2152 * care to map the inode according to @mnt_userns before checking permissions 2153 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission 2154 * checking is to be performed on the raw inode simply passs init_user_ns. 2155 */ 2156 void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode, 2157 const struct inode *dir, umode_t mode) 2158 { 2159 inode_fsuid_set(inode, mnt_userns); 2160 if (dir && dir->i_mode & S_ISGID) { 2161 inode->i_gid = dir->i_gid; 2162 2163 /* Directories are special, and always inherit S_ISGID */ 2164 if (S_ISDIR(mode)) 2165 mode |= S_ISGID; 2166 else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) && 2167 !in_group_p(i_gid_into_mnt(mnt_userns, dir)) && 2168 !capable_wrt_inode_uidgid(mnt_userns, dir, CAP_FSETID)) 2169 mode &= ~S_ISGID; 2170 } else 2171 inode_fsgid_set(inode, mnt_userns); 2172 inode->i_mode = mode; 2173 } 2174 EXPORT_SYMBOL(inode_init_owner); 2175 2176 /** 2177 * inode_owner_or_capable - check current task permissions to inode 2178 * @mnt_userns: user namespace of the mount the inode was found from 2179 * @inode: inode being checked 2180 * 2181 * Return true if current either has CAP_FOWNER in a namespace with the 2182 * inode owner uid mapped, or owns the file. 2183 * 2184 * If the inode has been found through an idmapped mount the user namespace of 2185 * the vfsmount must be passed through @mnt_userns. This function will then take 2186 * care to map the inode according to @mnt_userns before checking permissions. 2187 * On non-idmapped mounts or if permission checking is to be performed on the 2188 * raw inode simply passs init_user_ns. 2189 */ 2190 bool inode_owner_or_capable(struct user_namespace *mnt_userns, 2191 const struct inode *inode) 2192 { 2193 kuid_t i_uid; 2194 struct user_namespace *ns; 2195 2196 i_uid = i_uid_into_mnt(mnt_userns, inode); 2197 if (uid_eq(current_fsuid(), i_uid)) 2198 return true; 2199 2200 ns = current_user_ns(); 2201 if (kuid_has_mapping(ns, i_uid) && ns_capable(ns, CAP_FOWNER)) 2202 return true; 2203 return false; 2204 } 2205 EXPORT_SYMBOL(inode_owner_or_capable); 2206 2207 /* 2208 * Direct i/o helper functions 2209 */ 2210 static void __inode_dio_wait(struct inode *inode) 2211 { 2212 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2213 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2214 2215 do { 2216 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); 2217 if (atomic_read(&inode->i_dio_count)) 2218 schedule(); 2219 } while (atomic_read(&inode->i_dio_count)); 2220 finish_wait(wq, &q.wq_entry); 2221 } 2222 2223 /** 2224 * inode_dio_wait - wait for outstanding DIO requests to finish 2225 * @inode: inode to wait for 2226 * 2227 * Waits for all pending direct I/O requests to finish so that we can 2228 * proceed with a truncate or equivalent operation. 2229 * 2230 * Must be called under a lock that serializes taking new references 2231 * to i_dio_count, usually by inode->i_mutex. 2232 */ 2233 void inode_dio_wait(struct inode *inode) 2234 { 2235 if (atomic_read(&inode->i_dio_count)) 2236 __inode_dio_wait(inode); 2237 } 2238 EXPORT_SYMBOL(inode_dio_wait); 2239 2240 /* 2241 * inode_set_flags - atomically set some inode flags 2242 * 2243 * Note: the caller should be holding i_mutex, or else be sure that 2244 * they have exclusive access to the inode structure (i.e., while the 2245 * inode is being instantiated). The reason for the cmpxchg() loop 2246 * --- which wouldn't be necessary if all code paths which modify 2247 * i_flags actually followed this rule, is that there is at least one 2248 * code path which doesn't today so we use cmpxchg() out of an abundance 2249 * of caution. 2250 * 2251 * In the long run, i_mutex is overkill, and we should probably look 2252 * at using the i_lock spinlock to protect i_flags, and then make sure 2253 * it is so documented in include/linux/fs.h and that all code follows 2254 * the locking convention!! 2255 */ 2256 void inode_set_flags(struct inode *inode, unsigned int flags, 2257 unsigned int mask) 2258 { 2259 WARN_ON_ONCE(flags & ~mask); 2260 set_mask_bits(&inode->i_flags, mask, flags); 2261 } 2262 EXPORT_SYMBOL(inode_set_flags); 2263 2264 void inode_nohighmem(struct inode *inode) 2265 { 2266 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2267 } 2268 EXPORT_SYMBOL(inode_nohighmem); 2269 2270 /** 2271 * timestamp_truncate - Truncate timespec to a granularity 2272 * @t: Timespec 2273 * @inode: inode being updated 2274 * 2275 * Truncate a timespec to the granularity supported by the fs 2276 * containing the inode. Always rounds down. gran must 2277 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2278 */ 2279 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) 2280 { 2281 struct super_block *sb = inode->i_sb; 2282 unsigned int gran = sb->s_time_gran; 2283 2284 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); 2285 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) 2286 t.tv_nsec = 0; 2287 2288 /* Avoid division in the common cases 1 ns and 1 s. */ 2289 if (gran == 1) 2290 ; /* nothing */ 2291 else if (gran == NSEC_PER_SEC) 2292 t.tv_nsec = 0; 2293 else if (gran > 1 && gran < NSEC_PER_SEC) 2294 t.tv_nsec -= t.tv_nsec % gran; 2295 else 2296 WARN(1, "invalid file time granularity: %u", gran); 2297 return t; 2298 } 2299 EXPORT_SYMBOL(timestamp_truncate); 2300 2301 /** 2302 * current_time - Return FS time 2303 * @inode: inode. 2304 * 2305 * Return the current time truncated to the time granularity supported by 2306 * the fs. 2307 * 2308 * Note that inode and inode->sb cannot be NULL. 2309 * Otherwise, the function warns and returns time without truncation. 2310 */ 2311 struct timespec64 current_time(struct inode *inode) 2312 { 2313 struct timespec64 now; 2314 2315 ktime_get_coarse_real_ts64(&now); 2316 2317 if (unlikely(!inode->i_sb)) { 2318 WARN(1, "current_time() called with uninitialized super_block in the inode"); 2319 return now; 2320 } 2321 2322 return timestamp_truncate(now, inode); 2323 } 2324 EXPORT_SYMBOL(current_time); 2325