xref: /openbmc/linux/fs/inode.c (revision 1f9f6a78)
1 /*
2  * (C) 1997 Linus Torvalds
3  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4  */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include "internal.h"
22 
23 /*
24  * Inode locking rules:
25  *
26  * inode->i_lock protects:
27  *   inode->i_state, inode->i_hash, __iget()
28  * Inode LRU list locks protect:
29  *   inode->i_sb->s_inode_lru, inode->i_lru
30  * inode_sb_list_lock protects:
31  *   sb->s_inodes, inode->i_sb_list
32  * bdi->wb.list_lock protects:
33  *   bdi->wb.b_{dirty,io,more_io}, inode->i_wb_list
34  * inode_hash_lock protects:
35  *   inode_hashtable, inode->i_hash
36  *
37  * Lock ordering:
38  *
39  * inode_sb_list_lock
40  *   inode->i_lock
41  *     Inode LRU list locks
42  *
43  * bdi->wb.list_lock
44  *   inode->i_lock
45  *
46  * inode_hash_lock
47  *   inode_sb_list_lock
48  *   inode->i_lock
49  *
50  * iunique_lock
51  *   inode_hash_lock
52  */
53 
54 static unsigned int i_hash_mask __read_mostly;
55 static unsigned int i_hash_shift __read_mostly;
56 static struct hlist_head *inode_hashtable __read_mostly;
57 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
58 
59 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
60 
61 /*
62  * Empty aops. Can be used for the cases where the user does not
63  * define any of the address_space operations.
64  */
65 const struct address_space_operations empty_aops = {
66 };
67 EXPORT_SYMBOL(empty_aops);
68 
69 /*
70  * Statistics gathering..
71  */
72 struct inodes_stat_t inodes_stat;
73 
74 static DEFINE_PER_CPU(unsigned long, nr_inodes);
75 static DEFINE_PER_CPU(unsigned long, nr_unused);
76 
77 static struct kmem_cache *inode_cachep __read_mostly;
78 
79 static long get_nr_inodes(void)
80 {
81 	int i;
82 	long sum = 0;
83 	for_each_possible_cpu(i)
84 		sum += per_cpu(nr_inodes, i);
85 	return sum < 0 ? 0 : sum;
86 }
87 
88 static inline long get_nr_inodes_unused(void)
89 {
90 	int i;
91 	long sum = 0;
92 	for_each_possible_cpu(i)
93 		sum += per_cpu(nr_unused, i);
94 	return sum < 0 ? 0 : sum;
95 }
96 
97 long get_nr_dirty_inodes(void)
98 {
99 	/* not actually dirty inodes, but a wild approximation */
100 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
101 	return nr_dirty > 0 ? nr_dirty : 0;
102 }
103 
104 /*
105  * Handle nr_inode sysctl
106  */
107 #ifdef CONFIG_SYSCTL
108 int proc_nr_inodes(struct ctl_table *table, int write,
109 		   void __user *buffer, size_t *lenp, loff_t *ppos)
110 {
111 	inodes_stat.nr_inodes = get_nr_inodes();
112 	inodes_stat.nr_unused = get_nr_inodes_unused();
113 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
114 }
115 #endif
116 
117 static int no_open(struct inode *inode, struct file *file)
118 {
119 	return -ENXIO;
120 }
121 
122 /**
123  * inode_init_always - perform inode structure intialisation
124  * @sb: superblock inode belongs to
125  * @inode: inode to initialise
126  *
127  * These are initializations that need to be done on every inode
128  * allocation as the fields are not initialised by slab allocation.
129  */
130 int inode_init_always(struct super_block *sb, struct inode *inode)
131 {
132 	static const struct inode_operations empty_iops;
133 	static const struct file_operations no_open_fops = {.open = no_open};
134 	struct address_space *const mapping = &inode->i_data;
135 
136 	inode->i_sb = sb;
137 	inode->i_blkbits = sb->s_blocksize_bits;
138 	inode->i_flags = 0;
139 	atomic_set(&inode->i_count, 1);
140 	inode->i_op = &empty_iops;
141 	inode->i_fop = &no_open_fops;
142 	inode->__i_nlink = 1;
143 	inode->i_opflags = 0;
144 	i_uid_write(inode, 0);
145 	i_gid_write(inode, 0);
146 	atomic_set(&inode->i_writecount, 0);
147 	inode->i_size = 0;
148 	inode->i_blocks = 0;
149 	inode->i_bytes = 0;
150 	inode->i_generation = 0;
151 	inode->i_pipe = NULL;
152 	inode->i_bdev = NULL;
153 	inode->i_cdev = NULL;
154 	inode->i_rdev = 0;
155 	inode->dirtied_when = 0;
156 
157 	if (security_inode_alloc(inode))
158 		goto out;
159 	spin_lock_init(&inode->i_lock);
160 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
161 
162 	mutex_init(&inode->i_mutex);
163 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
164 
165 	atomic_set(&inode->i_dio_count, 0);
166 
167 	mapping->a_ops = &empty_aops;
168 	mapping->host = inode;
169 	mapping->flags = 0;
170 	atomic_set(&mapping->i_mmap_writable, 0);
171 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
172 	mapping->private_data = NULL;
173 	mapping->backing_dev_info = &default_backing_dev_info;
174 	mapping->writeback_index = 0;
175 
176 	/*
177 	 * If the block_device provides a backing_dev_info for client
178 	 * inodes then use that.  Otherwise the inode share the bdev's
179 	 * backing_dev_info.
180 	 */
181 	if (sb->s_bdev) {
182 		struct backing_dev_info *bdi;
183 
184 		bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
185 		mapping->backing_dev_info = bdi;
186 	}
187 	inode->i_private = NULL;
188 	inode->i_mapping = mapping;
189 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
190 #ifdef CONFIG_FS_POSIX_ACL
191 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
192 #endif
193 
194 #ifdef CONFIG_FSNOTIFY
195 	inode->i_fsnotify_mask = 0;
196 #endif
197 
198 	this_cpu_inc(nr_inodes);
199 
200 	return 0;
201 out:
202 	return -ENOMEM;
203 }
204 EXPORT_SYMBOL(inode_init_always);
205 
206 static struct inode *alloc_inode(struct super_block *sb)
207 {
208 	struct inode *inode;
209 
210 	if (sb->s_op->alloc_inode)
211 		inode = sb->s_op->alloc_inode(sb);
212 	else
213 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
214 
215 	if (!inode)
216 		return NULL;
217 
218 	if (unlikely(inode_init_always(sb, inode))) {
219 		if (inode->i_sb->s_op->destroy_inode)
220 			inode->i_sb->s_op->destroy_inode(inode);
221 		else
222 			kmem_cache_free(inode_cachep, inode);
223 		return NULL;
224 	}
225 
226 	return inode;
227 }
228 
229 void free_inode_nonrcu(struct inode *inode)
230 {
231 	kmem_cache_free(inode_cachep, inode);
232 }
233 EXPORT_SYMBOL(free_inode_nonrcu);
234 
235 void __destroy_inode(struct inode *inode)
236 {
237 	BUG_ON(inode_has_buffers(inode));
238 	security_inode_free(inode);
239 	fsnotify_inode_delete(inode);
240 	if (!inode->i_nlink) {
241 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
242 		atomic_long_dec(&inode->i_sb->s_remove_count);
243 	}
244 
245 #ifdef CONFIG_FS_POSIX_ACL
246 	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
247 		posix_acl_release(inode->i_acl);
248 	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
249 		posix_acl_release(inode->i_default_acl);
250 #endif
251 	this_cpu_dec(nr_inodes);
252 }
253 EXPORT_SYMBOL(__destroy_inode);
254 
255 static void i_callback(struct rcu_head *head)
256 {
257 	struct inode *inode = container_of(head, struct inode, i_rcu);
258 	kmem_cache_free(inode_cachep, inode);
259 }
260 
261 static void destroy_inode(struct inode *inode)
262 {
263 	BUG_ON(!list_empty(&inode->i_lru));
264 	__destroy_inode(inode);
265 	if (inode->i_sb->s_op->destroy_inode)
266 		inode->i_sb->s_op->destroy_inode(inode);
267 	else
268 		call_rcu(&inode->i_rcu, i_callback);
269 }
270 
271 /**
272  * drop_nlink - directly drop an inode's link count
273  * @inode: inode
274  *
275  * This is a low-level filesystem helper to replace any
276  * direct filesystem manipulation of i_nlink.  In cases
277  * where we are attempting to track writes to the
278  * filesystem, a decrement to zero means an imminent
279  * write when the file is truncated and actually unlinked
280  * on the filesystem.
281  */
282 void drop_nlink(struct inode *inode)
283 {
284 	WARN_ON(inode->i_nlink == 0);
285 	inode->__i_nlink--;
286 	if (!inode->i_nlink)
287 		atomic_long_inc(&inode->i_sb->s_remove_count);
288 }
289 EXPORT_SYMBOL(drop_nlink);
290 
291 /**
292  * clear_nlink - directly zero an inode's link count
293  * @inode: inode
294  *
295  * This is a low-level filesystem helper to replace any
296  * direct filesystem manipulation of i_nlink.  See
297  * drop_nlink() for why we care about i_nlink hitting zero.
298  */
299 void clear_nlink(struct inode *inode)
300 {
301 	if (inode->i_nlink) {
302 		inode->__i_nlink = 0;
303 		atomic_long_inc(&inode->i_sb->s_remove_count);
304 	}
305 }
306 EXPORT_SYMBOL(clear_nlink);
307 
308 /**
309  * set_nlink - directly set an inode's link count
310  * @inode: inode
311  * @nlink: new nlink (should be non-zero)
312  *
313  * This is a low-level filesystem helper to replace any
314  * direct filesystem manipulation of i_nlink.
315  */
316 void set_nlink(struct inode *inode, unsigned int nlink)
317 {
318 	if (!nlink) {
319 		clear_nlink(inode);
320 	} else {
321 		/* Yes, some filesystems do change nlink from zero to one */
322 		if (inode->i_nlink == 0)
323 			atomic_long_dec(&inode->i_sb->s_remove_count);
324 
325 		inode->__i_nlink = nlink;
326 	}
327 }
328 EXPORT_SYMBOL(set_nlink);
329 
330 /**
331  * inc_nlink - directly increment an inode's link count
332  * @inode: inode
333  *
334  * This is a low-level filesystem helper to replace any
335  * direct filesystem manipulation of i_nlink.  Currently,
336  * it is only here for parity with dec_nlink().
337  */
338 void inc_nlink(struct inode *inode)
339 {
340 	if (unlikely(inode->i_nlink == 0)) {
341 		WARN_ON(!(inode->i_state & I_LINKABLE));
342 		atomic_long_dec(&inode->i_sb->s_remove_count);
343 	}
344 
345 	inode->__i_nlink++;
346 }
347 EXPORT_SYMBOL(inc_nlink);
348 
349 void address_space_init_once(struct address_space *mapping)
350 {
351 	memset(mapping, 0, sizeof(*mapping));
352 	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
353 	spin_lock_init(&mapping->tree_lock);
354 	init_rwsem(&mapping->i_mmap_rwsem);
355 	INIT_LIST_HEAD(&mapping->private_list);
356 	spin_lock_init(&mapping->private_lock);
357 	mapping->i_mmap = RB_ROOT;
358 	INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
359 }
360 EXPORT_SYMBOL(address_space_init_once);
361 
362 /*
363  * These are initializations that only need to be done
364  * once, because the fields are idempotent across use
365  * of the inode, so let the slab aware of that.
366  */
367 void inode_init_once(struct inode *inode)
368 {
369 	memset(inode, 0, sizeof(*inode));
370 	INIT_HLIST_NODE(&inode->i_hash);
371 	INIT_LIST_HEAD(&inode->i_devices);
372 	INIT_LIST_HEAD(&inode->i_wb_list);
373 	INIT_LIST_HEAD(&inode->i_lru);
374 	address_space_init_once(&inode->i_data);
375 	i_size_ordered_init(inode);
376 #ifdef CONFIG_FSNOTIFY
377 	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
378 #endif
379 }
380 EXPORT_SYMBOL(inode_init_once);
381 
382 static void init_once(void *foo)
383 {
384 	struct inode *inode = (struct inode *) foo;
385 
386 	inode_init_once(inode);
387 }
388 
389 /*
390  * inode->i_lock must be held
391  */
392 void __iget(struct inode *inode)
393 {
394 	atomic_inc(&inode->i_count);
395 }
396 
397 /*
398  * get additional reference to inode; caller must already hold one.
399  */
400 void ihold(struct inode *inode)
401 {
402 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
403 }
404 EXPORT_SYMBOL(ihold);
405 
406 static void inode_lru_list_add(struct inode *inode)
407 {
408 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
409 		this_cpu_inc(nr_unused);
410 }
411 
412 /*
413  * Add inode to LRU if needed (inode is unused and clean).
414  *
415  * Needs inode->i_lock held.
416  */
417 void inode_add_lru(struct inode *inode)
418 {
419 	if (!(inode->i_state & (I_DIRTY | I_SYNC | I_FREEING | I_WILL_FREE)) &&
420 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
421 		inode_lru_list_add(inode);
422 }
423 
424 
425 static void inode_lru_list_del(struct inode *inode)
426 {
427 
428 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
429 		this_cpu_dec(nr_unused);
430 }
431 
432 /**
433  * inode_sb_list_add - add inode to the superblock list of inodes
434  * @inode: inode to add
435  */
436 void inode_sb_list_add(struct inode *inode)
437 {
438 	spin_lock(&inode_sb_list_lock);
439 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
440 	spin_unlock(&inode_sb_list_lock);
441 }
442 EXPORT_SYMBOL_GPL(inode_sb_list_add);
443 
444 static inline void inode_sb_list_del(struct inode *inode)
445 {
446 	if (!list_empty(&inode->i_sb_list)) {
447 		spin_lock(&inode_sb_list_lock);
448 		list_del_init(&inode->i_sb_list);
449 		spin_unlock(&inode_sb_list_lock);
450 	}
451 }
452 
453 static unsigned long hash(struct super_block *sb, unsigned long hashval)
454 {
455 	unsigned long tmp;
456 
457 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
458 			L1_CACHE_BYTES;
459 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
460 	return tmp & i_hash_mask;
461 }
462 
463 /**
464  *	__insert_inode_hash - hash an inode
465  *	@inode: unhashed inode
466  *	@hashval: unsigned long value used to locate this object in the
467  *		inode_hashtable.
468  *
469  *	Add an inode to the inode hash for this superblock.
470  */
471 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
472 {
473 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
474 
475 	spin_lock(&inode_hash_lock);
476 	spin_lock(&inode->i_lock);
477 	hlist_add_head(&inode->i_hash, b);
478 	spin_unlock(&inode->i_lock);
479 	spin_unlock(&inode_hash_lock);
480 }
481 EXPORT_SYMBOL(__insert_inode_hash);
482 
483 /**
484  *	__remove_inode_hash - remove an inode from the hash
485  *	@inode: inode to unhash
486  *
487  *	Remove an inode from the superblock.
488  */
489 void __remove_inode_hash(struct inode *inode)
490 {
491 	spin_lock(&inode_hash_lock);
492 	spin_lock(&inode->i_lock);
493 	hlist_del_init(&inode->i_hash);
494 	spin_unlock(&inode->i_lock);
495 	spin_unlock(&inode_hash_lock);
496 }
497 EXPORT_SYMBOL(__remove_inode_hash);
498 
499 void clear_inode(struct inode *inode)
500 {
501 	might_sleep();
502 	/*
503 	 * We have to cycle tree_lock here because reclaim can be still in the
504 	 * process of removing the last page (in __delete_from_page_cache())
505 	 * and we must not free mapping under it.
506 	 */
507 	spin_lock_irq(&inode->i_data.tree_lock);
508 	BUG_ON(inode->i_data.nrpages);
509 	BUG_ON(inode->i_data.nrshadows);
510 	spin_unlock_irq(&inode->i_data.tree_lock);
511 	BUG_ON(!list_empty(&inode->i_data.private_list));
512 	BUG_ON(!(inode->i_state & I_FREEING));
513 	BUG_ON(inode->i_state & I_CLEAR);
514 	/* don't need i_lock here, no concurrent mods to i_state */
515 	inode->i_state = I_FREEING | I_CLEAR;
516 }
517 EXPORT_SYMBOL(clear_inode);
518 
519 /*
520  * Free the inode passed in, removing it from the lists it is still connected
521  * to. We remove any pages still attached to the inode and wait for any IO that
522  * is still in progress before finally destroying the inode.
523  *
524  * An inode must already be marked I_FREEING so that we avoid the inode being
525  * moved back onto lists if we race with other code that manipulates the lists
526  * (e.g. writeback_single_inode). The caller is responsible for setting this.
527  *
528  * An inode must already be removed from the LRU list before being evicted from
529  * the cache. This should occur atomically with setting the I_FREEING state
530  * flag, so no inodes here should ever be on the LRU when being evicted.
531  */
532 static void evict(struct inode *inode)
533 {
534 	const struct super_operations *op = inode->i_sb->s_op;
535 
536 	BUG_ON(!(inode->i_state & I_FREEING));
537 	BUG_ON(!list_empty(&inode->i_lru));
538 
539 	if (!list_empty(&inode->i_wb_list))
540 		inode_wb_list_del(inode);
541 
542 	inode_sb_list_del(inode);
543 
544 	/*
545 	 * Wait for flusher thread to be done with the inode so that filesystem
546 	 * does not start destroying it while writeback is still running. Since
547 	 * the inode has I_FREEING set, flusher thread won't start new work on
548 	 * the inode.  We just have to wait for running writeback to finish.
549 	 */
550 	inode_wait_for_writeback(inode);
551 
552 	if (op->evict_inode) {
553 		op->evict_inode(inode);
554 	} else {
555 		truncate_inode_pages_final(&inode->i_data);
556 		clear_inode(inode);
557 	}
558 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
559 		bd_forget(inode);
560 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
561 		cd_forget(inode);
562 
563 	remove_inode_hash(inode);
564 
565 	spin_lock(&inode->i_lock);
566 	wake_up_bit(&inode->i_state, __I_NEW);
567 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
568 	spin_unlock(&inode->i_lock);
569 
570 	destroy_inode(inode);
571 }
572 
573 /*
574  * dispose_list - dispose of the contents of a local list
575  * @head: the head of the list to free
576  *
577  * Dispose-list gets a local list with local inodes in it, so it doesn't
578  * need to worry about list corruption and SMP locks.
579  */
580 static void dispose_list(struct list_head *head)
581 {
582 	while (!list_empty(head)) {
583 		struct inode *inode;
584 
585 		inode = list_first_entry(head, struct inode, i_lru);
586 		list_del_init(&inode->i_lru);
587 
588 		evict(inode);
589 	}
590 }
591 
592 /**
593  * evict_inodes	- evict all evictable inodes for a superblock
594  * @sb:		superblock to operate on
595  *
596  * Make sure that no inodes with zero refcount are retained.  This is
597  * called by superblock shutdown after having MS_ACTIVE flag removed,
598  * so any inode reaching zero refcount during or after that call will
599  * be immediately evicted.
600  */
601 void evict_inodes(struct super_block *sb)
602 {
603 	struct inode *inode, *next;
604 	LIST_HEAD(dispose);
605 
606 	spin_lock(&inode_sb_list_lock);
607 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
608 		if (atomic_read(&inode->i_count))
609 			continue;
610 
611 		spin_lock(&inode->i_lock);
612 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
613 			spin_unlock(&inode->i_lock);
614 			continue;
615 		}
616 
617 		inode->i_state |= I_FREEING;
618 		inode_lru_list_del(inode);
619 		spin_unlock(&inode->i_lock);
620 		list_add(&inode->i_lru, &dispose);
621 	}
622 	spin_unlock(&inode_sb_list_lock);
623 
624 	dispose_list(&dispose);
625 }
626 
627 /**
628  * invalidate_inodes	- attempt to free all inodes on a superblock
629  * @sb:		superblock to operate on
630  * @kill_dirty: flag to guide handling of dirty inodes
631  *
632  * Attempts to free all inodes for a given superblock.  If there were any
633  * busy inodes return a non-zero value, else zero.
634  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
635  * them as busy.
636  */
637 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
638 {
639 	int busy = 0;
640 	struct inode *inode, *next;
641 	LIST_HEAD(dispose);
642 
643 	spin_lock(&inode_sb_list_lock);
644 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
645 		spin_lock(&inode->i_lock);
646 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
647 			spin_unlock(&inode->i_lock);
648 			continue;
649 		}
650 		if (inode->i_state & I_DIRTY && !kill_dirty) {
651 			spin_unlock(&inode->i_lock);
652 			busy = 1;
653 			continue;
654 		}
655 		if (atomic_read(&inode->i_count)) {
656 			spin_unlock(&inode->i_lock);
657 			busy = 1;
658 			continue;
659 		}
660 
661 		inode->i_state |= I_FREEING;
662 		inode_lru_list_del(inode);
663 		spin_unlock(&inode->i_lock);
664 		list_add(&inode->i_lru, &dispose);
665 	}
666 	spin_unlock(&inode_sb_list_lock);
667 
668 	dispose_list(&dispose);
669 
670 	return busy;
671 }
672 
673 /*
674  * Isolate the inode from the LRU in preparation for freeing it.
675  *
676  * Any inodes which are pinned purely because of attached pagecache have their
677  * pagecache removed.  If the inode has metadata buffers attached to
678  * mapping->private_list then try to remove them.
679  *
680  * If the inode has the I_REFERENCED flag set, then it means that it has been
681  * used recently - the flag is set in iput_final(). When we encounter such an
682  * inode, clear the flag and move it to the back of the LRU so it gets another
683  * pass through the LRU before it gets reclaimed. This is necessary because of
684  * the fact we are doing lazy LRU updates to minimise lock contention so the
685  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
686  * with this flag set because they are the inodes that are out of order.
687  */
688 static enum lru_status
689 inode_lru_isolate(struct list_head *item, spinlock_t *lru_lock, void *arg)
690 {
691 	struct list_head *freeable = arg;
692 	struct inode	*inode = container_of(item, struct inode, i_lru);
693 
694 	/*
695 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
696 	 * If we fail to get the lock, just skip it.
697 	 */
698 	if (!spin_trylock(&inode->i_lock))
699 		return LRU_SKIP;
700 
701 	/*
702 	 * Referenced or dirty inodes are still in use. Give them another pass
703 	 * through the LRU as we canot reclaim them now.
704 	 */
705 	if (atomic_read(&inode->i_count) ||
706 	    (inode->i_state & ~I_REFERENCED)) {
707 		list_del_init(&inode->i_lru);
708 		spin_unlock(&inode->i_lock);
709 		this_cpu_dec(nr_unused);
710 		return LRU_REMOVED;
711 	}
712 
713 	/* recently referenced inodes get one more pass */
714 	if (inode->i_state & I_REFERENCED) {
715 		inode->i_state &= ~I_REFERENCED;
716 		spin_unlock(&inode->i_lock);
717 		return LRU_ROTATE;
718 	}
719 
720 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
721 		__iget(inode);
722 		spin_unlock(&inode->i_lock);
723 		spin_unlock(lru_lock);
724 		if (remove_inode_buffers(inode)) {
725 			unsigned long reap;
726 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
727 			if (current_is_kswapd())
728 				__count_vm_events(KSWAPD_INODESTEAL, reap);
729 			else
730 				__count_vm_events(PGINODESTEAL, reap);
731 			if (current->reclaim_state)
732 				current->reclaim_state->reclaimed_slab += reap;
733 		}
734 		iput(inode);
735 		spin_lock(lru_lock);
736 		return LRU_RETRY;
737 	}
738 
739 	WARN_ON(inode->i_state & I_NEW);
740 	inode->i_state |= I_FREEING;
741 	list_move(&inode->i_lru, freeable);
742 	spin_unlock(&inode->i_lock);
743 
744 	this_cpu_dec(nr_unused);
745 	return LRU_REMOVED;
746 }
747 
748 /*
749  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
750  * This is called from the superblock shrinker function with a number of inodes
751  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
752  * then are freed outside inode_lock by dispose_list().
753  */
754 long prune_icache_sb(struct super_block *sb, unsigned long nr_to_scan,
755 		     int nid)
756 {
757 	LIST_HEAD(freeable);
758 	long freed;
759 
760 	freed = list_lru_walk_node(&sb->s_inode_lru, nid, inode_lru_isolate,
761 				       &freeable, &nr_to_scan);
762 	dispose_list(&freeable);
763 	return freed;
764 }
765 
766 static void __wait_on_freeing_inode(struct inode *inode);
767 /*
768  * Called with the inode lock held.
769  */
770 static struct inode *find_inode(struct super_block *sb,
771 				struct hlist_head *head,
772 				int (*test)(struct inode *, void *),
773 				void *data)
774 {
775 	struct inode *inode = NULL;
776 
777 repeat:
778 	hlist_for_each_entry(inode, head, i_hash) {
779 		if (inode->i_sb != sb)
780 			continue;
781 		if (!test(inode, data))
782 			continue;
783 		spin_lock(&inode->i_lock);
784 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
785 			__wait_on_freeing_inode(inode);
786 			goto repeat;
787 		}
788 		__iget(inode);
789 		spin_unlock(&inode->i_lock);
790 		return inode;
791 	}
792 	return NULL;
793 }
794 
795 /*
796  * find_inode_fast is the fast path version of find_inode, see the comment at
797  * iget_locked for details.
798  */
799 static struct inode *find_inode_fast(struct super_block *sb,
800 				struct hlist_head *head, unsigned long ino)
801 {
802 	struct inode *inode = NULL;
803 
804 repeat:
805 	hlist_for_each_entry(inode, head, i_hash) {
806 		if (inode->i_ino != ino)
807 			continue;
808 		if (inode->i_sb != sb)
809 			continue;
810 		spin_lock(&inode->i_lock);
811 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
812 			__wait_on_freeing_inode(inode);
813 			goto repeat;
814 		}
815 		__iget(inode);
816 		spin_unlock(&inode->i_lock);
817 		return inode;
818 	}
819 	return NULL;
820 }
821 
822 /*
823  * Each cpu owns a range of LAST_INO_BATCH numbers.
824  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
825  * to renew the exhausted range.
826  *
827  * This does not significantly increase overflow rate because every CPU can
828  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
829  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
830  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
831  * overflow rate by 2x, which does not seem too significant.
832  *
833  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
834  * error if st_ino won't fit in target struct field. Use 32bit counter
835  * here to attempt to avoid that.
836  */
837 #define LAST_INO_BATCH 1024
838 static DEFINE_PER_CPU(unsigned int, last_ino);
839 
840 unsigned int get_next_ino(void)
841 {
842 	unsigned int *p = &get_cpu_var(last_ino);
843 	unsigned int res = *p;
844 
845 #ifdef CONFIG_SMP
846 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
847 		static atomic_t shared_last_ino;
848 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
849 
850 		res = next - LAST_INO_BATCH;
851 	}
852 #endif
853 
854 	*p = ++res;
855 	put_cpu_var(last_ino);
856 	return res;
857 }
858 EXPORT_SYMBOL(get_next_ino);
859 
860 /**
861  *	new_inode_pseudo 	- obtain an inode
862  *	@sb: superblock
863  *
864  *	Allocates a new inode for given superblock.
865  *	Inode wont be chained in superblock s_inodes list
866  *	This means :
867  *	- fs can't be unmount
868  *	- quotas, fsnotify, writeback can't work
869  */
870 struct inode *new_inode_pseudo(struct super_block *sb)
871 {
872 	struct inode *inode = alloc_inode(sb);
873 
874 	if (inode) {
875 		spin_lock(&inode->i_lock);
876 		inode->i_state = 0;
877 		spin_unlock(&inode->i_lock);
878 		INIT_LIST_HEAD(&inode->i_sb_list);
879 	}
880 	return inode;
881 }
882 
883 /**
884  *	new_inode 	- obtain an inode
885  *	@sb: superblock
886  *
887  *	Allocates a new inode for given superblock. The default gfp_mask
888  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
889  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
890  *	for the page cache are not reclaimable or migratable,
891  *	mapping_set_gfp_mask() must be called with suitable flags on the
892  *	newly created inode's mapping
893  *
894  */
895 struct inode *new_inode(struct super_block *sb)
896 {
897 	struct inode *inode;
898 
899 	spin_lock_prefetch(&inode_sb_list_lock);
900 
901 	inode = new_inode_pseudo(sb);
902 	if (inode)
903 		inode_sb_list_add(inode);
904 	return inode;
905 }
906 EXPORT_SYMBOL(new_inode);
907 
908 #ifdef CONFIG_DEBUG_LOCK_ALLOC
909 void lockdep_annotate_inode_mutex_key(struct inode *inode)
910 {
911 	if (S_ISDIR(inode->i_mode)) {
912 		struct file_system_type *type = inode->i_sb->s_type;
913 
914 		/* Set new key only if filesystem hasn't already changed it */
915 		if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
916 			/*
917 			 * ensure nobody is actually holding i_mutex
918 			 */
919 			mutex_destroy(&inode->i_mutex);
920 			mutex_init(&inode->i_mutex);
921 			lockdep_set_class(&inode->i_mutex,
922 					  &type->i_mutex_dir_key);
923 		}
924 	}
925 }
926 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
927 #endif
928 
929 /**
930  * unlock_new_inode - clear the I_NEW state and wake up any waiters
931  * @inode:	new inode to unlock
932  *
933  * Called when the inode is fully initialised to clear the new state of the
934  * inode and wake up anyone waiting for the inode to finish initialisation.
935  */
936 void unlock_new_inode(struct inode *inode)
937 {
938 	lockdep_annotate_inode_mutex_key(inode);
939 	spin_lock(&inode->i_lock);
940 	WARN_ON(!(inode->i_state & I_NEW));
941 	inode->i_state &= ~I_NEW;
942 	smp_mb();
943 	wake_up_bit(&inode->i_state, __I_NEW);
944 	spin_unlock(&inode->i_lock);
945 }
946 EXPORT_SYMBOL(unlock_new_inode);
947 
948 /**
949  * lock_two_nondirectories - take two i_mutexes on non-directory objects
950  *
951  * Lock any non-NULL argument that is not a directory.
952  * Zero, one or two objects may be locked by this function.
953  *
954  * @inode1: first inode to lock
955  * @inode2: second inode to lock
956  */
957 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
958 {
959 	if (inode1 > inode2)
960 		swap(inode1, inode2);
961 
962 	if (inode1 && !S_ISDIR(inode1->i_mode))
963 		mutex_lock(&inode1->i_mutex);
964 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
965 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_NONDIR2);
966 }
967 EXPORT_SYMBOL(lock_two_nondirectories);
968 
969 /**
970  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
971  * @inode1: first inode to unlock
972  * @inode2: second inode to unlock
973  */
974 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
975 {
976 	if (inode1 && !S_ISDIR(inode1->i_mode))
977 		mutex_unlock(&inode1->i_mutex);
978 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
979 		mutex_unlock(&inode2->i_mutex);
980 }
981 EXPORT_SYMBOL(unlock_two_nondirectories);
982 
983 /**
984  * iget5_locked - obtain an inode from a mounted file system
985  * @sb:		super block of file system
986  * @hashval:	hash value (usually inode number) to get
987  * @test:	callback used for comparisons between inodes
988  * @set:	callback used to initialize a new struct inode
989  * @data:	opaque data pointer to pass to @test and @set
990  *
991  * Search for the inode specified by @hashval and @data in the inode cache,
992  * and if present it is return it with an increased reference count. This is
993  * a generalized version of iget_locked() for file systems where the inode
994  * number is not sufficient for unique identification of an inode.
995  *
996  * If the inode is not in cache, allocate a new inode and return it locked,
997  * hashed, and with the I_NEW flag set. The file system gets to fill it in
998  * before unlocking it via unlock_new_inode().
999  *
1000  * Note both @test and @set are called with the inode_hash_lock held, so can't
1001  * sleep.
1002  */
1003 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1004 		int (*test)(struct inode *, void *),
1005 		int (*set)(struct inode *, void *), void *data)
1006 {
1007 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1008 	struct inode *inode;
1009 
1010 	spin_lock(&inode_hash_lock);
1011 	inode = find_inode(sb, head, test, data);
1012 	spin_unlock(&inode_hash_lock);
1013 
1014 	if (inode) {
1015 		wait_on_inode(inode);
1016 		return inode;
1017 	}
1018 
1019 	inode = alloc_inode(sb);
1020 	if (inode) {
1021 		struct inode *old;
1022 
1023 		spin_lock(&inode_hash_lock);
1024 		/* We released the lock, so.. */
1025 		old = find_inode(sb, head, test, data);
1026 		if (!old) {
1027 			if (set(inode, data))
1028 				goto set_failed;
1029 
1030 			spin_lock(&inode->i_lock);
1031 			inode->i_state = I_NEW;
1032 			hlist_add_head(&inode->i_hash, head);
1033 			spin_unlock(&inode->i_lock);
1034 			inode_sb_list_add(inode);
1035 			spin_unlock(&inode_hash_lock);
1036 
1037 			/* Return the locked inode with I_NEW set, the
1038 			 * caller is responsible for filling in the contents
1039 			 */
1040 			return inode;
1041 		}
1042 
1043 		/*
1044 		 * Uhhuh, somebody else created the same inode under
1045 		 * us. Use the old inode instead of the one we just
1046 		 * allocated.
1047 		 */
1048 		spin_unlock(&inode_hash_lock);
1049 		destroy_inode(inode);
1050 		inode = old;
1051 		wait_on_inode(inode);
1052 	}
1053 	return inode;
1054 
1055 set_failed:
1056 	spin_unlock(&inode_hash_lock);
1057 	destroy_inode(inode);
1058 	return NULL;
1059 }
1060 EXPORT_SYMBOL(iget5_locked);
1061 
1062 /**
1063  * iget_locked - obtain an inode from a mounted file system
1064  * @sb:		super block of file system
1065  * @ino:	inode number to get
1066  *
1067  * Search for the inode specified by @ino in the inode cache and if present
1068  * return it with an increased reference count. This is for file systems
1069  * where the inode number is sufficient for unique identification of an inode.
1070  *
1071  * If the inode is not in cache, allocate a new inode and return it locked,
1072  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1073  * before unlocking it via unlock_new_inode().
1074  */
1075 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1076 {
1077 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1078 	struct inode *inode;
1079 
1080 	spin_lock(&inode_hash_lock);
1081 	inode = find_inode_fast(sb, head, ino);
1082 	spin_unlock(&inode_hash_lock);
1083 	if (inode) {
1084 		wait_on_inode(inode);
1085 		return inode;
1086 	}
1087 
1088 	inode = alloc_inode(sb);
1089 	if (inode) {
1090 		struct inode *old;
1091 
1092 		spin_lock(&inode_hash_lock);
1093 		/* We released the lock, so.. */
1094 		old = find_inode_fast(sb, head, ino);
1095 		if (!old) {
1096 			inode->i_ino = ino;
1097 			spin_lock(&inode->i_lock);
1098 			inode->i_state = I_NEW;
1099 			hlist_add_head(&inode->i_hash, head);
1100 			spin_unlock(&inode->i_lock);
1101 			inode_sb_list_add(inode);
1102 			spin_unlock(&inode_hash_lock);
1103 
1104 			/* Return the locked inode with I_NEW set, the
1105 			 * caller is responsible for filling in the contents
1106 			 */
1107 			return inode;
1108 		}
1109 
1110 		/*
1111 		 * Uhhuh, somebody else created the same inode under
1112 		 * us. Use the old inode instead of the one we just
1113 		 * allocated.
1114 		 */
1115 		spin_unlock(&inode_hash_lock);
1116 		destroy_inode(inode);
1117 		inode = old;
1118 		wait_on_inode(inode);
1119 	}
1120 	return inode;
1121 }
1122 EXPORT_SYMBOL(iget_locked);
1123 
1124 /*
1125  * search the inode cache for a matching inode number.
1126  * If we find one, then the inode number we are trying to
1127  * allocate is not unique and so we should not use it.
1128  *
1129  * Returns 1 if the inode number is unique, 0 if it is not.
1130  */
1131 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1132 {
1133 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1134 	struct inode *inode;
1135 
1136 	spin_lock(&inode_hash_lock);
1137 	hlist_for_each_entry(inode, b, i_hash) {
1138 		if (inode->i_ino == ino && inode->i_sb == sb) {
1139 			spin_unlock(&inode_hash_lock);
1140 			return 0;
1141 		}
1142 	}
1143 	spin_unlock(&inode_hash_lock);
1144 
1145 	return 1;
1146 }
1147 
1148 /**
1149  *	iunique - get a unique inode number
1150  *	@sb: superblock
1151  *	@max_reserved: highest reserved inode number
1152  *
1153  *	Obtain an inode number that is unique on the system for a given
1154  *	superblock. This is used by file systems that have no natural
1155  *	permanent inode numbering system. An inode number is returned that
1156  *	is higher than the reserved limit but unique.
1157  *
1158  *	BUGS:
1159  *	With a large number of inodes live on the file system this function
1160  *	currently becomes quite slow.
1161  */
1162 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1163 {
1164 	/*
1165 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1166 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1167 	 * here to attempt to avoid that.
1168 	 */
1169 	static DEFINE_SPINLOCK(iunique_lock);
1170 	static unsigned int counter;
1171 	ino_t res;
1172 
1173 	spin_lock(&iunique_lock);
1174 	do {
1175 		if (counter <= max_reserved)
1176 			counter = max_reserved + 1;
1177 		res = counter++;
1178 	} while (!test_inode_iunique(sb, res));
1179 	spin_unlock(&iunique_lock);
1180 
1181 	return res;
1182 }
1183 EXPORT_SYMBOL(iunique);
1184 
1185 struct inode *igrab(struct inode *inode)
1186 {
1187 	spin_lock(&inode->i_lock);
1188 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1189 		__iget(inode);
1190 		spin_unlock(&inode->i_lock);
1191 	} else {
1192 		spin_unlock(&inode->i_lock);
1193 		/*
1194 		 * Handle the case where s_op->clear_inode is not been
1195 		 * called yet, and somebody is calling igrab
1196 		 * while the inode is getting freed.
1197 		 */
1198 		inode = NULL;
1199 	}
1200 	return inode;
1201 }
1202 EXPORT_SYMBOL(igrab);
1203 
1204 /**
1205  * ilookup5_nowait - search for an inode in the inode cache
1206  * @sb:		super block of file system to search
1207  * @hashval:	hash value (usually inode number) to search for
1208  * @test:	callback used for comparisons between inodes
1209  * @data:	opaque data pointer to pass to @test
1210  *
1211  * Search for the inode specified by @hashval and @data in the inode cache.
1212  * If the inode is in the cache, the inode is returned with an incremented
1213  * reference count.
1214  *
1215  * Note: I_NEW is not waited upon so you have to be very careful what you do
1216  * with the returned inode.  You probably should be using ilookup5() instead.
1217  *
1218  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1219  */
1220 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1221 		int (*test)(struct inode *, void *), void *data)
1222 {
1223 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1224 	struct inode *inode;
1225 
1226 	spin_lock(&inode_hash_lock);
1227 	inode = find_inode(sb, head, test, data);
1228 	spin_unlock(&inode_hash_lock);
1229 
1230 	return inode;
1231 }
1232 EXPORT_SYMBOL(ilookup5_nowait);
1233 
1234 /**
1235  * ilookup5 - search for an inode in the inode cache
1236  * @sb:		super block of file system to search
1237  * @hashval:	hash value (usually inode number) to search for
1238  * @test:	callback used for comparisons between inodes
1239  * @data:	opaque data pointer to pass to @test
1240  *
1241  * Search for the inode specified by @hashval and @data in the inode cache,
1242  * and if the inode is in the cache, return the inode with an incremented
1243  * reference count.  Waits on I_NEW before returning the inode.
1244  * returned with an incremented reference count.
1245  *
1246  * This is a generalized version of ilookup() for file systems where the
1247  * inode number is not sufficient for unique identification of an inode.
1248  *
1249  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1250  */
1251 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1252 		int (*test)(struct inode *, void *), void *data)
1253 {
1254 	struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1255 
1256 	if (inode)
1257 		wait_on_inode(inode);
1258 	return inode;
1259 }
1260 EXPORT_SYMBOL(ilookup5);
1261 
1262 /**
1263  * ilookup - search for an inode in the inode cache
1264  * @sb:		super block of file system to search
1265  * @ino:	inode number to search for
1266  *
1267  * Search for the inode @ino in the inode cache, and if the inode is in the
1268  * cache, the inode is returned with an incremented reference count.
1269  */
1270 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1271 {
1272 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1273 	struct inode *inode;
1274 
1275 	spin_lock(&inode_hash_lock);
1276 	inode = find_inode_fast(sb, head, ino);
1277 	spin_unlock(&inode_hash_lock);
1278 
1279 	if (inode)
1280 		wait_on_inode(inode);
1281 	return inode;
1282 }
1283 EXPORT_SYMBOL(ilookup);
1284 
1285 int insert_inode_locked(struct inode *inode)
1286 {
1287 	struct super_block *sb = inode->i_sb;
1288 	ino_t ino = inode->i_ino;
1289 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1290 
1291 	while (1) {
1292 		struct inode *old = NULL;
1293 		spin_lock(&inode_hash_lock);
1294 		hlist_for_each_entry(old, head, i_hash) {
1295 			if (old->i_ino != ino)
1296 				continue;
1297 			if (old->i_sb != sb)
1298 				continue;
1299 			spin_lock(&old->i_lock);
1300 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1301 				spin_unlock(&old->i_lock);
1302 				continue;
1303 			}
1304 			break;
1305 		}
1306 		if (likely(!old)) {
1307 			spin_lock(&inode->i_lock);
1308 			inode->i_state |= I_NEW;
1309 			hlist_add_head(&inode->i_hash, head);
1310 			spin_unlock(&inode->i_lock);
1311 			spin_unlock(&inode_hash_lock);
1312 			return 0;
1313 		}
1314 		__iget(old);
1315 		spin_unlock(&old->i_lock);
1316 		spin_unlock(&inode_hash_lock);
1317 		wait_on_inode(old);
1318 		if (unlikely(!inode_unhashed(old))) {
1319 			iput(old);
1320 			return -EBUSY;
1321 		}
1322 		iput(old);
1323 	}
1324 }
1325 EXPORT_SYMBOL(insert_inode_locked);
1326 
1327 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1328 		int (*test)(struct inode *, void *), void *data)
1329 {
1330 	struct super_block *sb = inode->i_sb;
1331 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1332 
1333 	while (1) {
1334 		struct inode *old = NULL;
1335 
1336 		spin_lock(&inode_hash_lock);
1337 		hlist_for_each_entry(old, head, i_hash) {
1338 			if (old->i_sb != sb)
1339 				continue;
1340 			if (!test(old, data))
1341 				continue;
1342 			spin_lock(&old->i_lock);
1343 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1344 				spin_unlock(&old->i_lock);
1345 				continue;
1346 			}
1347 			break;
1348 		}
1349 		if (likely(!old)) {
1350 			spin_lock(&inode->i_lock);
1351 			inode->i_state |= I_NEW;
1352 			hlist_add_head(&inode->i_hash, head);
1353 			spin_unlock(&inode->i_lock);
1354 			spin_unlock(&inode_hash_lock);
1355 			return 0;
1356 		}
1357 		__iget(old);
1358 		spin_unlock(&old->i_lock);
1359 		spin_unlock(&inode_hash_lock);
1360 		wait_on_inode(old);
1361 		if (unlikely(!inode_unhashed(old))) {
1362 			iput(old);
1363 			return -EBUSY;
1364 		}
1365 		iput(old);
1366 	}
1367 }
1368 EXPORT_SYMBOL(insert_inode_locked4);
1369 
1370 
1371 int generic_delete_inode(struct inode *inode)
1372 {
1373 	return 1;
1374 }
1375 EXPORT_SYMBOL(generic_delete_inode);
1376 
1377 /*
1378  * Called when we're dropping the last reference
1379  * to an inode.
1380  *
1381  * Call the FS "drop_inode()" function, defaulting to
1382  * the legacy UNIX filesystem behaviour.  If it tells
1383  * us to evict inode, do so.  Otherwise, retain inode
1384  * in cache if fs is alive, sync and evict if fs is
1385  * shutting down.
1386  */
1387 static void iput_final(struct inode *inode)
1388 {
1389 	struct super_block *sb = inode->i_sb;
1390 	const struct super_operations *op = inode->i_sb->s_op;
1391 	int drop;
1392 
1393 	WARN_ON(inode->i_state & I_NEW);
1394 
1395 	if (op->drop_inode)
1396 		drop = op->drop_inode(inode);
1397 	else
1398 		drop = generic_drop_inode(inode);
1399 
1400 	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1401 		inode->i_state |= I_REFERENCED;
1402 		inode_add_lru(inode);
1403 		spin_unlock(&inode->i_lock);
1404 		return;
1405 	}
1406 
1407 	if (!drop) {
1408 		inode->i_state |= I_WILL_FREE;
1409 		spin_unlock(&inode->i_lock);
1410 		write_inode_now(inode, 1);
1411 		spin_lock(&inode->i_lock);
1412 		WARN_ON(inode->i_state & I_NEW);
1413 		inode->i_state &= ~I_WILL_FREE;
1414 	}
1415 
1416 	inode->i_state |= I_FREEING;
1417 	if (!list_empty(&inode->i_lru))
1418 		inode_lru_list_del(inode);
1419 	spin_unlock(&inode->i_lock);
1420 
1421 	evict(inode);
1422 }
1423 
1424 /**
1425  *	iput	- put an inode
1426  *	@inode: inode to put
1427  *
1428  *	Puts an inode, dropping its usage count. If the inode use count hits
1429  *	zero, the inode is then freed and may also be destroyed.
1430  *
1431  *	Consequently, iput() can sleep.
1432  */
1433 void iput(struct inode *inode)
1434 {
1435 	if (inode) {
1436 		BUG_ON(inode->i_state & I_CLEAR);
1437 
1438 		if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1439 			iput_final(inode);
1440 	}
1441 }
1442 EXPORT_SYMBOL(iput);
1443 
1444 /**
1445  *	bmap	- find a block number in a file
1446  *	@inode: inode of file
1447  *	@block: block to find
1448  *
1449  *	Returns the block number on the device holding the inode that
1450  *	is the disk block number for the block of the file requested.
1451  *	That is, asked for block 4 of inode 1 the function will return the
1452  *	disk block relative to the disk start that holds that block of the
1453  *	file.
1454  */
1455 sector_t bmap(struct inode *inode, sector_t block)
1456 {
1457 	sector_t res = 0;
1458 	if (inode->i_mapping->a_ops->bmap)
1459 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1460 	return res;
1461 }
1462 EXPORT_SYMBOL(bmap);
1463 
1464 /*
1465  * With relative atime, only update atime if the previous atime is
1466  * earlier than either the ctime or mtime or if at least a day has
1467  * passed since the last atime update.
1468  */
1469 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1470 			     struct timespec now)
1471 {
1472 
1473 	if (!(mnt->mnt_flags & MNT_RELATIME))
1474 		return 1;
1475 	/*
1476 	 * Is mtime younger than atime? If yes, update atime:
1477 	 */
1478 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1479 		return 1;
1480 	/*
1481 	 * Is ctime younger than atime? If yes, update atime:
1482 	 */
1483 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1484 		return 1;
1485 
1486 	/*
1487 	 * Is the previous atime value older than a day? If yes,
1488 	 * update atime:
1489 	 */
1490 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1491 		return 1;
1492 	/*
1493 	 * Good, we can skip the atime update:
1494 	 */
1495 	return 0;
1496 }
1497 
1498 /*
1499  * This does the actual work of updating an inodes time or version.  Must have
1500  * had called mnt_want_write() before calling this.
1501  */
1502 static int update_time(struct inode *inode, struct timespec *time, int flags)
1503 {
1504 	if (inode->i_op->update_time)
1505 		return inode->i_op->update_time(inode, time, flags);
1506 
1507 	if (flags & S_ATIME)
1508 		inode->i_atime = *time;
1509 	if (flags & S_VERSION)
1510 		inode_inc_iversion(inode);
1511 	if (flags & S_CTIME)
1512 		inode->i_ctime = *time;
1513 	if (flags & S_MTIME)
1514 		inode->i_mtime = *time;
1515 	mark_inode_dirty_sync(inode);
1516 	return 0;
1517 }
1518 
1519 /**
1520  *	touch_atime	-	update the access time
1521  *	@path: the &struct path to update
1522  *
1523  *	Update the accessed time on an inode and mark it for writeback.
1524  *	This function automatically handles read only file systems and media,
1525  *	as well as the "noatime" flag and inode specific "noatime" markers.
1526  */
1527 void touch_atime(const struct path *path)
1528 {
1529 	struct vfsmount *mnt = path->mnt;
1530 	struct inode *inode = path->dentry->d_inode;
1531 	struct timespec now;
1532 
1533 	if (inode->i_flags & S_NOATIME)
1534 		return;
1535 	if (IS_NOATIME(inode))
1536 		return;
1537 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1538 		return;
1539 
1540 	if (mnt->mnt_flags & MNT_NOATIME)
1541 		return;
1542 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1543 		return;
1544 
1545 	now = current_fs_time(inode->i_sb);
1546 
1547 	if (!relatime_need_update(mnt, inode, now))
1548 		return;
1549 
1550 	if (timespec_equal(&inode->i_atime, &now))
1551 		return;
1552 
1553 	if (!sb_start_write_trylock(inode->i_sb))
1554 		return;
1555 
1556 	if (__mnt_want_write(mnt))
1557 		goto skip_update;
1558 	/*
1559 	 * File systems can error out when updating inodes if they need to
1560 	 * allocate new space to modify an inode (such is the case for
1561 	 * Btrfs), but since we touch atime while walking down the path we
1562 	 * really don't care if we failed to update the atime of the file,
1563 	 * so just ignore the return value.
1564 	 * We may also fail on filesystems that have the ability to make parts
1565 	 * of the fs read only, e.g. subvolumes in Btrfs.
1566 	 */
1567 	update_time(inode, &now, S_ATIME);
1568 	__mnt_drop_write(mnt);
1569 skip_update:
1570 	sb_end_write(inode->i_sb);
1571 }
1572 EXPORT_SYMBOL(touch_atime);
1573 
1574 /*
1575  * The logic we want is
1576  *
1577  *	if suid or (sgid and xgrp)
1578  *		remove privs
1579  */
1580 int should_remove_suid(struct dentry *dentry)
1581 {
1582 	umode_t mode = dentry->d_inode->i_mode;
1583 	int kill = 0;
1584 
1585 	/* suid always must be killed */
1586 	if (unlikely(mode & S_ISUID))
1587 		kill = ATTR_KILL_SUID;
1588 
1589 	/*
1590 	 * sgid without any exec bits is just a mandatory locking mark; leave
1591 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1592 	 */
1593 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1594 		kill |= ATTR_KILL_SGID;
1595 
1596 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1597 		return kill;
1598 
1599 	return 0;
1600 }
1601 EXPORT_SYMBOL(should_remove_suid);
1602 
1603 static int __remove_suid(struct dentry *dentry, int kill)
1604 {
1605 	struct iattr newattrs;
1606 
1607 	newattrs.ia_valid = ATTR_FORCE | kill;
1608 	/*
1609 	 * Note we call this on write, so notify_change will not
1610 	 * encounter any conflicting delegations:
1611 	 */
1612 	return notify_change(dentry, &newattrs, NULL);
1613 }
1614 
1615 int file_remove_suid(struct file *file)
1616 {
1617 	struct dentry *dentry = file->f_path.dentry;
1618 	struct inode *inode = dentry->d_inode;
1619 	int killsuid;
1620 	int killpriv;
1621 	int error = 0;
1622 
1623 	/* Fast path for nothing security related */
1624 	if (IS_NOSEC(inode))
1625 		return 0;
1626 
1627 	killsuid = should_remove_suid(dentry);
1628 	killpriv = security_inode_need_killpriv(dentry);
1629 
1630 	if (killpriv < 0)
1631 		return killpriv;
1632 	if (killpriv)
1633 		error = security_inode_killpriv(dentry);
1634 	if (!error && killsuid)
1635 		error = __remove_suid(dentry, killsuid);
1636 	if (!error && (inode->i_sb->s_flags & MS_NOSEC))
1637 		inode->i_flags |= S_NOSEC;
1638 
1639 	return error;
1640 }
1641 EXPORT_SYMBOL(file_remove_suid);
1642 
1643 /**
1644  *	file_update_time	-	update mtime and ctime time
1645  *	@file: file accessed
1646  *
1647  *	Update the mtime and ctime members of an inode and mark the inode
1648  *	for writeback.  Note that this function is meant exclusively for
1649  *	usage in the file write path of filesystems, and filesystems may
1650  *	choose to explicitly ignore update via this function with the
1651  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1652  *	timestamps are handled by the server.  This can return an error for
1653  *	file systems who need to allocate space in order to update an inode.
1654  */
1655 
1656 int file_update_time(struct file *file)
1657 {
1658 	struct inode *inode = file_inode(file);
1659 	struct timespec now;
1660 	int sync_it = 0;
1661 	int ret;
1662 
1663 	/* First try to exhaust all avenues to not sync */
1664 	if (IS_NOCMTIME(inode))
1665 		return 0;
1666 
1667 	now = current_fs_time(inode->i_sb);
1668 	if (!timespec_equal(&inode->i_mtime, &now))
1669 		sync_it = S_MTIME;
1670 
1671 	if (!timespec_equal(&inode->i_ctime, &now))
1672 		sync_it |= S_CTIME;
1673 
1674 	if (IS_I_VERSION(inode))
1675 		sync_it |= S_VERSION;
1676 
1677 	if (!sync_it)
1678 		return 0;
1679 
1680 	/* Finally allowed to write? Takes lock. */
1681 	if (__mnt_want_write_file(file))
1682 		return 0;
1683 
1684 	ret = update_time(inode, &now, sync_it);
1685 	__mnt_drop_write_file(file);
1686 
1687 	return ret;
1688 }
1689 EXPORT_SYMBOL(file_update_time);
1690 
1691 int inode_needs_sync(struct inode *inode)
1692 {
1693 	if (IS_SYNC(inode))
1694 		return 1;
1695 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1696 		return 1;
1697 	return 0;
1698 }
1699 EXPORT_SYMBOL(inode_needs_sync);
1700 
1701 /*
1702  * If we try to find an inode in the inode hash while it is being
1703  * deleted, we have to wait until the filesystem completes its
1704  * deletion before reporting that it isn't found.  This function waits
1705  * until the deletion _might_ have completed.  Callers are responsible
1706  * to recheck inode state.
1707  *
1708  * It doesn't matter if I_NEW is not set initially, a call to
1709  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1710  * will DTRT.
1711  */
1712 static void __wait_on_freeing_inode(struct inode *inode)
1713 {
1714 	wait_queue_head_t *wq;
1715 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1716 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1717 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1718 	spin_unlock(&inode->i_lock);
1719 	spin_unlock(&inode_hash_lock);
1720 	schedule();
1721 	finish_wait(wq, &wait.wait);
1722 	spin_lock(&inode_hash_lock);
1723 }
1724 
1725 static __initdata unsigned long ihash_entries;
1726 static int __init set_ihash_entries(char *str)
1727 {
1728 	if (!str)
1729 		return 0;
1730 	ihash_entries = simple_strtoul(str, &str, 0);
1731 	return 1;
1732 }
1733 __setup("ihash_entries=", set_ihash_entries);
1734 
1735 /*
1736  * Initialize the waitqueues and inode hash table.
1737  */
1738 void __init inode_init_early(void)
1739 {
1740 	unsigned int loop;
1741 
1742 	/* If hashes are distributed across NUMA nodes, defer
1743 	 * hash allocation until vmalloc space is available.
1744 	 */
1745 	if (hashdist)
1746 		return;
1747 
1748 	inode_hashtable =
1749 		alloc_large_system_hash("Inode-cache",
1750 					sizeof(struct hlist_head),
1751 					ihash_entries,
1752 					14,
1753 					HASH_EARLY,
1754 					&i_hash_shift,
1755 					&i_hash_mask,
1756 					0,
1757 					0);
1758 
1759 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1760 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1761 }
1762 
1763 void __init inode_init(void)
1764 {
1765 	unsigned int loop;
1766 
1767 	/* inode slab cache */
1768 	inode_cachep = kmem_cache_create("inode_cache",
1769 					 sizeof(struct inode),
1770 					 0,
1771 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1772 					 SLAB_MEM_SPREAD),
1773 					 init_once);
1774 
1775 	/* Hash may have been set up in inode_init_early */
1776 	if (!hashdist)
1777 		return;
1778 
1779 	inode_hashtable =
1780 		alloc_large_system_hash("Inode-cache",
1781 					sizeof(struct hlist_head),
1782 					ihash_entries,
1783 					14,
1784 					0,
1785 					&i_hash_shift,
1786 					&i_hash_mask,
1787 					0,
1788 					0);
1789 
1790 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1791 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1792 }
1793 
1794 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1795 {
1796 	inode->i_mode = mode;
1797 	if (S_ISCHR(mode)) {
1798 		inode->i_fop = &def_chr_fops;
1799 		inode->i_rdev = rdev;
1800 	} else if (S_ISBLK(mode)) {
1801 		inode->i_fop = &def_blk_fops;
1802 		inode->i_rdev = rdev;
1803 	} else if (S_ISFIFO(mode))
1804 		inode->i_fop = &pipefifo_fops;
1805 	else if (S_ISSOCK(mode))
1806 		;	/* leave it no_open_fops */
1807 	else
1808 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1809 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1810 				  inode->i_ino);
1811 }
1812 EXPORT_SYMBOL(init_special_inode);
1813 
1814 /**
1815  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1816  * @inode: New inode
1817  * @dir: Directory inode
1818  * @mode: mode of the new inode
1819  */
1820 void inode_init_owner(struct inode *inode, const struct inode *dir,
1821 			umode_t mode)
1822 {
1823 	inode->i_uid = current_fsuid();
1824 	if (dir && dir->i_mode & S_ISGID) {
1825 		inode->i_gid = dir->i_gid;
1826 		if (S_ISDIR(mode))
1827 			mode |= S_ISGID;
1828 	} else
1829 		inode->i_gid = current_fsgid();
1830 	inode->i_mode = mode;
1831 }
1832 EXPORT_SYMBOL(inode_init_owner);
1833 
1834 /**
1835  * inode_owner_or_capable - check current task permissions to inode
1836  * @inode: inode being checked
1837  *
1838  * Return true if current either has CAP_FOWNER in a namespace with the
1839  * inode owner uid mapped, or owns the file.
1840  */
1841 bool inode_owner_or_capable(const struct inode *inode)
1842 {
1843 	struct user_namespace *ns;
1844 
1845 	if (uid_eq(current_fsuid(), inode->i_uid))
1846 		return true;
1847 
1848 	ns = current_user_ns();
1849 	if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
1850 		return true;
1851 	return false;
1852 }
1853 EXPORT_SYMBOL(inode_owner_or_capable);
1854 
1855 /*
1856  * Direct i/o helper functions
1857  */
1858 static void __inode_dio_wait(struct inode *inode)
1859 {
1860 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1861 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1862 
1863 	do {
1864 		prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1865 		if (atomic_read(&inode->i_dio_count))
1866 			schedule();
1867 	} while (atomic_read(&inode->i_dio_count));
1868 	finish_wait(wq, &q.wait);
1869 }
1870 
1871 /**
1872  * inode_dio_wait - wait for outstanding DIO requests to finish
1873  * @inode: inode to wait for
1874  *
1875  * Waits for all pending direct I/O requests to finish so that we can
1876  * proceed with a truncate or equivalent operation.
1877  *
1878  * Must be called under a lock that serializes taking new references
1879  * to i_dio_count, usually by inode->i_mutex.
1880  */
1881 void inode_dio_wait(struct inode *inode)
1882 {
1883 	if (atomic_read(&inode->i_dio_count))
1884 		__inode_dio_wait(inode);
1885 }
1886 EXPORT_SYMBOL(inode_dio_wait);
1887 
1888 /*
1889  * inode_dio_done - signal finish of a direct I/O requests
1890  * @inode: inode the direct I/O happens on
1891  *
1892  * This is called once we've finished processing a direct I/O request,
1893  * and is used to wake up callers waiting for direct I/O to be quiesced.
1894  */
1895 void inode_dio_done(struct inode *inode)
1896 {
1897 	if (atomic_dec_and_test(&inode->i_dio_count))
1898 		wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
1899 }
1900 EXPORT_SYMBOL(inode_dio_done);
1901 
1902 /*
1903  * inode_set_flags - atomically set some inode flags
1904  *
1905  * Note: the caller should be holding i_mutex, or else be sure that
1906  * they have exclusive access to the inode structure (i.e., while the
1907  * inode is being instantiated).  The reason for the cmpxchg() loop
1908  * --- which wouldn't be necessary if all code paths which modify
1909  * i_flags actually followed this rule, is that there is at least one
1910  * code path which doesn't today --- for example,
1911  * __generic_file_aio_write() calls file_remove_suid() without holding
1912  * i_mutex --- so we use cmpxchg() out of an abundance of caution.
1913  *
1914  * In the long run, i_mutex is overkill, and we should probably look
1915  * at using the i_lock spinlock to protect i_flags, and then make sure
1916  * it is so documented in include/linux/fs.h and that all code follows
1917  * the locking convention!!
1918  */
1919 void inode_set_flags(struct inode *inode, unsigned int flags,
1920 		     unsigned int mask)
1921 {
1922 	unsigned int old_flags, new_flags;
1923 
1924 	WARN_ON_ONCE(flags & ~mask);
1925 	do {
1926 		old_flags = ACCESS_ONCE(inode->i_flags);
1927 		new_flags = (old_flags & ~mask) | flags;
1928 	} while (unlikely(cmpxchg(&inode->i_flags, old_flags,
1929 				  new_flags) != old_flags));
1930 }
1931 EXPORT_SYMBOL(inode_set_flags);
1932