1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) 1997 Linus Torvalds 4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 5 */ 6 #include <linux/export.h> 7 #include <linux/fs.h> 8 #include <linux/filelock.h> 9 #include <linux/mm.h> 10 #include <linux/backing-dev.h> 11 #include <linux/hash.h> 12 #include <linux/swap.h> 13 #include <linux/security.h> 14 #include <linux/cdev.h> 15 #include <linux/memblock.h> 16 #include <linux/fsnotify.h> 17 #include <linux/mount.h> 18 #include <linux/posix_acl.h> 19 #include <linux/buffer_head.h> /* for inode_has_buffers */ 20 #include <linux/ratelimit.h> 21 #include <linux/list_lru.h> 22 #include <linux/iversion.h> 23 #include <trace/events/writeback.h> 24 #include "internal.h" 25 26 /* 27 * Inode locking rules: 28 * 29 * inode->i_lock protects: 30 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list 31 * Inode LRU list locks protect: 32 * inode->i_sb->s_inode_lru, inode->i_lru 33 * inode->i_sb->s_inode_list_lock protects: 34 * inode->i_sb->s_inodes, inode->i_sb_list 35 * bdi->wb.list_lock protects: 36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 37 * inode_hash_lock protects: 38 * inode_hashtable, inode->i_hash 39 * 40 * Lock ordering: 41 * 42 * inode->i_sb->s_inode_list_lock 43 * inode->i_lock 44 * Inode LRU list locks 45 * 46 * bdi->wb.list_lock 47 * inode->i_lock 48 * 49 * inode_hash_lock 50 * inode->i_sb->s_inode_list_lock 51 * inode->i_lock 52 * 53 * iunique_lock 54 * inode_hash_lock 55 */ 56 57 static unsigned int i_hash_mask __read_mostly; 58 static unsigned int i_hash_shift __read_mostly; 59 static struct hlist_head *inode_hashtable __read_mostly; 60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 61 62 /* 63 * Empty aops. Can be used for the cases where the user does not 64 * define any of the address_space operations. 65 */ 66 const struct address_space_operations empty_aops = { 67 }; 68 EXPORT_SYMBOL(empty_aops); 69 70 static DEFINE_PER_CPU(unsigned long, nr_inodes); 71 static DEFINE_PER_CPU(unsigned long, nr_unused); 72 73 static struct kmem_cache *inode_cachep __read_mostly; 74 75 static long get_nr_inodes(void) 76 { 77 int i; 78 long sum = 0; 79 for_each_possible_cpu(i) 80 sum += per_cpu(nr_inodes, i); 81 return sum < 0 ? 0 : sum; 82 } 83 84 static inline long get_nr_inodes_unused(void) 85 { 86 int i; 87 long sum = 0; 88 for_each_possible_cpu(i) 89 sum += per_cpu(nr_unused, i); 90 return sum < 0 ? 0 : sum; 91 } 92 93 long get_nr_dirty_inodes(void) 94 { 95 /* not actually dirty inodes, but a wild approximation */ 96 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 97 return nr_dirty > 0 ? nr_dirty : 0; 98 } 99 100 /* 101 * Handle nr_inode sysctl 102 */ 103 #ifdef CONFIG_SYSCTL 104 /* 105 * Statistics gathering.. 106 */ 107 static struct inodes_stat_t inodes_stat; 108 109 static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer, 110 size_t *lenp, loff_t *ppos) 111 { 112 inodes_stat.nr_inodes = get_nr_inodes(); 113 inodes_stat.nr_unused = get_nr_inodes_unused(); 114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 115 } 116 117 static struct ctl_table inodes_sysctls[] = { 118 { 119 .procname = "inode-nr", 120 .data = &inodes_stat, 121 .maxlen = 2*sizeof(long), 122 .mode = 0444, 123 .proc_handler = proc_nr_inodes, 124 }, 125 { 126 .procname = "inode-state", 127 .data = &inodes_stat, 128 .maxlen = 7*sizeof(long), 129 .mode = 0444, 130 .proc_handler = proc_nr_inodes, 131 }, 132 { } 133 }; 134 135 static int __init init_fs_inode_sysctls(void) 136 { 137 register_sysctl_init("fs", inodes_sysctls); 138 return 0; 139 } 140 early_initcall(init_fs_inode_sysctls); 141 #endif 142 143 static int no_open(struct inode *inode, struct file *file) 144 { 145 return -ENXIO; 146 } 147 148 /** 149 * inode_init_always - perform inode structure initialisation 150 * @sb: superblock inode belongs to 151 * @inode: inode to initialise 152 * 153 * These are initializations that need to be done on every inode 154 * allocation as the fields are not initialised by slab allocation. 155 */ 156 int inode_init_always(struct super_block *sb, struct inode *inode) 157 { 158 static const struct inode_operations empty_iops; 159 static const struct file_operations no_open_fops = {.open = no_open}; 160 struct address_space *const mapping = &inode->i_data; 161 162 inode->i_sb = sb; 163 inode->i_blkbits = sb->s_blocksize_bits; 164 inode->i_flags = 0; 165 atomic64_set(&inode->i_sequence, 0); 166 atomic_set(&inode->i_count, 1); 167 inode->i_op = &empty_iops; 168 inode->i_fop = &no_open_fops; 169 inode->i_ino = 0; 170 inode->__i_nlink = 1; 171 inode->i_opflags = 0; 172 if (sb->s_xattr) 173 inode->i_opflags |= IOP_XATTR; 174 i_uid_write(inode, 0); 175 i_gid_write(inode, 0); 176 atomic_set(&inode->i_writecount, 0); 177 inode->i_size = 0; 178 inode->i_write_hint = WRITE_LIFE_NOT_SET; 179 inode->i_blocks = 0; 180 inode->i_bytes = 0; 181 inode->i_generation = 0; 182 inode->i_pipe = NULL; 183 inode->i_cdev = NULL; 184 inode->i_link = NULL; 185 inode->i_dir_seq = 0; 186 inode->i_rdev = 0; 187 inode->dirtied_when = 0; 188 189 #ifdef CONFIG_CGROUP_WRITEBACK 190 inode->i_wb_frn_winner = 0; 191 inode->i_wb_frn_avg_time = 0; 192 inode->i_wb_frn_history = 0; 193 #endif 194 195 spin_lock_init(&inode->i_lock); 196 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 197 198 init_rwsem(&inode->i_rwsem); 199 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 200 201 atomic_set(&inode->i_dio_count, 0); 202 203 mapping->a_ops = &empty_aops; 204 mapping->host = inode; 205 mapping->flags = 0; 206 mapping->wb_err = 0; 207 atomic_set(&mapping->i_mmap_writable, 0); 208 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 209 atomic_set(&mapping->nr_thps, 0); 210 #endif 211 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 212 mapping->private_data = NULL; 213 mapping->writeback_index = 0; 214 init_rwsem(&mapping->invalidate_lock); 215 lockdep_set_class_and_name(&mapping->invalidate_lock, 216 &sb->s_type->invalidate_lock_key, 217 "mapping.invalidate_lock"); 218 if (sb->s_iflags & SB_I_STABLE_WRITES) 219 mapping_set_stable_writes(mapping); 220 inode->i_private = NULL; 221 inode->i_mapping = mapping; 222 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 223 #ifdef CONFIG_FS_POSIX_ACL 224 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 225 #endif 226 227 #ifdef CONFIG_FSNOTIFY 228 inode->i_fsnotify_mask = 0; 229 #endif 230 inode->i_flctx = NULL; 231 232 if (unlikely(security_inode_alloc(inode))) 233 return -ENOMEM; 234 this_cpu_inc(nr_inodes); 235 236 return 0; 237 } 238 EXPORT_SYMBOL(inode_init_always); 239 240 void free_inode_nonrcu(struct inode *inode) 241 { 242 kmem_cache_free(inode_cachep, inode); 243 } 244 EXPORT_SYMBOL(free_inode_nonrcu); 245 246 static void i_callback(struct rcu_head *head) 247 { 248 struct inode *inode = container_of(head, struct inode, i_rcu); 249 if (inode->free_inode) 250 inode->free_inode(inode); 251 else 252 free_inode_nonrcu(inode); 253 } 254 255 static struct inode *alloc_inode(struct super_block *sb) 256 { 257 const struct super_operations *ops = sb->s_op; 258 struct inode *inode; 259 260 if (ops->alloc_inode) 261 inode = ops->alloc_inode(sb); 262 else 263 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL); 264 265 if (!inode) 266 return NULL; 267 268 if (unlikely(inode_init_always(sb, inode))) { 269 if (ops->destroy_inode) { 270 ops->destroy_inode(inode); 271 if (!ops->free_inode) 272 return NULL; 273 } 274 inode->free_inode = ops->free_inode; 275 i_callback(&inode->i_rcu); 276 return NULL; 277 } 278 279 return inode; 280 } 281 282 void __destroy_inode(struct inode *inode) 283 { 284 BUG_ON(inode_has_buffers(inode)); 285 inode_detach_wb(inode); 286 security_inode_free(inode); 287 fsnotify_inode_delete(inode); 288 locks_free_lock_context(inode); 289 if (!inode->i_nlink) { 290 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 291 atomic_long_dec(&inode->i_sb->s_remove_count); 292 } 293 294 #ifdef CONFIG_FS_POSIX_ACL 295 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 296 posix_acl_release(inode->i_acl); 297 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 298 posix_acl_release(inode->i_default_acl); 299 #endif 300 this_cpu_dec(nr_inodes); 301 } 302 EXPORT_SYMBOL(__destroy_inode); 303 304 static void destroy_inode(struct inode *inode) 305 { 306 const struct super_operations *ops = inode->i_sb->s_op; 307 308 BUG_ON(!list_empty(&inode->i_lru)); 309 __destroy_inode(inode); 310 if (ops->destroy_inode) { 311 ops->destroy_inode(inode); 312 if (!ops->free_inode) 313 return; 314 } 315 inode->free_inode = ops->free_inode; 316 call_rcu(&inode->i_rcu, i_callback); 317 } 318 319 /** 320 * drop_nlink - directly drop an inode's link count 321 * @inode: inode 322 * 323 * This is a low-level filesystem helper to replace any 324 * direct filesystem manipulation of i_nlink. In cases 325 * where we are attempting to track writes to the 326 * filesystem, a decrement to zero means an imminent 327 * write when the file is truncated and actually unlinked 328 * on the filesystem. 329 */ 330 void drop_nlink(struct inode *inode) 331 { 332 WARN_ON(inode->i_nlink == 0); 333 inode->__i_nlink--; 334 if (!inode->i_nlink) 335 atomic_long_inc(&inode->i_sb->s_remove_count); 336 } 337 EXPORT_SYMBOL(drop_nlink); 338 339 /** 340 * clear_nlink - directly zero an inode's link count 341 * @inode: inode 342 * 343 * This is a low-level filesystem helper to replace any 344 * direct filesystem manipulation of i_nlink. See 345 * drop_nlink() for why we care about i_nlink hitting zero. 346 */ 347 void clear_nlink(struct inode *inode) 348 { 349 if (inode->i_nlink) { 350 inode->__i_nlink = 0; 351 atomic_long_inc(&inode->i_sb->s_remove_count); 352 } 353 } 354 EXPORT_SYMBOL(clear_nlink); 355 356 /** 357 * set_nlink - directly set an inode's link count 358 * @inode: inode 359 * @nlink: new nlink (should be non-zero) 360 * 361 * This is a low-level filesystem helper to replace any 362 * direct filesystem manipulation of i_nlink. 363 */ 364 void set_nlink(struct inode *inode, unsigned int nlink) 365 { 366 if (!nlink) { 367 clear_nlink(inode); 368 } else { 369 /* Yes, some filesystems do change nlink from zero to one */ 370 if (inode->i_nlink == 0) 371 atomic_long_dec(&inode->i_sb->s_remove_count); 372 373 inode->__i_nlink = nlink; 374 } 375 } 376 EXPORT_SYMBOL(set_nlink); 377 378 /** 379 * inc_nlink - directly increment an inode's link count 380 * @inode: inode 381 * 382 * This is a low-level filesystem helper to replace any 383 * direct filesystem manipulation of i_nlink. Currently, 384 * it is only here for parity with dec_nlink(). 385 */ 386 void inc_nlink(struct inode *inode) 387 { 388 if (unlikely(inode->i_nlink == 0)) { 389 WARN_ON(!(inode->i_state & I_LINKABLE)); 390 atomic_long_dec(&inode->i_sb->s_remove_count); 391 } 392 393 inode->__i_nlink++; 394 } 395 EXPORT_SYMBOL(inc_nlink); 396 397 static void __address_space_init_once(struct address_space *mapping) 398 { 399 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 400 init_rwsem(&mapping->i_mmap_rwsem); 401 INIT_LIST_HEAD(&mapping->private_list); 402 spin_lock_init(&mapping->private_lock); 403 mapping->i_mmap = RB_ROOT_CACHED; 404 } 405 406 void address_space_init_once(struct address_space *mapping) 407 { 408 memset(mapping, 0, sizeof(*mapping)); 409 __address_space_init_once(mapping); 410 } 411 EXPORT_SYMBOL(address_space_init_once); 412 413 /* 414 * These are initializations that only need to be done 415 * once, because the fields are idempotent across use 416 * of the inode, so let the slab aware of that. 417 */ 418 void inode_init_once(struct inode *inode) 419 { 420 memset(inode, 0, sizeof(*inode)); 421 INIT_HLIST_NODE(&inode->i_hash); 422 INIT_LIST_HEAD(&inode->i_devices); 423 INIT_LIST_HEAD(&inode->i_io_list); 424 INIT_LIST_HEAD(&inode->i_wb_list); 425 INIT_LIST_HEAD(&inode->i_lru); 426 INIT_LIST_HEAD(&inode->i_sb_list); 427 __address_space_init_once(&inode->i_data); 428 i_size_ordered_init(inode); 429 } 430 EXPORT_SYMBOL(inode_init_once); 431 432 static void init_once(void *foo) 433 { 434 struct inode *inode = (struct inode *) foo; 435 436 inode_init_once(inode); 437 } 438 439 /* 440 * inode->i_lock must be held 441 */ 442 void __iget(struct inode *inode) 443 { 444 atomic_inc(&inode->i_count); 445 } 446 447 /* 448 * get additional reference to inode; caller must already hold one. 449 */ 450 void ihold(struct inode *inode) 451 { 452 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 453 } 454 EXPORT_SYMBOL(ihold); 455 456 static void __inode_add_lru(struct inode *inode, bool rotate) 457 { 458 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE)) 459 return; 460 if (atomic_read(&inode->i_count)) 461 return; 462 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 463 return; 464 if (!mapping_shrinkable(&inode->i_data)) 465 return; 466 467 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) 468 this_cpu_inc(nr_unused); 469 else if (rotate) 470 inode->i_state |= I_REFERENCED; 471 } 472 473 /* 474 * Add inode to LRU if needed (inode is unused and clean). 475 * 476 * Needs inode->i_lock held. 477 */ 478 void inode_add_lru(struct inode *inode) 479 { 480 __inode_add_lru(inode, false); 481 } 482 483 static void inode_lru_list_del(struct inode *inode) 484 { 485 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) 486 this_cpu_dec(nr_unused); 487 } 488 489 static void inode_pin_lru_isolating(struct inode *inode) 490 { 491 lockdep_assert_held(&inode->i_lock); 492 WARN_ON(inode->i_state & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE)); 493 inode->i_state |= I_LRU_ISOLATING; 494 } 495 496 static void inode_unpin_lru_isolating(struct inode *inode) 497 { 498 spin_lock(&inode->i_lock); 499 WARN_ON(!(inode->i_state & I_LRU_ISOLATING)); 500 inode->i_state &= ~I_LRU_ISOLATING; 501 smp_mb(); 502 wake_up_bit(&inode->i_state, __I_LRU_ISOLATING); 503 spin_unlock(&inode->i_lock); 504 } 505 506 static void inode_wait_for_lru_isolating(struct inode *inode) 507 { 508 spin_lock(&inode->i_lock); 509 if (inode->i_state & I_LRU_ISOLATING) { 510 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_LRU_ISOLATING); 511 wait_queue_head_t *wqh; 512 513 wqh = bit_waitqueue(&inode->i_state, __I_LRU_ISOLATING); 514 spin_unlock(&inode->i_lock); 515 __wait_on_bit(wqh, &wq, bit_wait, TASK_UNINTERRUPTIBLE); 516 spin_lock(&inode->i_lock); 517 WARN_ON(inode->i_state & I_LRU_ISOLATING); 518 } 519 spin_unlock(&inode->i_lock); 520 } 521 522 /** 523 * inode_sb_list_add - add inode to the superblock list of inodes 524 * @inode: inode to add 525 */ 526 void inode_sb_list_add(struct inode *inode) 527 { 528 spin_lock(&inode->i_sb->s_inode_list_lock); 529 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 530 spin_unlock(&inode->i_sb->s_inode_list_lock); 531 } 532 EXPORT_SYMBOL_GPL(inode_sb_list_add); 533 534 static inline void inode_sb_list_del(struct inode *inode) 535 { 536 if (!list_empty(&inode->i_sb_list)) { 537 spin_lock(&inode->i_sb->s_inode_list_lock); 538 list_del_init(&inode->i_sb_list); 539 spin_unlock(&inode->i_sb->s_inode_list_lock); 540 } 541 } 542 543 static unsigned long hash(struct super_block *sb, unsigned long hashval) 544 { 545 unsigned long tmp; 546 547 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 548 L1_CACHE_BYTES; 549 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 550 return tmp & i_hash_mask; 551 } 552 553 /** 554 * __insert_inode_hash - hash an inode 555 * @inode: unhashed inode 556 * @hashval: unsigned long value used to locate this object in the 557 * inode_hashtable. 558 * 559 * Add an inode to the inode hash for this superblock. 560 */ 561 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 562 { 563 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 564 565 spin_lock(&inode_hash_lock); 566 spin_lock(&inode->i_lock); 567 hlist_add_head_rcu(&inode->i_hash, b); 568 spin_unlock(&inode->i_lock); 569 spin_unlock(&inode_hash_lock); 570 } 571 EXPORT_SYMBOL(__insert_inode_hash); 572 573 /** 574 * __remove_inode_hash - remove an inode from the hash 575 * @inode: inode to unhash 576 * 577 * Remove an inode from the superblock. 578 */ 579 void __remove_inode_hash(struct inode *inode) 580 { 581 spin_lock(&inode_hash_lock); 582 spin_lock(&inode->i_lock); 583 hlist_del_init_rcu(&inode->i_hash); 584 spin_unlock(&inode->i_lock); 585 spin_unlock(&inode_hash_lock); 586 } 587 EXPORT_SYMBOL(__remove_inode_hash); 588 589 void dump_mapping(const struct address_space *mapping) 590 { 591 struct inode *host; 592 const struct address_space_operations *a_ops; 593 struct hlist_node *dentry_first; 594 struct dentry *dentry_ptr; 595 struct dentry dentry; 596 unsigned long ino; 597 598 /* 599 * If mapping is an invalid pointer, we don't want to crash 600 * accessing it, so probe everything depending on it carefully. 601 */ 602 if (get_kernel_nofault(host, &mapping->host) || 603 get_kernel_nofault(a_ops, &mapping->a_ops)) { 604 pr_warn("invalid mapping:%px\n", mapping); 605 return; 606 } 607 608 if (!host) { 609 pr_warn("aops:%ps\n", a_ops); 610 return; 611 } 612 613 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) || 614 get_kernel_nofault(ino, &host->i_ino)) { 615 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host); 616 return; 617 } 618 619 if (!dentry_first) { 620 pr_warn("aops:%ps ino:%lx\n", a_ops, ino); 621 return; 622 } 623 624 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias); 625 if (get_kernel_nofault(dentry, dentry_ptr)) { 626 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n", 627 a_ops, ino, dentry_ptr); 628 return; 629 } 630 631 /* 632 * if dentry is corrupted, the %pd handler may still crash, 633 * but it's unlikely that we reach here with a corrupt mapping 634 */ 635 pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry); 636 } 637 638 void clear_inode(struct inode *inode) 639 { 640 /* 641 * We have to cycle the i_pages lock here because reclaim can be in the 642 * process of removing the last page (in __filemap_remove_folio()) 643 * and we must not free the mapping under it. 644 */ 645 xa_lock_irq(&inode->i_data.i_pages); 646 BUG_ON(inode->i_data.nrpages); 647 /* 648 * Almost always, mapping_empty(&inode->i_data) here; but there are 649 * two known and long-standing ways in which nodes may get left behind 650 * (when deep radix-tree node allocation failed partway; or when THP 651 * collapse_file() failed). Until those two known cases are cleaned up, 652 * or a cleanup function is called here, do not BUG_ON(!mapping_empty), 653 * nor even WARN_ON(!mapping_empty). 654 */ 655 xa_unlock_irq(&inode->i_data.i_pages); 656 BUG_ON(!list_empty(&inode->i_data.private_list)); 657 BUG_ON(!(inode->i_state & I_FREEING)); 658 BUG_ON(inode->i_state & I_CLEAR); 659 BUG_ON(!list_empty(&inode->i_wb_list)); 660 /* don't need i_lock here, no concurrent mods to i_state */ 661 inode->i_state = I_FREEING | I_CLEAR; 662 } 663 EXPORT_SYMBOL(clear_inode); 664 665 /* 666 * Free the inode passed in, removing it from the lists it is still connected 667 * to. We remove any pages still attached to the inode and wait for any IO that 668 * is still in progress before finally destroying the inode. 669 * 670 * An inode must already be marked I_FREEING so that we avoid the inode being 671 * moved back onto lists if we race with other code that manipulates the lists 672 * (e.g. writeback_single_inode). The caller is responsible for setting this. 673 * 674 * An inode must already be removed from the LRU list before being evicted from 675 * the cache. This should occur atomically with setting the I_FREEING state 676 * flag, so no inodes here should ever be on the LRU when being evicted. 677 */ 678 static void evict(struct inode *inode) 679 { 680 const struct super_operations *op = inode->i_sb->s_op; 681 682 BUG_ON(!(inode->i_state & I_FREEING)); 683 BUG_ON(!list_empty(&inode->i_lru)); 684 685 if (!list_empty(&inode->i_io_list)) 686 inode_io_list_del(inode); 687 688 inode_sb_list_del(inode); 689 690 inode_wait_for_lru_isolating(inode); 691 692 /* 693 * Wait for flusher thread to be done with the inode so that filesystem 694 * does not start destroying it while writeback is still running. Since 695 * the inode has I_FREEING set, flusher thread won't start new work on 696 * the inode. We just have to wait for running writeback to finish. 697 */ 698 inode_wait_for_writeback(inode); 699 700 if (op->evict_inode) { 701 op->evict_inode(inode); 702 } else { 703 truncate_inode_pages_final(&inode->i_data); 704 clear_inode(inode); 705 } 706 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 707 cd_forget(inode); 708 709 remove_inode_hash(inode); 710 711 spin_lock(&inode->i_lock); 712 wake_up_bit(&inode->i_state, __I_NEW); 713 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 714 spin_unlock(&inode->i_lock); 715 716 destroy_inode(inode); 717 } 718 719 /* 720 * dispose_list - dispose of the contents of a local list 721 * @head: the head of the list to free 722 * 723 * Dispose-list gets a local list with local inodes in it, so it doesn't 724 * need to worry about list corruption and SMP locks. 725 */ 726 static void dispose_list(struct list_head *head) 727 { 728 while (!list_empty(head)) { 729 struct inode *inode; 730 731 inode = list_first_entry(head, struct inode, i_lru); 732 list_del_init(&inode->i_lru); 733 734 evict(inode); 735 cond_resched(); 736 } 737 } 738 739 /** 740 * evict_inodes - evict all evictable inodes for a superblock 741 * @sb: superblock to operate on 742 * 743 * Make sure that no inodes with zero refcount are retained. This is 744 * called by superblock shutdown after having SB_ACTIVE flag removed, 745 * so any inode reaching zero refcount during or after that call will 746 * be immediately evicted. 747 */ 748 void evict_inodes(struct super_block *sb) 749 { 750 struct inode *inode, *next; 751 LIST_HEAD(dispose); 752 753 again: 754 spin_lock(&sb->s_inode_list_lock); 755 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 756 if (atomic_read(&inode->i_count)) 757 continue; 758 759 spin_lock(&inode->i_lock); 760 if (atomic_read(&inode->i_count)) { 761 spin_unlock(&inode->i_lock); 762 continue; 763 } 764 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 765 spin_unlock(&inode->i_lock); 766 continue; 767 } 768 769 inode->i_state |= I_FREEING; 770 inode_lru_list_del(inode); 771 spin_unlock(&inode->i_lock); 772 list_add(&inode->i_lru, &dispose); 773 774 /* 775 * We can have a ton of inodes to evict at unmount time given 776 * enough memory, check to see if we need to go to sleep for a 777 * bit so we don't livelock. 778 */ 779 if (need_resched()) { 780 spin_unlock(&sb->s_inode_list_lock); 781 cond_resched(); 782 dispose_list(&dispose); 783 goto again; 784 } 785 } 786 spin_unlock(&sb->s_inode_list_lock); 787 788 dispose_list(&dispose); 789 } 790 EXPORT_SYMBOL_GPL(evict_inodes); 791 792 /** 793 * invalidate_inodes - attempt to free all inodes on a superblock 794 * @sb: superblock to operate on 795 * 796 * Attempts to free all inodes (including dirty inodes) for a given superblock. 797 */ 798 void invalidate_inodes(struct super_block *sb) 799 { 800 struct inode *inode, *next; 801 LIST_HEAD(dispose); 802 803 again: 804 spin_lock(&sb->s_inode_list_lock); 805 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 806 spin_lock(&inode->i_lock); 807 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 808 spin_unlock(&inode->i_lock); 809 continue; 810 } 811 if (atomic_read(&inode->i_count)) { 812 spin_unlock(&inode->i_lock); 813 continue; 814 } 815 816 inode->i_state |= I_FREEING; 817 inode_lru_list_del(inode); 818 spin_unlock(&inode->i_lock); 819 list_add(&inode->i_lru, &dispose); 820 if (need_resched()) { 821 spin_unlock(&sb->s_inode_list_lock); 822 cond_resched(); 823 dispose_list(&dispose); 824 goto again; 825 } 826 } 827 spin_unlock(&sb->s_inode_list_lock); 828 829 dispose_list(&dispose); 830 } 831 832 /* 833 * Isolate the inode from the LRU in preparation for freeing it. 834 * 835 * If the inode has the I_REFERENCED flag set, then it means that it has been 836 * used recently - the flag is set in iput_final(). When we encounter such an 837 * inode, clear the flag and move it to the back of the LRU so it gets another 838 * pass through the LRU before it gets reclaimed. This is necessary because of 839 * the fact we are doing lazy LRU updates to minimise lock contention so the 840 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 841 * with this flag set because they are the inodes that are out of order. 842 */ 843 static enum lru_status inode_lru_isolate(struct list_head *item, 844 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 845 { 846 struct list_head *freeable = arg; 847 struct inode *inode = container_of(item, struct inode, i_lru); 848 849 /* 850 * We are inverting the lru lock/inode->i_lock here, so use a 851 * trylock. If we fail to get the lock, just skip it. 852 */ 853 if (!spin_trylock(&inode->i_lock)) 854 return LRU_SKIP; 855 856 /* 857 * Inodes can get referenced, redirtied, or repopulated while 858 * they're already on the LRU, and this can make them 859 * unreclaimable for a while. Remove them lazily here; iput, 860 * sync, or the last page cache deletion will requeue them. 861 */ 862 if (atomic_read(&inode->i_count) || 863 (inode->i_state & ~I_REFERENCED) || 864 !mapping_shrinkable(&inode->i_data)) { 865 list_lru_isolate(lru, &inode->i_lru); 866 spin_unlock(&inode->i_lock); 867 this_cpu_dec(nr_unused); 868 return LRU_REMOVED; 869 } 870 871 /* Recently referenced inodes get one more pass */ 872 if (inode->i_state & I_REFERENCED) { 873 inode->i_state &= ~I_REFERENCED; 874 spin_unlock(&inode->i_lock); 875 return LRU_ROTATE; 876 } 877 878 /* 879 * On highmem systems, mapping_shrinkable() permits dropping 880 * page cache in order to free up struct inodes: lowmem might 881 * be under pressure before the cache inside the highmem zone. 882 */ 883 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) { 884 inode_pin_lru_isolating(inode); 885 spin_unlock(&inode->i_lock); 886 spin_unlock(lru_lock); 887 if (remove_inode_buffers(inode)) { 888 unsigned long reap; 889 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 890 if (current_is_kswapd()) 891 __count_vm_events(KSWAPD_INODESTEAL, reap); 892 else 893 __count_vm_events(PGINODESTEAL, reap); 894 mm_account_reclaimed_pages(reap); 895 } 896 inode_unpin_lru_isolating(inode); 897 spin_lock(lru_lock); 898 return LRU_RETRY; 899 } 900 901 WARN_ON(inode->i_state & I_NEW); 902 inode->i_state |= I_FREEING; 903 list_lru_isolate_move(lru, &inode->i_lru, freeable); 904 spin_unlock(&inode->i_lock); 905 906 this_cpu_dec(nr_unused); 907 return LRU_REMOVED; 908 } 909 910 /* 911 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 912 * This is called from the superblock shrinker function with a number of inodes 913 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 914 * then are freed outside inode_lock by dispose_list(). 915 */ 916 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 917 { 918 LIST_HEAD(freeable); 919 long freed; 920 921 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 922 inode_lru_isolate, &freeable); 923 dispose_list(&freeable); 924 return freed; 925 } 926 927 static void __wait_on_freeing_inode(struct inode *inode); 928 /* 929 * Called with the inode lock held. 930 */ 931 static struct inode *find_inode(struct super_block *sb, 932 struct hlist_head *head, 933 int (*test)(struct inode *, void *), 934 void *data) 935 { 936 struct inode *inode = NULL; 937 938 repeat: 939 hlist_for_each_entry(inode, head, i_hash) { 940 if (inode->i_sb != sb) 941 continue; 942 if (!test(inode, data)) 943 continue; 944 spin_lock(&inode->i_lock); 945 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 946 __wait_on_freeing_inode(inode); 947 goto repeat; 948 } 949 if (unlikely(inode->i_state & I_CREATING)) { 950 spin_unlock(&inode->i_lock); 951 return ERR_PTR(-ESTALE); 952 } 953 __iget(inode); 954 spin_unlock(&inode->i_lock); 955 return inode; 956 } 957 return NULL; 958 } 959 960 /* 961 * find_inode_fast is the fast path version of find_inode, see the comment at 962 * iget_locked for details. 963 */ 964 static struct inode *find_inode_fast(struct super_block *sb, 965 struct hlist_head *head, unsigned long ino) 966 { 967 struct inode *inode = NULL; 968 969 repeat: 970 hlist_for_each_entry(inode, head, i_hash) { 971 if (inode->i_ino != ino) 972 continue; 973 if (inode->i_sb != sb) 974 continue; 975 spin_lock(&inode->i_lock); 976 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 977 __wait_on_freeing_inode(inode); 978 goto repeat; 979 } 980 if (unlikely(inode->i_state & I_CREATING)) { 981 spin_unlock(&inode->i_lock); 982 return ERR_PTR(-ESTALE); 983 } 984 __iget(inode); 985 spin_unlock(&inode->i_lock); 986 return inode; 987 } 988 return NULL; 989 } 990 991 /* 992 * Each cpu owns a range of LAST_INO_BATCH numbers. 993 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 994 * to renew the exhausted range. 995 * 996 * This does not significantly increase overflow rate because every CPU can 997 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 998 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 999 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 1000 * overflow rate by 2x, which does not seem too significant. 1001 * 1002 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1003 * error if st_ino won't fit in target struct field. Use 32bit counter 1004 * here to attempt to avoid that. 1005 */ 1006 #define LAST_INO_BATCH 1024 1007 static DEFINE_PER_CPU(unsigned int, last_ino); 1008 1009 unsigned int get_next_ino(void) 1010 { 1011 unsigned int *p = &get_cpu_var(last_ino); 1012 unsigned int res = *p; 1013 1014 #ifdef CONFIG_SMP 1015 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 1016 static atomic_t shared_last_ino; 1017 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 1018 1019 res = next - LAST_INO_BATCH; 1020 } 1021 #endif 1022 1023 res++; 1024 /* get_next_ino should not provide a 0 inode number */ 1025 if (unlikely(!res)) 1026 res++; 1027 *p = res; 1028 put_cpu_var(last_ino); 1029 return res; 1030 } 1031 EXPORT_SYMBOL(get_next_ino); 1032 1033 /** 1034 * new_inode_pseudo - obtain an inode 1035 * @sb: superblock 1036 * 1037 * Allocates a new inode for given superblock. 1038 * Inode wont be chained in superblock s_inodes list 1039 * This means : 1040 * - fs can't be unmount 1041 * - quotas, fsnotify, writeback can't work 1042 */ 1043 struct inode *new_inode_pseudo(struct super_block *sb) 1044 { 1045 struct inode *inode = alloc_inode(sb); 1046 1047 if (inode) { 1048 spin_lock(&inode->i_lock); 1049 inode->i_state = 0; 1050 spin_unlock(&inode->i_lock); 1051 } 1052 return inode; 1053 } 1054 1055 /** 1056 * new_inode - obtain an inode 1057 * @sb: superblock 1058 * 1059 * Allocates a new inode for given superblock. The default gfp_mask 1060 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 1061 * If HIGHMEM pages are unsuitable or it is known that pages allocated 1062 * for the page cache are not reclaimable or migratable, 1063 * mapping_set_gfp_mask() must be called with suitable flags on the 1064 * newly created inode's mapping 1065 * 1066 */ 1067 struct inode *new_inode(struct super_block *sb) 1068 { 1069 struct inode *inode; 1070 1071 inode = new_inode_pseudo(sb); 1072 if (inode) 1073 inode_sb_list_add(inode); 1074 return inode; 1075 } 1076 EXPORT_SYMBOL(new_inode); 1077 1078 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1079 void lockdep_annotate_inode_mutex_key(struct inode *inode) 1080 { 1081 if (S_ISDIR(inode->i_mode)) { 1082 struct file_system_type *type = inode->i_sb->s_type; 1083 1084 /* Set new key only if filesystem hasn't already changed it */ 1085 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 1086 /* 1087 * ensure nobody is actually holding i_mutex 1088 */ 1089 // mutex_destroy(&inode->i_mutex); 1090 init_rwsem(&inode->i_rwsem); 1091 lockdep_set_class(&inode->i_rwsem, 1092 &type->i_mutex_dir_key); 1093 } 1094 } 1095 } 1096 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 1097 #endif 1098 1099 /** 1100 * unlock_new_inode - clear the I_NEW state and wake up any waiters 1101 * @inode: new inode to unlock 1102 * 1103 * Called when the inode is fully initialised to clear the new state of the 1104 * inode and wake up anyone waiting for the inode to finish initialisation. 1105 */ 1106 void unlock_new_inode(struct inode *inode) 1107 { 1108 lockdep_annotate_inode_mutex_key(inode); 1109 spin_lock(&inode->i_lock); 1110 WARN_ON(!(inode->i_state & I_NEW)); 1111 inode->i_state &= ~I_NEW & ~I_CREATING; 1112 smp_mb(); 1113 wake_up_bit(&inode->i_state, __I_NEW); 1114 spin_unlock(&inode->i_lock); 1115 } 1116 EXPORT_SYMBOL(unlock_new_inode); 1117 1118 void discard_new_inode(struct inode *inode) 1119 { 1120 lockdep_annotate_inode_mutex_key(inode); 1121 spin_lock(&inode->i_lock); 1122 WARN_ON(!(inode->i_state & I_NEW)); 1123 inode->i_state &= ~I_NEW; 1124 smp_mb(); 1125 wake_up_bit(&inode->i_state, __I_NEW); 1126 spin_unlock(&inode->i_lock); 1127 iput(inode); 1128 } 1129 EXPORT_SYMBOL(discard_new_inode); 1130 1131 /** 1132 * lock_two_inodes - lock two inodes (may be regular files but also dirs) 1133 * 1134 * Lock any non-NULL argument. The caller must make sure that if he is passing 1135 * in two directories, one is not ancestor of the other. Zero, one or two 1136 * objects may be locked by this function. 1137 * 1138 * @inode1: first inode to lock 1139 * @inode2: second inode to lock 1140 * @subclass1: inode lock subclass for the first lock obtained 1141 * @subclass2: inode lock subclass for the second lock obtained 1142 */ 1143 void lock_two_inodes(struct inode *inode1, struct inode *inode2, 1144 unsigned subclass1, unsigned subclass2) 1145 { 1146 if (!inode1 || !inode2) { 1147 /* 1148 * Make sure @subclass1 will be used for the acquired lock. 1149 * This is not strictly necessary (no current caller cares) but 1150 * let's keep things consistent. 1151 */ 1152 if (!inode1) 1153 swap(inode1, inode2); 1154 goto lock; 1155 } 1156 1157 /* 1158 * If one object is directory and the other is not, we must make sure 1159 * to lock directory first as the other object may be its child. 1160 */ 1161 if (S_ISDIR(inode2->i_mode) == S_ISDIR(inode1->i_mode)) { 1162 if (inode1 > inode2) 1163 swap(inode1, inode2); 1164 } else if (!S_ISDIR(inode1->i_mode)) 1165 swap(inode1, inode2); 1166 lock: 1167 if (inode1) 1168 inode_lock_nested(inode1, subclass1); 1169 if (inode2 && inode2 != inode1) 1170 inode_lock_nested(inode2, subclass2); 1171 } 1172 1173 /** 1174 * lock_two_nondirectories - take two i_mutexes on non-directory objects 1175 * 1176 * Lock any non-NULL argument. Passed objects must not be directories. 1177 * Zero, one or two objects may be locked by this function. 1178 * 1179 * @inode1: first inode to lock 1180 * @inode2: second inode to lock 1181 */ 1182 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1183 { 1184 if (inode1) 1185 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1186 if (inode2) 1187 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1188 lock_two_inodes(inode1, inode2, I_MUTEX_NORMAL, I_MUTEX_NONDIR2); 1189 } 1190 EXPORT_SYMBOL(lock_two_nondirectories); 1191 1192 /** 1193 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1194 * @inode1: first inode to unlock 1195 * @inode2: second inode to unlock 1196 */ 1197 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1198 { 1199 if (inode1) { 1200 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1201 inode_unlock(inode1); 1202 } 1203 if (inode2 && inode2 != inode1) { 1204 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1205 inode_unlock(inode2); 1206 } 1207 } 1208 EXPORT_SYMBOL(unlock_two_nondirectories); 1209 1210 /** 1211 * inode_insert5 - obtain an inode from a mounted file system 1212 * @inode: pre-allocated inode to use for insert to cache 1213 * @hashval: hash value (usually inode number) to get 1214 * @test: callback used for comparisons between inodes 1215 * @set: callback used to initialize a new struct inode 1216 * @data: opaque data pointer to pass to @test and @set 1217 * 1218 * Search for the inode specified by @hashval and @data in the inode cache, 1219 * and if present it is return it with an increased reference count. This is 1220 * a variant of iget5_locked() for callers that don't want to fail on memory 1221 * allocation of inode. 1222 * 1223 * If the inode is not in cache, insert the pre-allocated inode to cache and 1224 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1225 * to fill it in before unlocking it via unlock_new_inode(). 1226 * 1227 * Note both @test and @set are called with the inode_hash_lock held, so can't 1228 * sleep. 1229 */ 1230 struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1231 int (*test)(struct inode *, void *), 1232 int (*set)(struct inode *, void *), void *data) 1233 { 1234 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1235 struct inode *old; 1236 1237 again: 1238 spin_lock(&inode_hash_lock); 1239 old = find_inode(inode->i_sb, head, test, data); 1240 if (unlikely(old)) { 1241 /* 1242 * Uhhuh, somebody else created the same inode under us. 1243 * Use the old inode instead of the preallocated one. 1244 */ 1245 spin_unlock(&inode_hash_lock); 1246 if (IS_ERR(old)) 1247 return NULL; 1248 wait_on_inode(old); 1249 if (unlikely(inode_unhashed(old))) { 1250 iput(old); 1251 goto again; 1252 } 1253 return old; 1254 } 1255 1256 if (set && unlikely(set(inode, data))) { 1257 inode = NULL; 1258 goto unlock; 1259 } 1260 1261 /* 1262 * Return the locked inode with I_NEW set, the 1263 * caller is responsible for filling in the contents 1264 */ 1265 spin_lock(&inode->i_lock); 1266 inode->i_state |= I_NEW; 1267 hlist_add_head_rcu(&inode->i_hash, head); 1268 spin_unlock(&inode->i_lock); 1269 1270 /* 1271 * Add inode to the sb list if it's not already. It has I_NEW at this 1272 * point, so it should be safe to test i_sb_list locklessly. 1273 */ 1274 if (list_empty(&inode->i_sb_list)) 1275 inode_sb_list_add(inode); 1276 unlock: 1277 spin_unlock(&inode_hash_lock); 1278 1279 return inode; 1280 } 1281 EXPORT_SYMBOL(inode_insert5); 1282 1283 /** 1284 * iget5_locked - obtain an inode from a mounted file system 1285 * @sb: super block of file system 1286 * @hashval: hash value (usually inode number) to get 1287 * @test: callback used for comparisons between inodes 1288 * @set: callback used to initialize a new struct inode 1289 * @data: opaque data pointer to pass to @test and @set 1290 * 1291 * Search for the inode specified by @hashval and @data in the inode cache, 1292 * and if present it is return it with an increased reference count. This is 1293 * a generalized version of iget_locked() for file systems where the inode 1294 * number is not sufficient for unique identification of an inode. 1295 * 1296 * If the inode is not in cache, allocate a new inode and return it locked, 1297 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1298 * before unlocking it via unlock_new_inode(). 1299 * 1300 * Note both @test and @set are called with the inode_hash_lock held, so can't 1301 * sleep. 1302 */ 1303 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1304 int (*test)(struct inode *, void *), 1305 int (*set)(struct inode *, void *), void *data) 1306 { 1307 struct inode *inode = ilookup5(sb, hashval, test, data); 1308 1309 if (!inode) { 1310 struct inode *new = alloc_inode(sb); 1311 1312 if (new) { 1313 new->i_state = 0; 1314 inode = inode_insert5(new, hashval, test, set, data); 1315 if (unlikely(inode != new)) 1316 destroy_inode(new); 1317 } 1318 } 1319 return inode; 1320 } 1321 EXPORT_SYMBOL(iget5_locked); 1322 1323 /** 1324 * iget_locked - obtain an inode from a mounted file system 1325 * @sb: super block of file system 1326 * @ino: inode number to get 1327 * 1328 * Search for the inode specified by @ino in the inode cache and if present 1329 * return it with an increased reference count. This is for file systems 1330 * where the inode number is sufficient for unique identification of an inode. 1331 * 1332 * If the inode is not in cache, allocate a new inode and return it locked, 1333 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1334 * before unlocking it via unlock_new_inode(). 1335 */ 1336 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1337 { 1338 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1339 struct inode *inode; 1340 again: 1341 spin_lock(&inode_hash_lock); 1342 inode = find_inode_fast(sb, head, ino); 1343 spin_unlock(&inode_hash_lock); 1344 if (inode) { 1345 if (IS_ERR(inode)) 1346 return NULL; 1347 wait_on_inode(inode); 1348 if (unlikely(inode_unhashed(inode))) { 1349 iput(inode); 1350 goto again; 1351 } 1352 return inode; 1353 } 1354 1355 inode = alloc_inode(sb); 1356 if (inode) { 1357 struct inode *old; 1358 1359 spin_lock(&inode_hash_lock); 1360 /* We released the lock, so.. */ 1361 old = find_inode_fast(sb, head, ino); 1362 if (!old) { 1363 inode->i_ino = ino; 1364 spin_lock(&inode->i_lock); 1365 inode->i_state = I_NEW; 1366 hlist_add_head_rcu(&inode->i_hash, head); 1367 spin_unlock(&inode->i_lock); 1368 inode_sb_list_add(inode); 1369 spin_unlock(&inode_hash_lock); 1370 1371 /* Return the locked inode with I_NEW set, the 1372 * caller is responsible for filling in the contents 1373 */ 1374 return inode; 1375 } 1376 1377 /* 1378 * Uhhuh, somebody else created the same inode under 1379 * us. Use the old inode instead of the one we just 1380 * allocated. 1381 */ 1382 spin_unlock(&inode_hash_lock); 1383 destroy_inode(inode); 1384 if (IS_ERR(old)) 1385 return NULL; 1386 inode = old; 1387 wait_on_inode(inode); 1388 if (unlikely(inode_unhashed(inode))) { 1389 iput(inode); 1390 goto again; 1391 } 1392 } 1393 return inode; 1394 } 1395 EXPORT_SYMBOL(iget_locked); 1396 1397 /* 1398 * search the inode cache for a matching inode number. 1399 * If we find one, then the inode number we are trying to 1400 * allocate is not unique and so we should not use it. 1401 * 1402 * Returns 1 if the inode number is unique, 0 if it is not. 1403 */ 1404 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1405 { 1406 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1407 struct inode *inode; 1408 1409 hlist_for_each_entry_rcu(inode, b, i_hash) { 1410 if (inode->i_ino == ino && inode->i_sb == sb) 1411 return 0; 1412 } 1413 return 1; 1414 } 1415 1416 /** 1417 * iunique - get a unique inode number 1418 * @sb: superblock 1419 * @max_reserved: highest reserved inode number 1420 * 1421 * Obtain an inode number that is unique on the system for a given 1422 * superblock. This is used by file systems that have no natural 1423 * permanent inode numbering system. An inode number is returned that 1424 * is higher than the reserved limit but unique. 1425 * 1426 * BUGS: 1427 * With a large number of inodes live on the file system this function 1428 * currently becomes quite slow. 1429 */ 1430 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1431 { 1432 /* 1433 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1434 * error if st_ino won't fit in target struct field. Use 32bit counter 1435 * here to attempt to avoid that. 1436 */ 1437 static DEFINE_SPINLOCK(iunique_lock); 1438 static unsigned int counter; 1439 ino_t res; 1440 1441 rcu_read_lock(); 1442 spin_lock(&iunique_lock); 1443 do { 1444 if (counter <= max_reserved) 1445 counter = max_reserved + 1; 1446 res = counter++; 1447 } while (!test_inode_iunique(sb, res)); 1448 spin_unlock(&iunique_lock); 1449 rcu_read_unlock(); 1450 1451 return res; 1452 } 1453 EXPORT_SYMBOL(iunique); 1454 1455 struct inode *igrab(struct inode *inode) 1456 { 1457 spin_lock(&inode->i_lock); 1458 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1459 __iget(inode); 1460 spin_unlock(&inode->i_lock); 1461 } else { 1462 spin_unlock(&inode->i_lock); 1463 /* 1464 * Handle the case where s_op->clear_inode is not been 1465 * called yet, and somebody is calling igrab 1466 * while the inode is getting freed. 1467 */ 1468 inode = NULL; 1469 } 1470 return inode; 1471 } 1472 EXPORT_SYMBOL(igrab); 1473 1474 /** 1475 * ilookup5_nowait - search for an inode in the inode cache 1476 * @sb: super block of file system to search 1477 * @hashval: hash value (usually inode number) to search for 1478 * @test: callback used for comparisons between inodes 1479 * @data: opaque data pointer to pass to @test 1480 * 1481 * Search for the inode specified by @hashval and @data in the inode cache. 1482 * If the inode is in the cache, the inode is returned with an incremented 1483 * reference count. 1484 * 1485 * Note: I_NEW is not waited upon so you have to be very careful what you do 1486 * with the returned inode. You probably should be using ilookup5() instead. 1487 * 1488 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1489 */ 1490 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1491 int (*test)(struct inode *, void *), void *data) 1492 { 1493 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1494 struct inode *inode; 1495 1496 spin_lock(&inode_hash_lock); 1497 inode = find_inode(sb, head, test, data); 1498 spin_unlock(&inode_hash_lock); 1499 1500 return IS_ERR(inode) ? NULL : inode; 1501 } 1502 EXPORT_SYMBOL(ilookup5_nowait); 1503 1504 /** 1505 * ilookup5 - search for an inode in the inode cache 1506 * @sb: super block of file system to search 1507 * @hashval: hash value (usually inode number) to search for 1508 * @test: callback used for comparisons between inodes 1509 * @data: opaque data pointer to pass to @test 1510 * 1511 * Search for the inode specified by @hashval and @data in the inode cache, 1512 * and if the inode is in the cache, return the inode with an incremented 1513 * reference count. Waits on I_NEW before returning the inode. 1514 * returned with an incremented reference count. 1515 * 1516 * This is a generalized version of ilookup() for file systems where the 1517 * inode number is not sufficient for unique identification of an inode. 1518 * 1519 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1520 */ 1521 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1522 int (*test)(struct inode *, void *), void *data) 1523 { 1524 struct inode *inode; 1525 again: 1526 inode = ilookup5_nowait(sb, hashval, test, data); 1527 if (inode) { 1528 wait_on_inode(inode); 1529 if (unlikely(inode_unhashed(inode))) { 1530 iput(inode); 1531 goto again; 1532 } 1533 } 1534 return inode; 1535 } 1536 EXPORT_SYMBOL(ilookup5); 1537 1538 /** 1539 * ilookup - search for an inode in the inode cache 1540 * @sb: super block of file system to search 1541 * @ino: inode number to search for 1542 * 1543 * Search for the inode @ino in the inode cache, and if the inode is in the 1544 * cache, the inode is returned with an incremented reference count. 1545 */ 1546 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1547 { 1548 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1549 struct inode *inode; 1550 again: 1551 spin_lock(&inode_hash_lock); 1552 inode = find_inode_fast(sb, head, ino); 1553 spin_unlock(&inode_hash_lock); 1554 1555 if (inode) { 1556 if (IS_ERR(inode)) 1557 return NULL; 1558 wait_on_inode(inode); 1559 if (unlikely(inode_unhashed(inode))) { 1560 iput(inode); 1561 goto again; 1562 } 1563 } 1564 return inode; 1565 } 1566 EXPORT_SYMBOL(ilookup); 1567 1568 /** 1569 * find_inode_nowait - find an inode in the inode cache 1570 * @sb: super block of file system to search 1571 * @hashval: hash value (usually inode number) to search for 1572 * @match: callback used for comparisons between inodes 1573 * @data: opaque data pointer to pass to @match 1574 * 1575 * Search for the inode specified by @hashval and @data in the inode 1576 * cache, where the helper function @match will return 0 if the inode 1577 * does not match, 1 if the inode does match, and -1 if the search 1578 * should be stopped. The @match function must be responsible for 1579 * taking the i_lock spin_lock and checking i_state for an inode being 1580 * freed or being initialized, and incrementing the reference count 1581 * before returning 1. It also must not sleep, since it is called with 1582 * the inode_hash_lock spinlock held. 1583 * 1584 * This is a even more generalized version of ilookup5() when the 1585 * function must never block --- find_inode() can block in 1586 * __wait_on_freeing_inode() --- or when the caller can not increment 1587 * the reference count because the resulting iput() might cause an 1588 * inode eviction. The tradeoff is that the @match funtion must be 1589 * very carefully implemented. 1590 */ 1591 struct inode *find_inode_nowait(struct super_block *sb, 1592 unsigned long hashval, 1593 int (*match)(struct inode *, unsigned long, 1594 void *), 1595 void *data) 1596 { 1597 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1598 struct inode *inode, *ret_inode = NULL; 1599 int mval; 1600 1601 spin_lock(&inode_hash_lock); 1602 hlist_for_each_entry(inode, head, i_hash) { 1603 if (inode->i_sb != sb) 1604 continue; 1605 mval = match(inode, hashval, data); 1606 if (mval == 0) 1607 continue; 1608 if (mval == 1) 1609 ret_inode = inode; 1610 goto out; 1611 } 1612 out: 1613 spin_unlock(&inode_hash_lock); 1614 return ret_inode; 1615 } 1616 EXPORT_SYMBOL(find_inode_nowait); 1617 1618 /** 1619 * find_inode_rcu - find an inode in the inode cache 1620 * @sb: Super block of file system to search 1621 * @hashval: Key to hash 1622 * @test: Function to test match on an inode 1623 * @data: Data for test function 1624 * 1625 * Search for the inode specified by @hashval and @data in the inode cache, 1626 * where the helper function @test will return 0 if the inode does not match 1627 * and 1 if it does. The @test function must be responsible for taking the 1628 * i_lock spin_lock and checking i_state for an inode being freed or being 1629 * initialized. 1630 * 1631 * If successful, this will return the inode for which the @test function 1632 * returned 1 and NULL otherwise. 1633 * 1634 * The @test function is not permitted to take a ref on any inode presented. 1635 * It is also not permitted to sleep. 1636 * 1637 * The caller must hold the RCU read lock. 1638 */ 1639 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, 1640 int (*test)(struct inode *, void *), void *data) 1641 { 1642 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1643 struct inode *inode; 1644 1645 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1646 "suspicious find_inode_rcu() usage"); 1647 1648 hlist_for_each_entry_rcu(inode, head, i_hash) { 1649 if (inode->i_sb == sb && 1650 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) && 1651 test(inode, data)) 1652 return inode; 1653 } 1654 return NULL; 1655 } 1656 EXPORT_SYMBOL(find_inode_rcu); 1657 1658 /** 1659 * find_inode_by_ino_rcu - Find an inode in the inode cache 1660 * @sb: Super block of file system to search 1661 * @ino: The inode number to match 1662 * 1663 * Search for the inode specified by @hashval and @data in the inode cache, 1664 * where the helper function @test will return 0 if the inode does not match 1665 * and 1 if it does. The @test function must be responsible for taking the 1666 * i_lock spin_lock and checking i_state for an inode being freed or being 1667 * initialized. 1668 * 1669 * If successful, this will return the inode for which the @test function 1670 * returned 1 and NULL otherwise. 1671 * 1672 * The @test function is not permitted to take a ref on any inode presented. 1673 * It is also not permitted to sleep. 1674 * 1675 * The caller must hold the RCU read lock. 1676 */ 1677 struct inode *find_inode_by_ino_rcu(struct super_block *sb, 1678 unsigned long ino) 1679 { 1680 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1681 struct inode *inode; 1682 1683 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1684 "suspicious find_inode_by_ino_rcu() usage"); 1685 1686 hlist_for_each_entry_rcu(inode, head, i_hash) { 1687 if (inode->i_ino == ino && 1688 inode->i_sb == sb && 1689 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE))) 1690 return inode; 1691 } 1692 return NULL; 1693 } 1694 EXPORT_SYMBOL(find_inode_by_ino_rcu); 1695 1696 int insert_inode_locked(struct inode *inode) 1697 { 1698 struct super_block *sb = inode->i_sb; 1699 ino_t ino = inode->i_ino; 1700 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1701 1702 while (1) { 1703 struct inode *old = NULL; 1704 spin_lock(&inode_hash_lock); 1705 hlist_for_each_entry(old, head, i_hash) { 1706 if (old->i_ino != ino) 1707 continue; 1708 if (old->i_sb != sb) 1709 continue; 1710 spin_lock(&old->i_lock); 1711 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1712 spin_unlock(&old->i_lock); 1713 continue; 1714 } 1715 break; 1716 } 1717 if (likely(!old)) { 1718 spin_lock(&inode->i_lock); 1719 inode->i_state |= I_NEW | I_CREATING; 1720 hlist_add_head_rcu(&inode->i_hash, head); 1721 spin_unlock(&inode->i_lock); 1722 spin_unlock(&inode_hash_lock); 1723 return 0; 1724 } 1725 if (unlikely(old->i_state & I_CREATING)) { 1726 spin_unlock(&old->i_lock); 1727 spin_unlock(&inode_hash_lock); 1728 return -EBUSY; 1729 } 1730 __iget(old); 1731 spin_unlock(&old->i_lock); 1732 spin_unlock(&inode_hash_lock); 1733 wait_on_inode(old); 1734 if (unlikely(!inode_unhashed(old))) { 1735 iput(old); 1736 return -EBUSY; 1737 } 1738 iput(old); 1739 } 1740 } 1741 EXPORT_SYMBOL(insert_inode_locked); 1742 1743 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1744 int (*test)(struct inode *, void *), void *data) 1745 { 1746 struct inode *old; 1747 1748 inode->i_state |= I_CREATING; 1749 old = inode_insert5(inode, hashval, test, NULL, data); 1750 1751 if (old != inode) { 1752 iput(old); 1753 return -EBUSY; 1754 } 1755 return 0; 1756 } 1757 EXPORT_SYMBOL(insert_inode_locked4); 1758 1759 1760 int generic_delete_inode(struct inode *inode) 1761 { 1762 return 1; 1763 } 1764 EXPORT_SYMBOL(generic_delete_inode); 1765 1766 /* 1767 * Called when we're dropping the last reference 1768 * to an inode. 1769 * 1770 * Call the FS "drop_inode()" function, defaulting to 1771 * the legacy UNIX filesystem behaviour. If it tells 1772 * us to evict inode, do so. Otherwise, retain inode 1773 * in cache if fs is alive, sync and evict if fs is 1774 * shutting down. 1775 */ 1776 static void iput_final(struct inode *inode) 1777 { 1778 struct super_block *sb = inode->i_sb; 1779 const struct super_operations *op = inode->i_sb->s_op; 1780 unsigned long state; 1781 int drop; 1782 1783 WARN_ON(inode->i_state & I_NEW); 1784 1785 if (op->drop_inode) 1786 drop = op->drop_inode(inode); 1787 else 1788 drop = generic_drop_inode(inode); 1789 1790 if (!drop && 1791 !(inode->i_state & I_DONTCACHE) && 1792 (sb->s_flags & SB_ACTIVE)) { 1793 __inode_add_lru(inode, true); 1794 spin_unlock(&inode->i_lock); 1795 return; 1796 } 1797 1798 state = inode->i_state; 1799 if (!drop) { 1800 WRITE_ONCE(inode->i_state, state | I_WILL_FREE); 1801 spin_unlock(&inode->i_lock); 1802 1803 write_inode_now(inode, 1); 1804 1805 spin_lock(&inode->i_lock); 1806 state = inode->i_state; 1807 WARN_ON(state & I_NEW); 1808 state &= ~I_WILL_FREE; 1809 } 1810 1811 WRITE_ONCE(inode->i_state, state | I_FREEING); 1812 if (!list_empty(&inode->i_lru)) 1813 inode_lru_list_del(inode); 1814 spin_unlock(&inode->i_lock); 1815 1816 evict(inode); 1817 } 1818 1819 /** 1820 * iput - put an inode 1821 * @inode: inode to put 1822 * 1823 * Puts an inode, dropping its usage count. If the inode use count hits 1824 * zero, the inode is then freed and may also be destroyed. 1825 * 1826 * Consequently, iput() can sleep. 1827 */ 1828 void iput(struct inode *inode) 1829 { 1830 if (!inode) 1831 return; 1832 BUG_ON(inode->i_state & I_CLEAR); 1833 retry: 1834 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1835 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1836 atomic_inc(&inode->i_count); 1837 spin_unlock(&inode->i_lock); 1838 trace_writeback_lazytime_iput(inode); 1839 mark_inode_dirty_sync(inode); 1840 goto retry; 1841 } 1842 iput_final(inode); 1843 } 1844 } 1845 EXPORT_SYMBOL(iput); 1846 1847 #ifdef CONFIG_BLOCK 1848 /** 1849 * bmap - find a block number in a file 1850 * @inode: inode owning the block number being requested 1851 * @block: pointer containing the block to find 1852 * 1853 * Replaces the value in ``*block`` with the block number on the device holding 1854 * corresponding to the requested block number in the file. 1855 * That is, asked for block 4 of inode 1 the function will replace the 1856 * 4 in ``*block``, with disk block relative to the disk start that holds that 1857 * block of the file. 1858 * 1859 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a 1860 * hole, returns 0 and ``*block`` is also set to 0. 1861 */ 1862 int bmap(struct inode *inode, sector_t *block) 1863 { 1864 if (!inode->i_mapping->a_ops->bmap) 1865 return -EINVAL; 1866 1867 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); 1868 return 0; 1869 } 1870 EXPORT_SYMBOL(bmap); 1871 #endif 1872 1873 /* 1874 * With relative atime, only update atime if the previous atime is 1875 * earlier than or equal to either the ctime or mtime, 1876 * or if at least a day has passed since the last atime update. 1877 */ 1878 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1879 struct timespec64 now) 1880 { 1881 struct timespec64 ctime; 1882 1883 if (!(mnt->mnt_flags & MNT_RELATIME)) 1884 return 1; 1885 /* 1886 * Is mtime younger than or equal to atime? If yes, update atime: 1887 */ 1888 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1889 return 1; 1890 /* 1891 * Is ctime younger than or equal to atime? If yes, update atime: 1892 */ 1893 ctime = inode_get_ctime(inode); 1894 if (timespec64_compare(&ctime, &inode->i_atime) >= 0) 1895 return 1; 1896 1897 /* 1898 * Is the previous atime value older than a day? If yes, 1899 * update atime: 1900 */ 1901 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1902 return 1; 1903 /* 1904 * Good, we can skip the atime update: 1905 */ 1906 return 0; 1907 } 1908 1909 /** 1910 * inode_update_timestamps - update the timestamps on the inode 1911 * @inode: inode to be updated 1912 * @flags: S_* flags that needed to be updated 1913 * 1914 * The update_time function is called when an inode's timestamps need to be 1915 * updated for a read or write operation. This function handles updating the 1916 * actual timestamps. It's up to the caller to ensure that the inode is marked 1917 * dirty appropriately. 1918 * 1919 * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated, 1920 * attempt to update all three of them. S_ATIME updates can be handled 1921 * independently of the rest. 1922 * 1923 * Returns a set of S_* flags indicating which values changed. 1924 */ 1925 int inode_update_timestamps(struct inode *inode, int flags) 1926 { 1927 int updated = 0; 1928 struct timespec64 now; 1929 1930 if (flags & (S_MTIME|S_CTIME|S_VERSION)) { 1931 struct timespec64 ctime = inode_get_ctime(inode); 1932 1933 now = inode_set_ctime_current(inode); 1934 if (!timespec64_equal(&now, &ctime)) 1935 updated |= S_CTIME; 1936 if (!timespec64_equal(&now, &inode->i_mtime)) { 1937 inode->i_mtime = now; 1938 updated |= S_MTIME; 1939 } 1940 if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated)) 1941 updated |= S_VERSION; 1942 } else { 1943 now = current_time(inode); 1944 } 1945 1946 if (flags & S_ATIME) { 1947 if (!timespec64_equal(&now, &inode->i_atime)) { 1948 inode->i_atime = now; 1949 updated |= S_ATIME; 1950 } 1951 } 1952 return updated; 1953 } 1954 EXPORT_SYMBOL(inode_update_timestamps); 1955 1956 /** 1957 * generic_update_time - update the timestamps on the inode 1958 * @inode: inode to be updated 1959 * @flags: S_* flags that needed to be updated 1960 * 1961 * The update_time function is called when an inode's timestamps need to be 1962 * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME, 1963 * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME 1964 * updates can be handled done independently of the rest. 1965 * 1966 * Returns a S_* mask indicating which fields were updated. 1967 */ 1968 int generic_update_time(struct inode *inode, int flags) 1969 { 1970 int updated = inode_update_timestamps(inode, flags); 1971 int dirty_flags = 0; 1972 1973 if (updated & (S_ATIME|S_MTIME|S_CTIME)) 1974 dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC; 1975 if (updated & S_VERSION) 1976 dirty_flags |= I_DIRTY_SYNC; 1977 __mark_inode_dirty(inode, dirty_flags); 1978 return updated; 1979 } 1980 EXPORT_SYMBOL(generic_update_time); 1981 1982 /* 1983 * This does the actual work of updating an inodes time or version. Must have 1984 * had called mnt_want_write() before calling this. 1985 */ 1986 int inode_update_time(struct inode *inode, int flags) 1987 { 1988 if (inode->i_op->update_time) 1989 return inode->i_op->update_time(inode, flags); 1990 generic_update_time(inode, flags); 1991 return 0; 1992 } 1993 EXPORT_SYMBOL(inode_update_time); 1994 1995 /** 1996 * atime_needs_update - update the access time 1997 * @path: the &struct path to update 1998 * @inode: inode to update 1999 * 2000 * Update the accessed time on an inode and mark it for writeback. 2001 * This function automatically handles read only file systems and media, 2002 * as well as the "noatime" flag and inode specific "noatime" markers. 2003 */ 2004 bool atime_needs_update(const struct path *path, struct inode *inode) 2005 { 2006 struct vfsmount *mnt = path->mnt; 2007 struct timespec64 now; 2008 2009 if (inode->i_flags & S_NOATIME) 2010 return false; 2011 2012 /* Atime updates will likely cause i_uid and i_gid to be written 2013 * back improprely if their true value is unknown to the vfs. 2014 */ 2015 if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode)) 2016 return false; 2017 2018 if (IS_NOATIME(inode)) 2019 return false; 2020 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 2021 return false; 2022 2023 if (mnt->mnt_flags & MNT_NOATIME) 2024 return false; 2025 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 2026 return false; 2027 2028 now = current_time(inode); 2029 2030 if (!relatime_need_update(mnt, inode, now)) 2031 return false; 2032 2033 if (timespec64_equal(&inode->i_atime, &now)) 2034 return false; 2035 2036 return true; 2037 } 2038 2039 void touch_atime(const struct path *path) 2040 { 2041 struct vfsmount *mnt = path->mnt; 2042 struct inode *inode = d_inode(path->dentry); 2043 2044 if (!atime_needs_update(path, inode)) 2045 return; 2046 2047 if (!sb_start_write_trylock(inode->i_sb)) 2048 return; 2049 2050 if (__mnt_want_write(mnt) != 0) 2051 goto skip_update; 2052 /* 2053 * File systems can error out when updating inodes if they need to 2054 * allocate new space to modify an inode (such is the case for 2055 * Btrfs), but since we touch atime while walking down the path we 2056 * really don't care if we failed to update the atime of the file, 2057 * so just ignore the return value. 2058 * We may also fail on filesystems that have the ability to make parts 2059 * of the fs read only, e.g. subvolumes in Btrfs. 2060 */ 2061 inode_update_time(inode, S_ATIME); 2062 __mnt_drop_write(mnt); 2063 skip_update: 2064 sb_end_write(inode->i_sb); 2065 } 2066 EXPORT_SYMBOL(touch_atime); 2067 2068 /* 2069 * Return mask of changes for notify_change() that need to be done as a 2070 * response to write or truncate. Return 0 if nothing has to be changed. 2071 * Negative value on error (change should be denied). 2072 */ 2073 int dentry_needs_remove_privs(struct mnt_idmap *idmap, 2074 struct dentry *dentry) 2075 { 2076 struct inode *inode = d_inode(dentry); 2077 int mask = 0; 2078 int ret; 2079 2080 if (IS_NOSEC(inode)) 2081 return 0; 2082 2083 mask = setattr_should_drop_suidgid(idmap, inode); 2084 ret = security_inode_need_killpriv(dentry); 2085 if (ret < 0) 2086 return ret; 2087 if (ret) 2088 mask |= ATTR_KILL_PRIV; 2089 return mask; 2090 } 2091 2092 static int __remove_privs(struct mnt_idmap *idmap, 2093 struct dentry *dentry, int kill) 2094 { 2095 struct iattr newattrs; 2096 2097 newattrs.ia_valid = ATTR_FORCE | kill; 2098 /* 2099 * Note we call this on write, so notify_change will not 2100 * encounter any conflicting delegations: 2101 */ 2102 return notify_change(idmap, dentry, &newattrs, NULL); 2103 } 2104 2105 static int __file_remove_privs(struct file *file, unsigned int flags) 2106 { 2107 struct dentry *dentry = file_dentry(file); 2108 struct inode *inode = file_inode(file); 2109 int error = 0; 2110 int kill; 2111 2112 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) 2113 return 0; 2114 2115 kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry); 2116 if (kill < 0) 2117 return kill; 2118 2119 if (kill) { 2120 if (flags & IOCB_NOWAIT) 2121 return -EAGAIN; 2122 2123 error = __remove_privs(file_mnt_idmap(file), dentry, kill); 2124 } 2125 2126 if (!error) 2127 inode_has_no_xattr(inode); 2128 return error; 2129 } 2130 2131 /** 2132 * file_remove_privs - remove special file privileges (suid, capabilities) 2133 * @file: file to remove privileges from 2134 * 2135 * When file is modified by a write or truncation ensure that special 2136 * file privileges are removed. 2137 * 2138 * Return: 0 on success, negative errno on failure. 2139 */ 2140 int file_remove_privs(struct file *file) 2141 { 2142 return __file_remove_privs(file, 0); 2143 } 2144 EXPORT_SYMBOL(file_remove_privs); 2145 2146 static int inode_needs_update_time(struct inode *inode) 2147 { 2148 int sync_it = 0; 2149 struct timespec64 now = current_time(inode); 2150 struct timespec64 ctime; 2151 2152 /* First try to exhaust all avenues to not sync */ 2153 if (IS_NOCMTIME(inode)) 2154 return 0; 2155 2156 if (!timespec64_equal(&inode->i_mtime, &now)) 2157 sync_it = S_MTIME; 2158 2159 ctime = inode_get_ctime(inode); 2160 if (!timespec64_equal(&ctime, &now)) 2161 sync_it |= S_CTIME; 2162 2163 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 2164 sync_it |= S_VERSION; 2165 2166 return sync_it; 2167 } 2168 2169 static int __file_update_time(struct file *file, int sync_mode) 2170 { 2171 int ret = 0; 2172 struct inode *inode = file_inode(file); 2173 2174 /* try to update time settings */ 2175 if (!__mnt_want_write_file(file)) { 2176 ret = inode_update_time(inode, sync_mode); 2177 __mnt_drop_write_file(file); 2178 } 2179 2180 return ret; 2181 } 2182 2183 /** 2184 * file_update_time - update mtime and ctime time 2185 * @file: file accessed 2186 * 2187 * Update the mtime and ctime members of an inode and mark the inode for 2188 * writeback. Note that this function is meant exclusively for usage in 2189 * the file write path of filesystems, and filesystems may choose to 2190 * explicitly ignore updates via this function with the _NOCMTIME inode 2191 * flag, e.g. for network filesystem where these imestamps are handled 2192 * by the server. This can return an error for file systems who need to 2193 * allocate space in order to update an inode. 2194 * 2195 * Return: 0 on success, negative errno on failure. 2196 */ 2197 int file_update_time(struct file *file) 2198 { 2199 int ret; 2200 struct inode *inode = file_inode(file); 2201 2202 ret = inode_needs_update_time(inode); 2203 if (ret <= 0) 2204 return ret; 2205 2206 return __file_update_time(file, ret); 2207 } 2208 EXPORT_SYMBOL(file_update_time); 2209 2210 /** 2211 * file_modified_flags - handle mandated vfs changes when modifying a file 2212 * @file: file that was modified 2213 * @flags: kiocb flags 2214 * 2215 * When file has been modified ensure that special 2216 * file privileges are removed and time settings are updated. 2217 * 2218 * If IOCB_NOWAIT is set, special file privileges will not be removed and 2219 * time settings will not be updated. It will return -EAGAIN. 2220 * 2221 * Context: Caller must hold the file's inode lock. 2222 * 2223 * Return: 0 on success, negative errno on failure. 2224 */ 2225 static int file_modified_flags(struct file *file, int flags) 2226 { 2227 int ret; 2228 struct inode *inode = file_inode(file); 2229 2230 /* 2231 * Clear the security bits if the process is not being run by root. 2232 * This keeps people from modifying setuid and setgid binaries. 2233 */ 2234 ret = __file_remove_privs(file, flags); 2235 if (ret) 2236 return ret; 2237 2238 if (unlikely(file->f_mode & FMODE_NOCMTIME)) 2239 return 0; 2240 2241 ret = inode_needs_update_time(inode); 2242 if (ret <= 0) 2243 return ret; 2244 if (flags & IOCB_NOWAIT) 2245 return -EAGAIN; 2246 2247 return __file_update_time(file, ret); 2248 } 2249 2250 /** 2251 * file_modified - handle mandated vfs changes when modifying a file 2252 * @file: file that was modified 2253 * 2254 * When file has been modified ensure that special 2255 * file privileges are removed and time settings are updated. 2256 * 2257 * Context: Caller must hold the file's inode lock. 2258 * 2259 * Return: 0 on success, negative errno on failure. 2260 */ 2261 int file_modified(struct file *file) 2262 { 2263 return file_modified_flags(file, 0); 2264 } 2265 EXPORT_SYMBOL(file_modified); 2266 2267 /** 2268 * kiocb_modified - handle mandated vfs changes when modifying a file 2269 * @iocb: iocb that was modified 2270 * 2271 * When file has been modified ensure that special 2272 * file privileges are removed and time settings are updated. 2273 * 2274 * Context: Caller must hold the file's inode lock. 2275 * 2276 * Return: 0 on success, negative errno on failure. 2277 */ 2278 int kiocb_modified(struct kiocb *iocb) 2279 { 2280 return file_modified_flags(iocb->ki_filp, iocb->ki_flags); 2281 } 2282 EXPORT_SYMBOL_GPL(kiocb_modified); 2283 2284 int inode_needs_sync(struct inode *inode) 2285 { 2286 if (IS_SYNC(inode)) 2287 return 1; 2288 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 2289 return 1; 2290 return 0; 2291 } 2292 EXPORT_SYMBOL(inode_needs_sync); 2293 2294 /* 2295 * If we try to find an inode in the inode hash while it is being 2296 * deleted, we have to wait until the filesystem completes its 2297 * deletion before reporting that it isn't found. This function waits 2298 * until the deletion _might_ have completed. Callers are responsible 2299 * to recheck inode state. 2300 * 2301 * It doesn't matter if I_NEW is not set initially, a call to 2302 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 2303 * will DTRT. 2304 */ 2305 static void __wait_on_freeing_inode(struct inode *inode) 2306 { 2307 wait_queue_head_t *wq; 2308 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 2309 wq = bit_waitqueue(&inode->i_state, __I_NEW); 2310 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2311 spin_unlock(&inode->i_lock); 2312 spin_unlock(&inode_hash_lock); 2313 schedule(); 2314 finish_wait(wq, &wait.wq_entry); 2315 spin_lock(&inode_hash_lock); 2316 } 2317 2318 static __initdata unsigned long ihash_entries; 2319 static int __init set_ihash_entries(char *str) 2320 { 2321 if (!str) 2322 return 0; 2323 ihash_entries = simple_strtoul(str, &str, 0); 2324 return 1; 2325 } 2326 __setup("ihash_entries=", set_ihash_entries); 2327 2328 /* 2329 * Initialize the waitqueues and inode hash table. 2330 */ 2331 void __init inode_init_early(void) 2332 { 2333 /* If hashes are distributed across NUMA nodes, defer 2334 * hash allocation until vmalloc space is available. 2335 */ 2336 if (hashdist) 2337 return; 2338 2339 inode_hashtable = 2340 alloc_large_system_hash("Inode-cache", 2341 sizeof(struct hlist_head), 2342 ihash_entries, 2343 14, 2344 HASH_EARLY | HASH_ZERO, 2345 &i_hash_shift, 2346 &i_hash_mask, 2347 0, 2348 0); 2349 } 2350 2351 void __init inode_init(void) 2352 { 2353 /* inode slab cache */ 2354 inode_cachep = kmem_cache_create("inode_cache", 2355 sizeof(struct inode), 2356 0, 2357 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2358 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 2359 init_once); 2360 2361 /* Hash may have been set up in inode_init_early */ 2362 if (!hashdist) 2363 return; 2364 2365 inode_hashtable = 2366 alloc_large_system_hash("Inode-cache", 2367 sizeof(struct hlist_head), 2368 ihash_entries, 2369 14, 2370 HASH_ZERO, 2371 &i_hash_shift, 2372 &i_hash_mask, 2373 0, 2374 0); 2375 } 2376 2377 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 2378 { 2379 inode->i_mode = mode; 2380 if (S_ISCHR(mode)) { 2381 inode->i_fop = &def_chr_fops; 2382 inode->i_rdev = rdev; 2383 } else if (S_ISBLK(mode)) { 2384 if (IS_ENABLED(CONFIG_BLOCK)) 2385 inode->i_fop = &def_blk_fops; 2386 inode->i_rdev = rdev; 2387 } else if (S_ISFIFO(mode)) 2388 inode->i_fop = &pipefifo_fops; 2389 else if (S_ISSOCK(mode)) 2390 ; /* leave it no_open_fops */ 2391 else 2392 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 2393 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2394 inode->i_ino); 2395 } 2396 EXPORT_SYMBOL(init_special_inode); 2397 2398 /** 2399 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2400 * @idmap: idmap of the mount the inode was created from 2401 * @inode: New inode 2402 * @dir: Directory inode 2403 * @mode: mode of the new inode 2404 * 2405 * If the inode has been created through an idmapped mount the idmap of 2406 * the vfsmount must be passed through @idmap. This function will then take 2407 * care to map the inode according to @idmap before checking permissions 2408 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission 2409 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap. 2410 */ 2411 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 2412 const struct inode *dir, umode_t mode) 2413 { 2414 inode_fsuid_set(inode, idmap); 2415 if (dir && dir->i_mode & S_ISGID) { 2416 inode->i_gid = dir->i_gid; 2417 2418 /* Directories are special, and always inherit S_ISGID */ 2419 if (S_ISDIR(mode)) 2420 mode |= S_ISGID; 2421 } else 2422 inode_fsgid_set(inode, idmap); 2423 inode->i_mode = mode; 2424 } 2425 EXPORT_SYMBOL(inode_init_owner); 2426 2427 /** 2428 * inode_owner_or_capable - check current task permissions to inode 2429 * @idmap: idmap of the mount the inode was found from 2430 * @inode: inode being checked 2431 * 2432 * Return true if current either has CAP_FOWNER in a namespace with the 2433 * inode owner uid mapped, or owns the file. 2434 * 2435 * If the inode has been found through an idmapped mount the idmap of 2436 * the vfsmount must be passed through @idmap. This function will then take 2437 * care to map the inode according to @idmap before checking permissions. 2438 * On non-idmapped mounts or if permission checking is to be performed on the 2439 * raw inode simply passs @nop_mnt_idmap. 2440 */ 2441 bool inode_owner_or_capable(struct mnt_idmap *idmap, 2442 const struct inode *inode) 2443 { 2444 vfsuid_t vfsuid; 2445 struct user_namespace *ns; 2446 2447 vfsuid = i_uid_into_vfsuid(idmap, inode); 2448 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 2449 return true; 2450 2451 ns = current_user_ns(); 2452 if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER)) 2453 return true; 2454 return false; 2455 } 2456 EXPORT_SYMBOL(inode_owner_or_capable); 2457 2458 /* 2459 * Direct i/o helper functions 2460 */ 2461 static void __inode_dio_wait(struct inode *inode) 2462 { 2463 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2464 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2465 2466 do { 2467 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); 2468 if (atomic_read(&inode->i_dio_count)) 2469 schedule(); 2470 } while (atomic_read(&inode->i_dio_count)); 2471 finish_wait(wq, &q.wq_entry); 2472 } 2473 2474 /** 2475 * inode_dio_wait - wait for outstanding DIO requests to finish 2476 * @inode: inode to wait for 2477 * 2478 * Waits for all pending direct I/O requests to finish so that we can 2479 * proceed with a truncate or equivalent operation. 2480 * 2481 * Must be called under a lock that serializes taking new references 2482 * to i_dio_count, usually by inode->i_mutex. 2483 */ 2484 void inode_dio_wait(struct inode *inode) 2485 { 2486 if (atomic_read(&inode->i_dio_count)) 2487 __inode_dio_wait(inode); 2488 } 2489 EXPORT_SYMBOL(inode_dio_wait); 2490 2491 /* 2492 * inode_set_flags - atomically set some inode flags 2493 * 2494 * Note: the caller should be holding i_mutex, or else be sure that 2495 * they have exclusive access to the inode structure (i.e., while the 2496 * inode is being instantiated). The reason for the cmpxchg() loop 2497 * --- which wouldn't be necessary if all code paths which modify 2498 * i_flags actually followed this rule, is that there is at least one 2499 * code path which doesn't today so we use cmpxchg() out of an abundance 2500 * of caution. 2501 * 2502 * In the long run, i_mutex is overkill, and we should probably look 2503 * at using the i_lock spinlock to protect i_flags, and then make sure 2504 * it is so documented in include/linux/fs.h and that all code follows 2505 * the locking convention!! 2506 */ 2507 void inode_set_flags(struct inode *inode, unsigned int flags, 2508 unsigned int mask) 2509 { 2510 WARN_ON_ONCE(flags & ~mask); 2511 set_mask_bits(&inode->i_flags, mask, flags); 2512 } 2513 EXPORT_SYMBOL(inode_set_flags); 2514 2515 void inode_nohighmem(struct inode *inode) 2516 { 2517 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2518 } 2519 EXPORT_SYMBOL(inode_nohighmem); 2520 2521 /** 2522 * timestamp_truncate - Truncate timespec to a granularity 2523 * @t: Timespec 2524 * @inode: inode being updated 2525 * 2526 * Truncate a timespec to the granularity supported by the fs 2527 * containing the inode. Always rounds down. gran must 2528 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2529 */ 2530 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) 2531 { 2532 struct super_block *sb = inode->i_sb; 2533 unsigned int gran = sb->s_time_gran; 2534 2535 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); 2536 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) 2537 t.tv_nsec = 0; 2538 2539 /* Avoid division in the common cases 1 ns and 1 s. */ 2540 if (gran == 1) 2541 ; /* nothing */ 2542 else if (gran == NSEC_PER_SEC) 2543 t.tv_nsec = 0; 2544 else if (gran > 1 && gran < NSEC_PER_SEC) 2545 t.tv_nsec -= t.tv_nsec % gran; 2546 else 2547 WARN(1, "invalid file time granularity: %u", gran); 2548 return t; 2549 } 2550 EXPORT_SYMBOL(timestamp_truncate); 2551 2552 /** 2553 * current_time - Return FS time 2554 * @inode: inode. 2555 * 2556 * Return the current time truncated to the time granularity supported by 2557 * the fs. 2558 * 2559 * Note that inode and inode->sb cannot be NULL. 2560 * Otherwise, the function warns and returns time without truncation. 2561 */ 2562 struct timespec64 current_time(struct inode *inode) 2563 { 2564 struct timespec64 now; 2565 2566 ktime_get_coarse_real_ts64(&now); 2567 return timestamp_truncate(now, inode); 2568 } 2569 EXPORT_SYMBOL(current_time); 2570 2571 /** 2572 * inode_set_ctime_current - set the ctime to current_time 2573 * @inode: inode 2574 * 2575 * Set the inode->i_ctime to the current value for the inode. Returns 2576 * the current value that was assigned to i_ctime. 2577 */ 2578 struct timespec64 inode_set_ctime_current(struct inode *inode) 2579 { 2580 struct timespec64 now = current_time(inode); 2581 2582 inode_set_ctime(inode, now.tv_sec, now.tv_nsec); 2583 return now; 2584 } 2585 EXPORT_SYMBOL(inode_set_ctime_current); 2586 2587 /** 2588 * in_group_or_capable - check whether caller is CAP_FSETID privileged 2589 * @idmap: idmap of the mount @inode was found from 2590 * @inode: inode to check 2591 * @vfsgid: the new/current vfsgid of @inode 2592 * 2593 * Check wether @vfsgid is in the caller's group list or if the caller is 2594 * privileged with CAP_FSETID over @inode. This can be used to determine 2595 * whether the setgid bit can be kept or must be dropped. 2596 * 2597 * Return: true if the caller is sufficiently privileged, false if not. 2598 */ 2599 bool in_group_or_capable(struct mnt_idmap *idmap, 2600 const struct inode *inode, vfsgid_t vfsgid) 2601 { 2602 if (vfsgid_in_group_p(vfsgid)) 2603 return true; 2604 if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID)) 2605 return true; 2606 return false; 2607 } 2608 2609 /** 2610 * mode_strip_sgid - handle the sgid bit for non-directories 2611 * @idmap: idmap of the mount the inode was created from 2612 * @dir: parent directory inode 2613 * @mode: mode of the file to be created in @dir 2614 * 2615 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit 2616 * raised and @dir has the S_ISGID bit raised ensure that the caller is 2617 * either in the group of the parent directory or they have CAP_FSETID 2618 * in their user namespace and are privileged over the parent directory. 2619 * In all other cases, strip the S_ISGID bit from @mode. 2620 * 2621 * Return: the new mode to use for the file 2622 */ 2623 umode_t mode_strip_sgid(struct mnt_idmap *idmap, 2624 const struct inode *dir, umode_t mode) 2625 { 2626 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP)) 2627 return mode; 2628 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID)) 2629 return mode; 2630 if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir))) 2631 return mode; 2632 return mode & ~S_ISGID; 2633 } 2634 EXPORT_SYMBOL(mode_strip_sgid); 2635