xref: /openbmc/linux/fs/inode.c (revision 151f4e2b)
1 /*
2  * (C) 1997 Linus Torvalds
3  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4  */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/memblock.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <linux/iversion.h>
22 #include <trace/events/writeback.h>
23 #include "internal.h"
24 
25 /*
26  * Inode locking rules:
27  *
28  * inode->i_lock protects:
29  *   inode->i_state, inode->i_hash, __iget()
30  * Inode LRU list locks protect:
31  *   inode->i_sb->s_inode_lru, inode->i_lru
32  * inode->i_sb->s_inode_list_lock protects:
33  *   inode->i_sb->s_inodes, inode->i_sb_list
34  * bdi->wb.list_lock protects:
35  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
36  * inode_hash_lock protects:
37  *   inode_hashtable, inode->i_hash
38  *
39  * Lock ordering:
40  *
41  * inode->i_sb->s_inode_list_lock
42  *   inode->i_lock
43  *     Inode LRU list locks
44  *
45  * bdi->wb.list_lock
46  *   inode->i_lock
47  *
48  * inode_hash_lock
49  *   inode->i_sb->s_inode_list_lock
50  *   inode->i_lock
51  *
52  * iunique_lock
53  *   inode_hash_lock
54  */
55 
56 static unsigned int i_hash_mask __read_mostly;
57 static unsigned int i_hash_shift __read_mostly;
58 static struct hlist_head *inode_hashtable __read_mostly;
59 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
60 
61 /*
62  * Empty aops. Can be used for the cases where the user does not
63  * define any of the address_space operations.
64  */
65 const struct address_space_operations empty_aops = {
66 };
67 EXPORT_SYMBOL(empty_aops);
68 
69 /*
70  * Statistics gathering..
71  */
72 struct inodes_stat_t inodes_stat;
73 
74 static DEFINE_PER_CPU(unsigned long, nr_inodes);
75 static DEFINE_PER_CPU(unsigned long, nr_unused);
76 
77 static struct kmem_cache *inode_cachep __read_mostly;
78 
79 static long get_nr_inodes(void)
80 {
81 	int i;
82 	long sum = 0;
83 	for_each_possible_cpu(i)
84 		sum += per_cpu(nr_inodes, i);
85 	return sum < 0 ? 0 : sum;
86 }
87 
88 static inline long get_nr_inodes_unused(void)
89 {
90 	int i;
91 	long sum = 0;
92 	for_each_possible_cpu(i)
93 		sum += per_cpu(nr_unused, i);
94 	return sum < 0 ? 0 : sum;
95 }
96 
97 long get_nr_dirty_inodes(void)
98 {
99 	/* not actually dirty inodes, but a wild approximation */
100 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
101 	return nr_dirty > 0 ? nr_dirty : 0;
102 }
103 
104 /*
105  * Handle nr_inode sysctl
106  */
107 #ifdef CONFIG_SYSCTL
108 int proc_nr_inodes(struct ctl_table *table, int write,
109 		   void __user *buffer, size_t *lenp, loff_t *ppos)
110 {
111 	inodes_stat.nr_inodes = get_nr_inodes();
112 	inodes_stat.nr_unused = get_nr_inodes_unused();
113 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
114 }
115 #endif
116 
117 static int no_open(struct inode *inode, struct file *file)
118 {
119 	return -ENXIO;
120 }
121 
122 /**
123  * inode_init_always - perform inode structure initialisation
124  * @sb: superblock inode belongs to
125  * @inode: inode to initialise
126  *
127  * These are initializations that need to be done on every inode
128  * allocation as the fields are not initialised by slab allocation.
129  */
130 int inode_init_always(struct super_block *sb, struct inode *inode)
131 {
132 	static const struct inode_operations empty_iops;
133 	static const struct file_operations no_open_fops = {.open = no_open};
134 	struct address_space *const mapping = &inode->i_data;
135 
136 	inode->i_sb = sb;
137 	inode->i_blkbits = sb->s_blocksize_bits;
138 	inode->i_flags = 0;
139 	atomic_set(&inode->i_count, 1);
140 	inode->i_op = &empty_iops;
141 	inode->i_fop = &no_open_fops;
142 	inode->__i_nlink = 1;
143 	inode->i_opflags = 0;
144 	if (sb->s_xattr)
145 		inode->i_opflags |= IOP_XATTR;
146 	i_uid_write(inode, 0);
147 	i_gid_write(inode, 0);
148 	atomic_set(&inode->i_writecount, 0);
149 	inode->i_size = 0;
150 	inode->i_write_hint = WRITE_LIFE_NOT_SET;
151 	inode->i_blocks = 0;
152 	inode->i_bytes = 0;
153 	inode->i_generation = 0;
154 	inode->i_pipe = NULL;
155 	inode->i_bdev = NULL;
156 	inode->i_cdev = NULL;
157 	inode->i_link = NULL;
158 	inode->i_dir_seq = 0;
159 	inode->i_rdev = 0;
160 	inode->dirtied_when = 0;
161 
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 	inode->i_wb_frn_winner = 0;
164 	inode->i_wb_frn_avg_time = 0;
165 	inode->i_wb_frn_history = 0;
166 #endif
167 
168 	if (security_inode_alloc(inode))
169 		goto out;
170 	spin_lock_init(&inode->i_lock);
171 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
172 
173 	init_rwsem(&inode->i_rwsem);
174 	lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
175 
176 	atomic_set(&inode->i_dio_count, 0);
177 
178 	mapping->a_ops = &empty_aops;
179 	mapping->host = inode;
180 	mapping->flags = 0;
181 	mapping->wb_err = 0;
182 	atomic_set(&mapping->i_mmap_writable, 0);
183 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
184 	mapping->private_data = NULL;
185 	mapping->writeback_index = 0;
186 	inode->i_private = NULL;
187 	inode->i_mapping = mapping;
188 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
189 #ifdef CONFIG_FS_POSIX_ACL
190 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
191 #endif
192 
193 #ifdef CONFIG_FSNOTIFY
194 	inode->i_fsnotify_mask = 0;
195 #endif
196 	inode->i_flctx = NULL;
197 	this_cpu_inc(nr_inodes);
198 
199 	return 0;
200 out:
201 	return -ENOMEM;
202 }
203 EXPORT_SYMBOL(inode_init_always);
204 
205 void free_inode_nonrcu(struct inode *inode)
206 {
207 	kmem_cache_free(inode_cachep, inode);
208 }
209 EXPORT_SYMBOL(free_inode_nonrcu);
210 
211 static void i_callback(struct rcu_head *head)
212 {
213 	struct inode *inode = container_of(head, struct inode, i_rcu);
214 	if (inode->free_inode)
215 		inode->free_inode(inode);
216 	else
217 		free_inode_nonrcu(inode);
218 }
219 
220 static struct inode *alloc_inode(struct super_block *sb)
221 {
222 	const struct super_operations *ops = sb->s_op;
223 	struct inode *inode;
224 
225 	if (ops->alloc_inode)
226 		inode = ops->alloc_inode(sb);
227 	else
228 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
229 
230 	if (!inode)
231 		return NULL;
232 
233 	if (unlikely(inode_init_always(sb, inode))) {
234 		if (ops->destroy_inode) {
235 			ops->destroy_inode(inode);
236 			if (!ops->free_inode)
237 				return NULL;
238 		}
239 		inode->free_inode = ops->free_inode;
240 		i_callback(&inode->i_rcu);
241 		return NULL;
242 	}
243 
244 	return inode;
245 }
246 
247 void __destroy_inode(struct inode *inode)
248 {
249 	BUG_ON(inode_has_buffers(inode));
250 	inode_detach_wb(inode);
251 	security_inode_free(inode);
252 	fsnotify_inode_delete(inode);
253 	locks_free_lock_context(inode);
254 	if (!inode->i_nlink) {
255 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
256 		atomic_long_dec(&inode->i_sb->s_remove_count);
257 	}
258 
259 #ifdef CONFIG_FS_POSIX_ACL
260 	if (inode->i_acl && !is_uncached_acl(inode->i_acl))
261 		posix_acl_release(inode->i_acl);
262 	if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
263 		posix_acl_release(inode->i_default_acl);
264 #endif
265 	this_cpu_dec(nr_inodes);
266 }
267 EXPORT_SYMBOL(__destroy_inode);
268 
269 static void destroy_inode(struct inode *inode)
270 {
271 	const struct super_operations *ops = inode->i_sb->s_op;
272 
273 	BUG_ON(!list_empty(&inode->i_lru));
274 	__destroy_inode(inode);
275 	if (ops->destroy_inode) {
276 		ops->destroy_inode(inode);
277 		if (!ops->free_inode)
278 			return;
279 	}
280 	inode->free_inode = ops->free_inode;
281 	call_rcu(&inode->i_rcu, i_callback);
282 }
283 
284 /**
285  * drop_nlink - directly drop an inode's link count
286  * @inode: inode
287  *
288  * This is a low-level filesystem helper to replace any
289  * direct filesystem manipulation of i_nlink.  In cases
290  * where we are attempting to track writes to the
291  * filesystem, a decrement to zero means an imminent
292  * write when the file is truncated and actually unlinked
293  * on the filesystem.
294  */
295 void drop_nlink(struct inode *inode)
296 {
297 	WARN_ON(inode->i_nlink == 0);
298 	inode->__i_nlink--;
299 	if (!inode->i_nlink)
300 		atomic_long_inc(&inode->i_sb->s_remove_count);
301 }
302 EXPORT_SYMBOL(drop_nlink);
303 
304 /**
305  * clear_nlink - directly zero an inode's link count
306  * @inode: inode
307  *
308  * This is a low-level filesystem helper to replace any
309  * direct filesystem manipulation of i_nlink.  See
310  * drop_nlink() for why we care about i_nlink hitting zero.
311  */
312 void clear_nlink(struct inode *inode)
313 {
314 	if (inode->i_nlink) {
315 		inode->__i_nlink = 0;
316 		atomic_long_inc(&inode->i_sb->s_remove_count);
317 	}
318 }
319 EXPORT_SYMBOL(clear_nlink);
320 
321 /**
322  * set_nlink - directly set an inode's link count
323  * @inode: inode
324  * @nlink: new nlink (should be non-zero)
325  *
326  * This is a low-level filesystem helper to replace any
327  * direct filesystem manipulation of i_nlink.
328  */
329 void set_nlink(struct inode *inode, unsigned int nlink)
330 {
331 	if (!nlink) {
332 		clear_nlink(inode);
333 	} else {
334 		/* Yes, some filesystems do change nlink from zero to one */
335 		if (inode->i_nlink == 0)
336 			atomic_long_dec(&inode->i_sb->s_remove_count);
337 
338 		inode->__i_nlink = nlink;
339 	}
340 }
341 EXPORT_SYMBOL(set_nlink);
342 
343 /**
344  * inc_nlink - directly increment an inode's link count
345  * @inode: inode
346  *
347  * This is a low-level filesystem helper to replace any
348  * direct filesystem manipulation of i_nlink.  Currently,
349  * it is only here for parity with dec_nlink().
350  */
351 void inc_nlink(struct inode *inode)
352 {
353 	if (unlikely(inode->i_nlink == 0)) {
354 		WARN_ON(!(inode->i_state & I_LINKABLE));
355 		atomic_long_dec(&inode->i_sb->s_remove_count);
356 	}
357 
358 	inode->__i_nlink++;
359 }
360 EXPORT_SYMBOL(inc_nlink);
361 
362 static void __address_space_init_once(struct address_space *mapping)
363 {
364 	xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ);
365 	init_rwsem(&mapping->i_mmap_rwsem);
366 	INIT_LIST_HEAD(&mapping->private_list);
367 	spin_lock_init(&mapping->private_lock);
368 	mapping->i_mmap = RB_ROOT_CACHED;
369 }
370 
371 void address_space_init_once(struct address_space *mapping)
372 {
373 	memset(mapping, 0, sizeof(*mapping));
374 	__address_space_init_once(mapping);
375 }
376 EXPORT_SYMBOL(address_space_init_once);
377 
378 /*
379  * These are initializations that only need to be done
380  * once, because the fields are idempotent across use
381  * of the inode, so let the slab aware of that.
382  */
383 void inode_init_once(struct inode *inode)
384 {
385 	memset(inode, 0, sizeof(*inode));
386 	INIT_HLIST_NODE(&inode->i_hash);
387 	INIT_LIST_HEAD(&inode->i_devices);
388 	INIT_LIST_HEAD(&inode->i_io_list);
389 	INIT_LIST_HEAD(&inode->i_wb_list);
390 	INIT_LIST_HEAD(&inode->i_lru);
391 	__address_space_init_once(&inode->i_data);
392 	i_size_ordered_init(inode);
393 }
394 EXPORT_SYMBOL(inode_init_once);
395 
396 static void init_once(void *foo)
397 {
398 	struct inode *inode = (struct inode *) foo;
399 
400 	inode_init_once(inode);
401 }
402 
403 /*
404  * inode->i_lock must be held
405  */
406 void __iget(struct inode *inode)
407 {
408 	atomic_inc(&inode->i_count);
409 }
410 
411 /*
412  * get additional reference to inode; caller must already hold one.
413  */
414 void ihold(struct inode *inode)
415 {
416 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
417 }
418 EXPORT_SYMBOL(ihold);
419 
420 static void inode_lru_list_add(struct inode *inode)
421 {
422 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
423 		this_cpu_inc(nr_unused);
424 	else
425 		inode->i_state |= I_REFERENCED;
426 }
427 
428 /*
429  * Add inode to LRU if needed (inode is unused and clean).
430  *
431  * Needs inode->i_lock held.
432  */
433 void inode_add_lru(struct inode *inode)
434 {
435 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
436 				I_FREEING | I_WILL_FREE)) &&
437 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
438 		inode_lru_list_add(inode);
439 }
440 
441 
442 static void inode_lru_list_del(struct inode *inode)
443 {
444 
445 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
446 		this_cpu_dec(nr_unused);
447 }
448 
449 /**
450  * inode_sb_list_add - add inode to the superblock list of inodes
451  * @inode: inode to add
452  */
453 void inode_sb_list_add(struct inode *inode)
454 {
455 	spin_lock(&inode->i_sb->s_inode_list_lock);
456 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
457 	spin_unlock(&inode->i_sb->s_inode_list_lock);
458 }
459 EXPORT_SYMBOL_GPL(inode_sb_list_add);
460 
461 static inline void inode_sb_list_del(struct inode *inode)
462 {
463 	if (!list_empty(&inode->i_sb_list)) {
464 		spin_lock(&inode->i_sb->s_inode_list_lock);
465 		list_del_init(&inode->i_sb_list);
466 		spin_unlock(&inode->i_sb->s_inode_list_lock);
467 	}
468 }
469 
470 static unsigned long hash(struct super_block *sb, unsigned long hashval)
471 {
472 	unsigned long tmp;
473 
474 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
475 			L1_CACHE_BYTES;
476 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
477 	return tmp & i_hash_mask;
478 }
479 
480 /**
481  *	__insert_inode_hash - hash an inode
482  *	@inode: unhashed inode
483  *	@hashval: unsigned long value used to locate this object in the
484  *		inode_hashtable.
485  *
486  *	Add an inode to the inode hash for this superblock.
487  */
488 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
489 {
490 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
491 
492 	spin_lock(&inode_hash_lock);
493 	spin_lock(&inode->i_lock);
494 	hlist_add_head(&inode->i_hash, b);
495 	spin_unlock(&inode->i_lock);
496 	spin_unlock(&inode_hash_lock);
497 }
498 EXPORT_SYMBOL(__insert_inode_hash);
499 
500 /**
501  *	__remove_inode_hash - remove an inode from the hash
502  *	@inode: inode to unhash
503  *
504  *	Remove an inode from the superblock.
505  */
506 void __remove_inode_hash(struct inode *inode)
507 {
508 	spin_lock(&inode_hash_lock);
509 	spin_lock(&inode->i_lock);
510 	hlist_del_init(&inode->i_hash);
511 	spin_unlock(&inode->i_lock);
512 	spin_unlock(&inode_hash_lock);
513 }
514 EXPORT_SYMBOL(__remove_inode_hash);
515 
516 void clear_inode(struct inode *inode)
517 {
518 	/*
519 	 * We have to cycle the i_pages lock here because reclaim can be in the
520 	 * process of removing the last page (in __delete_from_page_cache())
521 	 * and we must not free the mapping under it.
522 	 */
523 	xa_lock_irq(&inode->i_data.i_pages);
524 	BUG_ON(inode->i_data.nrpages);
525 	BUG_ON(inode->i_data.nrexceptional);
526 	xa_unlock_irq(&inode->i_data.i_pages);
527 	BUG_ON(!list_empty(&inode->i_data.private_list));
528 	BUG_ON(!(inode->i_state & I_FREEING));
529 	BUG_ON(inode->i_state & I_CLEAR);
530 	BUG_ON(!list_empty(&inode->i_wb_list));
531 	/* don't need i_lock here, no concurrent mods to i_state */
532 	inode->i_state = I_FREEING | I_CLEAR;
533 }
534 EXPORT_SYMBOL(clear_inode);
535 
536 /*
537  * Free the inode passed in, removing it from the lists it is still connected
538  * to. We remove any pages still attached to the inode and wait for any IO that
539  * is still in progress before finally destroying the inode.
540  *
541  * An inode must already be marked I_FREEING so that we avoid the inode being
542  * moved back onto lists if we race with other code that manipulates the lists
543  * (e.g. writeback_single_inode). The caller is responsible for setting this.
544  *
545  * An inode must already be removed from the LRU list before being evicted from
546  * the cache. This should occur atomically with setting the I_FREEING state
547  * flag, so no inodes here should ever be on the LRU when being evicted.
548  */
549 static void evict(struct inode *inode)
550 {
551 	const struct super_operations *op = inode->i_sb->s_op;
552 
553 	BUG_ON(!(inode->i_state & I_FREEING));
554 	BUG_ON(!list_empty(&inode->i_lru));
555 
556 	if (!list_empty(&inode->i_io_list))
557 		inode_io_list_del(inode);
558 
559 	inode_sb_list_del(inode);
560 
561 	/*
562 	 * Wait for flusher thread to be done with the inode so that filesystem
563 	 * does not start destroying it while writeback is still running. Since
564 	 * the inode has I_FREEING set, flusher thread won't start new work on
565 	 * the inode.  We just have to wait for running writeback to finish.
566 	 */
567 	inode_wait_for_writeback(inode);
568 
569 	if (op->evict_inode) {
570 		op->evict_inode(inode);
571 	} else {
572 		truncate_inode_pages_final(&inode->i_data);
573 		clear_inode(inode);
574 	}
575 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
576 		bd_forget(inode);
577 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
578 		cd_forget(inode);
579 
580 	remove_inode_hash(inode);
581 
582 	spin_lock(&inode->i_lock);
583 	wake_up_bit(&inode->i_state, __I_NEW);
584 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
585 	spin_unlock(&inode->i_lock);
586 
587 	destroy_inode(inode);
588 }
589 
590 /*
591  * dispose_list - dispose of the contents of a local list
592  * @head: the head of the list to free
593  *
594  * Dispose-list gets a local list with local inodes in it, so it doesn't
595  * need to worry about list corruption and SMP locks.
596  */
597 static void dispose_list(struct list_head *head)
598 {
599 	while (!list_empty(head)) {
600 		struct inode *inode;
601 
602 		inode = list_first_entry(head, struct inode, i_lru);
603 		list_del_init(&inode->i_lru);
604 
605 		evict(inode);
606 		cond_resched();
607 	}
608 }
609 
610 /**
611  * evict_inodes	- evict all evictable inodes for a superblock
612  * @sb:		superblock to operate on
613  *
614  * Make sure that no inodes with zero refcount are retained.  This is
615  * called by superblock shutdown after having SB_ACTIVE flag removed,
616  * so any inode reaching zero refcount during or after that call will
617  * be immediately evicted.
618  */
619 void evict_inodes(struct super_block *sb)
620 {
621 	struct inode *inode, *next;
622 	LIST_HEAD(dispose);
623 
624 again:
625 	spin_lock(&sb->s_inode_list_lock);
626 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
627 		if (atomic_read(&inode->i_count))
628 			continue;
629 
630 		spin_lock(&inode->i_lock);
631 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
632 			spin_unlock(&inode->i_lock);
633 			continue;
634 		}
635 
636 		inode->i_state |= I_FREEING;
637 		inode_lru_list_del(inode);
638 		spin_unlock(&inode->i_lock);
639 		list_add(&inode->i_lru, &dispose);
640 
641 		/*
642 		 * We can have a ton of inodes to evict at unmount time given
643 		 * enough memory, check to see if we need to go to sleep for a
644 		 * bit so we don't livelock.
645 		 */
646 		if (need_resched()) {
647 			spin_unlock(&sb->s_inode_list_lock);
648 			cond_resched();
649 			dispose_list(&dispose);
650 			goto again;
651 		}
652 	}
653 	spin_unlock(&sb->s_inode_list_lock);
654 
655 	dispose_list(&dispose);
656 }
657 EXPORT_SYMBOL_GPL(evict_inodes);
658 
659 /**
660  * invalidate_inodes	- attempt to free all inodes on a superblock
661  * @sb:		superblock to operate on
662  * @kill_dirty: flag to guide handling of dirty inodes
663  *
664  * Attempts to free all inodes for a given superblock.  If there were any
665  * busy inodes return a non-zero value, else zero.
666  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
667  * them as busy.
668  */
669 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
670 {
671 	int busy = 0;
672 	struct inode *inode, *next;
673 	LIST_HEAD(dispose);
674 
675 	spin_lock(&sb->s_inode_list_lock);
676 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
677 		spin_lock(&inode->i_lock);
678 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
679 			spin_unlock(&inode->i_lock);
680 			continue;
681 		}
682 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
683 			spin_unlock(&inode->i_lock);
684 			busy = 1;
685 			continue;
686 		}
687 		if (atomic_read(&inode->i_count)) {
688 			spin_unlock(&inode->i_lock);
689 			busy = 1;
690 			continue;
691 		}
692 
693 		inode->i_state |= I_FREEING;
694 		inode_lru_list_del(inode);
695 		spin_unlock(&inode->i_lock);
696 		list_add(&inode->i_lru, &dispose);
697 	}
698 	spin_unlock(&sb->s_inode_list_lock);
699 
700 	dispose_list(&dispose);
701 
702 	return busy;
703 }
704 
705 /*
706  * Isolate the inode from the LRU in preparation for freeing it.
707  *
708  * Any inodes which are pinned purely because of attached pagecache have their
709  * pagecache removed.  If the inode has metadata buffers attached to
710  * mapping->private_list then try to remove them.
711  *
712  * If the inode has the I_REFERENCED flag set, then it means that it has been
713  * used recently - the flag is set in iput_final(). When we encounter such an
714  * inode, clear the flag and move it to the back of the LRU so it gets another
715  * pass through the LRU before it gets reclaimed. This is necessary because of
716  * the fact we are doing lazy LRU updates to minimise lock contention so the
717  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
718  * with this flag set because they are the inodes that are out of order.
719  */
720 static enum lru_status inode_lru_isolate(struct list_head *item,
721 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
722 {
723 	struct list_head *freeable = arg;
724 	struct inode	*inode = container_of(item, struct inode, i_lru);
725 
726 	/*
727 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
728 	 * If we fail to get the lock, just skip it.
729 	 */
730 	if (!spin_trylock(&inode->i_lock))
731 		return LRU_SKIP;
732 
733 	/*
734 	 * Referenced or dirty inodes are still in use. Give them another pass
735 	 * through the LRU as we canot reclaim them now.
736 	 */
737 	if (atomic_read(&inode->i_count) ||
738 	    (inode->i_state & ~I_REFERENCED)) {
739 		list_lru_isolate(lru, &inode->i_lru);
740 		spin_unlock(&inode->i_lock);
741 		this_cpu_dec(nr_unused);
742 		return LRU_REMOVED;
743 	}
744 
745 	/* recently referenced inodes get one more pass */
746 	if (inode->i_state & I_REFERENCED) {
747 		inode->i_state &= ~I_REFERENCED;
748 		spin_unlock(&inode->i_lock);
749 		return LRU_ROTATE;
750 	}
751 
752 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
753 		__iget(inode);
754 		spin_unlock(&inode->i_lock);
755 		spin_unlock(lru_lock);
756 		if (remove_inode_buffers(inode)) {
757 			unsigned long reap;
758 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
759 			if (current_is_kswapd())
760 				__count_vm_events(KSWAPD_INODESTEAL, reap);
761 			else
762 				__count_vm_events(PGINODESTEAL, reap);
763 			if (current->reclaim_state)
764 				current->reclaim_state->reclaimed_slab += reap;
765 		}
766 		iput(inode);
767 		spin_lock(lru_lock);
768 		return LRU_RETRY;
769 	}
770 
771 	WARN_ON(inode->i_state & I_NEW);
772 	inode->i_state |= I_FREEING;
773 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
774 	spin_unlock(&inode->i_lock);
775 
776 	this_cpu_dec(nr_unused);
777 	return LRU_REMOVED;
778 }
779 
780 /*
781  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
782  * This is called from the superblock shrinker function with a number of inodes
783  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
784  * then are freed outside inode_lock by dispose_list().
785  */
786 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
787 {
788 	LIST_HEAD(freeable);
789 	long freed;
790 
791 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
792 				     inode_lru_isolate, &freeable);
793 	dispose_list(&freeable);
794 	return freed;
795 }
796 
797 static void __wait_on_freeing_inode(struct inode *inode);
798 /*
799  * Called with the inode lock held.
800  */
801 static struct inode *find_inode(struct super_block *sb,
802 				struct hlist_head *head,
803 				int (*test)(struct inode *, void *),
804 				void *data)
805 {
806 	struct inode *inode = NULL;
807 
808 repeat:
809 	hlist_for_each_entry(inode, head, i_hash) {
810 		if (inode->i_sb != sb)
811 			continue;
812 		if (!test(inode, data))
813 			continue;
814 		spin_lock(&inode->i_lock);
815 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
816 			__wait_on_freeing_inode(inode);
817 			goto repeat;
818 		}
819 		if (unlikely(inode->i_state & I_CREATING)) {
820 			spin_unlock(&inode->i_lock);
821 			return ERR_PTR(-ESTALE);
822 		}
823 		__iget(inode);
824 		spin_unlock(&inode->i_lock);
825 		return inode;
826 	}
827 	return NULL;
828 }
829 
830 /*
831  * find_inode_fast is the fast path version of find_inode, see the comment at
832  * iget_locked for details.
833  */
834 static struct inode *find_inode_fast(struct super_block *sb,
835 				struct hlist_head *head, unsigned long ino)
836 {
837 	struct inode *inode = NULL;
838 
839 repeat:
840 	hlist_for_each_entry(inode, head, i_hash) {
841 		if (inode->i_ino != ino)
842 			continue;
843 		if (inode->i_sb != sb)
844 			continue;
845 		spin_lock(&inode->i_lock);
846 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
847 			__wait_on_freeing_inode(inode);
848 			goto repeat;
849 		}
850 		if (unlikely(inode->i_state & I_CREATING)) {
851 			spin_unlock(&inode->i_lock);
852 			return ERR_PTR(-ESTALE);
853 		}
854 		__iget(inode);
855 		spin_unlock(&inode->i_lock);
856 		return inode;
857 	}
858 	return NULL;
859 }
860 
861 /*
862  * Each cpu owns a range of LAST_INO_BATCH numbers.
863  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
864  * to renew the exhausted range.
865  *
866  * This does not significantly increase overflow rate because every CPU can
867  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
868  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
869  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
870  * overflow rate by 2x, which does not seem too significant.
871  *
872  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
873  * error if st_ino won't fit in target struct field. Use 32bit counter
874  * here to attempt to avoid that.
875  */
876 #define LAST_INO_BATCH 1024
877 static DEFINE_PER_CPU(unsigned int, last_ino);
878 
879 unsigned int get_next_ino(void)
880 {
881 	unsigned int *p = &get_cpu_var(last_ino);
882 	unsigned int res = *p;
883 
884 #ifdef CONFIG_SMP
885 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
886 		static atomic_t shared_last_ino;
887 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
888 
889 		res = next - LAST_INO_BATCH;
890 	}
891 #endif
892 
893 	res++;
894 	/* get_next_ino should not provide a 0 inode number */
895 	if (unlikely(!res))
896 		res++;
897 	*p = res;
898 	put_cpu_var(last_ino);
899 	return res;
900 }
901 EXPORT_SYMBOL(get_next_ino);
902 
903 /**
904  *	new_inode_pseudo 	- obtain an inode
905  *	@sb: superblock
906  *
907  *	Allocates a new inode for given superblock.
908  *	Inode wont be chained in superblock s_inodes list
909  *	This means :
910  *	- fs can't be unmount
911  *	- quotas, fsnotify, writeback can't work
912  */
913 struct inode *new_inode_pseudo(struct super_block *sb)
914 {
915 	struct inode *inode = alloc_inode(sb);
916 
917 	if (inode) {
918 		spin_lock(&inode->i_lock);
919 		inode->i_state = 0;
920 		spin_unlock(&inode->i_lock);
921 		INIT_LIST_HEAD(&inode->i_sb_list);
922 	}
923 	return inode;
924 }
925 
926 /**
927  *	new_inode 	- obtain an inode
928  *	@sb: superblock
929  *
930  *	Allocates a new inode for given superblock. The default gfp_mask
931  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
932  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
933  *	for the page cache are not reclaimable or migratable,
934  *	mapping_set_gfp_mask() must be called with suitable flags on the
935  *	newly created inode's mapping
936  *
937  */
938 struct inode *new_inode(struct super_block *sb)
939 {
940 	struct inode *inode;
941 
942 	spin_lock_prefetch(&sb->s_inode_list_lock);
943 
944 	inode = new_inode_pseudo(sb);
945 	if (inode)
946 		inode_sb_list_add(inode);
947 	return inode;
948 }
949 EXPORT_SYMBOL(new_inode);
950 
951 #ifdef CONFIG_DEBUG_LOCK_ALLOC
952 void lockdep_annotate_inode_mutex_key(struct inode *inode)
953 {
954 	if (S_ISDIR(inode->i_mode)) {
955 		struct file_system_type *type = inode->i_sb->s_type;
956 
957 		/* Set new key only if filesystem hasn't already changed it */
958 		if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
959 			/*
960 			 * ensure nobody is actually holding i_mutex
961 			 */
962 			// mutex_destroy(&inode->i_mutex);
963 			init_rwsem(&inode->i_rwsem);
964 			lockdep_set_class(&inode->i_rwsem,
965 					  &type->i_mutex_dir_key);
966 		}
967 	}
968 }
969 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
970 #endif
971 
972 /**
973  * unlock_new_inode - clear the I_NEW state and wake up any waiters
974  * @inode:	new inode to unlock
975  *
976  * Called when the inode is fully initialised to clear the new state of the
977  * inode and wake up anyone waiting for the inode to finish initialisation.
978  */
979 void unlock_new_inode(struct inode *inode)
980 {
981 	lockdep_annotate_inode_mutex_key(inode);
982 	spin_lock(&inode->i_lock);
983 	WARN_ON(!(inode->i_state & I_NEW));
984 	inode->i_state &= ~I_NEW & ~I_CREATING;
985 	smp_mb();
986 	wake_up_bit(&inode->i_state, __I_NEW);
987 	spin_unlock(&inode->i_lock);
988 }
989 EXPORT_SYMBOL(unlock_new_inode);
990 
991 void discard_new_inode(struct inode *inode)
992 {
993 	lockdep_annotate_inode_mutex_key(inode);
994 	spin_lock(&inode->i_lock);
995 	WARN_ON(!(inode->i_state & I_NEW));
996 	inode->i_state &= ~I_NEW;
997 	smp_mb();
998 	wake_up_bit(&inode->i_state, __I_NEW);
999 	spin_unlock(&inode->i_lock);
1000 	iput(inode);
1001 }
1002 EXPORT_SYMBOL(discard_new_inode);
1003 
1004 /**
1005  * lock_two_nondirectories - take two i_mutexes on non-directory objects
1006  *
1007  * Lock any non-NULL argument that is not a directory.
1008  * Zero, one or two objects may be locked by this function.
1009  *
1010  * @inode1: first inode to lock
1011  * @inode2: second inode to lock
1012  */
1013 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1014 {
1015 	if (inode1 > inode2)
1016 		swap(inode1, inode2);
1017 
1018 	if (inode1 && !S_ISDIR(inode1->i_mode))
1019 		inode_lock(inode1);
1020 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1021 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1022 }
1023 EXPORT_SYMBOL(lock_two_nondirectories);
1024 
1025 /**
1026  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1027  * @inode1: first inode to unlock
1028  * @inode2: second inode to unlock
1029  */
1030 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1031 {
1032 	if (inode1 && !S_ISDIR(inode1->i_mode))
1033 		inode_unlock(inode1);
1034 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1035 		inode_unlock(inode2);
1036 }
1037 EXPORT_SYMBOL(unlock_two_nondirectories);
1038 
1039 /**
1040  * inode_insert5 - obtain an inode from a mounted file system
1041  * @inode:	pre-allocated inode to use for insert to cache
1042  * @hashval:	hash value (usually inode number) to get
1043  * @test:	callback used for comparisons between inodes
1044  * @set:	callback used to initialize a new struct inode
1045  * @data:	opaque data pointer to pass to @test and @set
1046  *
1047  * Search for the inode specified by @hashval and @data in the inode cache,
1048  * and if present it is return it with an increased reference count. This is
1049  * a variant of iget5_locked() for callers that don't want to fail on memory
1050  * allocation of inode.
1051  *
1052  * If the inode is not in cache, insert the pre-allocated inode to cache and
1053  * return it locked, hashed, and with the I_NEW flag set. The file system gets
1054  * to fill it in before unlocking it via unlock_new_inode().
1055  *
1056  * Note both @test and @set are called with the inode_hash_lock held, so can't
1057  * sleep.
1058  */
1059 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1060 			    int (*test)(struct inode *, void *),
1061 			    int (*set)(struct inode *, void *), void *data)
1062 {
1063 	struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1064 	struct inode *old;
1065 	bool creating = inode->i_state & I_CREATING;
1066 
1067 again:
1068 	spin_lock(&inode_hash_lock);
1069 	old = find_inode(inode->i_sb, head, test, data);
1070 	if (unlikely(old)) {
1071 		/*
1072 		 * Uhhuh, somebody else created the same inode under us.
1073 		 * Use the old inode instead of the preallocated one.
1074 		 */
1075 		spin_unlock(&inode_hash_lock);
1076 		if (IS_ERR(old))
1077 			return NULL;
1078 		wait_on_inode(old);
1079 		if (unlikely(inode_unhashed(old))) {
1080 			iput(old);
1081 			goto again;
1082 		}
1083 		return old;
1084 	}
1085 
1086 	if (set && unlikely(set(inode, data))) {
1087 		inode = NULL;
1088 		goto unlock;
1089 	}
1090 
1091 	/*
1092 	 * Return the locked inode with I_NEW set, the
1093 	 * caller is responsible for filling in the contents
1094 	 */
1095 	spin_lock(&inode->i_lock);
1096 	inode->i_state |= I_NEW;
1097 	hlist_add_head(&inode->i_hash, head);
1098 	spin_unlock(&inode->i_lock);
1099 	if (!creating)
1100 		inode_sb_list_add(inode);
1101 unlock:
1102 	spin_unlock(&inode_hash_lock);
1103 
1104 	return inode;
1105 }
1106 EXPORT_SYMBOL(inode_insert5);
1107 
1108 /**
1109  * iget5_locked - obtain an inode from a mounted file system
1110  * @sb:		super block of file system
1111  * @hashval:	hash value (usually inode number) to get
1112  * @test:	callback used for comparisons between inodes
1113  * @set:	callback used to initialize a new struct inode
1114  * @data:	opaque data pointer to pass to @test and @set
1115  *
1116  * Search for the inode specified by @hashval and @data in the inode cache,
1117  * and if present it is return it with an increased reference count. This is
1118  * a generalized version of iget_locked() for file systems where the inode
1119  * number is not sufficient for unique identification of an inode.
1120  *
1121  * If the inode is not in cache, allocate a new inode and return it locked,
1122  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1123  * before unlocking it via unlock_new_inode().
1124  *
1125  * Note both @test and @set are called with the inode_hash_lock held, so can't
1126  * sleep.
1127  */
1128 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1129 		int (*test)(struct inode *, void *),
1130 		int (*set)(struct inode *, void *), void *data)
1131 {
1132 	struct inode *inode = ilookup5(sb, hashval, test, data);
1133 
1134 	if (!inode) {
1135 		struct inode *new = alloc_inode(sb);
1136 
1137 		if (new) {
1138 			new->i_state = 0;
1139 			inode = inode_insert5(new, hashval, test, set, data);
1140 			if (unlikely(inode != new))
1141 				destroy_inode(new);
1142 		}
1143 	}
1144 	return inode;
1145 }
1146 EXPORT_SYMBOL(iget5_locked);
1147 
1148 /**
1149  * iget_locked - obtain an inode from a mounted file system
1150  * @sb:		super block of file system
1151  * @ino:	inode number to get
1152  *
1153  * Search for the inode specified by @ino in the inode cache and if present
1154  * return it with an increased reference count. This is for file systems
1155  * where the inode number is sufficient for unique identification of an inode.
1156  *
1157  * If the inode is not in cache, allocate a new inode and return it locked,
1158  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1159  * before unlocking it via unlock_new_inode().
1160  */
1161 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1162 {
1163 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1164 	struct inode *inode;
1165 again:
1166 	spin_lock(&inode_hash_lock);
1167 	inode = find_inode_fast(sb, head, ino);
1168 	spin_unlock(&inode_hash_lock);
1169 	if (inode) {
1170 		if (IS_ERR(inode))
1171 			return NULL;
1172 		wait_on_inode(inode);
1173 		if (unlikely(inode_unhashed(inode))) {
1174 			iput(inode);
1175 			goto again;
1176 		}
1177 		return inode;
1178 	}
1179 
1180 	inode = alloc_inode(sb);
1181 	if (inode) {
1182 		struct inode *old;
1183 
1184 		spin_lock(&inode_hash_lock);
1185 		/* We released the lock, so.. */
1186 		old = find_inode_fast(sb, head, ino);
1187 		if (!old) {
1188 			inode->i_ino = ino;
1189 			spin_lock(&inode->i_lock);
1190 			inode->i_state = I_NEW;
1191 			hlist_add_head(&inode->i_hash, head);
1192 			spin_unlock(&inode->i_lock);
1193 			inode_sb_list_add(inode);
1194 			spin_unlock(&inode_hash_lock);
1195 
1196 			/* Return the locked inode with I_NEW set, the
1197 			 * caller is responsible for filling in the contents
1198 			 */
1199 			return inode;
1200 		}
1201 
1202 		/*
1203 		 * Uhhuh, somebody else created the same inode under
1204 		 * us. Use the old inode instead of the one we just
1205 		 * allocated.
1206 		 */
1207 		spin_unlock(&inode_hash_lock);
1208 		destroy_inode(inode);
1209 		if (IS_ERR(old))
1210 			return NULL;
1211 		inode = old;
1212 		wait_on_inode(inode);
1213 		if (unlikely(inode_unhashed(inode))) {
1214 			iput(inode);
1215 			goto again;
1216 		}
1217 	}
1218 	return inode;
1219 }
1220 EXPORT_SYMBOL(iget_locked);
1221 
1222 /*
1223  * search the inode cache for a matching inode number.
1224  * If we find one, then the inode number we are trying to
1225  * allocate is not unique and so we should not use it.
1226  *
1227  * Returns 1 if the inode number is unique, 0 if it is not.
1228  */
1229 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1230 {
1231 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1232 	struct inode *inode;
1233 
1234 	spin_lock(&inode_hash_lock);
1235 	hlist_for_each_entry(inode, b, i_hash) {
1236 		if (inode->i_ino == ino && inode->i_sb == sb) {
1237 			spin_unlock(&inode_hash_lock);
1238 			return 0;
1239 		}
1240 	}
1241 	spin_unlock(&inode_hash_lock);
1242 
1243 	return 1;
1244 }
1245 
1246 /**
1247  *	iunique - get a unique inode number
1248  *	@sb: superblock
1249  *	@max_reserved: highest reserved inode number
1250  *
1251  *	Obtain an inode number that is unique on the system for a given
1252  *	superblock. This is used by file systems that have no natural
1253  *	permanent inode numbering system. An inode number is returned that
1254  *	is higher than the reserved limit but unique.
1255  *
1256  *	BUGS:
1257  *	With a large number of inodes live on the file system this function
1258  *	currently becomes quite slow.
1259  */
1260 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1261 {
1262 	/*
1263 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1264 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1265 	 * here to attempt to avoid that.
1266 	 */
1267 	static DEFINE_SPINLOCK(iunique_lock);
1268 	static unsigned int counter;
1269 	ino_t res;
1270 
1271 	spin_lock(&iunique_lock);
1272 	do {
1273 		if (counter <= max_reserved)
1274 			counter = max_reserved + 1;
1275 		res = counter++;
1276 	} while (!test_inode_iunique(sb, res));
1277 	spin_unlock(&iunique_lock);
1278 
1279 	return res;
1280 }
1281 EXPORT_SYMBOL(iunique);
1282 
1283 struct inode *igrab(struct inode *inode)
1284 {
1285 	spin_lock(&inode->i_lock);
1286 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1287 		__iget(inode);
1288 		spin_unlock(&inode->i_lock);
1289 	} else {
1290 		spin_unlock(&inode->i_lock);
1291 		/*
1292 		 * Handle the case where s_op->clear_inode is not been
1293 		 * called yet, and somebody is calling igrab
1294 		 * while the inode is getting freed.
1295 		 */
1296 		inode = NULL;
1297 	}
1298 	return inode;
1299 }
1300 EXPORT_SYMBOL(igrab);
1301 
1302 /**
1303  * ilookup5_nowait - search for an inode in the inode cache
1304  * @sb:		super block of file system to search
1305  * @hashval:	hash value (usually inode number) to search for
1306  * @test:	callback used for comparisons between inodes
1307  * @data:	opaque data pointer to pass to @test
1308  *
1309  * Search for the inode specified by @hashval and @data in the inode cache.
1310  * If the inode is in the cache, the inode is returned with an incremented
1311  * reference count.
1312  *
1313  * Note: I_NEW is not waited upon so you have to be very careful what you do
1314  * with the returned inode.  You probably should be using ilookup5() instead.
1315  *
1316  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1317  */
1318 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1319 		int (*test)(struct inode *, void *), void *data)
1320 {
1321 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1322 	struct inode *inode;
1323 
1324 	spin_lock(&inode_hash_lock);
1325 	inode = find_inode(sb, head, test, data);
1326 	spin_unlock(&inode_hash_lock);
1327 
1328 	return IS_ERR(inode) ? NULL : inode;
1329 }
1330 EXPORT_SYMBOL(ilookup5_nowait);
1331 
1332 /**
1333  * ilookup5 - search for an inode in the inode cache
1334  * @sb:		super block of file system to search
1335  * @hashval:	hash value (usually inode number) to search for
1336  * @test:	callback used for comparisons between inodes
1337  * @data:	opaque data pointer to pass to @test
1338  *
1339  * Search for the inode specified by @hashval and @data in the inode cache,
1340  * and if the inode is in the cache, return the inode with an incremented
1341  * reference count.  Waits on I_NEW before returning the inode.
1342  * returned with an incremented reference count.
1343  *
1344  * This is a generalized version of ilookup() for file systems where the
1345  * inode number is not sufficient for unique identification of an inode.
1346  *
1347  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1348  */
1349 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1350 		int (*test)(struct inode *, void *), void *data)
1351 {
1352 	struct inode *inode;
1353 again:
1354 	inode = ilookup5_nowait(sb, hashval, test, data);
1355 	if (inode) {
1356 		wait_on_inode(inode);
1357 		if (unlikely(inode_unhashed(inode))) {
1358 			iput(inode);
1359 			goto again;
1360 		}
1361 	}
1362 	return inode;
1363 }
1364 EXPORT_SYMBOL(ilookup5);
1365 
1366 /**
1367  * ilookup - search for an inode in the inode cache
1368  * @sb:		super block of file system to search
1369  * @ino:	inode number to search for
1370  *
1371  * Search for the inode @ino in the inode cache, and if the inode is in the
1372  * cache, the inode is returned with an incremented reference count.
1373  */
1374 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1375 {
1376 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1377 	struct inode *inode;
1378 again:
1379 	spin_lock(&inode_hash_lock);
1380 	inode = find_inode_fast(sb, head, ino);
1381 	spin_unlock(&inode_hash_lock);
1382 
1383 	if (inode) {
1384 		if (IS_ERR(inode))
1385 			return NULL;
1386 		wait_on_inode(inode);
1387 		if (unlikely(inode_unhashed(inode))) {
1388 			iput(inode);
1389 			goto again;
1390 		}
1391 	}
1392 	return inode;
1393 }
1394 EXPORT_SYMBOL(ilookup);
1395 
1396 /**
1397  * find_inode_nowait - find an inode in the inode cache
1398  * @sb:		super block of file system to search
1399  * @hashval:	hash value (usually inode number) to search for
1400  * @match:	callback used for comparisons between inodes
1401  * @data:	opaque data pointer to pass to @match
1402  *
1403  * Search for the inode specified by @hashval and @data in the inode
1404  * cache, where the helper function @match will return 0 if the inode
1405  * does not match, 1 if the inode does match, and -1 if the search
1406  * should be stopped.  The @match function must be responsible for
1407  * taking the i_lock spin_lock and checking i_state for an inode being
1408  * freed or being initialized, and incrementing the reference count
1409  * before returning 1.  It also must not sleep, since it is called with
1410  * the inode_hash_lock spinlock held.
1411  *
1412  * This is a even more generalized version of ilookup5() when the
1413  * function must never block --- find_inode() can block in
1414  * __wait_on_freeing_inode() --- or when the caller can not increment
1415  * the reference count because the resulting iput() might cause an
1416  * inode eviction.  The tradeoff is that the @match funtion must be
1417  * very carefully implemented.
1418  */
1419 struct inode *find_inode_nowait(struct super_block *sb,
1420 				unsigned long hashval,
1421 				int (*match)(struct inode *, unsigned long,
1422 					     void *),
1423 				void *data)
1424 {
1425 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1426 	struct inode *inode, *ret_inode = NULL;
1427 	int mval;
1428 
1429 	spin_lock(&inode_hash_lock);
1430 	hlist_for_each_entry(inode, head, i_hash) {
1431 		if (inode->i_sb != sb)
1432 			continue;
1433 		mval = match(inode, hashval, data);
1434 		if (mval == 0)
1435 			continue;
1436 		if (mval == 1)
1437 			ret_inode = inode;
1438 		goto out;
1439 	}
1440 out:
1441 	spin_unlock(&inode_hash_lock);
1442 	return ret_inode;
1443 }
1444 EXPORT_SYMBOL(find_inode_nowait);
1445 
1446 int insert_inode_locked(struct inode *inode)
1447 {
1448 	struct super_block *sb = inode->i_sb;
1449 	ino_t ino = inode->i_ino;
1450 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1451 
1452 	while (1) {
1453 		struct inode *old = NULL;
1454 		spin_lock(&inode_hash_lock);
1455 		hlist_for_each_entry(old, head, i_hash) {
1456 			if (old->i_ino != ino)
1457 				continue;
1458 			if (old->i_sb != sb)
1459 				continue;
1460 			spin_lock(&old->i_lock);
1461 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1462 				spin_unlock(&old->i_lock);
1463 				continue;
1464 			}
1465 			break;
1466 		}
1467 		if (likely(!old)) {
1468 			spin_lock(&inode->i_lock);
1469 			inode->i_state |= I_NEW | I_CREATING;
1470 			hlist_add_head(&inode->i_hash, head);
1471 			spin_unlock(&inode->i_lock);
1472 			spin_unlock(&inode_hash_lock);
1473 			return 0;
1474 		}
1475 		if (unlikely(old->i_state & I_CREATING)) {
1476 			spin_unlock(&old->i_lock);
1477 			spin_unlock(&inode_hash_lock);
1478 			return -EBUSY;
1479 		}
1480 		__iget(old);
1481 		spin_unlock(&old->i_lock);
1482 		spin_unlock(&inode_hash_lock);
1483 		wait_on_inode(old);
1484 		if (unlikely(!inode_unhashed(old))) {
1485 			iput(old);
1486 			return -EBUSY;
1487 		}
1488 		iput(old);
1489 	}
1490 }
1491 EXPORT_SYMBOL(insert_inode_locked);
1492 
1493 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1494 		int (*test)(struct inode *, void *), void *data)
1495 {
1496 	struct inode *old;
1497 
1498 	inode->i_state |= I_CREATING;
1499 	old = inode_insert5(inode, hashval, test, NULL, data);
1500 
1501 	if (old != inode) {
1502 		iput(old);
1503 		return -EBUSY;
1504 	}
1505 	return 0;
1506 }
1507 EXPORT_SYMBOL(insert_inode_locked4);
1508 
1509 
1510 int generic_delete_inode(struct inode *inode)
1511 {
1512 	return 1;
1513 }
1514 EXPORT_SYMBOL(generic_delete_inode);
1515 
1516 /*
1517  * Called when we're dropping the last reference
1518  * to an inode.
1519  *
1520  * Call the FS "drop_inode()" function, defaulting to
1521  * the legacy UNIX filesystem behaviour.  If it tells
1522  * us to evict inode, do so.  Otherwise, retain inode
1523  * in cache if fs is alive, sync and evict if fs is
1524  * shutting down.
1525  */
1526 static void iput_final(struct inode *inode)
1527 {
1528 	struct super_block *sb = inode->i_sb;
1529 	const struct super_operations *op = inode->i_sb->s_op;
1530 	int drop;
1531 
1532 	WARN_ON(inode->i_state & I_NEW);
1533 
1534 	if (op->drop_inode)
1535 		drop = op->drop_inode(inode);
1536 	else
1537 		drop = generic_drop_inode(inode);
1538 
1539 	if (!drop && (sb->s_flags & SB_ACTIVE)) {
1540 		inode_add_lru(inode);
1541 		spin_unlock(&inode->i_lock);
1542 		return;
1543 	}
1544 
1545 	if (!drop) {
1546 		inode->i_state |= I_WILL_FREE;
1547 		spin_unlock(&inode->i_lock);
1548 		write_inode_now(inode, 1);
1549 		spin_lock(&inode->i_lock);
1550 		WARN_ON(inode->i_state & I_NEW);
1551 		inode->i_state &= ~I_WILL_FREE;
1552 	}
1553 
1554 	inode->i_state |= I_FREEING;
1555 	if (!list_empty(&inode->i_lru))
1556 		inode_lru_list_del(inode);
1557 	spin_unlock(&inode->i_lock);
1558 
1559 	evict(inode);
1560 }
1561 
1562 /**
1563  *	iput	- put an inode
1564  *	@inode: inode to put
1565  *
1566  *	Puts an inode, dropping its usage count. If the inode use count hits
1567  *	zero, the inode is then freed and may also be destroyed.
1568  *
1569  *	Consequently, iput() can sleep.
1570  */
1571 void iput(struct inode *inode)
1572 {
1573 	if (!inode)
1574 		return;
1575 	BUG_ON(inode->i_state & I_CLEAR);
1576 retry:
1577 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1578 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1579 			atomic_inc(&inode->i_count);
1580 			spin_unlock(&inode->i_lock);
1581 			trace_writeback_lazytime_iput(inode);
1582 			mark_inode_dirty_sync(inode);
1583 			goto retry;
1584 		}
1585 		iput_final(inode);
1586 	}
1587 }
1588 EXPORT_SYMBOL(iput);
1589 
1590 /**
1591  *	bmap	- find a block number in a file
1592  *	@inode: inode of file
1593  *	@block: block to find
1594  *
1595  *	Returns the block number on the device holding the inode that
1596  *	is the disk block number for the block of the file requested.
1597  *	That is, asked for block 4 of inode 1 the function will return the
1598  *	disk block relative to the disk start that holds that block of the
1599  *	file.
1600  */
1601 sector_t bmap(struct inode *inode, sector_t block)
1602 {
1603 	sector_t res = 0;
1604 	if (inode->i_mapping->a_ops->bmap)
1605 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1606 	return res;
1607 }
1608 EXPORT_SYMBOL(bmap);
1609 
1610 /*
1611  * With relative atime, only update atime if the previous atime is
1612  * earlier than either the ctime or mtime or if at least a day has
1613  * passed since the last atime update.
1614  */
1615 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1616 			     struct timespec64 now)
1617 {
1618 
1619 	if (!(mnt->mnt_flags & MNT_RELATIME))
1620 		return 1;
1621 	/*
1622 	 * Is mtime younger than atime? If yes, update atime:
1623 	 */
1624 	if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1625 		return 1;
1626 	/*
1627 	 * Is ctime younger than atime? If yes, update atime:
1628 	 */
1629 	if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1630 		return 1;
1631 
1632 	/*
1633 	 * Is the previous atime value older than a day? If yes,
1634 	 * update atime:
1635 	 */
1636 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1637 		return 1;
1638 	/*
1639 	 * Good, we can skip the atime update:
1640 	 */
1641 	return 0;
1642 }
1643 
1644 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1645 {
1646 	int iflags = I_DIRTY_TIME;
1647 	bool dirty = false;
1648 
1649 	if (flags & S_ATIME)
1650 		inode->i_atime = *time;
1651 	if (flags & S_VERSION)
1652 		dirty = inode_maybe_inc_iversion(inode, false);
1653 	if (flags & S_CTIME)
1654 		inode->i_ctime = *time;
1655 	if (flags & S_MTIME)
1656 		inode->i_mtime = *time;
1657 	if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1658 	    !(inode->i_sb->s_flags & SB_LAZYTIME))
1659 		dirty = true;
1660 
1661 	if (dirty)
1662 		iflags |= I_DIRTY_SYNC;
1663 	__mark_inode_dirty(inode, iflags);
1664 	return 0;
1665 }
1666 EXPORT_SYMBOL(generic_update_time);
1667 
1668 /*
1669  * This does the actual work of updating an inodes time or version.  Must have
1670  * had called mnt_want_write() before calling this.
1671  */
1672 static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1673 {
1674 	int (*update_time)(struct inode *, struct timespec64 *, int);
1675 
1676 	update_time = inode->i_op->update_time ? inode->i_op->update_time :
1677 		generic_update_time;
1678 
1679 	return update_time(inode, time, flags);
1680 }
1681 
1682 /**
1683  *	touch_atime	-	update the access time
1684  *	@path: the &struct path to update
1685  *	@inode: inode to update
1686  *
1687  *	Update the accessed time on an inode and mark it for writeback.
1688  *	This function automatically handles read only file systems and media,
1689  *	as well as the "noatime" flag and inode specific "noatime" markers.
1690  */
1691 bool atime_needs_update(const struct path *path, struct inode *inode)
1692 {
1693 	struct vfsmount *mnt = path->mnt;
1694 	struct timespec64 now;
1695 
1696 	if (inode->i_flags & S_NOATIME)
1697 		return false;
1698 
1699 	/* Atime updates will likely cause i_uid and i_gid to be written
1700 	 * back improprely if their true value is unknown to the vfs.
1701 	 */
1702 	if (HAS_UNMAPPED_ID(inode))
1703 		return false;
1704 
1705 	if (IS_NOATIME(inode))
1706 		return false;
1707 	if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1708 		return false;
1709 
1710 	if (mnt->mnt_flags & MNT_NOATIME)
1711 		return false;
1712 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1713 		return false;
1714 
1715 	now = current_time(inode);
1716 
1717 	if (!relatime_need_update(mnt, inode, now))
1718 		return false;
1719 
1720 	if (timespec64_equal(&inode->i_atime, &now))
1721 		return false;
1722 
1723 	return true;
1724 }
1725 
1726 void touch_atime(const struct path *path)
1727 {
1728 	struct vfsmount *mnt = path->mnt;
1729 	struct inode *inode = d_inode(path->dentry);
1730 	struct timespec64 now;
1731 
1732 	if (!atime_needs_update(path, inode))
1733 		return;
1734 
1735 	if (!sb_start_write_trylock(inode->i_sb))
1736 		return;
1737 
1738 	if (__mnt_want_write(mnt) != 0)
1739 		goto skip_update;
1740 	/*
1741 	 * File systems can error out when updating inodes if they need to
1742 	 * allocate new space to modify an inode (such is the case for
1743 	 * Btrfs), but since we touch atime while walking down the path we
1744 	 * really don't care if we failed to update the atime of the file,
1745 	 * so just ignore the return value.
1746 	 * We may also fail on filesystems that have the ability to make parts
1747 	 * of the fs read only, e.g. subvolumes in Btrfs.
1748 	 */
1749 	now = current_time(inode);
1750 	update_time(inode, &now, S_ATIME);
1751 	__mnt_drop_write(mnt);
1752 skip_update:
1753 	sb_end_write(inode->i_sb);
1754 }
1755 EXPORT_SYMBOL(touch_atime);
1756 
1757 /*
1758  * The logic we want is
1759  *
1760  *	if suid or (sgid and xgrp)
1761  *		remove privs
1762  */
1763 int should_remove_suid(struct dentry *dentry)
1764 {
1765 	umode_t mode = d_inode(dentry)->i_mode;
1766 	int kill = 0;
1767 
1768 	/* suid always must be killed */
1769 	if (unlikely(mode & S_ISUID))
1770 		kill = ATTR_KILL_SUID;
1771 
1772 	/*
1773 	 * sgid without any exec bits is just a mandatory locking mark; leave
1774 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1775 	 */
1776 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1777 		kill |= ATTR_KILL_SGID;
1778 
1779 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1780 		return kill;
1781 
1782 	return 0;
1783 }
1784 EXPORT_SYMBOL(should_remove_suid);
1785 
1786 /*
1787  * Return mask of changes for notify_change() that need to be done as a
1788  * response to write or truncate. Return 0 if nothing has to be changed.
1789  * Negative value on error (change should be denied).
1790  */
1791 int dentry_needs_remove_privs(struct dentry *dentry)
1792 {
1793 	struct inode *inode = d_inode(dentry);
1794 	int mask = 0;
1795 	int ret;
1796 
1797 	if (IS_NOSEC(inode))
1798 		return 0;
1799 
1800 	mask = should_remove_suid(dentry);
1801 	ret = security_inode_need_killpriv(dentry);
1802 	if (ret < 0)
1803 		return ret;
1804 	if (ret)
1805 		mask |= ATTR_KILL_PRIV;
1806 	return mask;
1807 }
1808 
1809 static int __remove_privs(struct dentry *dentry, int kill)
1810 {
1811 	struct iattr newattrs;
1812 
1813 	newattrs.ia_valid = ATTR_FORCE | kill;
1814 	/*
1815 	 * Note we call this on write, so notify_change will not
1816 	 * encounter any conflicting delegations:
1817 	 */
1818 	return notify_change(dentry, &newattrs, NULL);
1819 }
1820 
1821 /*
1822  * Remove special file priviledges (suid, capabilities) when file is written
1823  * to or truncated.
1824  */
1825 int file_remove_privs(struct file *file)
1826 {
1827 	struct dentry *dentry = file_dentry(file);
1828 	struct inode *inode = file_inode(file);
1829 	int kill;
1830 	int error = 0;
1831 
1832 	/*
1833 	 * Fast path for nothing security related.
1834 	 * As well for non-regular files, e.g. blkdev inodes.
1835 	 * For example, blkdev_write_iter() might get here
1836 	 * trying to remove privs which it is not allowed to.
1837 	 */
1838 	if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1839 		return 0;
1840 
1841 	kill = dentry_needs_remove_privs(dentry);
1842 	if (kill < 0)
1843 		return kill;
1844 	if (kill)
1845 		error = __remove_privs(dentry, kill);
1846 	if (!error)
1847 		inode_has_no_xattr(inode);
1848 
1849 	return error;
1850 }
1851 EXPORT_SYMBOL(file_remove_privs);
1852 
1853 /**
1854  *	file_update_time	-	update mtime and ctime time
1855  *	@file: file accessed
1856  *
1857  *	Update the mtime and ctime members of an inode and mark the inode
1858  *	for writeback.  Note that this function is meant exclusively for
1859  *	usage in the file write path of filesystems, and filesystems may
1860  *	choose to explicitly ignore update via this function with the
1861  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1862  *	timestamps are handled by the server.  This can return an error for
1863  *	file systems who need to allocate space in order to update an inode.
1864  */
1865 
1866 int file_update_time(struct file *file)
1867 {
1868 	struct inode *inode = file_inode(file);
1869 	struct timespec64 now;
1870 	int sync_it = 0;
1871 	int ret;
1872 
1873 	/* First try to exhaust all avenues to not sync */
1874 	if (IS_NOCMTIME(inode))
1875 		return 0;
1876 
1877 	now = current_time(inode);
1878 	if (!timespec64_equal(&inode->i_mtime, &now))
1879 		sync_it = S_MTIME;
1880 
1881 	if (!timespec64_equal(&inode->i_ctime, &now))
1882 		sync_it |= S_CTIME;
1883 
1884 	if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1885 		sync_it |= S_VERSION;
1886 
1887 	if (!sync_it)
1888 		return 0;
1889 
1890 	/* Finally allowed to write? Takes lock. */
1891 	if (__mnt_want_write_file(file))
1892 		return 0;
1893 
1894 	ret = update_time(inode, &now, sync_it);
1895 	__mnt_drop_write_file(file);
1896 
1897 	return ret;
1898 }
1899 EXPORT_SYMBOL(file_update_time);
1900 
1901 int inode_needs_sync(struct inode *inode)
1902 {
1903 	if (IS_SYNC(inode))
1904 		return 1;
1905 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1906 		return 1;
1907 	return 0;
1908 }
1909 EXPORT_SYMBOL(inode_needs_sync);
1910 
1911 /*
1912  * If we try to find an inode in the inode hash while it is being
1913  * deleted, we have to wait until the filesystem completes its
1914  * deletion before reporting that it isn't found.  This function waits
1915  * until the deletion _might_ have completed.  Callers are responsible
1916  * to recheck inode state.
1917  *
1918  * It doesn't matter if I_NEW is not set initially, a call to
1919  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1920  * will DTRT.
1921  */
1922 static void __wait_on_freeing_inode(struct inode *inode)
1923 {
1924 	wait_queue_head_t *wq;
1925 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1926 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1927 	prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
1928 	spin_unlock(&inode->i_lock);
1929 	spin_unlock(&inode_hash_lock);
1930 	schedule();
1931 	finish_wait(wq, &wait.wq_entry);
1932 	spin_lock(&inode_hash_lock);
1933 }
1934 
1935 static __initdata unsigned long ihash_entries;
1936 static int __init set_ihash_entries(char *str)
1937 {
1938 	if (!str)
1939 		return 0;
1940 	ihash_entries = simple_strtoul(str, &str, 0);
1941 	return 1;
1942 }
1943 __setup("ihash_entries=", set_ihash_entries);
1944 
1945 /*
1946  * Initialize the waitqueues and inode hash table.
1947  */
1948 void __init inode_init_early(void)
1949 {
1950 	/* If hashes are distributed across NUMA nodes, defer
1951 	 * hash allocation until vmalloc space is available.
1952 	 */
1953 	if (hashdist)
1954 		return;
1955 
1956 	inode_hashtable =
1957 		alloc_large_system_hash("Inode-cache",
1958 					sizeof(struct hlist_head),
1959 					ihash_entries,
1960 					14,
1961 					HASH_EARLY | HASH_ZERO,
1962 					&i_hash_shift,
1963 					&i_hash_mask,
1964 					0,
1965 					0);
1966 }
1967 
1968 void __init inode_init(void)
1969 {
1970 	/* inode slab cache */
1971 	inode_cachep = kmem_cache_create("inode_cache",
1972 					 sizeof(struct inode),
1973 					 0,
1974 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1975 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1976 					 init_once);
1977 
1978 	/* Hash may have been set up in inode_init_early */
1979 	if (!hashdist)
1980 		return;
1981 
1982 	inode_hashtable =
1983 		alloc_large_system_hash("Inode-cache",
1984 					sizeof(struct hlist_head),
1985 					ihash_entries,
1986 					14,
1987 					HASH_ZERO,
1988 					&i_hash_shift,
1989 					&i_hash_mask,
1990 					0,
1991 					0);
1992 }
1993 
1994 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1995 {
1996 	inode->i_mode = mode;
1997 	if (S_ISCHR(mode)) {
1998 		inode->i_fop = &def_chr_fops;
1999 		inode->i_rdev = rdev;
2000 	} else if (S_ISBLK(mode)) {
2001 		inode->i_fop = &def_blk_fops;
2002 		inode->i_rdev = rdev;
2003 	} else if (S_ISFIFO(mode))
2004 		inode->i_fop = &pipefifo_fops;
2005 	else if (S_ISSOCK(mode))
2006 		;	/* leave it no_open_fops */
2007 	else
2008 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2009 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
2010 				  inode->i_ino);
2011 }
2012 EXPORT_SYMBOL(init_special_inode);
2013 
2014 /**
2015  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2016  * @inode: New inode
2017  * @dir: Directory inode
2018  * @mode: mode of the new inode
2019  */
2020 void inode_init_owner(struct inode *inode, const struct inode *dir,
2021 			umode_t mode)
2022 {
2023 	inode->i_uid = current_fsuid();
2024 	if (dir && dir->i_mode & S_ISGID) {
2025 		inode->i_gid = dir->i_gid;
2026 
2027 		/* Directories are special, and always inherit S_ISGID */
2028 		if (S_ISDIR(mode))
2029 			mode |= S_ISGID;
2030 		else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2031 			 !in_group_p(inode->i_gid) &&
2032 			 !capable_wrt_inode_uidgid(dir, CAP_FSETID))
2033 			mode &= ~S_ISGID;
2034 	} else
2035 		inode->i_gid = current_fsgid();
2036 	inode->i_mode = mode;
2037 }
2038 EXPORT_SYMBOL(inode_init_owner);
2039 
2040 /**
2041  * inode_owner_or_capable - check current task permissions to inode
2042  * @inode: inode being checked
2043  *
2044  * Return true if current either has CAP_FOWNER in a namespace with the
2045  * inode owner uid mapped, or owns the file.
2046  */
2047 bool inode_owner_or_capable(const struct inode *inode)
2048 {
2049 	struct user_namespace *ns;
2050 
2051 	if (uid_eq(current_fsuid(), inode->i_uid))
2052 		return true;
2053 
2054 	ns = current_user_ns();
2055 	if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2056 		return true;
2057 	return false;
2058 }
2059 EXPORT_SYMBOL(inode_owner_or_capable);
2060 
2061 /*
2062  * Direct i/o helper functions
2063  */
2064 static void __inode_dio_wait(struct inode *inode)
2065 {
2066 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2067 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2068 
2069 	do {
2070 		prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2071 		if (atomic_read(&inode->i_dio_count))
2072 			schedule();
2073 	} while (atomic_read(&inode->i_dio_count));
2074 	finish_wait(wq, &q.wq_entry);
2075 }
2076 
2077 /**
2078  * inode_dio_wait - wait for outstanding DIO requests to finish
2079  * @inode: inode to wait for
2080  *
2081  * Waits for all pending direct I/O requests to finish so that we can
2082  * proceed with a truncate or equivalent operation.
2083  *
2084  * Must be called under a lock that serializes taking new references
2085  * to i_dio_count, usually by inode->i_mutex.
2086  */
2087 void inode_dio_wait(struct inode *inode)
2088 {
2089 	if (atomic_read(&inode->i_dio_count))
2090 		__inode_dio_wait(inode);
2091 }
2092 EXPORT_SYMBOL(inode_dio_wait);
2093 
2094 /*
2095  * inode_set_flags - atomically set some inode flags
2096  *
2097  * Note: the caller should be holding i_mutex, or else be sure that
2098  * they have exclusive access to the inode structure (i.e., while the
2099  * inode is being instantiated).  The reason for the cmpxchg() loop
2100  * --- which wouldn't be necessary if all code paths which modify
2101  * i_flags actually followed this rule, is that there is at least one
2102  * code path which doesn't today so we use cmpxchg() out of an abundance
2103  * of caution.
2104  *
2105  * In the long run, i_mutex is overkill, and we should probably look
2106  * at using the i_lock spinlock to protect i_flags, and then make sure
2107  * it is so documented in include/linux/fs.h and that all code follows
2108  * the locking convention!!
2109  */
2110 void inode_set_flags(struct inode *inode, unsigned int flags,
2111 		     unsigned int mask)
2112 {
2113 	WARN_ON_ONCE(flags & ~mask);
2114 	set_mask_bits(&inode->i_flags, mask, flags);
2115 }
2116 EXPORT_SYMBOL(inode_set_flags);
2117 
2118 void inode_nohighmem(struct inode *inode)
2119 {
2120 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2121 }
2122 EXPORT_SYMBOL(inode_nohighmem);
2123 
2124 /**
2125  * timespec64_trunc - Truncate timespec64 to a granularity
2126  * @t: Timespec64
2127  * @gran: Granularity in ns.
2128  *
2129  * Truncate a timespec64 to a granularity. Always rounds down. gran must
2130  * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2131  */
2132 struct timespec64 timespec64_trunc(struct timespec64 t, unsigned gran)
2133 {
2134 	/* Avoid division in the common cases 1 ns and 1 s. */
2135 	if (gran == 1) {
2136 		/* nothing */
2137 	} else if (gran == NSEC_PER_SEC) {
2138 		t.tv_nsec = 0;
2139 	} else if (gran > 1 && gran < NSEC_PER_SEC) {
2140 		t.tv_nsec -= t.tv_nsec % gran;
2141 	} else {
2142 		WARN(1, "illegal file time granularity: %u", gran);
2143 	}
2144 	return t;
2145 }
2146 EXPORT_SYMBOL(timespec64_trunc);
2147 
2148 /**
2149  * current_time - Return FS time
2150  * @inode: inode.
2151  *
2152  * Return the current time truncated to the time granularity supported by
2153  * the fs.
2154  *
2155  * Note that inode and inode->sb cannot be NULL.
2156  * Otherwise, the function warns and returns time without truncation.
2157  */
2158 struct timespec64 current_time(struct inode *inode)
2159 {
2160 	struct timespec64 now;
2161 
2162 	ktime_get_coarse_real_ts64(&now);
2163 
2164 	if (unlikely(!inode->i_sb)) {
2165 		WARN(1, "current_time() called with uninitialized super_block in the inode");
2166 		return now;
2167 	}
2168 
2169 	return timespec64_trunc(now, inode->i_sb->s_time_gran);
2170 }
2171 EXPORT_SYMBOL(current_time);
2172