xref: /openbmc/linux/fs/inode.c (revision 110e6f26)
1 /*
2  * (C) 1997 Linus Torvalds
3  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4  */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <trace/events/writeback.h>
22 #include "internal.h"
23 
24 /*
25  * Inode locking rules:
26  *
27  * inode->i_lock protects:
28  *   inode->i_state, inode->i_hash, __iget()
29  * Inode LRU list locks protect:
30  *   inode->i_sb->s_inode_lru, inode->i_lru
31  * inode->i_sb->s_inode_list_lock protects:
32  *   inode->i_sb->s_inodes, inode->i_sb_list
33  * bdi->wb.list_lock protects:
34  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
35  * inode_hash_lock protects:
36  *   inode_hashtable, inode->i_hash
37  *
38  * Lock ordering:
39  *
40  * inode->i_sb->s_inode_list_lock
41  *   inode->i_lock
42  *     Inode LRU list locks
43  *
44  * bdi->wb.list_lock
45  *   inode->i_lock
46  *
47  * inode_hash_lock
48  *   inode->i_sb->s_inode_list_lock
49  *   inode->i_lock
50  *
51  * iunique_lock
52  *   inode_hash_lock
53  */
54 
55 static unsigned int i_hash_mask __read_mostly;
56 static unsigned int i_hash_shift __read_mostly;
57 static struct hlist_head *inode_hashtable __read_mostly;
58 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
59 
60 /*
61  * Empty aops. Can be used for the cases where the user does not
62  * define any of the address_space operations.
63  */
64 const struct address_space_operations empty_aops = {
65 };
66 EXPORT_SYMBOL(empty_aops);
67 
68 /*
69  * Statistics gathering..
70  */
71 struct inodes_stat_t inodes_stat;
72 
73 static DEFINE_PER_CPU(unsigned long, nr_inodes);
74 static DEFINE_PER_CPU(unsigned long, nr_unused);
75 
76 static struct kmem_cache *inode_cachep __read_mostly;
77 
78 static long get_nr_inodes(void)
79 {
80 	int i;
81 	long sum = 0;
82 	for_each_possible_cpu(i)
83 		sum += per_cpu(nr_inodes, i);
84 	return sum < 0 ? 0 : sum;
85 }
86 
87 static inline long get_nr_inodes_unused(void)
88 {
89 	int i;
90 	long sum = 0;
91 	for_each_possible_cpu(i)
92 		sum += per_cpu(nr_unused, i);
93 	return sum < 0 ? 0 : sum;
94 }
95 
96 long get_nr_dirty_inodes(void)
97 {
98 	/* not actually dirty inodes, but a wild approximation */
99 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
100 	return nr_dirty > 0 ? nr_dirty : 0;
101 }
102 
103 /*
104  * Handle nr_inode sysctl
105  */
106 #ifdef CONFIG_SYSCTL
107 int proc_nr_inodes(struct ctl_table *table, int write,
108 		   void __user *buffer, size_t *lenp, loff_t *ppos)
109 {
110 	inodes_stat.nr_inodes = get_nr_inodes();
111 	inodes_stat.nr_unused = get_nr_inodes_unused();
112 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
113 }
114 #endif
115 
116 static int no_open(struct inode *inode, struct file *file)
117 {
118 	return -ENXIO;
119 }
120 
121 /**
122  * inode_init_always - perform inode structure intialisation
123  * @sb: superblock inode belongs to
124  * @inode: inode to initialise
125  *
126  * These are initializations that need to be done on every inode
127  * allocation as the fields are not initialised by slab allocation.
128  */
129 int inode_init_always(struct super_block *sb, struct inode *inode)
130 {
131 	static const struct inode_operations empty_iops;
132 	static const struct file_operations no_open_fops = {.open = no_open};
133 	struct address_space *const mapping = &inode->i_data;
134 
135 	inode->i_sb = sb;
136 	inode->i_blkbits = sb->s_blocksize_bits;
137 	inode->i_flags = 0;
138 	atomic_set(&inode->i_count, 1);
139 	inode->i_op = &empty_iops;
140 	inode->i_fop = &no_open_fops;
141 	inode->__i_nlink = 1;
142 	inode->i_opflags = 0;
143 	i_uid_write(inode, 0);
144 	i_gid_write(inode, 0);
145 	atomic_set(&inode->i_writecount, 0);
146 	inode->i_size = 0;
147 	inode->i_blocks = 0;
148 	inode->i_bytes = 0;
149 	inode->i_generation = 0;
150 	inode->i_pipe = NULL;
151 	inode->i_bdev = NULL;
152 	inode->i_cdev = NULL;
153 	inode->i_link = NULL;
154 	inode->i_rdev = 0;
155 	inode->dirtied_when = 0;
156 
157 #ifdef CONFIG_CGROUP_WRITEBACK
158 	inode->i_wb_frn_winner = 0;
159 	inode->i_wb_frn_avg_time = 0;
160 	inode->i_wb_frn_history = 0;
161 #endif
162 
163 	if (security_inode_alloc(inode))
164 		goto out;
165 	spin_lock_init(&inode->i_lock);
166 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
167 
168 	mutex_init(&inode->i_mutex);
169 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
170 
171 	atomic_set(&inode->i_dio_count, 0);
172 
173 	mapping->a_ops = &empty_aops;
174 	mapping->host = inode;
175 	mapping->flags = 0;
176 	atomic_set(&mapping->i_mmap_writable, 0);
177 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
178 	mapping->private_data = NULL;
179 	mapping->writeback_index = 0;
180 	inode->i_private = NULL;
181 	inode->i_mapping = mapping;
182 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
183 #ifdef CONFIG_FS_POSIX_ACL
184 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
185 #endif
186 
187 #ifdef CONFIG_FSNOTIFY
188 	inode->i_fsnotify_mask = 0;
189 #endif
190 	inode->i_flctx = NULL;
191 	this_cpu_inc(nr_inodes);
192 
193 	return 0;
194 out:
195 	return -ENOMEM;
196 }
197 EXPORT_SYMBOL(inode_init_always);
198 
199 static struct inode *alloc_inode(struct super_block *sb)
200 {
201 	struct inode *inode;
202 
203 	if (sb->s_op->alloc_inode)
204 		inode = sb->s_op->alloc_inode(sb);
205 	else
206 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
207 
208 	if (!inode)
209 		return NULL;
210 
211 	if (unlikely(inode_init_always(sb, inode))) {
212 		if (inode->i_sb->s_op->destroy_inode)
213 			inode->i_sb->s_op->destroy_inode(inode);
214 		else
215 			kmem_cache_free(inode_cachep, inode);
216 		return NULL;
217 	}
218 
219 	return inode;
220 }
221 
222 void free_inode_nonrcu(struct inode *inode)
223 {
224 	kmem_cache_free(inode_cachep, inode);
225 }
226 EXPORT_SYMBOL(free_inode_nonrcu);
227 
228 void __destroy_inode(struct inode *inode)
229 {
230 	BUG_ON(inode_has_buffers(inode));
231 	inode_detach_wb(inode);
232 	security_inode_free(inode);
233 	fsnotify_inode_delete(inode);
234 	locks_free_lock_context(inode);
235 	if (!inode->i_nlink) {
236 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
237 		atomic_long_dec(&inode->i_sb->s_remove_count);
238 	}
239 
240 #ifdef CONFIG_FS_POSIX_ACL
241 	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
242 		posix_acl_release(inode->i_acl);
243 	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
244 		posix_acl_release(inode->i_default_acl);
245 #endif
246 	this_cpu_dec(nr_inodes);
247 }
248 EXPORT_SYMBOL(__destroy_inode);
249 
250 static void i_callback(struct rcu_head *head)
251 {
252 	struct inode *inode = container_of(head, struct inode, i_rcu);
253 	kmem_cache_free(inode_cachep, inode);
254 }
255 
256 static void destroy_inode(struct inode *inode)
257 {
258 	BUG_ON(!list_empty(&inode->i_lru));
259 	__destroy_inode(inode);
260 	if (inode->i_sb->s_op->destroy_inode)
261 		inode->i_sb->s_op->destroy_inode(inode);
262 	else
263 		call_rcu(&inode->i_rcu, i_callback);
264 }
265 
266 /**
267  * drop_nlink - directly drop an inode's link count
268  * @inode: inode
269  *
270  * This is a low-level filesystem helper to replace any
271  * direct filesystem manipulation of i_nlink.  In cases
272  * where we are attempting to track writes to the
273  * filesystem, a decrement to zero means an imminent
274  * write when the file is truncated and actually unlinked
275  * on the filesystem.
276  */
277 void drop_nlink(struct inode *inode)
278 {
279 	WARN_ON(inode->i_nlink == 0);
280 	inode->__i_nlink--;
281 	if (!inode->i_nlink)
282 		atomic_long_inc(&inode->i_sb->s_remove_count);
283 }
284 EXPORT_SYMBOL(drop_nlink);
285 
286 /**
287  * clear_nlink - directly zero an inode's link count
288  * @inode: inode
289  *
290  * This is a low-level filesystem helper to replace any
291  * direct filesystem manipulation of i_nlink.  See
292  * drop_nlink() for why we care about i_nlink hitting zero.
293  */
294 void clear_nlink(struct inode *inode)
295 {
296 	if (inode->i_nlink) {
297 		inode->__i_nlink = 0;
298 		atomic_long_inc(&inode->i_sb->s_remove_count);
299 	}
300 }
301 EXPORT_SYMBOL(clear_nlink);
302 
303 /**
304  * set_nlink - directly set an inode's link count
305  * @inode: inode
306  * @nlink: new nlink (should be non-zero)
307  *
308  * This is a low-level filesystem helper to replace any
309  * direct filesystem manipulation of i_nlink.
310  */
311 void set_nlink(struct inode *inode, unsigned int nlink)
312 {
313 	if (!nlink) {
314 		clear_nlink(inode);
315 	} else {
316 		/* Yes, some filesystems do change nlink from zero to one */
317 		if (inode->i_nlink == 0)
318 			atomic_long_dec(&inode->i_sb->s_remove_count);
319 
320 		inode->__i_nlink = nlink;
321 	}
322 }
323 EXPORT_SYMBOL(set_nlink);
324 
325 /**
326  * inc_nlink - directly increment an inode's link count
327  * @inode: inode
328  *
329  * This is a low-level filesystem helper to replace any
330  * direct filesystem manipulation of i_nlink.  Currently,
331  * it is only here for parity with dec_nlink().
332  */
333 void inc_nlink(struct inode *inode)
334 {
335 	if (unlikely(inode->i_nlink == 0)) {
336 		WARN_ON(!(inode->i_state & I_LINKABLE));
337 		atomic_long_dec(&inode->i_sb->s_remove_count);
338 	}
339 
340 	inode->__i_nlink++;
341 }
342 EXPORT_SYMBOL(inc_nlink);
343 
344 void address_space_init_once(struct address_space *mapping)
345 {
346 	memset(mapping, 0, sizeof(*mapping));
347 	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
348 	spin_lock_init(&mapping->tree_lock);
349 	init_rwsem(&mapping->i_mmap_rwsem);
350 	INIT_LIST_HEAD(&mapping->private_list);
351 	spin_lock_init(&mapping->private_lock);
352 	mapping->i_mmap = RB_ROOT;
353 }
354 EXPORT_SYMBOL(address_space_init_once);
355 
356 /*
357  * These are initializations that only need to be done
358  * once, because the fields are idempotent across use
359  * of the inode, so let the slab aware of that.
360  */
361 void inode_init_once(struct inode *inode)
362 {
363 	memset(inode, 0, sizeof(*inode));
364 	INIT_HLIST_NODE(&inode->i_hash);
365 	INIT_LIST_HEAD(&inode->i_devices);
366 	INIT_LIST_HEAD(&inode->i_io_list);
367 	INIT_LIST_HEAD(&inode->i_lru);
368 	address_space_init_once(&inode->i_data);
369 	i_size_ordered_init(inode);
370 #ifdef CONFIG_FSNOTIFY
371 	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
372 #endif
373 }
374 EXPORT_SYMBOL(inode_init_once);
375 
376 static void init_once(void *foo)
377 {
378 	struct inode *inode = (struct inode *) foo;
379 
380 	inode_init_once(inode);
381 }
382 
383 /*
384  * inode->i_lock must be held
385  */
386 void __iget(struct inode *inode)
387 {
388 	atomic_inc(&inode->i_count);
389 }
390 
391 /*
392  * get additional reference to inode; caller must already hold one.
393  */
394 void ihold(struct inode *inode)
395 {
396 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
397 }
398 EXPORT_SYMBOL(ihold);
399 
400 static void inode_lru_list_add(struct inode *inode)
401 {
402 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
403 		this_cpu_inc(nr_unused);
404 }
405 
406 /*
407  * Add inode to LRU if needed (inode is unused and clean).
408  *
409  * Needs inode->i_lock held.
410  */
411 void inode_add_lru(struct inode *inode)
412 {
413 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
414 				I_FREEING | I_WILL_FREE)) &&
415 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
416 		inode_lru_list_add(inode);
417 }
418 
419 
420 static void inode_lru_list_del(struct inode *inode)
421 {
422 
423 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
424 		this_cpu_dec(nr_unused);
425 }
426 
427 /**
428  * inode_sb_list_add - add inode to the superblock list of inodes
429  * @inode: inode to add
430  */
431 void inode_sb_list_add(struct inode *inode)
432 {
433 	spin_lock(&inode->i_sb->s_inode_list_lock);
434 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
435 	spin_unlock(&inode->i_sb->s_inode_list_lock);
436 }
437 EXPORT_SYMBOL_GPL(inode_sb_list_add);
438 
439 static inline void inode_sb_list_del(struct inode *inode)
440 {
441 	if (!list_empty(&inode->i_sb_list)) {
442 		spin_lock(&inode->i_sb->s_inode_list_lock);
443 		list_del_init(&inode->i_sb_list);
444 		spin_unlock(&inode->i_sb->s_inode_list_lock);
445 	}
446 }
447 
448 static unsigned long hash(struct super_block *sb, unsigned long hashval)
449 {
450 	unsigned long tmp;
451 
452 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
453 			L1_CACHE_BYTES;
454 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
455 	return tmp & i_hash_mask;
456 }
457 
458 /**
459  *	__insert_inode_hash - hash an inode
460  *	@inode: unhashed inode
461  *	@hashval: unsigned long value used to locate this object in the
462  *		inode_hashtable.
463  *
464  *	Add an inode to the inode hash for this superblock.
465  */
466 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
467 {
468 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
469 
470 	spin_lock(&inode_hash_lock);
471 	spin_lock(&inode->i_lock);
472 	hlist_add_head(&inode->i_hash, b);
473 	spin_unlock(&inode->i_lock);
474 	spin_unlock(&inode_hash_lock);
475 }
476 EXPORT_SYMBOL(__insert_inode_hash);
477 
478 /**
479  *	__remove_inode_hash - remove an inode from the hash
480  *	@inode: inode to unhash
481  *
482  *	Remove an inode from the superblock.
483  */
484 void __remove_inode_hash(struct inode *inode)
485 {
486 	spin_lock(&inode_hash_lock);
487 	spin_lock(&inode->i_lock);
488 	hlist_del_init(&inode->i_hash);
489 	spin_unlock(&inode->i_lock);
490 	spin_unlock(&inode_hash_lock);
491 }
492 EXPORT_SYMBOL(__remove_inode_hash);
493 
494 void clear_inode(struct inode *inode)
495 {
496 	might_sleep();
497 	/*
498 	 * We have to cycle tree_lock here because reclaim can be still in the
499 	 * process of removing the last page (in __delete_from_page_cache())
500 	 * and we must not free mapping under it.
501 	 */
502 	spin_lock_irq(&inode->i_data.tree_lock);
503 	BUG_ON(inode->i_data.nrpages);
504 	BUG_ON(inode->i_data.nrexceptional);
505 	spin_unlock_irq(&inode->i_data.tree_lock);
506 	BUG_ON(!list_empty(&inode->i_data.private_list));
507 	BUG_ON(!(inode->i_state & I_FREEING));
508 	BUG_ON(inode->i_state & I_CLEAR);
509 	/* don't need i_lock here, no concurrent mods to i_state */
510 	inode->i_state = I_FREEING | I_CLEAR;
511 }
512 EXPORT_SYMBOL(clear_inode);
513 
514 /*
515  * Free the inode passed in, removing it from the lists it is still connected
516  * to. We remove any pages still attached to the inode and wait for any IO that
517  * is still in progress before finally destroying the inode.
518  *
519  * An inode must already be marked I_FREEING so that we avoid the inode being
520  * moved back onto lists if we race with other code that manipulates the lists
521  * (e.g. writeback_single_inode). The caller is responsible for setting this.
522  *
523  * An inode must already be removed from the LRU list before being evicted from
524  * the cache. This should occur atomically with setting the I_FREEING state
525  * flag, so no inodes here should ever be on the LRU when being evicted.
526  */
527 static void evict(struct inode *inode)
528 {
529 	const struct super_operations *op = inode->i_sb->s_op;
530 
531 	BUG_ON(!(inode->i_state & I_FREEING));
532 	BUG_ON(!list_empty(&inode->i_lru));
533 
534 	if (!list_empty(&inode->i_io_list))
535 		inode_io_list_del(inode);
536 
537 	inode_sb_list_del(inode);
538 
539 	/*
540 	 * Wait for flusher thread to be done with the inode so that filesystem
541 	 * does not start destroying it while writeback is still running. Since
542 	 * the inode has I_FREEING set, flusher thread won't start new work on
543 	 * the inode.  We just have to wait for running writeback to finish.
544 	 */
545 	inode_wait_for_writeback(inode);
546 
547 	if (op->evict_inode) {
548 		op->evict_inode(inode);
549 	} else {
550 		truncate_inode_pages_final(&inode->i_data);
551 		clear_inode(inode);
552 	}
553 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
554 		bd_forget(inode);
555 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
556 		cd_forget(inode);
557 
558 	remove_inode_hash(inode);
559 
560 	spin_lock(&inode->i_lock);
561 	wake_up_bit(&inode->i_state, __I_NEW);
562 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
563 	spin_unlock(&inode->i_lock);
564 
565 	destroy_inode(inode);
566 }
567 
568 /*
569  * dispose_list - dispose of the contents of a local list
570  * @head: the head of the list to free
571  *
572  * Dispose-list gets a local list with local inodes in it, so it doesn't
573  * need to worry about list corruption and SMP locks.
574  */
575 static void dispose_list(struct list_head *head)
576 {
577 	while (!list_empty(head)) {
578 		struct inode *inode;
579 
580 		inode = list_first_entry(head, struct inode, i_lru);
581 		list_del_init(&inode->i_lru);
582 
583 		evict(inode);
584 		cond_resched();
585 	}
586 }
587 
588 /**
589  * evict_inodes	- evict all evictable inodes for a superblock
590  * @sb:		superblock to operate on
591  *
592  * Make sure that no inodes with zero refcount are retained.  This is
593  * called by superblock shutdown after having MS_ACTIVE flag removed,
594  * so any inode reaching zero refcount during or after that call will
595  * be immediately evicted.
596  */
597 void evict_inodes(struct super_block *sb)
598 {
599 	struct inode *inode, *next;
600 	LIST_HEAD(dispose);
601 
602 again:
603 	spin_lock(&sb->s_inode_list_lock);
604 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
605 		if (atomic_read(&inode->i_count))
606 			continue;
607 
608 		spin_lock(&inode->i_lock);
609 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
610 			spin_unlock(&inode->i_lock);
611 			continue;
612 		}
613 
614 		inode->i_state |= I_FREEING;
615 		inode_lru_list_del(inode);
616 		spin_unlock(&inode->i_lock);
617 		list_add(&inode->i_lru, &dispose);
618 
619 		/*
620 		 * We can have a ton of inodes to evict at unmount time given
621 		 * enough memory, check to see if we need to go to sleep for a
622 		 * bit so we don't livelock.
623 		 */
624 		if (need_resched()) {
625 			spin_unlock(&sb->s_inode_list_lock);
626 			cond_resched();
627 			dispose_list(&dispose);
628 			goto again;
629 		}
630 	}
631 	spin_unlock(&sb->s_inode_list_lock);
632 
633 	dispose_list(&dispose);
634 }
635 
636 /**
637  * invalidate_inodes	- attempt to free all inodes on a superblock
638  * @sb:		superblock to operate on
639  * @kill_dirty: flag to guide handling of dirty inodes
640  *
641  * Attempts to free all inodes for a given superblock.  If there were any
642  * busy inodes return a non-zero value, else zero.
643  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
644  * them as busy.
645  */
646 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
647 {
648 	int busy = 0;
649 	struct inode *inode, *next;
650 	LIST_HEAD(dispose);
651 
652 	spin_lock(&sb->s_inode_list_lock);
653 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
654 		spin_lock(&inode->i_lock);
655 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
656 			spin_unlock(&inode->i_lock);
657 			continue;
658 		}
659 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
660 			spin_unlock(&inode->i_lock);
661 			busy = 1;
662 			continue;
663 		}
664 		if (atomic_read(&inode->i_count)) {
665 			spin_unlock(&inode->i_lock);
666 			busy = 1;
667 			continue;
668 		}
669 
670 		inode->i_state |= I_FREEING;
671 		inode_lru_list_del(inode);
672 		spin_unlock(&inode->i_lock);
673 		list_add(&inode->i_lru, &dispose);
674 	}
675 	spin_unlock(&sb->s_inode_list_lock);
676 
677 	dispose_list(&dispose);
678 
679 	return busy;
680 }
681 
682 /*
683  * Isolate the inode from the LRU in preparation for freeing it.
684  *
685  * Any inodes which are pinned purely because of attached pagecache have their
686  * pagecache removed.  If the inode has metadata buffers attached to
687  * mapping->private_list then try to remove them.
688  *
689  * If the inode has the I_REFERENCED flag set, then it means that it has been
690  * used recently - the flag is set in iput_final(). When we encounter such an
691  * inode, clear the flag and move it to the back of the LRU so it gets another
692  * pass through the LRU before it gets reclaimed. This is necessary because of
693  * the fact we are doing lazy LRU updates to minimise lock contention so the
694  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
695  * with this flag set because they are the inodes that are out of order.
696  */
697 static enum lru_status inode_lru_isolate(struct list_head *item,
698 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
699 {
700 	struct list_head *freeable = arg;
701 	struct inode	*inode = container_of(item, struct inode, i_lru);
702 
703 	/*
704 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
705 	 * If we fail to get the lock, just skip it.
706 	 */
707 	if (!spin_trylock(&inode->i_lock))
708 		return LRU_SKIP;
709 
710 	/*
711 	 * Referenced or dirty inodes are still in use. Give them another pass
712 	 * through the LRU as we canot reclaim them now.
713 	 */
714 	if (atomic_read(&inode->i_count) ||
715 	    (inode->i_state & ~I_REFERENCED)) {
716 		list_lru_isolate(lru, &inode->i_lru);
717 		spin_unlock(&inode->i_lock);
718 		this_cpu_dec(nr_unused);
719 		return LRU_REMOVED;
720 	}
721 
722 	/* recently referenced inodes get one more pass */
723 	if (inode->i_state & I_REFERENCED) {
724 		inode->i_state &= ~I_REFERENCED;
725 		spin_unlock(&inode->i_lock);
726 		return LRU_ROTATE;
727 	}
728 
729 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
730 		__iget(inode);
731 		spin_unlock(&inode->i_lock);
732 		spin_unlock(lru_lock);
733 		if (remove_inode_buffers(inode)) {
734 			unsigned long reap;
735 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
736 			if (current_is_kswapd())
737 				__count_vm_events(KSWAPD_INODESTEAL, reap);
738 			else
739 				__count_vm_events(PGINODESTEAL, reap);
740 			if (current->reclaim_state)
741 				current->reclaim_state->reclaimed_slab += reap;
742 		}
743 		iput(inode);
744 		spin_lock(lru_lock);
745 		return LRU_RETRY;
746 	}
747 
748 	WARN_ON(inode->i_state & I_NEW);
749 	inode->i_state |= I_FREEING;
750 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
751 	spin_unlock(&inode->i_lock);
752 
753 	this_cpu_dec(nr_unused);
754 	return LRU_REMOVED;
755 }
756 
757 /*
758  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
759  * This is called from the superblock shrinker function with a number of inodes
760  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
761  * then are freed outside inode_lock by dispose_list().
762  */
763 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
764 {
765 	LIST_HEAD(freeable);
766 	long freed;
767 
768 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
769 				     inode_lru_isolate, &freeable);
770 	dispose_list(&freeable);
771 	return freed;
772 }
773 
774 static void __wait_on_freeing_inode(struct inode *inode);
775 /*
776  * Called with the inode lock held.
777  */
778 static struct inode *find_inode(struct super_block *sb,
779 				struct hlist_head *head,
780 				int (*test)(struct inode *, void *),
781 				void *data)
782 {
783 	struct inode *inode = NULL;
784 
785 repeat:
786 	hlist_for_each_entry(inode, head, i_hash) {
787 		if (inode->i_sb != sb)
788 			continue;
789 		if (!test(inode, data))
790 			continue;
791 		spin_lock(&inode->i_lock);
792 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
793 			__wait_on_freeing_inode(inode);
794 			goto repeat;
795 		}
796 		__iget(inode);
797 		spin_unlock(&inode->i_lock);
798 		return inode;
799 	}
800 	return NULL;
801 }
802 
803 /*
804  * find_inode_fast is the fast path version of find_inode, see the comment at
805  * iget_locked for details.
806  */
807 static struct inode *find_inode_fast(struct super_block *sb,
808 				struct hlist_head *head, unsigned long ino)
809 {
810 	struct inode *inode = NULL;
811 
812 repeat:
813 	hlist_for_each_entry(inode, head, i_hash) {
814 		if (inode->i_ino != ino)
815 			continue;
816 		if (inode->i_sb != sb)
817 			continue;
818 		spin_lock(&inode->i_lock);
819 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
820 			__wait_on_freeing_inode(inode);
821 			goto repeat;
822 		}
823 		__iget(inode);
824 		spin_unlock(&inode->i_lock);
825 		return inode;
826 	}
827 	return NULL;
828 }
829 
830 /*
831  * Each cpu owns a range of LAST_INO_BATCH numbers.
832  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
833  * to renew the exhausted range.
834  *
835  * This does not significantly increase overflow rate because every CPU can
836  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
837  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
838  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
839  * overflow rate by 2x, which does not seem too significant.
840  *
841  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
842  * error if st_ino won't fit in target struct field. Use 32bit counter
843  * here to attempt to avoid that.
844  */
845 #define LAST_INO_BATCH 1024
846 static DEFINE_PER_CPU(unsigned int, last_ino);
847 
848 unsigned int get_next_ino(void)
849 {
850 	unsigned int *p = &get_cpu_var(last_ino);
851 	unsigned int res = *p;
852 
853 #ifdef CONFIG_SMP
854 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
855 		static atomic_t shared_last_ino;
856 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
857 
858 		res = next - LAST_INO_BATCH;
859 	}
860 #endif
861 
862 	res++;
863 	/* get_next_ino should not provide a 0 inode number */
864 	if (unlikely(!res))
865 		res++;
866 	*p = res;
867 	put_cpu_var(last_ino);
868 	return res;
869 }
870 EXPORT_SYMBOL(get_next_ino);
871 
872 /**
873  *	new_inode_pseudo 	- obtain an inode
874  *	@sb: superblock
875  *
876  *	Allocates a new inode for given superblock.
877  *	Inode wont be chained in superblock s_inodes list
878  *	This means :
879  *	- fs can't be unmount
880  *	- quotas, fsnotify, writeback can't work
881  */
882 struct inode *new_inode_pseudo(struct super_block *sb)
883 {
884 	struct inode *inode = alloc_inode(sb);
885 
886 	if (inode) {
887 		spin_lock(&inode->i_lock);
888 		inode->i_state = 0;
889 		spin_unlock(&inode->i_lock);
890 		INIT_LIST_HEAD(&inode->i_sb_list);
891 	}
892 	return inode;
893 }
894 
895 /**
896  *	new_inode 	- obtain an inode
897  *	@sb: superblock
898  *
899  *	Allocates a new inode for given superblock. The default gfp_mask
900  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
901  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
902  *	for the page cache are not reclaimable or migratable,
903  *	mapping_set_gfp_mask() must be called with suitable flags on the
904  *	newly created inode's mapping
905  *
906  */
907 struct inode *new_inode(struct super_block *sb)
908 {
909 	struct inode *inode;
910 
911 	spin_lock_prefetch(&sb->s_inode_list_lock);
912 
913 	inode = new_inode_pseudo(sb);
914 	if (inode)
915 		inode_sb_list_add(inode);
916 	return inode;
917 }
918 EXPORT_SYMBOL(new_inode);
919 
920 #ifdef CONFIG_DEBUG_LOCK_ALLOC
921 void lockdep_annotate_inode_mutex_key(struct inode *inode)
922 {
923 	if (S_ISDIR(inode->i_mode)) {
924 		struct file_system_type *type = inode->i_sb->s_type;
925 
926 		/* Set new key only if filesystem hasn't already changed it */
927 		if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
928 			/*
929 			 * ensure nobody is actually holding i_mutex
930 			 */
931 			mutex_destroy(&inode->i_mutex);
932 			mutex_init(&inode->i_mutex);
933 			lockdep_set_class(&inode->i_mutex,
934 					  &type->i_mutex_dir_key);
935 		}
936 	}
937 }
938 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
939 #endif
940 
941 /**
942  * unlock_new_inode - clear the I_NEW state and wake up any waiters
943  * @inode:	new inode to unlock
944  *
945  * Called when the inode is fully initialised to clear the new state of the
946  * inode and wake up anyone waiting for the inode to finish initialisation.
947  */
948 void unlock_new_inode(struct inode *inode)
949 {
950 	lockdep_annotate_inode_mutex_key(inode);
951 	spin_lock(&inode->i_lock);
952 	WARN_ON(!(inode->i_state & I_NEW));
953 	inode->i_state &= ~I_NEW;
954 	smp_mb();
955 	wake_up_bit(&inode->i_state, __I_NEW);
956 	spin_unlock(&inode->i_lock);
957 }
958 EXPORT_SYMBOL(unlock_new_inode);
959 
960 /**
961  * lock_two_nondirectories - take two i_mutexes on non-directory objects
962  *
963  * Lock any non-NULL argument that is not a directory.
964  * Zero, one or two objects may be locked by this function.
965  *
966  * @inode1: first inode to lock
967  * @inode2: second inode to lock
968  */
969 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
970 {
971 	if (inode1 > inode2)
972 		swap(inode1, inode2);
973 
974 	if (inode1 && !S_ISDIR(inode1->i_mode))
975 		inode_lock(inode1);
976 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
977 		inode_lock_nested(inode2, I_MUTEX_NONDIR2);
978 }
979 EXPORT_SYMBOL(lock_two_nondirectories);
980 
981 /**
982  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
983  * @inode1: first inode to unlock
984  * @inode2: second inode to unlock
985  */
986 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
987 {
988 	if (inode1 && !S_ISDIR(inode1->i_mode))
989 		inode_unlock(inode1);
990 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
991 		inode_unlock(inode2);
992 }
993 EXPORT_SYMBOL(unlock_two_nondirectories);
994 
995 /**
996  * iget5_locked - obtain an inode from a mounted file system
997  * @sb:		super block of file system
998  * @hashval:	hash value (usually inode number) to get
999  * @test:	callback used for comparisons between inodes
1000  * @set:	callback used to initialize a new struct inode
1001  * @data:	opaque data pointer to pass to @test and @set
1002  *
1003  * Search for the inode specified by @hashval and @data in the inode cache,
1004  * and if present it is return it with an increased reference count. This is
1005  * a generalized version of iget_locked() for file systems where the inode
1006  * number is not sufficient for unique identification of an inode.
1007  *
1008  * If the inode is not in cache, allocate a new inode and return it locked,
1009  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1010  * before unlocking it via unlock_new_inode().
1011  *
1012  * Note both @test and @set are called with the inode_hash_lock held, so can't
1013  * sleep.
1014  */
1015 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1016 		int (*test)(struct inode *, void *),
1017 		int (*set)(struct inode *, void *), void *data)
1018 {
1019 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1020 	struct inode *inode;
1021 
1022 	spin_lock(&inode_hash_lock);
1023 	inode = find_inode(sb, head, test, data);
1024 	spin_unlock(&inode_hash_lock);
1025 
1026 	if (inode) {
1027 		wait_on_inode(inode);
1028 		return inode;
1029 	}
1030 
1031 	inode = alloc_inode(sb);
1032 	if (inode) {
1033 		struct inode *old;
1034 
1035 		spin_lock(&inode_hash_lock);
1036 		/* We released the lock, so.. */
1037 		old = find_inode(sb, head, test, data);
1038 		if (!old) {
1039 			if (set(inode, data))
1040 				goto set_failed;
1041 
1042 			spin_lock(&inode->i_lock);
1043 			inode->i_state = I_NEW;
1044 			hlist_add_head(&inode->i_hash, head);
1045 			spin_unlock(&inode->i_lock);
1046 			inode_sb_list_add(inode);
1047 			spin_unlock(&inode_hash_lock);
1048 
1049 			/* Return the locked inode with I_NEW set, the
1050 			 * caller is responsible for filling in the contents
1051 			 */
1052 			return inode;
1053 		}
1054 
1055 		/*
1056 		 * Uhhuh, somebody else created the same inode under
1057 		 * us. Use the old inode instead of the one we just
1058 		 * allocated.
1059 		 */
1060 		spin_unlock(&inode_hash_lock);
1061 		destroy_inode(inode);
1062 		inode = old;
1063 		wait_on_inode(inode);
1064 	}
1065 	return inode;
1066 
1067 set_failed:
1068 	spin_unlock(&inode_hash_lock);
1069 	destroy_inode(inode);
1070 	return NULL;
1071 }
1072 EXPORT_SYMBOL(iget5_locked);
1073 
1074 /**
1075  * iget_locked - obtain an inode from a mounted file system
1076  * @sb:		super block of file system
1077  * @ino:	inode number to get
1078  *
1079  * Search for the inode specified by @ino in the inode cache and if present
1080  * return it with an increased reference count. This is for file systems
1081  * where the inode number is sufficient for unique identification of an inode.
1082  *
1083  * If the inode is not in cache, allocate a new inode and return it locked,
1084  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1085  * before unlocking it via unlock_new_inode().
1086  */
1087 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1088 {
1089 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1090 	struct inode *inode;
1091 
1092 	spin_lock(&inode_hash_lock);
1093 	inode = find_inode_fast(sb, head, ino);
1094 	spin_unlock(&inode_hash_lock);
1095 	if (inode) {
1096 		wait_on_inode(inode);
1097 		return inode;
1098 	}
1099 
1100 	inode = alloc_inode(sb);
1101 	if (inode) {
1102 		struct inode *old;
1103 
1104 		spin_lock(&inode_hash_lock);
1105 		/* We released the lock, so.. */
1106 		old = find_inode_fast(sb, head, ino);
1107 		if (!old) {
1108 			inode->i_ino = ino;
1109 			spin_lock(&inode->i_lock);
1110 			inode->i_state = I_NEW;
1111 			hlist_add_head(&inode->i_hash, head);
1112 			spin_unlock(&inode->i_lock);
1113 			inode_sb_list_add(inode);
1114 			spin_unlock(&inode_hash_lock);
1115 
1116 			/* Return the locked inode with I_NEW set, the
1117 			 * caller is responsible for filling in the contents
1118 			 */
1119 			return inode;
1120 		}
1121 
1122 		/*
1123 		 * Uhhuh, somebody else created the same inode under
1124 		 * us. Use the old inode instead of the one we just
1125 		 * allocated.
1126 		 */
1127 		spin_unlock(&inode_hash_lock);
1128 		destroy_inode(inode);
1129 		inode = old;
1130 		wait_on_inode(inode);
1131 	}
1132 	return inode;
1133 }
1134 EXPORT_SYMBOL(iget_locked);
1135 
1136 /*
1137  * search the inode cache for a matching inode number.
1138  * If we find one, then the inode number we are trying to
1139  * allocate is not unique and so we should not use it.
1140  *
1141  * Returns 1 if the inode number is unique, 0 if it is not.
1142  */
1143 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1144 {
1145 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1146 	struct inode *inode;
1147 
1148 	spin_lock(&inode_hash_lock);
1149 	hlist_for_each_entry(inode, b, i_hash) {
1150 		if (inode->i_ino == ino && inode->i_sb == sb) {
1151 			spin_unlock(&inode_hash_lock);
1152 			return 0;
1153 		}
1154 	}
1155 	spin_unlock(&inode_hash_lock);
1156 
1157 	return 1;
1158 }
1159 
1160 /**
1161  *	iunique - get a unique inode number
1162  *	@sb: superblock
1163  *	@max_reserved: highest reserved inode number
1164  *
1165  *	Obtain an inode number that is unique on the system for a given
1166  *	superblock. This is used by file systems that have no natural
1167  *	permanent inode numbering system. An inode number is returned that
1168  *	is higher than the reserved limit but unique.
1169  *
1170  *	BUGS:
1171  *	With a large number of inodes live on the file system this function
1172  *	currently becomes quite slow.
1173  */
1174 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1175 {
1176 	/*
1177 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1178 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1179 	 * here to attempt to avoid that.
1180 	 */
1181 	static DEFINE_SPINLOCK(iunique_lock);
1182 	static unsigned int counter;
1183 	ino_t res;
1184 
1185 	spin_lock(&iunique_lock);
1186 	do {
1187 		if (counter <= max_reserved)
1188 			counter = max_reserved + 1;
1189 		res = counter++;
1190 	} while (!test_inode_iunique(sb, res));
1191 	spin_unlock(&iunique_lock);
1192 
1193 	return res;
1194 }
1195 EXPORT_SYMBOL(iunique);
1196 
1197 struct inode *igrab(struct inode *inode)
1198 {
1199 	spin_lock(&inode->i_lock);
1200 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1201 		__iget(inode);
1202 		spin_unlock(&inode->i_lock);
1203 	} else {
1204 		spin_unlock(&inode->i_lock);
1205 		/*
1206 		 * Handle the case where s_op->clear_inode is not been
1207 		 * called yet, and somebody is calling igrab
1208 		 * while the inode is getting freed.
1209 		 */
1210 		inode = NULL;
1211 	}
1212 	return inode;
1213 }
1214 EXPORT_SYMBOL(igrab);
1215 
1216 /**
1217  * ilookup5_nowait - search for an inode in the inode cache
1218  * @sb:		super block of file system to search
1219  * @hashval:	hash value (usually inode number) to search for
1220  * @test:	callback used for comparisons between inodes
1221  * @data:	opaque data pointer to pass to @test
1222  *
1223  * Search for the inode specified by @hashval and @data in the inode cache.
1224  * If the inode is in the cache, the inode is returned with an incremented
1225  * reference count.
1226  *
1227  * Note: I_NEW is not waited upon so you have to be very careful what you do
1228  * with the returned inode.  You probably should be using ilookup5() instead.
1229  *
1230  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1231  */
1232 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1233 		int (*test)(struct inode *, void *), void *data)
1234 {
1235 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1236 	struct inode *inode;
1237 
1238 	spin_lock(&inode_hash_lock);
1239 	inode = find_inode(sb, head, test, data);
1240 	spin_unlock(&inode_hash_lock);
1241 
1242 	return inode;
1243 }
1244 EXPORT_SYMBOL(ilookup5_nowait);
1245 
1246 /**
1247  * ilookup5 - search for an inode in the inode cache
1248  * @sb:		super block of file system to search
1249  * @hashval:	hash value (usually inode number) to search for
1250  * @test:	callback used for comparisons between inodes
1251  * @data:	opaque data pointer to pass to @test
1252  *
1253  * Search for the inode specified by @hashval and @data in the inode cache,
1254  * and if the inode is in the cache, return the inode with an incremented
1255  * reference count.  Waits on I_NEW before returning the inode.
1256  * returned with an incremented reference count.
1257  *
1258  * This is a generalized version of ilookup() for file systems where the
1259  * inode number is not sufficient for unique identification of an inode.
1260  *
1261  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1262  */
1263 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1264 		int (*test)(struct inode *, void *), void *data)
1265 {
1266 	struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1267 
1268 	if (inode)
1269 		wait_on_inode(inode);
1270 	return inode;
1271 }
1272 EXPORT_SYMBOL(ilookup5);
1273 
1274 /**
1275  * ilookup - search for an inode in the inode cache
1276  * @sb:		super block of file system to search
1277  * @ino:	inode number to search for
1278  *
1279  * Search for the inode @ino in the inode cache, and if the inode is in the
1280  * cache, the inode is returned with an incremented reference count.
1281  */
1282 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1283 {
1284 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1285 	struct inode *inode;
1286 
1287 	spin_lock(&inode_hash_lock);
1288 	inode = find_inode_fast(sb, head, ino);
1289 	spin_unlock(&inode_hash_lock);
1290 
1291 	if (inode)
1292 		wait_on_inode(inode);
1293 	return inode;
1294 }
1295 EXPORT_SYMBOL(ilookup);
1296 
1297 /**
1298  * find_inode_nowait - find an inode in the inode cache
1299  * @sb:		super block of file system to search
1300  * @hashval:	hash value (usually inode number) to search for
1301  * @match:	callback used for comparisons between inodes
1302  * @data:	opaque data pointer to pass to @match
1303  *
1304  * Search for the inode specified by @hashval and @data in the inode
1305  * cache, where the helper function @match will return 0 if the inode
1306  * does not match, 1 if the inode does match, and -1 if the search
1307  * should be stopped.  The @match function must be responsible for
1308  * taking the i_lock spin_lock and checking i_state for an inode being
1309  * freed or being initialized, and incrementing the reference count
1310  * before returning 1.  It also must not sleep, since it is called with
1311  * the inode_hash_lock spinlock held.
1312  *
1313  * This is a even more generalized version of ilookup5() when the
1314  * function must never block --- find_inode() can block in
1315  * __wait_on_freeing_inode() --- or when the caller can not increment
1316  * the reference count because the resulting iput() might cause an
1317  * inode eviction.  The tradeoff is that the @match funtion must be
1318  * very carefully implemented.
1319  */
1320 struct inode *find_inode_nowait(struct super_block *sb,
1321 				unsigned long hashval,
1322 				int (*match)(struct inode *, unsigned long,
1323 					     void *),
1324 				void *data)
1325 {
1326 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1327 	struct inode *inode, *ret_inode = NULL;
1328 	int mval;
1329 
1330 	spin_lock(&inode_hash_lock);
1331 	hlist_for_each_entry(inode, head, i_hash) {
1332 		if (inode->i_sb != sb)
1333 			continue;
1334 		mval = match(inode, hashval, data);
1335 		if (mval == 0)
1336 			continue;
1337 		if (mval == 1)
1338 			ret_inode = inode;
1339 		goto out;
1340 	}
1341 out:
1342 	spin_unlock(&inode_hash_lock);
1343 	return ret_inode;
1344 }
1345 EXPORT_SYMBOL(find_inode_nowait);
1346 
1347 int insert_inode_locked(struct inode *inode)
1348 {
1349 	struct super_block *sb = inode->i_sb;
1350 	ino_t ino = inode->i_ino;
1351 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1352 
1353 	while (1) {
1354 		struct inode *old = NULL;
1355 		spin_lock(&inode_hash_lock);
1356 		hlist_for_each_entry(old, head, i_hash) {
1357 			if (old->i_ino != ino)
1358 				continue;
1359 			if (old->i_sb != sb)
1360 				continue;
1361 			spin_lock(&old->i_lock);
1362 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1363 				spin_unlock(&old->i_lock);
1364 				continue;
1365 			}
1366 			break;
1367 		}
1368 		if (likely(!old)) {
1369 			spin_lock(&inode->i_lock);
1370 			inode->i_state |= I_NEW;
1371 			hlist_add_head(&inode->i_hash, head);
1372 			spin_unlock(&inode->i_lock);
1373 			spin_unlock(&inode_hash_lock);
1374 			return 0;
1375 		}
1376 		__iget(old);
1377 		spin_unlock(&old->i_lock);
1378 		spin_unlock(&inode_hash_lock);
1379 		wait_on_inode(old);
1380 		if (unlikely(!inode_unhashed(old))) {
1381 			iput(old);
1382 			return -EBUSY;
1383 		}
1384 		iput(old);
1385 	}
1386 }
1387 EXPORT_SYMBOL(insert_inode_locked);
1388 
1389 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1390 		int (*test)(struct inode *, void *), void *data)
1391 {
1392 	struct super_block *sb = inode->i_sb;
1393 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1394 
1395 	while (1) {
1396 		struct inode *old = NULL;
1397 
1398 		spin_lock(&inode_hash_lock);
1399 		hlist_for_each_entry(old, head, i_hash) {
1400 			if (old->i_sb != sb)
1401 				continue;
1402 			if (!test(old, data))
1403 				continue;
1404 			spin_lock(&old->i_lock);
1405 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1406 				spin_unlock(&old->i_lock);
1407 				continue;
1408 			}
1409 			break;
1410 		}
1411 		if (likely(!old)) {
1412 			spin_lock(&inode->i_lock);
1413 			inode->i_state |= I_NEW;
1414 			hlist_add_head(&inode->i_hash, head);
1415 			spin_unlock(&inode->i_lock);
1416 			spin_unlock(&inode_hash_lock);
1417 			return 0;
1418 		}
1419 		__iget(old);
1420 		spin_unlock(&old->i_lock);
1421 		spin_unlock(&inode_hash_lock);
1422 		wait_on_inode(old);
1423 		if (unlikely(!inode_unhashed(old))) {
1424 			iput(old);
1425 			return -EBUSY;
1426 		}
1427 		iput(old);
1428 	}
1429 }
1430 EXPORT_SYMBOL(insert_inode_locked4);
1431 
1432 
1433 int generic_delete_inode(struct inode *inode)
1434 {
1435 	return 1;
1436 }
1437 EXPORT_SYMBOL(generic_delete_inode);
1438 
1439 /*
1440  * Called when we're dropping the last reference
1441  * to an inode.
1442  *
1443  * Call the FS "drop_inode()" function, defaulting to
1444  * the legacy UNIX filesystem behaviour.  If it tells
1445  * us to evict inode, do so.  Otherwise, retain inode
1446  * in cache if fs is alive, sync and evict if fs is
1447  * shutting down.
1448  */
1449 static void iput_final(struct inode *inode)
1450 {
1451 	struct super_block *sb = inode->i_sb;
1452 	const struct super_operations *op = inode->i_sb->s_op;
1453 	int drop;
1454 
1455 	WARN_ON(inode->i_state & I_NEW);
1456 
1457 	if (op->drop_inode)
1458 		drop = op->drop_inode(inode);
1459 	else
1460 		drop = generic_drop_inode(inode);
1461 
1462 	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1463 		inode->i_state |= I_REFERENCED;
1464 		inode_add_lru(inode);
1465 		spin_unlock(&inode->i_lock);
1466 		return;
1467 	}
1468 
1469 	if (!drop) {
1470 		inode->i_state |= I_WILL_FREE;
1471 		spin_unlock(&inode->i_lock);
1472 		write_inode_now(inode, 1);
1473 		spin_lock(&inode->i_lock);
1474 		WARN_ON(inode->i_state & I_NEW);
1475 		inode->i_state &= ~I_WILL_FREE;
1476 	}
1477 
1478 	inode->i_state |= I_FREEING;
1479 	if (!list_empty(&inode->i_lru))
1480 		inode_lru_list_del(inode);
1481 	spin_unlock(&inode->i_lock);
1482 
1483 	evict(inode);
1484 }
1485 
1486 /**
1487  *	iput	- put an inode
1488  *	@inode: inode to put
1489  *
1490  *	Puts an inode, dropping its usage count. If the inode use count hits
1491  *	zero, the inode is then freed and may also be destroyed.
1492  *
1493  *	Consequently, iput() can sleep.
1494  */
1495 void iput(struct inode *inode)
1496 {
1497 	if (!inode)
1498 		return;
1499 	BUG_ON(inode->i_state & I_CLEAR);
1500 retry:
1501 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1502 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1503 			atomic_inc(&inode->i_count);
1504 			inode->i_state &= ~I_DIRTY_TIME;
1505 			spin_unlock(&inode->i_lock);
1506 			trace_writeback_lazytime_iput(inode);
1507 			mark_inode_dirty_sync(inode);
1508 			goto retry;
1509 		}
1510 		iput_final(inode);
1511 	}
1512 }
1513 EXPORT_SYMBOL(iput);
1514 
1515 /**
1516  *	bmap	- find a block number in a file
1517  *	@inode: inode of file
1518  *	@block: block to find
1519  *
1520  *	Returns the block number on the device holding the inode that
1521  *	is the disk block number for the block of the file requested.
1522  *	That is, asked for block 4 of inode 1 the function will return the
1523  *	disk block relative to the disk start that holds that block of the
1524  *	file.
1525  */
1526 sector_t bmap(struct inode *inode, sector_t block)
1527 {
1528 	sector_t res = 0;
1529 	if (inode->i_mapping->a_ops->bmap)
1530 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1531 	return res;
1532 }
1533 EXPORT_SYMBOL(bmap);
1534 
1535 /*
1536  * With relative atime, only update atime if the previous atime is
1537  * earlier than either the ctime or mtime or if at least a day has
1538  * passed since the last atime update.
1539  */
1540 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1541 			     struct timespec now)
1542 {
1543 
1544 	if (!(mnt->mnt_flags & MNT_RELATIME))
1545 		return 1;
1546 	/*
1547 	 * Is mtime younger than atime? If yes, update atime:
1548 	 */
1549 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1550 		return 1;
1551 	/*
1552 	 * Is ctime younger than atime? If yes, update atime:
1553 	 */
1554 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1555 		return 1;
1556 
1557 	/*
1558 	 * Is the previous atime value older than a day? If yes,
1559 	 * update atime:
1560 	 */
1561 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1562 		return 1;
1563 	/*
1564 	 * Good, we can skip the atime update:
1565 	 */
1566 	return 0;
1567 }
1568 
1569 int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1570 {
1571 	int iflags = I_DIRTY_TIME;
1572 
1573 	if (flags & S_ATIME)
1574 		inode->i_atime = *time;
1575 	if (flags & S_VERSION)
1576 		inode_inc_iversion(inode);
1577 	if (flags & S_CTIME)
1578 		inode->i_ctime = *time;
1579 	if (flags & S_MTIME)
1580 		inode->i_mtime = *time;
1581 
1582 	if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1583 		iflags |= I_DIRTY_SYNC;
1584 	__mark_inode_dirty(inode, iflags);
1585 	return 0;
1586 }
1587 EXPORT_SYMBOL(generic_update_time);
1588 
1589 /*
1590  * This does the actual work of updating an inodes time or version.  Must have
1591  * had called mnt_want_write() before calling this.
1592  */
1593 static int update_time(struct inode *inode, struct timespec *time, int flags)
1594 {
1595 	int (*update_time)(struct inode *, struct timespec *, int);
1596 
1597 	update_time = inode->i_op->update_time ? inode->i_op->update_time :
1598 		generic_update_time;
1599 
1600 	return update_time(inode, time, flags);
1601 }
1602 
1603 /**
1604  *	touch_atime	-	update the access time
1605  *	@path: the &struct path to update
1606  *	@inode: inode to update
1607  *
1608  *	Update the accessed time on an inode and mark it for writeback.
1609  *	This function automatically handles read only file systems and media,
1610  *	as well as the "noatime" flag and inode specific "noatime" markers.
1611  */
1612 bool atime_needs_update(const struct path *path, struct inode *inode)
1613 {
1614 	struct vfsmount *mnt = path->mnt;
1615 	struct timespec now;
1616 
1617 	if (inode->i_flags & S_NOATIME)
1618 		return false;
1619 	if (IS_NOATIME(inode))
1620 		return false;
1621 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1622 		return false;
1623 
1624 	if (mnt->mnt_flags & MNT_NOATIME)
1625 		return false;
1626 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1627 		return false;
1628 
1629 	now = current_fs_time(inode->i_sb);
1630 
1631 	if (!relatime_need_update(mnt, inode, now))
1632 		return false;
1633 
1634 	if (timespec_equal(&inode->i_atime, &now))
1635 		return false;
1636 
1637 	return true;
1638 }
1639 
1640 void touch_atime(const struct path *path)
1641 {
1642 	struct vfsmount *mnt = path->mnt;
1643 	struct inode *inode = d_inode(path->dentry);
1644 	struct timespec now;
1645 
1646 	if (!atime_needs_update(path, inode))
1647 		return;
1648 
1649 	if (!sb_start_write_trylock(inode->i_sb))
1650 		return;
1651 
1652 	if (__mnt_want_write(mnt) != 0)
1653 		goto skip_update;
1654 	/*
1655 	 * File systems can error out when updating inodes if they need to
1656 	 * allocate new space to modify an inode (such is the case for
1657 	 * Btrfs), but since we touch atime while walking down the path we
1658 	 * really don't care if we failed to update the atime of the file,
1659 	 * so just ignore the return value.
1660 	 * We may also fail on filesystems that have the ability to make parts
1661 	 * of the fs read only, e.g. subvolumes in Btrfs.
1662 	 */
1663 	now = current_fs_time(inode->i_sb);
1664 	update_time(inode, &now, S_ATIME);
1665 	__mnt_drop_write(mnt);
1666 skip_update:
1667 	sb_end_write(inode->i_sb);
1668 }
1669 EXPORT_SYMBOL(touch_atime);
1670 
1671 /*
1672  * The logic we want is
1673  *
1674  *	if suid or (sgid and xgrp)
1675  *		remove privs
1676  */
1677 int should_remove_suid(struct dentry *dentry)
1678 {
1679 	umode_t mode = d_inode(dentry)->i_mode;
1680 	int kill = 0;
1681 
1682 	/* suid always must be killed */
1683 	if (unlikely(mode & S_ISUID))
1684 		kill = ATTR_KILL_SUID;
1685 
1686 	/*
1687 	 * sgid without any exec bits is just a mandatory locking mark; leave
1688 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1689 	 */
1690 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1691 		kill |= ATTR_KILL_SGID;
1692 
1693 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1694 		return kill;
1695 
1696 	return 0;
1697 }
1698 EXPORT_SYMBOL(should_remove_suid);
1699 
1700 /*
1701  * Return mask of changes for notify_change() that need to be done as a
1702  * response to write or truncate. Return 0 if nothing has to be changed.
1703  * Negative value on error (change should be denied).
1704  */
1705 int dentry_needs_remove_privs(struct dentry *dentry)
1706 {
1707 	struct inode *inode = d_inode(dentry);
1708 	int mask = 0;
1709 	int ret;
1710 
1711 	if (IS_NOSEC(inode))
1712 		return 0;
1713 
1714 	mask = should_remove_suid(dentry);
1715 	ret = security_inode_need_killpriv(dentry);
1716 	if (ret < 0)
1717 		return ret;
1718 	if (ret)
1719 		mask |= ATTR_KILL_PRIV;
1720 	return mask;
1721 }
1722 EXPORT_SYMBOL(dentry_needs_remove_privs);
1723 
1724 static int __remove_privs(struct dentry *dentry, int kill)
1725 {
1726 	struct iattr newattrs;
1727 
1728 	newattrs.ia_valid = ATTR_FORCE | kill;
1729 	/*
1730 	 * Note we call this on write, so notify_change will not
1731 	 * encounter any conflicting delegations:
1732 	 */
1733 	return notify_change(dentry, &newattrs, NULL);
1734 }
1735 
1736 /*
1737  * Remove special file priviledges (suid, capabilities) when file is written
1738  * to or truncated.
1739  */
1740 int file_remove_privs(struct file *file)
1741 {
1742 	struct dentry *dentry = file->f_path.dentry;
1743 	struct inode *inode = d_inode(dentry);
1744 	int kill;
1745 	int error = 0;
1746 
1747 	/* Fast path for nothing security related */
1748 	if (IS_NOSEC(inode))
1749 		return 0;
1750 
1751 	kill = file_needs_remove_privs(file);
1752 	if (kill < 0)
1753 		return kill;
1754 	if (kill)
1755 		error = __remove_privs(dentry, kill);
1756 	if (!error)
1757 		inode_has_no_xattr(inode);
1758 
1759 	return error;
1760 }
1761 EXPORT_SYMBOL(file_remove_privs);
1762 
1763 /**
1764  *	file_update_time	-	update mtime and ctime time
1765  *	@file: file accessed
1766  *
1767  *	Update the mtime and ctime members of an inode and mark the inode
1768  *	for writeback.  Note that this function is meant exclusively for
1769  *	usage in the file write path of filesystems, and filesystems may
1770  *	choose to explicitly ignore update via this function with the
1771  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1772  *	timestamps are handled by the server.  This can return an error for
1773  *	file systems who need to allocate space in order to update an inode.
1774  */
1775 
1776 int file_update_time(struct file *file)
1777 {
1778 	struct inode *inode = file_inode(file);
1779 	struct timespec now;
1780 	int sync_it = 0;
1781 	int ret;
1782 
1783 	/* First try to exhaust all avenues to not sync */
1784 	if (IS_NOCMTIME(inode))
1785 		return 0;
1786 
1787 	now = current_fs_time(inode->i_sb);
1788 	if (!timespec_equal(&inode->i_mtime, &now))
1789 		sync_it = S_MTIME;
1790 
1791 	if (!timespec_equal(&inode->i_ctime, &now))
1792 		sync_it |= S_CTIME;
1793 
1794 	if (IS_I_VERSION(inode))
1795 		sync_it |= S_VERSION;
1796 
1797 	if (!sync_it)
1798 		return 0;
1799 
1800 	/* Finally allowed to write? Takes lock. */
1801 	if (__mnt_want_write_file(file))
1802 		return 0;
1803 
1804 	ret = update_time(inode, &now, sync_it);
1805 	__mnt_drop_write_file(file);
1806 
1807 	return ret;
1808 }
1809 EXPORT_SYMBOL(file_update_time);
1810 
1811 int inode_needs_sync(struct inode *inode)
1812 {
1813 	if (IS_SYNC(inode))
1814 		return 1;
1815 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1816 		return 1;
1817 	return 0;
1818 }
1819 EXPORT_SYMBOL(inode_needs_sync);
1820 
1821 /*
1822  * If we try to find an inode in the inode hash while it is being
1823  * deleted, we have to wait until the filesystem completes its
1824  * deletion before reporting that it isn't found.  This function waits
1825  * until the deletion _might_ have completed.  Callers are responsible
1826  * to recheck inode state.
1827  *
1828  * It doesn't matter if I_NEW is not set initially, a call to
1829  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1830  * will DTRT.
1831  */
1832 static void __wait_on_freeing_inode(struct inode *inode)
1833 {
1834 	wait_queue_head_t *wq;
1835 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1836 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1837 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1838 	spin_unlock(&inode->i_lock);
1839 	spin_unlock(&inode_hash_lock);
1840 	schedule();
1841 	finish_wait(wq, &wait.wait);
1842 	spin_lock(&inode_hash_lock);
1843 }
1844 
1845 static __initdata unsigned long ihash_entries;
1846 static int __init set_ihash_entries(char *str)
1847 {
1848 	if (!str)
1849 		return 0;
1850 	ihash_entries = simple_strtoul(str, &str, 0);
1851 	return 1;
1852 }
1853 __setup("ihash_entries=", set_ihash_entries);
1854 
1855 /*
1856  * Initialize the waitqueues and inode hash table.
1857  */
1858 void __init inode_init_early(void)
1859 {
1860 	unsigned int loop;
1861 
1862 	/* If hashes are distributed across NUMA nodes, defer
1863 	 * hash allocation until vmalloc space is available.
1864 	 */
1865 	if (hashdist)
1866 		return;
1867 
1868 	inode_hashtable =
1869 		alloc_large_system_hash("Inode-cache",
1870 					sizeof(struct hlist_head),
1871 					ihash_entries,
1872 					14,
1873 					HASH_EARLY,
1874 					&i_hash_shift,
1875 					&i_hash_mask,
1876 					0,
1877 					0);
1878 
1879 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1880 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1881 }
1882 
1883 void __init inode_init(void)
1884 {
1885 	unsigned int loop;
1886 
1887 	/* inode slab cache */
1888 	inode_cachep = kmem_cache_create("inode_cache",
1889 					 sizeof(struct inode),
1890 					 0,
1891 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1892 					 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1893 					 init_once);
1894 
1895 	/* Hash may have been set up in inode_init_early */
1896 	if (!hashdist)
1897 		return;
1898 
1899 	inode_hashtable =
1900 		alloc_large_system_hash("Inode-cache",
1901 					sizeof(struct hlist_head),
1902 					ihash_entries,
1903 					14,
1904 					0,
1905 					&i_hash_shift,
1906 					&i_hash_mask,
1907 					0,
1908 					0);
1909 
1910 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1911 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1912 }
1913 
1914 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1915 {
1916 	inode->i_mode = mode;
1917 	if (S_ISCHR(mode)) {
1918 		inode->i_fop = &def_chr_fops;
1919 		inode->i_rdev = rdev;
1920 	} else if (S_ISBLK(mode)) {
1921 		inode->i_fop = &def_blk_fops;
1922 		inode->i_rdev = rdev;
1923 	} else if (S_ISFIFO(mode))
1924 		inode->i_fop = &pipefifo_fops;
1925 	else if (S_ISSOCK(mode))
1926 		;	/* leave it no_open_fops */
1927 	else
1928 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1929 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1930 				  inode->i_ino);
1931 }
1932 EXPORT_SYMBOL(init_special_inode);
1933 
1934 /**
1935  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1936  * @inode: New inode
1937  * @dir: Directory inode
1938  * @mode: mode of the new inode
1939  */
1940 void inode_init_owner(struct inode *inode, const struct inode *dir,
1941 			umode_t mode)
1942 {
1943 	inode->i_uid = current_fsuid();
1944 	if (dir && dir->i_mode & S_ISGID) {
1945 		inode->i_gid = dir->i_gid;
1946 		if (S_ISDIR(mode))
1947 			mode |= S_ISGID;
1948 	} else
1949 		inode->i_gid = current_fsgid();
1950 	inode->i_mode = mode;
1951 }
1952 EXPORT_SYMBOL(inode_init_owner);
1953 
1954 /**
1955  * inode_owner_or_capable - check current task permissions to inode
1956  * @inode: inode being checked
1957  *
1958  * Return true if current either has CAP_FOWNER in a namespace with the
1959  * inode owner uid mapped, or owns the file.
1960  */
1961 bool inode_owner_or_capable(const struct inode *inode)
1962 {
1963 	struct user_namespace *ns;
1964 
1965 	if (uid_eq(current_fsuid(), inode->i_uid))
1966 		return true;
1967 
1968 	ns = current_user_ns();
1969 	if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
1970 		return true;
1971 	return false;
1972 }
1973 EXPORT_SYMBOL(inode_owner_or_capable);
1974 
1975 /*
1976  * Direct i/o helper functions
1977  */
1978 static void __inode_dio_wait(struct inode *inode)
1979 {
1980 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1981 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1982 
1983 	do {
1984 		prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1985 		if (atomic_read(&inode->i_dio_count))
1986 			schedule();
1987 	} while (atomic_read(&inode->i_dio_count));
1988 	finish_wait(wq, &q.wait);
1989 }
1990 
1991 /**
1992  * inode_dio_wait - wait for outstanding DIO requests to finish
1993  * @inode: inode to wait for
1994  *
1995  * Waits for all pending direct I/O requests to finish so that we can
1996  * proceed with a truncate or equivalent operation.
1997  *
1998  * Must be called under a lock that serializes taking new references
1999  * to i_dio_count, usually by inode->i_mutex.
2000  */
2001 void inode_dio_wait(struct inode *inode)
2002 {
2003 	if (atomic_read(&inode->i_dio_count))
2004 		__inode_dio_wait(inode);
2005 }
2006 EXPORT_SYMBOL(inode_dio_wait);
2007 
2008 /*
2009  * inode_set_flags - atomically set some inode flags
2010  *
2011  * Note: the caller should be holding i_mutex, or else be sure that
2012  * they have exclusive access to the inode structure (i.e., while the
2013  * inode is being instantiated).  The reason for the cmpxchg() loop
2014  * --- which wouldn't be necessary if all code paths which modify
2015  * i_flags actually followed this rule, is that there is at least one
2016  * code path which doesn't today so we use cmpxchg() out of an abundance
2017  * of caution.
2018  *
2019  * In the long run, i_mutex is overkill, and we should probably look
2020  * at using the i_lock spinlock to protect i_flags, and then make sure
2021  * it is so documented in include/linux/fs.h and that all code follows
2022  * the locking convention!!
2023  */
2024 void inode_set_flags(struct inode *inode, unsigned int flags,
2025 		     unsigned int mask)
2026 {
2027 	unsigned int old_flags, new_flags;
2028 
2029 	WARN_ON_ONCE(flags & ~mask);
2030 	do {
2031 		old_flags = ACCESS_ONCE(inode->i_flags);
2032 		new_flags = (old_flags & ~mask) | flags;
2033 	} while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2034 				  new_flags) != old_flags));
2035 }
2036 EXPORT_SYMBOL(inode_set_flags);
2037 
2038 void inode_nohighmem(struct inode *inode)
2039 {
2040 	mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2041 }
2042 EXPORT_SYMBOL(inode_nohighmem);
2043