xref: /openbmc/linux/fs/inode.c (revision 029f7f3b8701cc7aca8bdb31f0c7edd6a479e357)
1 /*
2  * (C) 1997 Linus Torvalds
3  * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4  */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <trace/events/writeback.h>
22 #include "internal.h"
23 
24 /*
25  * Inode locking rules:
26  *
27  * inode->i_lock protects:
28  *   inode->i_state, inode->i_hash, __iget()
29  * Inode LRU list locks protect:
30  *   inode->i_sb->s_inode_lru, inode->i_lru
31  * inode->i_sb->s_inode_list_lock protects:
32  *   inode->i_sb->s_inodes, inode->i_sb_list
33  * bdi->wb.list_lock protects:
34  *   bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
35  * inode_hash_lock protects:
36  *   inode_hashtable, inode->i_hash
37  *
38  * Lock ordering:
39  *
40  * inode->i_sb->s_inode_list_lock
41  *   inode->i_lock
42  *     Inode LRU list locks
43  *
44  * bdi->wb.list_lock
45  *   inode->i_lock
46  *
47  * inode_hash_lock
48  *   inode->i_sb->s_inode_list_lock
49  *   inode->i_lock
50  *
51  * iunique_lock
52  *   inode_hash_lock
53  */
54 
55 static unsigned int i_hash_mask __read_mostly;
56 static unsigned int i_hash_shift __read_mostly;
57 static struct hlist_head *inode_hashtable __read_mostly;
58 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
59 
60 /*
61  * Empty aops. Can be used for the cases where the user does not
62  * define any of the address_space operations.
63  */
64 const struct address_space_operations empty_aops = {
65 };
66 EXPORT_SYMBOL(empty_aops);
67 
68 /*
69  * Statistics gathering..
70  */
71 struct inodes_stat_t inodes_stat;
72 
73 static DEFINE_PER_CPU(unsigned long, nr_inodes);
74 static DEFINE_PER_CPU(unsigned long, nr_unused);
75 
76 static struct kmem_cache *inode_cachep __read_mostly;
77 
78 static long get_nr_inodes(void)
79 {
80 	int i;
81 	long sum = 0;
82 	for_each_possible_cpu(i)
83 		sum += per_cpu(nr_inodes, i);
84 	return sum < 0 ? 0 : sum;
85 }
86 
87 static inline long get_nr_inodes_unused(void)
88 {
89 	int i;
90 	long sum = 0;
91 	for_each_possible_cpu(i)
92 		sum += per_cpu(nr_unused, i);
93 	return sum < 0 ? 0 : sum;
94 }
95 
96 long get_nr_dirty_inodes(void)
97 {
98 	/* not actually dirty inodes, but a wild approximation */
99 	long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
100 	return nr_dirty > 0 ? nr_dirty : 0;
101 }
102 
103 /*
104  * Handle nr_inode sysctl
105  */
106 #ifdef CONFIG_SYSCTL
107 int proc_nr_inodes(struct ctl_table *table, int write,
108 		   void __user *buffer, size_t *lenp, loff_t *ppos)
109 {
110 	inodes_stat.nr_inodes = get_nr_inodes();
111 	inodes_stat.nr_unused = get_nr_inodes_unused();
112 	return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
113 }
114 #endif
115 
116 static int no_open(struct inode *inode, struct file *file)
117 {
118 	return -ENXIO;
119 }
120 
121 /**
122  * inode_init_always - perform inode structure intialisation
123  * @sb: superblock inode belongs to
124  * @inode: inode to initialise
125  *
126  * These are initializations that need to be done on every inode
127  * allocation as the fields are not initialised by slab allocation.
128  */
129 int inode_init_always(struct super_block *sb, struct inode *inode)
130 {
131 	static const struct inode_operations empty_iops;
132 	static const struct file_operations no_open_fops = {.open = no_open};
133 	struct address_space *const mapping = &inode->i_data;
134 
135 	inode->i_sb = sb;
136 	inode->i_blkbits = sb->s_blocksize_bits;
137 	inode->i_flags = 0;
138 	atomic_set(&inode->i_count, 1);
139 	inode->i_op = &empty_iops;
140 	inode->i_fop = &no_open_fops;
141 	inode->__i_nlink = 1;
142 	inode->i_opflags = 0;
143 	i_uid_write(inode, 0);
144 	i_gid_write(inode, 0);
145 	atomic_set(&inode->i_writecount, 0);
146 	inode->i_size = 0;
147 	inode->i_blocks = 0;
148 	inode->i_bytes = 0;
149 	inode->i_generation = 0;
150 	inode->i_pipe = NULL;
151 	inode->i_bdev = NULL;
152 	inode->i_cdev = NULL;
153 	inode->i_link = NULL;
154 	inode->i_rdev = 0;
155 	inode->dirtied_when = 0;
156 
157 	if (security_inode_alloc(inode))
158 		goto out;
159 	spin_lock_init(&inode->i_lock);
160 	lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
161 
162 	mutex_init(&inode->i_mutex);
163 	lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
164 
165 	atomic_set(&inode->i_dio_count, 0);
166 
167 	mapping->a_ops = &empty_aops;
168 	mapping->host = inode;
169 	mapping->flags = 0;
170 	atomic_set(&mapping->i_mmap_writable, 0);
171 	mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
172 	mapping->private_data = NULL;
173 	mapping->writeback_index = 0;
174 	inode->i_private = NULL;
175 	inode->i_mapping = mapping;
176 	INIT_HLIST_HEAD(&inode->i_dentry);	/* buggered by rcu freeing */
177 #ifdef CONFIG_FS_POSIX_ACL
178 	inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
179 #endif
180 
181 #ifdef CONFIG_FSNOTIFY
182 	inode->i_fsnotify_mask = 0;
183 #endif
184 	inode->i_flctx = NULL;
185 	this_cpu_inc(nr_inodes);
186 
187 	return 0;
188 out:
189 	return -ENOMEM;
190 }
191 EXPORT_SYMBOL(inode_init_always);
192 
193 static struct inode *alloc_inode(struct super_block *sb)
194 {
195 	struct inode *inode;
196 
197 	if (sb->s_op->alloc_inode)
198 		inode = sb->s_op->alloc_inode(sb);
199 	else
200 		inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
201 
202 	if (!inode)
203 		return NULL;
204 
205 	if (unlikely(inode_init_always(sb, inode))) {
206 		if (inode->i_sb->s_op->destroy_inode)
207 			inode->i_sb->s_op->destroy_inode(inode);
208 		else
209 			kmem_cache_free(inode_cachep, inode);
210 		return NULL;
211 	}
212 
213 	return inode;
214 }
215 
216 void free_inode_nonrcu(struct inode *inode)
217 {
218 	kmem_cache_free(inode_cachep, inode);
219 }
220 EXPORT_SYMBOL(free_inode_nonrcu);
221 
222 void __destroy_inode(struct inode *inode)
223 {
224 	BUG_ON(inode_has_buffers(inode));
225 	inode_detach_wb(inode);
226 	security_inode_free(inode);
227 	fsnotify_inode_delete(inode);
228 	locks_free_lock_context(inode->i_flctx);
229 	if (!inode->i_nlink) {
230 		WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
231 		atomic_long_dec(&inode->i_sb->s_remove_count);
232 	}
233 
234 #ifdef CONFIG_FS_POSIX_ACL
235 	if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
236 		posix_acl_release(inode->i_acl);
237 	if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
238 		posix_acl_release(inode->i_default_acl);
239 #endif
240 	this_cpu_dec(nr_inodes);
241 }
242 EXPORT_SYMBOL(__destroy_inode);
243 
244 static void i_callback(struct rcu_head *head)
245 {
246 	struct inode *inode = container_of(head, struct inode, i_rcu);
247 	kmem_cache_free(inode_cachep, inode);
248 }
249 
250 static void destroy_inode(struct inode *inode)
251 {
252 	BUG_ON(!list_empty(&inode->i_lru));
253 	__destroy_inode(inode);
254 	if (inode->i_sb->s_op->destroy_inode)
255 		inode->i_sb->s_op->destroy_inode(inode);
256 	else
257 		call_rcu(&inode->i_rcu, i_callback);
258 }
259 
260 /**
261  * drop_nlink - directly drop an inode's link count
262  * @inode: inode
263  *
264  * This is a low-level filesystem helper to replace any
265  * direct filesystem manipulation of i_nlink.  In cases
266  * where we are attempting to track writes to the
267  * filesystem, a decrement to zero means an imminent
268  * write when the file is truncated and actually unlinked
269  * on the filesystem.
270  */
271 void drop_nlink(struct inode *inode)
272 {
273 	WARN_ON(inode->i_nlink == 0);
274 	inode->__i_nlink--;
275 	if (!inode->i_nlink)
276 		atomic_long_inc(&inode->i_sb->s_remove_count);
277 }
278 EXPORT_SYMBOL(drop_nlink);
279 
280 /**
281  * clear_nlink - directly zero an inode's link count
282  * @inode: inode
283  *
284  * This is a low-level filesystem helper to replace any
285  * direct filesystem manipulation of i_nlink.  See
286  * drop_nlink() for why we care about i_nlink hitting zero.
287  */
288 void clear_nlink(struct inode *inode)
289 {
290 	if (inode->i_nlink) {
291 		inode->__i_nlink = 0;
292 		atomic_long_inc(&inode->i_sb->s_remove_count);
293 	}
294 }
295 EXPORT_SYMBOL(clear_nlink);
296 
297 /**
298  * set_nlink - directly set an inode's link count
299  * @inode: inode
300  * @nlink: new nlink (should be non-zero)
301  *
302  * This is a low-level filesystem helper to replace any
303  * direct filesystem manipulation of i_nlink.
304  */
305 void set_nlink(struct inode *inode, unsigned int nlink)
306 {
307 	if (!nlink) {
308 		clear_nlink(inode);
309 	} else {
310 		/* Yes, some filesystems do change nlink from zero to one */
311 		if (inode->i_nlink == 0)
312 			atomic_long_dec(&inode->i_sb->s_remove_count);
313 
314 		inode->__i_nlink = nlink;
315 	}
316 }
317 EXPORT_SYMBOL(set_nlink);
318 
319 /**
320  * inc_nlink - directly increment an inode's link count
321  * @inode: inode
322  *
323  * This is a low-level filesystem helper to replace any
324  * direct filesystem manipulation of i_nlink.  Currently,
325  * it is only here for parity with dec_nlink().
326  */
327 void inc_nlink(struct inode *inode)
328 {
329 	if (unlikely(inode->i_nlink == 0)) {
330 		WARN_ON(!(inode->i_state & I_LINKABLE));
331 		atomic_long_dec(&inode->i_sb->s_remove_count);
332 	}
333 
334 	inode->__i_nlink++;
335 }
336 EXPORT_SYMBOL(inc_nlink);
337 
338 void address_space_init_once(struct address_space *mapping)
339 {
340 	memset(mapping, 0, sizeof(*mapping));
341 	INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
342 	spin_lock_init(&mapping->tree_lock);
343 	init_rwsem(&mapping->i_mmap_rwsem);
344 	INIT_LIST_HEAD(&mapping->private_list);
345 	spin_lock_init(&mapping->private_lock);
346 	mapping->i_mmap = RB_ROOT;
347 }
348 EXPORT_SYMBOL(address_space_init_once);
349 
350 /*
351  * These are initializations that only need to be done
352  * once, because the fields are idempotent across use
353  * of the inode, so let the slab aware of that.
354  */
355 void inode_init_once(struct inode *inode)
356 {
357 	memset(inode, 0, sizeof(*inode));
358 	INIT_HLIST_NODE(&inode->i_hash);
359 	INIT_LIST_HEAD(&inode->i_devices);
360 	INIT_LIST_HEAD(&inode->i_io_list);
361 	INIT_LIST_HEAD(&inode->i_lru);
362 	address_space_init_once(&inode->i_data);
363 	i_size_ordered_init(inode);
364 #ifdef CONFIG_FSNOTIFY
365 	INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
366 #endif
367 }
368 EXPORT_SYMBOL(inode_init_once);
369 
370 static void init_once(void *foo)
371 {
372 	struct inode *inode = (struct inode *) foo;
373 
374 	inode_init_once(inode);
375 }
376 
377 /*
378  * inode->i_lock must be held
379  */
380 void __iget(struct inode *inode)
381 {
382 	atomic_inc(&inode->i_count);
383 }
384 
385 /*
386  * get additional reference to inode; caller must already hold one.
387  */
388 void ihold(struct inode *inode)
389 {
390 	WARN_ON(atomic_inc_return(&inode->i_count) < 2);
391 }
392 EXPORT_SYMBOL(ihold);
393 
394 static void inode_lru_list_add(struct inode *inode)
395 {
396 	if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
397 		this_cpu_inc(nr_unused);
398 }
399 
400 /*
401  * Add inode to LRU if needed (inode is unused and clean).
402  *
403  * Needs inode->i_lock held.
404  */
405 void inode_add_lru(struct inode *inode)
406 {
407 	if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
408 				I_FREEING | I_WILL_FREE)) &&
409 	    !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
410 		inode_lru_list_add(inode);
411 }
412 
413 
414 static void inode_lru_list_del(struct inode *inode)
415 {
416 
417 	if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
418 		this_cpu_dec(nr_unused);
419 }
420 
421 /**
422  * inode_sb_list_add - add inode to the superblock list of inodes
423  * @inode: inode to add
424  */
425 void inode_sb_list_add(struct inode *inode)
426 {
427 	spin_lock(&inode->i_sb->s_inode_list_lock);
428 	list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
429 	spin_unlock(&inode->i_sb->s_inode_list_lock);
430 }
431 EXPORT_SYMBOL_GPL(inode_sb_list_add);
432 
433 static inline void inode_sb_list_del(struct inode *inode)
434 {
435 	if (!list_empty(&inode->i_sb_list)) {
436 		spin_lock(&inode->i_sb->s_inode_list_lock);
437 		list_del_init(&inode->i_sb_list);
438 		spin_unlock(&inode->i_sb->s_inode_list_lock);
439 	}
440 }
441 
442 static unsigned long hash(struct super_block *sb, unsigned long hashval)
443 {
444 	unsigned long tmp;
445 
446 	tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
447 			L1_CACHE_BYTES;
448 	tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
449 	return tmp & i_hash_mask;
450 }
451 
452 /**
453  *	__insert_inode_hash - hash an inode
454  *	@inode: unhashed inode
455  *	@hashval: unsigned long value used to locate this object in the
456  *		inode_hashtable.
457  *
458  *	Add an inode to the inode hash for this superblock.
459  */
460 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
461 {
462 	struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
463 
464 	spin_lock(&inode_hash_lock);
465 	spin_lock(&inode->i_lock);
466 	hlist_add_head(&inode->i_hash, b);
467 	spin_unlock(&inode->i_lock);
468 	spin_unlock(&inode_hash_lock);
469 }
470 EXPORT_SYMBOL(__insert_inode_hash);
471 
472 /**
473  *	__remove_inode_hash - remove an inode from the hash
474  *	@inode: inode to unhash
475  *
476  *	Remove an inode from the superblock.
477  */
478 void __remove_inode_hash(struct inode *inode)
479 {
480 	spin_lock(&inode_hash_lock);
481 	spin_lock(&inode->i_lock);
482 	hlist_del_init(&inode->i_hash);
483 	spin_unlock(&inode->i_lock);
484 	spin_unlock(&inode_hash_lock);
485 }
486 EXPORT_SYMBOL(__remove_inode_hash);
487 
488 void clear_inode(struct inode *inode)
489 {
490 	might_sleep();
491 	/*
492 	 * We have to cycle tree_lock here because reclaim can be still in the
493 	 * process of removing the last page (in __delete_from_page_cache())
494 	 * and we must not free mapping under it.
495 	 */
496 	spin_lock_irq(&inode->i_data.tree_lock);
497 	BUG_ON(inode->i_data.nrpages);
498 	BUG_ON(inode->i_data.nrshadows);
499 	spin_unlock_irq(&inode->i_data.tree_lock);
500 	BUG_ON(!list_empty(&inode->i_data.private_list));
501 	BUG_ON(!(inode->i_state & I_FREEING));
502 	BUG_ON(inode->i_state & I_CLEAR);
503 	/* don't need i_lock here, no concurrent mods to i_state */
504 	inode->i_state = I_FREEING | I_CLEAR;
505 }
506 EXPORT_SYMBOL(clear_inode);
507 
508 /*
509  * Free the inode passed in, removing it from the lists it is still connected
510  * to. We remove any pages still attached to the inode and wait for any IO that
511  * is still in progress before finally destroying the inode.
512  *
513  * An inode must already be marked I_FREEING so that we avoid the inode being
514  * moved back onto lists if we race with other code that manipulates the lists
515  * (e.g. writeback_single_inode). The caller is responsible for setting this.
516  *
517  * An inode must already be removed from the LRU list before being evicted from
518  * the cache. This should occur atomically with setting the I_FREEING state
519  * flag, so no inodes here should ever be on the LRU when being evicted.
520  */
521 static void evict(struct inode *inode)
522 {
523 	const struct super_operations *op = inode->i_sb->s_op;
524 
525 	BUG_ON(!(inode->i_state & I_FREEING));
526 	BUG_ON(!list_empty(&inode->i_lru));
527 
528 	if (!list_empty(&inode->i_io_list))
529 		inode_io_list_del(inode);
530 
531 	inode_sb_list_del(inode);
532 
533 	/*
534 	 * Wait for flusher thread to be done with the inode so that filesystem
535 	 * does not start destroying it while writeback is still running. Since
536 	 * the inode has I_FREEING set, flusher thread won't start new work on
537 	 * the inode.  We just have to wait for running writeback to finish.
538 	 */
539 	inode_wait_for_writeback(inode);
540 
541 	if (op->evict_inode) {
542 		op->evict_inode(inode);
543 	} else {
544 		truncate_inode_pages_final(&inode->i_data);
545 		clear_inode(inode);
546 	}
547 	if (S_ISBLK(inode->i_mode) && inode->i_bdev)
548 		bd_forget(inode);
549 	if (S_ISCHR(inode->i_mode) && inode->i_cdev)
550 		cd_forget(inode);
551 
552 	remove_inode_hash(inode);
553 
554 	spin_lock(&inode->i_lock);
555 	wake_up_bit(&inode->i_state, __I_NEW);
556 	BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
557 	spin_unlock(&inode->i_lock);
558 
559 	destroy_inode(inode);
560 }
561 
562 /*
563  * dispose_list - dispose of the contents of a local list
564  * @head: the head of the list to free
565  *
566  * Dispose-list gets a local list with local inodes in it, so it doesn't
567  * need to worry about list corruption and SMP locks.
568  */
569 static void dispose_list(struct list_head *head)
570 {
571 	while (!list_empty(head)) {
572 		struct inode *inode;
573 
574 		inode = list_first_entry(head, struct inode, i_lru);
575 		list_del_init(&inode->i_lru);
576 
577 		evict(inode);
578 		cond_resched();
579 	}
580 }
581 
582 /**
583  * evict_inodes	- evict all evictable inodes for a superblock
584  * @sb:		superblock to operate on
585  *
586  * Make sure that no inodes with zero refcount are retained.  This is
587  * called by superblock shutdown after having MS_ACTIVE flag removed,
588  * so any inode reaching zero refcount during or after that call will
589  * be immediately evicted.
590  */
591 void evict_inodes(struct super_block *sb)
592 {
593 	struct inode *inode, *next;
594 	LIST_HEAD(dispose);
595 
596 again:
597 	spin_lock(&sb->s_inode_list_lock);
598 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
599 		if (atomic_read(&inode->i_count))
600 			continue;
601 
602 		spin_lock(&inode->i_lock);
603 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
604 			spin_unlock(&inode->i_lock);
605 			continue;
606 		}
607 
608 		inode->i_state |= I_FREEING;
609 		inode_lru_list_del(inode);
610 		spin_unlock(&inode->i_lock);
611 		list_add(&inode->i_lru, &dispose);
612 
613 		/*
614 		 * We can have a ton of inodes to evict at unmount time given
615 		 * enough memory, check to see if we need to go to sleep for a
616 		 * bit so we don't livelock.
617 		 */
618 		if (need_resched()) {
619 			spin_unlock(&sb->s_inode_list_lock);
620 			cond_resched();
621 			dispose_list(&dispose);
622 			goto again;
623 		}
624 	}
625 	spin_unlock(&sb->s_inode_list_lock);
626 
627 	dispose_list(&dispose);
628 }
629 
630 /**
631  * invalidate_inodes	- attempt to free all inodes on a superblock
632  * @sb:		superblock to operate on
633  * @kill_dirty: flag to guide handling of dirty inodes
634  *
635  * Attempts to free all inodes for a given superblock.  If there were any
636  * busy inodes return a non-zero value, else zero.
637  * If @kill_dirty is set, discard dirty inodes too, otherwise treat
638  * them as busy.
639  */
640 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
641 {
642 	int busy = 0;
643 	struct inode *inode, *next;
644 	LIST_HEAD(dispose);
645 
646 	spin_lock(&sb->s_inode_list_lock);
647 	list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
648 		spin_lock(&inode->i_lock);
649 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
650 			spin_unlock(&inode->i_lock);
651 			continue;
652 		}
653 		if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
654 			spin_unlock(&inode->i_lock);
655 			busy = 1;
656 			continue;
657 		}
658 		if (atomic_read(&inode->i_count)) {
659 			spin_unlock(&inode->i_lock);
660 			busy = 1;
661 			continue;
662 		}
663 
664 		inode->i_state |= I_FREEING;
665 		inode_lru_list_del(inode);
666 		spin_unlock(&inode->i_lock);
667 		list_add(&inode->i_lru, &dispose);
668 	}
669 	spin_unlock(&sb->s_inode_list_lock);
670 
671 	dispose_list(&dispose);
672 
673 	return busy;
674 }
675 
676 /*
677  * Isolate the inode from the LRU in preparation for freeing it.
678  *
679  * Any inodes which are pinned purely because of attached pagecache have their
680  * pagecache removed.  If the inode has metadata buffers attached to
681  * mapping->private_list then try to remove them.
682  *
683  * If the inode has the I_REFERENCED flag set, then it means that it has been
684  * used recently - the flag is set in iput_final(). When we encounter such an
685  * inode, clear the flag and move it to the back of the LRU so it gets another
686  * pass through the LRU before it gets reclaimed. This is necessary because of
687  * the fact we are doing lazy LRU updates to minimise lock contention so the
688  * LRU does not have strict ordering. Hence we don't want to reclaim inodes
689  * with this flag set because they are the inodes that are out of order.
690  */
691 static enum lru_status inode_lru_isolate(struct list_head *item,
692 		struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
693 {
694 	struct list_head *freeable = arg;
695 	struct inode	*inode = container_of(item, struct inode, i_lru);
696 
697 	/*
698 	 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
699 	 * If we fail to get the lock, just skip it.
700 	 */
701 	if (!spin_trylock(&inode->i_lock))
702 		return LRU_SKIP;
703 
704 	/*
705 	 * Referenced or dirty inodes are still in use. Give them another pass
706 	 * through the LRU as we canot reclaim them now.
707 	 */
708 	if (atomic_read(&inode->i_count) ||
709 	    (inode->i_state & ~I_REFERENCED)) {
710 		list_lru_isolate(lru, &inode->i_lru);
711 		spin_unlock(&inode->i_lock);
712 		this_cpu_dec(nr_unused);
713 		return LRU_REMOVED;
714 	}
715 
716 	/* recently referenced inodes get one more pass */
717 	if (inode->i_state & I_REFERENCED) {
718 		inode->i_state &= ~I_REFERENCED;
719 		spin_unlock(&inode->i_lock);
720 		return LRU_ROTATE;
721 	}
722 
723 	if (inode_has_buffers(inode) || inode->i_data.nrpages) {
724 		__iget(inode);
725 		spin_unlock(&inode->i_lock);
726 		spin_unlock(lru_lock);
727 		if (remove_inode_buffers(inode)) {
728 			unsigned long reap;
729 			reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
730 			if (current_is_kswapd())
731 				__count_vm_events(KSWAPD_INODESTEAL, reap);
732 			else
733 				__count_vm_events(PGINODESTEAL, reap);
734 			if (current->reclaim_state)
735 				current->reclaim_state->reclaimed_slab += reap;
736 		}
737 		iput(inode);
738 		spin_lock(lru_lock);
739 		return LRU_RETRY;
740 	}
741 
742 	WARN_ON(inode->i_state & I_NEW);
743 	inode->i_state |= I_FREEING;
744 	list_lru_isolate_move(lru, &inode->i_lru, freeable);
745 	spin_unlock(&inode->i_lock);
746 
747 	this_cpu_dec(nr_unused);
748 	return LRU_REMOVED;
749 }
750 
751 /*
752  * Walk the superblock inode LRU for freeable inodes and attempt to free them.
753  * This is called from the superblock shrinker function with a number of inodes
754  * to trim from the LRU. Inodes to be freed are moved to a temporary list and
755  * then are freed outside inode_lock by dispose_list().
756  */
757 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
758 {
759 	LIST_HEAD(freeable);
760 	long freed;
761 
762 	freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
763 				     inode_lru_isolate, &freeable);
764 	dispose_list(&freeable);
765 	return freed;
766 }
767 
768 static void __wait_on_freeing_inode(struct inode *inode);
769 /*
770  * Called with the inode lock held.
771  */
772 static struct inode *find_inode(struct super_block *sb,
773 				struct hlist_head *head,
774 				int (*test)(struct inode *, void *),
775 				void *data)
776 {
777 	struct inode *inode = NULL;
778 
779 repeat:
780 	hlist_for_each_entry(inode, head, i_hash) {
781 		if (inode->i_sb != sb)
782 			continue;
783 		if (!test(inode, data))
784 			continue;
785 		spin_lock(&inode->i_lock);
786 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
787 			__wait_on_freeing_inode(inode);
788 			goto repeat;
789 		}
790 		__iget(inode);
791 		spin_unlock(&inode->i_lock);
792 		return inode;
793 	}
794 	return NULL;
795 }
796 
797 /*
798  * find_inode_fast is the fast path version of find_inode, see the comment at
799  * iget_locked for details.
800  */
801 static struct inode *find_inode_fast(struct super_block *sb,
802 				struct hlist_head *head, unsigned long ino)
803 {
804 	struct inode *inode = NULL;
805 
806 repeat:
807 	hlist_for_each_entry(inode, head, i_hash) {
808 		if (inode->i_ino != ino)
809 			continue;
810 		if (inode->i_sb != sb)
811 			continue;
812 		spin_lock(&inode->i_lock);
813 		if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
814 			__wait_on_freeing_inode(inode);
815 			goto repeat;
816 		}
817 		__iget(inode);
818 		spin_unlock(&inode->i_lock);
819 		return inode;
820 	}
821 	return NULL;
822 }
823 
824 /*
825  * Each cpu owns a range of LAST_INO_BATCH numbers.
826  * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
827  * to renew the exhausted range.
828  *
829  * This does not significantly increase overflow rate because every CPU can
830  * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
831  * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
832  * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
833  * overflow rate by 2x, which does not seem too significant.
834  *
835  * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
836  * error if st_ino won't fit in target struct field. Use 32bit counter
837  * here to attempt to avoid that.
838  */
839 #define LAST_INO_BATCH 1024
840 static DEFINE_PER_CPU(unsigned int, last_ino);
841 
842 unsigned int get_next_ino(void)
843 {
844 	unsigned int *p = &get_cpu_var(last_ino);
845 	unsigned int res = *p;
846 
847 #ifdef CONFIG_SMP
848 	if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
849 		static atomic_t shared_last_ino;
850 		int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
851 
852 		res = next - LAST_INO_BATCH;
853 	}
854 #endif
855 
856 	res++;
857 	/* get_next_ino should not provide a 0 inode number */
858 	if (unlikely(!res))
859 		res++;
860 	*p = res;
861 	put_cpu_var(last_ino);
862 	return res;
863 }
864 EXPORT_SYMBOL(get_next_ino);
865 
866 /**
867  *	new_inode_pseudo 	- obtain an inode
868  *	@sb: superblock
869  *
870  *	Allocates a new inode for given superblock.
871  *	Inode wont be chained in superblock s_inodes list
872  *	This means :
873  *	- fs can't be unmount
874  *	- quotas, fsnotify, writeback can't work
875  */
876 struct inode *new_inode_pseudo(struct super_block *sb)
877 {
878 	struct inode *inode = alloc_inode(sb);
879 
880 	if (inode) {
881 		spin_lock(&inode->i_lock);
882 		inode->i_state = 0;
883 		spin_unlock(&inode->i_lock);
884 		INIT_LIST_HEAD(&inode->i_sb_list);
885 	}
886 	return inode;
887 }
888 
889 /**
890  *	new_inode 	- obtain an inode
891  *	@sb: superblock
892  *
893  *	Allocates a new inode for given superblock. The default gfp_mask
894  *	for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
895  *	If HIGHMEM pages are unsuitable or it is known that pages allocated
896  *	for the page cache are not reclaimable or migratable,
897  *	mapping_set_gfp_mask() must be called with suitable flags on the
898  *	newly created inode's mapping
899  *
900  */
901 struct inode *new_inode(struct super_block *sb)
902 {
903 	struct inode *inode;
904 
905 	spin_lock_prefetch(&sb->s_inode_list_lock);
906 
907 	inode = new_inode_pseudo(sb);
908 	if (inode)
909 		inode_sb_list_add(inode);
910 	return inode;
911 }
912 EXPORT_SYMBOL(new_inode);
913 
914 #ifdef CONFIG_DEBUG_LOCK_ALLOC
915 void lockdep_annotate_inode_mutex_key(struct inode *inode)
916 {
917 	if (S_ISDIR(inode->i_mode)) {
918 		struct file_system_type *type = inode->i_sb->s_type;
919 
920 		/* Set new key only if filesystem hasn't already changed it */
921 		if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) {
922 			/*
923 			 * ensure nobody is actually holding i_mutex
924 			 */
925 			mutex_destroy(&inode->i_mutex);
926 			mutex_init(&inode->i_mutex);
927 			lockdep_set_class(&inode->i_mutex,
928 					  &type->i_mutex_dir_key);
929 		}
930 	}
931 }
932 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
933 #endif
934 
935 /**
936  * unlock_new_inode - clear the I_NEW state and wake up any waiters
937  * @inode:	new inode to unlock
938  *
939  * Called when the inode is fully initialised to clear the new state of the
940  * inode and wake up anyone waiting for the inode to finish initialisation.
941  */
942 void unlock_new_inode(struct inode *inode)
943 {
944 	lockdep_annotate_inode_mutex_key(inode);
945 	spin_lock(&inode->i_lock);
946 	WARN_ON(!(inode->i_state & I_NEW));
947 	inode->i_state &= ~I_NEW;
948 	smp_mb();
949 	wake_up_bit(&inode->i_state, __I_NEW);
950 	spin_unlock(&inode->i_lock);
951 }
952 EXPORT_SYMBOL(unlock_new_inode);
953 
954 /**
955  * lock_two_nondirectories - take two i_mutexes on non-directory objects
956  *
957  * Lock any non-NULL argument that is not a directory.
958  * Zero, one or two objects may be locked by this function.
959  *
960  * @inode1: first inode to lock
961  * @inode2: second inode to lock
962  */
963 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
964 {
965 	if (inode1 > inode2)
966 		swap(inode1, inode2);
967 
968 	if (inode1 && !S_ISDIR(inode1->i_mode))
969 		mutex_lock(&inode1->i_mutex);
970 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
971 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_NONDIR2);
972 }
973 EXPORT_SYMBOL(lock_two_nondirectories);
974 
975 /**
976  * unlock_two_nondirectories - release locks from lock_two_nondirectories()
977  * @inode1: first inode to unlock
978  * @inode2: second inode to unlock
979  */
980 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
981 {
982 	if (inode1 && !S_ISDIR(inode1->i_mode))
983 		mutex_unlock(&inode1->i_mutex);
984 	if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
985 		mutex_unlock(&inode2->i_mutex);
986 }
987 EXPORT_SYMBOL(unlock_two_nondirectories);
988 
989 /**
990  * iget5_locked - obtain an inode from a mounted file system
991  * @sb:		super block of file system
992  * @hashval:	hash value (usually inode number) to get
993  * @test:	callback used for comparisons between inodes
994  * @set:	callback used to initialize a new struct inode
995  * @data:	opaque data pointer to pass to @test and @set
996  *
997  * Search for the inode specified by @hashval and @data in the inode cache,
998  * and if present it is return it with an increased reference count. This is
999  * a generalized version of iget_locked() for file systems where the inode
1000  * number is not sufficient for unique identification of an inode.
1001  *
1002  * If the inode is not in cache, allocate a new inode and return it locked,
1003  * hashed, and with the I_NEW flag set. The file system gets to fill it in
1004  * before unlocking it via unlock_new_inode().
1005  *
1006  * Note both @test and @set are called with the inode_hash_lock held, so can't
1007  * sleep.
1008  */
1009 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1010 		int (*test)(struct inode *, void *),
1011 		int (*set)(struct inode *, void *), void *data)
1012 {
1013 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1014 	struct inode *inode;
1015 
1016 	spin_lock(&inode_hash_lock);
1017 	inode = find_inode(sb, head, test, data);
1018 	spin_unlock(&inode_hash_lock);
1019 
1020 	if (inode) {
1021 		wait_on_inode(inode);
1022 		return inode;
1023 	}
1024 
1025 	inode = alloc_inode(sb);
1026 	if (inode) {
1027 		struct inode *old;
1028 
1029 		spin_lock(&inode_hash_lock);
1030 		/* We released the lock, so.. */
1031 		old = find_inode(sb, head, test, data);
1032 		if (!old) {
1033 			if (set(inode, data))
1034 				goto set_failed;
1035 
1036 			spin_lock(&inode->i_lock);
1037 			inode->i_state = I_NEW;
1038 			hlist_add_head(&inode->i_hash, head);
1039 			spin_unlock(&inode->i_lock);
1040 			inode_sb_list_add(inode);
1041 			spin_unlock(&inode_hash_lock);
1042 
1043 			/* Return the locked inode with I_NEW set, the
1044 			 * caller is responsible for filling in the contents
1045 			 */
1046 			return inode;
1047 		}
1048 
1049 		/*
1050 		 * Uhhuh, somebody else created the same inode under
1051 		 * us. Use the old inode instead of the one we just
1052 		 * allocated.
1053 		 */
1054 		spin_unlock(&inode_hash_lock);
1055 		destroy_inode(inode);
1056 		inode = old;
1057 		wait_on_inode(inode);
1058 	}
1059 	return inode;
1060 
1061 set_failed:
1062 	spin_unlock(&inode_hash_lock);
1063 	destroy_inode(inode);
1064 	return NULL;
1065 }
1066 EXPORT_SYMBOL(iget5_locked);
1067 
1068 /**
1069  * iget_locked - obtain an inode from a mounted file system
1070  * @sb:		super block of file system
1071  * @ino:	inode number to get
1072  *
1073  * Search for the inode specified by @ino in the inode cache and if present
1074  * return it with an increased reference count. This is for file systems
1075  * where the inode number is sufficient for unique identification of an inode.
1076  *
1077  * If the inode is not in cache, allocate a new inode and return it locked,
1078  * hashed, and with the I_NEW flag set.  The file system gets to fill it in
1079  * before unlocking it via unlock_new_inode().
1080  */
1081 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1082 {
1083 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1084 	struct inode *inode;
1085 
1086 	spin_lock(&inode_hash_lock);
1087 	inode = find_inode_fast(sb, head, ino);
1088 	spin_unlock(&inode_hash_lock);
1089 	if (inode) {
1090 		wait_on_inode(inode);
1091 		return inode;
1092 	}
1093 
1094 	inode = alloc_inode(sb);
1095 	if (inode) {
1096 		struct inode *old;
1097 
1098 		spin_lock(&inode_hash_lock);
1099 		/* We released the lock, so.. */
1100 		old = find_inode_fast(sb, head, ino);
1101 		if (!old) {
1102 			inode->i_ino = ino;
1103 			spin_lock(&inode->i_lock);
1104 			inode->i_state = I_NEW;
1105 			hlist_add_head(&inode->i_hash, head);
1106 			spin_unlock(&inode->i_lock);
1107 			inode_sb_list_add(inode);
1108 			spin_unlock(&inode_hash_lock);
1109 
1110 			/* Return the locked inode with I_NEW set, the
1111 			 * caller is responsible for filling in the contents
1112 			 */
1113 			return inode;
1114 		}
1115 
1116 		/*
1117 		 * Uhhuh, somebody else created the same inode under
1118 		 * us. Use the old inode instead of the one we just
1119 		 * allocated.
1120 		 */
1121 		spin_unlock(&inode_hash_lock);
1122 		destroy_inode(inode);
1123 		inode = old;
1124 		wait_on_inode(inode);
1125 	}
1126 	return inode;
1127 }
1128 EXPORT_SYMBOL(iget_locked);
1129 
1130 /*
1131  * search the inode cache for a matching inode number.
1132  * If we find one, then the inode number we are trying to
1133  * allocate is not unique and so we should not use it.
1134  *
1135  * Returns 1 if the inode number is unique, 0 if it is not.
1136  */
1137 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1138 {
1139 	struct hlist_head *b = inode_hashtable + hash(sb, ino);
1140 	struct inode *inode;
1141 
1142 	spin_lock(&inode_hash_lock);
1143 	hlist_for_each_entry(inode, b, i_hash) {
1144 		if (inode->i_ino == ino && inode->i_sb == sb) {
1145 			spin_unlock(&inode_hash_lock);
1146 			return 0;
1147 		}
1148 	}
1149 	spin_unlock(&inode_hash_lock);
1150 
1151 	return 1;
1152 }
1153 
1154 /**
1155  *	iunique - get a unique inode number
1156  *	@sb: superblock
1157  *	@max_reserved: highest reserved inode number
1158  *
1159  *	Obtain an inode number that is unique on the system for a given
1160  *	superblock. This is used by file systems that have no natural
1161  *	permanent inode numbering system. An inode number is returned that
1162  *	is higher than the reserved limit but unique.
1163  *
1164  *	BUGS:
1165  *	With a large number of inodes live on the file system this function
1166  *	currently becomes quite slow.
1167  */
1168 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1169 {
1170 	/*
1171 	 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1172 	 * error if st_ino won't fit in target struct field. Use 32bit counter
1173 	 * here to attempt to avoid that.
1174 	 */
1175 	static DEFINE_SPINLOCK(iunique_lock);
1176 	static unsigned int counter;
1177 	ino_t res;
1178 
1179 	spin_lock(&iunique_lock);
1180 	do {
1181 		if (counter <= max_reserved)
1182 			counter = max_reserved + 1;
1183 		res = counter++;
1184 	} while (!test_inode_iunique(sb, res));
1185 	spin_unlock(&iunique_lock);
1186 
1187 	return res;
1188 }
1189 EXPORT_SYMBOL(iunique);
1190 
1191 struct inode *igrab(struct inode *inode)
1192 {
1193 	spin_lock(&inode->i_lock);
1194 	if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1195 		__iget(inode);
1196 		spin_unlock(&inode->i_lock);
1197 	} else {
1198 		spin_unlock(&inode->i_lock);
1199 		/*
1200 		 * Handle the case where s_op->clear_inode is not been
1201 		 * called yet, and somebody is calling igrab
1202 		 * while the inode is getting freed.
1203 		 */
1204 		inode = NULL;
1205 	}
1206 	return inode;
1207 }
1208 EXPORT_SYMBOL(igrab);
1209 
1210 /**
1211  * ilookup5_nowait - search for an inode in the inode cache
1212  * @sb:		super block of file system to search
1213  * @hashval:	hash value (usually inode number) to search for
1214  * @test:	callback used for comparisons between inodes
1215  * @data:	opaque data pointer to pass to @test
1216  *
1217  * Search for the inode specified by @hashval and @data in the inode cache.
1218  * If the inode is in the cache, the inode is returned with an incremented
1219  * reference count.
1220  *
1221  * Note: I_NEW is not waited upon so you have to be very careful what you do
1222  * with the returned inode.  You probably should be using ilookup5() instead.
1223  *
1224  * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1225  */
1226 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1227 		int (*test)(struct inode *, void *), void *data)
1228 {
1229 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1230 	struct inode *inode;
1231 
1232 	spin_lock(&inode_hash_lock);
1233 	inode = find_inode(sb, head, test, data);
1234 	spin_unlock(&inode_hash_lock);
1235 
1236 	return inode;
1237 }
1238 EXPORT_SYMBOL(ilookup5_nowait);
1239 
1240 /**
1241  * ilookup5 - search for an inode in the inode cache
1242  * @sb:		super block of file system to search
1243  * @hashval:	hash value (usually inode number) to search for
1244  * @test:	callback used for comparisons between inodes
1245  * @data:	opaque data pointer to pass to @test
1246  *
1247  * Search for the inode specified by @hashval and @data in the inode cache,
1248  * and if the inode is in the cache, return the inode with an incremented
1249  * reference count.  Waits on I_NEW before returning the inode.
1250  * returned with an incremented reference count.
1251  *
1252  * This is a generalized version of ilookup() for file systems where the
1253  * inode number is not sufficient for unique identification of an inode.
1254  *
1255  * Note: @test is called with the inode_hash_lock held, so can't sleep.
1256  */
1257 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1258 		int (*test)(struct inode *, void *), void *data)
1259 {
1260 	struct inode *inode = ilookup5_nowait(sb, hashval, test, data);
1261 
1262 	if (inode)
1263 		wait_on_inode(inode);
1264 	return inode;
1265 }
1266 EXPORT_SYMBOL(ilookup5);
1267 
1268 /**
1269  * ilookup - search for an inode in the inode cache
1270  * @sb:		super block of file system to search
1271  * @ino:	inode number to search for
1272  *
1273  * Search for the inode @ino in the inode cache, and if the inode is in the
1274  * cache, the inode is returned with an incremented reference count.
1275  */
1276 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1277 {
1278 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1279 	struct inode *inode;
1280 
1281 	spin_lock(&inode_hash_lock);
1282 	inode = find_inode_fast(sb, head, ino);
1283 	spin_unlock(&inode_hash_lock);
1284 
1285 	if (inode)
1286 		wait_on_inode(inode);
1287 	return inode;
1288 }
1289 EXPORT_SYMBOL(ilookup);
1290 
1291 /**
1292  * find_inode_nowait - find an inode in the inode cache
1293  * @sb:		super block of file system to search
1294  * @hashval:	hash value (usually inode number) to search for
1295  * @match:	callback used for comparisons between inodes
1296  * @data:	opaque data pointer to pass to @match
1297  *
1298  * Search for the inode specified by @hashval and @data in the inode
1299  * cache, where the helper function @match will return 0 if the inode
1300  * does not match, 1 if the inode does match, and -1 if the search
1301  * should be stopped.  The @match function must be responsible for
1302  * taking the i_lock spin_lock and checking i_state for an inode being
1303  * freed or being initialized, and incrementing the reference count
1304  * before returning 1.  It also must not sleep, since it is called with
1305  * the inode_hash_lock spinlock held.
1306  *
1307  * This is a even more generalized version of ilookup5() when the
1308  * function must never block --- find_inode() can block in
1309  * __wait_on_freeing_inode() --- or when the caller can not increment
1310  * the reference count because the resulting iput() might cause an
1311  * inode eviction.  The tradeoff is that the @match funtion must be
1312  * very carefully implemented.
1313  */
1314 struct inode *find_inode_nowait(struct super_block *sb,
1315 				unsigned long hashval,
1316 				int (*match)(struct inode *, unsigned long,
1317 					     void *),
1318 				void *data)
1319 {
1320 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1321 	struct inode *inode, *ret_inode = NULL;
1322 	int mval;
1323 
1324 	spin_lock(&inode_hash_lock);
1325 	hlist_for_each_entry(inode, head, i_hash) {
1326 		if (inode->i_sb != sb)
1327 			continue;
1328 		mval = match(inode, hashval, data);
1329 		if (mval == 0)
1330 			continue;
1331 		if (mval == 1)
1332 			ret_inode = inode;
1333 		goto out;
1334 	}
1335 out:
1336 	spin_unlock(&inode_hash_lock);
1337 	return ret_inode;
1338 }
1339 EXPORT_SYMBOL(find_inode_nowait);
1340 
1341 int insert_inode_locked(struct inode *inode)
1342 {
1343 	struct super_block *sb = inode->i_sb;
1344 	ino_t ino = inode->i_ino;
1345 	struct hlist_head *head = inode_hashtable + hash(sb, ino);
1346 
1347 	while (1) {
1348 		struct inode *old = NULL;
1349 		spin_lock(&inode_hash_lock);
1350 		hlist_for_each_entry(old, head, i_hash) {
1351 			if (old->i_ino != ino)
1352 				continue;
1353 			if (old->i_sb != sb)
1354 				continue;
1355 			spin_lock(&old->i_lock);
1356 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1357 				spin_unlock(&old->i_lock);
1358 				continue;
1359 			}
1360 			break;
1361 		}
1362 		if (likely(!old)) {
1363 			spin_lock(&inode->i_lock);
1364 			inode->i_state |= I_NEW;
1365 			hlist_add_head(&inode->i_hash, head);
1366 			spin_unlock(&inode->i_lock);
1367 			spin_unlock(&inode_hash_lock);
1368 			return 0;
1369 		}
1370 		__iget(old);
1371 		spin_unlock(&old->i_lock);
1372 		spin_unlock(&inode_hash_lock);
1373 		wait_on_inode(old);
1374 		if (unlikely(!inode_unhashed(old))) {
1375 			iput(old);
1376 			return -EBUSY;
1377 		}
1378 		iput(old);
1379 	}
1380 }
1381 EXPORT_SYMBOL(insert_inode_locked);
1382 
1383 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1384 		int (*test)(struct inode *, void *), void *data)
1385 {
1386 	struct super_block *sb = inode->i_sb;
1387 	struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1388 
1389 	while (1) {
1390 		struct inode *old = NULL;
1391 
1392 		spin_lock(&inode_hash_lock);
1393 		hlist_for_each_entry(old, head, i_hash) {
1394 			if (old->i_sb != sb)
1395 				continue;
1396 			if (!test(old, data))
1397 				continue;
1398 			spin_lock(&old->i_lock);
1399 			if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1400 				spin_unlock(&old->i_lock);
1401 				continue;
1402 			}
1403 			break;
1404 		}
1405 		if (likely(!old)) {
1406 			spin_lock(&inode->i_lock);
1407 			inode->i_state |= I_NEW;
1408 			hlist_add_head(&inode->i_hash, head);
1409 			spin_unlock(&inode->i_lock);
1410 			spin_unlock(&inode_hash_lock);
1411 			return 0;
1412 		}
1413 		__iget(old);
1414 		spin_unlock(&old->i_lock);
1415 		spin_unlock(&inode_hash_lock);
1416 		wait_on_inode(old);
1417 		if (unlikely(!inode_unhashed(old))) {
1418 			iput(old);
1419 			return -EBUSY;
1420 		}
1421 		iput(old);
1422 	}
1423 }
1424 EXPORT_SYMBOL(insert_inode_locked4);
1425 
1426 
1427 int generic_delete_inode(struct inode *inode)
1428 {
1429 	return 1;
1430 }
1431 EXPORT_SYMBOL(generic_delete_inode);
1432 
1433 /*
1434  * Called when we're dropping the last reference
1435  * to an inode.
1436  *
1437  * Call the FS "drop_inode()" function, defaulting to
1438  * the legacy UNIX filesystem behaviour.  If it tells
1439  * us to evict inode, do so.  Otherwise, retain inode
1440  * in cache if fs is alive, sync and evict if fs is
1441  * shutting down.
1442  */
1443 static void iput_final(struct inode *inode)
1444 {
1445 	struct super_block *sb = inode->i_sb;
1446 	const struct super_operations *op = inode->i_sb->s_op;
1447 	int drop;
1448 
1449 	WARN_ON(inode->i_state & I_NEW);
1450 
1451 	if (op->drop_inode)
1452 		drop = op->drop_inode(inode);
1453 	else
1454 		drop = generic_drop_inode(inode);
1455 
1456 	if (!drop && (sb->s_flags & MS_ACTIVE)) {
1457 		inode->i_state |= I_REFERENCED;
1458 		inode_add_lru(inode);
1459 		spin_unlock(&inode->i_lock);
1460 		return;
1461 	}
1462 
1463 	if (!drop) {
1464 		inode->i_state |= I_WILL_FREE;
1465 		spin_unlock(&inode->i_lock);
1466 		write_inode_now(inode, 1);
1467 		spin_lock(&inode->i_lock);
1468 		WARN_ON(inode->i_state & I_NEW);
1469 		inode->i_state &= ~I_WILL_FREE;
1470 	}
1471 
1472 	inode->i_state |= I_FREEING;
1473 	if (!list_empty(&inode->i_lru))
1474 		inode_lru_list_del(inode);
1475 	spin_unlock(&inode->i_lock);
1476 
1477 	evict(inode);
1478 }
1479 
1480 /**
1481  *	iput	- put an inode
1482  *	@inode: inode to put
1483  *
1484  *	Puts an inode, dropping its usage count. If the inode use count hits
1485  *	zero, the inode is then freed and may also be destroyed.
1486  *
1487  *	Consequently, iput() can sleep.
1488  */
1489 void iput(struct inode *inode)
1490 {
1491 	if (!inode)
1492 		return;
1493 	BUG_ON(inode->i_state & I_CLEAR);
1494 retry:
1495 	if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1496 		if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1497 			atomic_inc(&inode->i_count);
1498 			inode->i_state &= ~I_DIRTY_TIME;
1499 			spin_unlock(&inode->i_lock);
1500 			trace_writeback_lazytime_iput(inode);
1501 			mark_inode_dirty_sync(inode);
1502 			goto retry;
1503 		}
1504 		iput_final(inode);
1505 	}
1506 }
1507 EXPORT_SYMBOL(iput);
1508 
1509 /**
1510  *	bmap	- find a block number in a file
1511  *	@inode: inode of file
1512  *	@block: block to find
1513  *
1514  *	Returns the block number on the device holding the inode that
1515  *	is the disk block number for the block of the file requested.
1516  *	That is, asked for block 4 of inode 1 the function will return the
1517  *	disk block relative to the disk start that holds that block of the
1518  *	file.
1519  */
1520 sector_t bmap(struct inode *inode, sector_t block)
1521 {
1522 	sector_t res = 0;
1523 	if (inode->i_mapping->a_ops->bmap)
1524 		res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1525 	return res;
1526 }
1527 EXPORT_SYMBOL(bmap);
1528 
1529 /*
1530  * With relative atime, only update atime if the previous atime is
1531  * earlier than either the ctime or mtime or if at least a day has
1532  * passed since the last atime update.
1533  */
1534 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1535 			     struct timespec now)
1536 {
1537 
1538 	if (!(mnt->mnt_flags & MNT_RELATIME))
1539 		return 1;
1540 	/*
1541 	 * Is mtime younger than atime? If yes, update atime:
1542 	 */
1543 	if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1544 		return 1;
1545 	/*
1546 	 * Is ctime younger than atime? If yes, update atime:
1547 	 */
1548 	if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1549 		return 1;
1550 
1551 	/*
1552 	 * Is the previous atime value older than a day? If yes,
1553 	 * update atime:
1554 	 */
1555 	if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1556 		return 1;
1557 	/*
1558 	 * Good, we can skip the atime update:
1559 	 */
1560 	return 0;
1561 }
1562 
1563 int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1564 {
1565 	int iflags = I_DIRTY_TIME;
1566 
1567 	if (flags & S_ATIME)
1568 		inode->i_atime = *time;
1569 	if (flags & S_VERSION)
1570 		inode_inc_iversion(inode);
1571 	if (flags & S_CTIME)
1572 		inode->i_ctime = *time;
1573 	if (flags & S_MTIME)
1574 		inode->i_mtime = *time;
1575 
1576 	if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1577 		iflags |= I_DIRTY_SYNC;
1578 	__mark_inode_dirty(inode, iflags);
1579 	return 0;
1580 }
1581 EXPORT_SYMBOL(generic_update_time);
1582 
1583 /*
1584  * This does the actual work of updating an inodes time or version.  Must have
1585  * had called mnt_want_write() before calling this.
1586  */
1587 static int update_time(struct inode *inode, struct timespec *time, int flags)
1588 {
1589 	int (*update_time)(struct inode *, struct timespec *, int);
1590 
1591 	update_time = inode->i_op->update_time ? inode->i_op->update_time :
1592 		generic_update_time;
1593 
1594 	return update_time(inode, time, flags);
1595 }
1596 
1597 /**
1598  *	touch_atime	-	update the access time
1599  *	@path: the &struct path to update
1600  *	@inode: inode to update
1601  *
1602  *	Update the accessed time on an inode and mark it for writeback.
1603  *	This function automatically handles read only file systems and media,
1604  *	as well as the "noatime" flag and inode specific "noatime" markers.
1605  */
1606 bool atime_needs_update(const struct path *path, struct inode *inode)
1607 {
1608 	struct vfsmount *mnt = path->mnt;
1609 	struct timespec now;
1610 
1611 	if (inode->i_flags & S_NOATIME)
1612 		return false;
1613 	if (IS_NOATIME(inode))
1614 		return false;
1615 	if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1616 		return false;
1617 
1618 	if (mnt->mnt_flags & MNT_NOATIME)
1619 		return false;
1620 	if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1621 		return false;
1622 
1623 	now = current_fs_time(inode->i_sb);
1624 
1625 	if (!relatime_need_update(mnt, inode, now))
1626 		return false;
1627 
1628 	if (timespec_equal(&inode->i_atime, &now))
1629 		return false;
1630 
1631 	return true;
1632 }
1633 
1634 void touch_atime(const struct path *path)
1635 {
1636 	struct vfsmount *mnt = path->mnt;
1637 	struct inode *inode = d_inode(path->dentry);
1638 	struct timespec now;
1639 
1640 	if (!atime_needs_update(path, inode))
1641 		return;
1642 
1643 	if (!sb_start_write_trylock(inode->i_sb))
1644 		return;
1645 
1646 	if (__mnt_want_write(mnt) != 0)
1647 		goto skip_update;
1648 	/*
1649 	 * File systems can error out when updating inodes if they need to
1650 	 * allocate new space to modify an inode (such is the case for
1651 	 * Btrfs), but since we touch atime while walking down the path we
1652 	 * really don't care if we failed to update the atime of the file,
1653 	 * so just ignore the return value.
1654 	 * We may also fail on filesystems that have the ability to make parts
1655 	 * of the fs read only, e.g. subvolumes in Btrfs.
1656 	 */
1657 	now = current_fs_time(inode->i_sb);
1658 	update_time(inode, &now, S_ATIME);
1659 	__mnt_drop_write(mnt);
1660 skip_update:
1661 	sb_end_write(inode->i_sb);
1662 }
1663 EXPORT_SYMBOL(touch_atime);
1664 
1665 /*
1666  * The logic we want is
1667  *
1668  *	if suid or (sgid and xgrp)
1669  *		remove privs
1670  */
1671 int should_remove_suid(struct dentry *dentry)
1672 {
1673 	umode_t mode = d_inode(dentry)->i_mode;
1674 	int kill = 0;
1675 
1676 	/* suid always must be killed */
1677 	if (unlikely(mode & S_ISUID))
1678 		kill = ATTR_KILL_SUID;
1679 
1680 	/*
1681 	 * sgid without any exec bits is just a mandatory locking mark; leave
1682 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1683 	 */
1684 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1685 		kill |= ATTR_KILL_SGID;
1686 
1687 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1688 		return kill;
1689 
1690 	return 0;
1691 }
1692 EXPORT_SYMBOL(should_remove_suid);
1693 
1694 /*
1695  * Return mask of changes for notify_change() that need to be done as a
1696  * response to write or truncate. Return 0 if nothing has to be changed.
1697  * Negative value on error (change should be denied).
1698  */
1699 int dentry_needs_remove_privs(struct dentry *dentry)
1700 {
1701 	struct inode *inode = d_inode(dentry);
1702 	int mask = 0;
1703 	int ret;
1704 
1705 	if (IS_NOSEC(inode))
1706 		return 0;
1707 
1708 	mask = should_remove_suid(dentry);
1709 	ret = security_inode_need_killpriv(dentry);
1710 	if (ret < 0)
1711 		return ret;
1712 	if (ret)
1713 		mask |= ATTR_KILL_PRIV;
1714 	return mask;
1715 }
1716 EXPORT_SYMBOL(dentry_needs_remove_privs);
1717 
1718 static int __remove_privs(struct dentry *dentry, int kill)
1719 {
1720 	struct iattr newattrs;
1721 
1722 	newattrs.ia_valid = ATTR_FORCE | kill;
1723 	/*
1724 	 * Note we call this on write, so notify_change will not
1725 	 * encounter any conflicting delegations:
1726 	 */
1727 	return notify_change(dentry, &newattrs, NULL);
1728 }
1729 
1730 /*
1731  * Remove special file priviledges (suid, capabilities) when file is written
1732  * to or truncated.
1733  */
1734 int file_remove_privs(struct file *file)
1735 {
1736 	struct dentry *dentry = file->f_path.dentry;
1737 	struct inode *inode = d_inode(dentry);
1738 	int kill;
1739 	int error = 0;
1740 
1741 	/* Fast path for nothing security related */
1742 	if (IS_NOSEC(inode))
1743 		return 0;
1744 
1745 	kill = file_needs_remove_privs(file);
1746 	if (kill < 0)
1747 		return kill;
1748 	if (kill)
1749 		error = __remove_privs(dentry, kill);
1750 	if (!error)
1751 		inode_has_no_xattr(inode);
1752 
1753 	return error;
1754 }
1755 EXPORT_SYMBOL(file_remove_privs);
1756 
1757 /**
1758  *	file_update_time	-	update mtime and ctime time
1759  *	@file: file accessed
1760  *
1761  *	Update the mtime and ctime members of an inode and mark the inode
1762  *	for writeback.  Note that this function is meant exclusively for
1763  *	usage in the file write path of filesystems, and filesystems may
1764  *	choose to explicitly ignore update via this function with the
1765  *	S_NOCMTIME inode flag, e.g. for network filesystem where these
1766  *	timestamps are handled by the server.  This can return an error for
1767  *	file systems who need to allocate space in order to update an inode.
1768  */
1769 
1770 int file_update_time(struct file *file)
1771 {
1772 	struct inode *inode = file_inode(file);
1773 	struct timespec now;
1774 	int sync_it = 0;
1775 	int ret;
1776 
1777 	/* First try to exhaust all avenues to not sync */
1778 	if (IS_NOCMTIME(inode))
1779 		return 0;
1780 
1781 	now = current_fs_time(inode->i_sb);
1782 	if (!timespec_equal(&inode->i_mtime, &now))
1783 		sync_it = S_MTIME;
1784 
1785 	if (!timespec_equal(&inode->i_ctime, &now))
1786 		sync_it |= S_CTIME;
1787 
1788 	if (IS_I_VERSION(inode))
1789 		sync_it |= S_VERSION;
1790 
1791 	if (!sync_it)
1792 		return 0;
1793 
1794 	/* Finally allowed to write? Takes lock. */
1795 	if (__mnt_want_write_file(file))
1796 		return 0;
1797 
1798 	ret = update_time(inode, &now, sync_it);
1799 	__mnt_drop_write_file(file);
1800 
1801 	return ret;
1802 }
1803 EXPORT_SYMBOL(file_update_time);
1804 
1805 int inode_needs_sync(struct inode *inode)
1806 {
1807 	if (IS_SYNC(inode))
1808 		return 1;
1809 	if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1810 		return 1;
1811 	return 0;
1812 }
1813 EXPORT_SYMBOL(inode_needs_sync);
1814 
1815 /*
1816  * If we try to find an inode in the inode hash while it is being
1817  * deleted, we have to wait until the filesystem completes its
1818  * deletion before reporting that it isn't found.  This function waits
1819  * until the deletion _might_ have completed.  Callers are responsible
1820  * to recheck inode state.
1821  *
1822  * It doesn't matter if I_NEW is not set initially, a call to
1823  * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1824  * will DTRT.
1825  */
1826 static void __wait_on_freeing_inode(struct inode *inode)
1827 {
1828 	wait_queue_head_t *wq;
1829 	DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1830 	wq = bit_waitqueue(&inode->i_state, __I_NEW);
1831 	prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1832 	spin_unlock(&inode->i_lock);
1833 	spin_unlock(&inode_hash_lock);
1834 	schedule();
1835 	finish_wait(wq, &wait.wait);
1836 	spin_lock(&inode_hash_lock);
1837 }
1838 
1839 static __initdata unsigned long ihash_entries;
1840 static int __init set_ihash_entries(char *str)
1841 {
1842 	if (!str)
1843 		return 0;
1844 	ihash_entries = simple_strtoul(str, &str, 0);
1845 	return 1;
1846 }
1847 __setup("ihash_entries=", set_ihash_entries);
1848 
1849 /*
1850  * Initialize the waitqueues and inode hash table.
1851  */
1852 void __init inode_init_early(void)
1853 {
1854 	unsigned int loop;
1855 
1856 	/* If hashes are distributed across NUMA nodes, defer
1857 	 * hash allocation until vmalloc space is available.
1858 	 */
1859 	if (hashdist)
1860 		return;
1861 
1862 	inode_hashtable =
1863 		alloc_large_system_hash("Inode-cache",
1864 					sizeof(struct hlist_head),
1865 					ihash_entries,
1866 					14,
1867 					HASH_EARLY,
1868 					&i_hash_shift,
1869 					&i_hash_mask,
1870 					0,
1871 					0);
1872 
1873 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1874 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1875 }
1876 
1877 void __init inode_init(void)
1878 {
1879 	unsigned int loop;
1880 
1881 	/* inode slab cache */
1882 	inode_cachep = kmem_cache_create("inode_cache",
1883 					 sizeof(struct inode),
1884 					 0,
1885 					 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1886 					 SLAB_MEM_SPREAD),
1887 					 init_once);
1888 
1889 	/* Hash may have been set up in inode_init_early */
1890 	if (!hashdist)
1891 		return;
1892 
1893 	inode_hashtable =
1894 		alloc_large_system_hash("Inode-cache",
1895 					sizeof(struct hlist_head),
1896 					ihash_entries,
1897 					14,
1898 					0,
1899 					&i_hash_shift,
1900 					&i_hash_mask,
1901 					0,
1902 					0);
1903 
1904 	for (loop = 0; loop < (1U << i_hash_shift); loop++)
1905 		INIT_HLIST_HEAD(&inode_hashtable[loop]);
1906 }
1907 
1908 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1909 {
1910 	inode->i_mode = mode;
1911 	if (S_ISCHR(mode)) {
1912 		inode->i_fop = &def_chr_fops;
1913 		inode->i_rdev = rdev;
1914 	} else if (S_ISBLK(mode)) {
1915 		inode->i_fop = &def_blk_fops;
1916 		inode->i_rdev = rdev;
1917 	} else if (S_ISFIFO(mode))
1918 		inode->i_fop = &pipefifo_fops;
1919 	else if (S_ISSOCK(mode))
1920 		;	/* leave it no_open_fops */
1921 	else
1922 		printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1923 				  " inode %s:%lu\n", mode, inode->i_sb->s_id,
1924 				  inode->i_ino);
1925 }
1926 EXPORT_SYMBOL(init_special_inode);
1927 
1928 /**
1929  * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1930  * @inode: New inode
1931  * @dir: Directory inode
1932  * @mode: mode of the new inode
1933  */
1934 void inode_init_owner(struct inode *inode, const struct inode *dir,
1935 			umode_t mode)
1936 {
1937 	inode->i_uid = current_fsuid();
1938 	if (dir && dir->i_mode & S_ISGID) {
1939 		inode->i_gid = dir->i_gid;
1940 		if (S_ISDIR(mode))
1941 			mode |= S_ISGID;
1942 	} else
1943 		inode->i_gid = current_fsgid();
1944 	inode->i_mode = mode;
1945 }
1946 EXPORT_SYMBOL(inode_init_owner);
1947 
1948 /**
1949  * inode_owner_or_capable - check current task permissions to inode
1950  * @inode: inode being checked
1951  *
1952  * Return true if current either has CAP_FOWNER in a namespace with the
1953  * inode owner uid mapped, or owns the file.
1954  */
1955 bool inode_owner_or_capable(const struct inode *inode)
1956 {
1957 	struct user_namespace *ns;
1958 
1959 	if (uid_eq(current_fsuid(), inode->i_uid))
1960 		return true;
1961 
1962 	ns = current_user_ns();
1963 	if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
1964 		return true;
1965 	return false;
1966 }
1967 EXPORT_SYMBOL(inode_owner_or_capable);
1968 
1969 /*
1970  * Direct i/o helper functions
1971  */
1972 static void __inode_dio_wait(struct inode *inode)
1973 {
1974 	wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
1975 	DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
1976 
1977 	do {
1978 		prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
1979 		if (atomic_read(&inode->i_dio_count))
1980 			schedule();
1981 	} while (atomic_read(&inode->i_dio_count));
1982 	finish_wait(wq, &q.wait);
1983 }
1984 
1985 /**
1986  * inode_dio_wait - wait for outstanding DIO requests to finish
1987  * @inode: inode to wait for
1988  *
1989  * Waits for all pending direct I/O requests to finish so that we can
1990  * proceed with a truncate or equivalent operation.
1991  *
1992  * Must be called under a lock that serializes taking new references
1993  * to i_dio_count, usually by inode->i_mutex.
1994  */
1995 void inode_dio_wait(struct inode *inode)
1996 {
1997 	if (atomic_read(&inode->i_dio_count))
1998 		__inode_dio_wait(inode);
1999 }
2000 EXPORT_SYMBOL(inode_dio_wait);
2001 
2002 /*
2003  * inode_set_flags - atomically set some inode flags
2004  *
2005  * Note: the caller should be holding i_mutex, or else be sure that
2006  * they have exclusive access to the inode structure (i.e., while the
2007  * inode is being instantiated).  The reason for the cmpxchg() loop
2008  * --- which wouldn't be necessary if all code paths which modify
2009  * i_flags actually followed this rule, is that there is at least one
2010  * code path which doesn't today so we use cmpxchg() out of an abundance
2011  * of caution.
2012  *
2013  * In the long run, i_mutex is overkill, and we should probably look
2014  * at using the i_lock spinlock to protect i_flags, and then make sure
2015  * it is so documented in include/linux/fs.h and that all code follows
2016  * the locking convention!!
2017  */
2018 void inode_set_flags(struct inode *inode, unsigned int flags,
2019 		     unsigned int mask)
2020 {
2021 	unsigned int old_flags, new_flags;
2022 
2023 	WARN_ON_ONCE(flags & ~mask);
2024 	do {
2025 		old_flags = ACCESS_ONCE(inode->i_flags);
2026 		new_flags = (old_flags & ~mask) | flags;
2027 	} while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2028 				  new_flags) != old_flags));
2029 }
2030 EXPORT_SYMBOL(inode_set_flags);
2031