1 /* 2 * (C) 1997 Linus Torvalds 3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 4 */ 5 #include <linux/export.h> 6 #include <linux/fs.h> 7 #include <linux/mm.h> 8 #include <linux/backing-dev.h> 9 #include <linux/hash.h> 10 #include <linux/swap.h> 11 #include <linux/security.h> 12 #include <linux/cdev.h> 13 #include <linux/bootmem.h> 14 #include <linux/fsnotify.h> 15 #include <linux/mount.h> 16 #include <linux/posix_acl.h> 17 #include <linux/prefetch.h> 18 #include <linux/buffer_head.h> /* for inode_has_buffers */ 19 #include <linux/ratelimit.h> 20 #include <linux/list_lru.h> 21 #include <trace/events/writeback.h> 22 #include "internal.h" 23 24 /* 25 * Inode locking rules: 26 * 27 * inode->i_lock protects: 28 * inode->i_state, inode->i_hash, __iget() 29 * Inode LRU list locks protect: 30 * inode->i_sb->s_inode_lru, inode->i_lru 31 * inode->i_sb->s_inode_list_lock protects: 32 * inode->i_sb->s_inodes, inode->i_sb_list 33 * bdi->wb.list_lock protects: 34 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 35 * inode_hash_lock protects: 36 * inode_hashtable, inode->i_hash 37 * 38 * Lock ordering: 39 * 40 * inode->i_sb->s_inode_list_lock 41 * inode->i_lock 42 * Inode LRU list locks 43 * 44 * bdi->wb.list_lock 45 * inode->i_lock 46 * 47 * inode_hash_lock 48 * inode->i_sb->s_inode_list_lock 49 * inode->i_lock 50 * 51 * iunique_lock 52 * inode_hash_lock 53 */ 54 55 static unsigned int i_hash_mask __read_mostly; 56 static unsigned int i_hash_shift __read_mostly; 57 static struct hlist_head *inode_hashtable __read_mostly; 58 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 59 60 /* 61 * Empty aops. Can be used for the cases where the user does not 62 * define any of the address_space operations. 63 */ 64 const struct address_space_operations empty_aops = { 65 }; 66 EXPORT_SYMBOL(empty_aops); 67 68 /* 69 * Statistics gathering.. 70 */ 71 struct inodes_stat_t inodes_stat; 72 73 static DEFINE_PER_CPU(unsigned long, nr_inodes); 74 static DEFINE_PER_CPU(unsigned long, nr_unused); 75 76 static struct kmem_cache *inode_cachep __read_mostly; 77 78 static long get_nr_inodes(void) 79 { 80 int i; 81 long sum = 0; 82 for_each_possible_cpu(i) 83 sum += per_cpu(nr_inodes, i); 84 return sum < 0 ? 0 : sum; 85 } 86 87 static inline long get_nr_inodes_unused(void) 88 { 89 int i; 90 long sum = 0; 91 for_each_possible_cpu(i) 92 sum += per_cpu(nr_unused, i); 93 return sum < 0 ? 0 : sum; 94 } 95 96 long get_nr_dirty_inodes(void) 97 { 98 /* not actually dirty inodes, but a wild approximation */ 99 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 100 return nr_dirty > 0 ? nr_dirty : 0; 101 } 102 103 /* 104 * Handle nr_inode sysctl 105 */ 106 #ifdef CONFIG_SYSCTL 107 int proc_nr_inodes(struct ctl_table *table, int write, 108 void __user *buffer, size_t *lenp, loff_t *ppos) 109 { 110 inodes_stat.nr_inodes = get_nr_inodes(); 111 inodes_stat.nr_unused = get_nr_inodes_unused(); 112 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 113 } 114 #endif 115 116 static int no_open(struct inode *inode, struct file *file) 117 { 118 return -ENXIO; 119 } 120 121 /** 122 * inode_init_always - perform inode structure intialisation 123 * @sb: superblock inode belongs to 124 * @inode: inode to initialise 125 * 126 * These are initializations that need to be done on every inode 127 * allocation as the fields are not initialised by slab allocation. 128 */ 129 int inode_init_always(struct super_block *sb, struct inode *inode) 130 { 131 static const struct inode_operations empty_iops; 132 static const struct file_operations no_open_fops = {.open = no_open}; 133 struct address_space *const mapping = &inode->i_data; 134 135 inode->i_sb = sb; 136 inode->i_blkbits = sb->s_blocksize_bits; 137 inode->i_flags = 0; 138 atomic_set(&inode->i_count, 1); 139 inode->i_op = &empty_iops; 140 inode->i_fop = &no_open_fops; 141 inode->__i_nlink = 1; 142 inode->i_opflags = 0; 143 i_uid_write(inode, 0); 144 i_gid_write(inode, 0); 145 atomic_set(&inode->i_writecount, 0); 146 inode->i_size = 0; 147 inode->i_blocks = 0; 148 inode->i_bytes = 0; 149 inode->i_generation = 0; 150 inode->i_pipe = NULL; 151 inode->i_bdev = NULL; 152 inode->i_cdev = NULL; 153 inode->i_link = NULL; 154 inode->i_rdev = 0; 155 inode->dirtied_when = 0; 156 157 if (security_inode_alloc(inode)) 158 goto out; 159 spin_lock_init(&inode->i_lock); 160 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 161 162 mutex_init(&inode->i_mutex); 163 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key); 164 165 atomic_set(&inode->i_dio_count, 0); 166 167 mapping->a_ops = &empty_aops; 168 mapping->host = inode; 169 mapping->flags = 0; 170 atomic_set(&mapping->i_mmap_writable, 0); 171 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 172 mapping->private_data = NULL; 173 mapping->writeback_index = 0; 174 inode->i_private = NULL; 175 inode->i_mapping = mapping; 176 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 177 #ifdef CONFIG_FS_POSIX_ACL 178 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 179 #endif 180 181 #ifdef CONFIG_FSNOTIFY 182 inode->i_fsnotify_mask = 0; 183 #endif 184 inode->i_flctx = NULL; 185 this_cpu_inc(nr_inodes); 186 187 return 0; 188 out: 189 return -ENOMEM; 190 } 191 EXPORT_SYMBOL(inode_init_always); 192 193 static struct inode *alloc_inode(struct super_block *sb) 194 { 195 struct inode *inode; 196 197 if (sb->s_op->alloc_inode) 198 inode = sb->s_op->alloc_inode(sb); 199 else 200 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL); 201 202 if (!inode) 203 return NULL; 204 205 if (unlikely(inode_init_always(sb, inode))) { 206 if (inode->i_sb->s_op->destroy_inode) 207 inode->i_sb->s_op->destroy_inode(inode); 208 else 209 kmem_cache_free(inode_cachep, inode); 210 return NULL; 211 } 212 213 return inode; 214 } 215 216 void free_inode_nonrcu(struct inode *inode) 217 { 218 kmem_cache_free(inode_cachep, inode); 219 } 220 EXPORT_SYMBOL(free_inode_nonrcu); 221 222 void __destroy_inode(struct inode *inode) 223 { 224 BUG_ON(inode_has_buffers(inode)); 225 inode_detach_wb(inode); 226 security_inode_free(inode); 227 fsnotify_inode_delete(inode); 228 locks_free_lock_context(inode->i_flctx); 229 if (!inode->i_nlink) { 230 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 231 atomic_long_dec(&inode->i_sb->s_remove_count); 232 } 233 234 #ifdef CONFIG_FS_POSIX_ACL 235 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED) 236 posix_acl_release(inode->i_acl); 237 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED) 238 posix_acl_release(inode->i_default_acl); 239 #endif 240 this_cpu_dec(nr_inodes); 241 } 242 EXPORT_SYMBOL(__destroy_inode); 243 244 static void i_callback(struct rcu_head *head) 245 { 246 struct inode *inode = container_of(head, struct inode, i_rcu); 247 kmem_cache_free(inode_cachep, inode); 248 } 249 250 static void destroy_inode(struct inode *inode) 251 { 252 BUG_ON(!list_empty(&inode->i_lru)); 253 __destroy_inode(inode); 254 if (inode->i_sb->s_op->destroy_inode) 255 inode->i_sb->s_op->destroy_inode(inode); 256 else 257 call_rcu(&inode->i_rcu, i_callback); 258 } 259 260 /** 261 * drop_nlink - directly drop an inode's link count 262 * @inode: inode 263 * 264 * This is a low-level filesystem helper to replace any 265 * direct filesystem manipulation of i_nlink. In cases 266 * where we are attempting to track writes to the 267 * filesystem, a decrement to zero means an imminent 268 * write when the file is truncated and actually unlinked 269 * on the filesystem. 270 */ 271 void drop_nlink(struct inode *inode) 272 { 273 WARN_ON(inode->i_nlink == 0); 274 inode->__i_nlink--; 275 if (!inode->i_nlink) 276 atomic_long_inc(&inode->i_sb->s_remove_count); 277 } 278 EXPORT_SYMBOL(drop_nlink); 279 280 /** 281 * clear_nlink - directly zero an inode's link count 282 * @inode: inode 283 * 284 * This is a low-level filesystem helper to replace any 285 * direct filesystem manipulation of i_nlink. See 286 * drop_nlink() for why we care about i_nlink hitting zero. 287 */ 288 void clear_nlink(struct inode *inode) 289 { 290 if (inode->i_nlink) { 291 inode->__i_nlink = 0; 292 atomic_long_inc(&inode->i_sb->s_remove_count); 293 } 294 } 295 EXPORT_SYMBOL(clear_nlink); 296 297 /** 298 * set_nlink - directly set an inode's link count 299 * @inode: inode 300 * @nlink: new nlink (should be non-zero) 301 * 302 * This is a low-level filesystem helper to replace any 303 * direct filesystem manipulation of i_nlink. 304 */ 305 void set_nlink(struct inode *inode, unsigned int nlink) 306 { 307 if (!nlink) { 308 clear_nlink(inode); 309 } else { 310 /* Yes, some filesystems do change nlink from zero to one */ 311 if (inode->i_nlink == 0) 312 atomic_long_dec(&inode->i_sb->s_remove_count); 313 314 inode->__i_nlink = nlink; 315 } 316 } 317 EXPORT_SYMBOL(set_nlink); 318 319 /** 320 * inc_nlink - directly increment an inode's link count 321 * @inode: inode 322 * 323 * This is a low-level filesystem helper to replace any 324 * direct filesystem manipulation of i_nlink. Currently, 325 * it is only here for parity with dec_nlink(). 326 */ 327 void inc_nlink(struct inode *inode) 328 { 329 if (unlikely(inode->i_nlink == 0)) { 330 WARN_ON(!(inode->i_state & I_LINKABLE)); 331 atomic_long_dec(&inode->i_sb->s_remove_count); 332 } 333 334 inode->__i_nlink++; 335 } 336 EXPORT_SYMBOL(inc_nlink); 337 338 void address_space_init_once(struct address_space *mapping) 339 { 340 memset(mapping, 0, sizeof(*mapping)); 341 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC); 342 spin_lock_init(&mapping->tree_lock); 343 init_rwsem(&mapping->i_mmap_rwsem); 344 INIT_LIST_HEAD(&mapping->private_list); 345 spin_lock_init(&mapping->private_lock); 346 mapping->i_mmap = RB_ROOT; 347 } 348 EXPORT_SYMBOL(address_space_init_once); 349 350 /* 351 * These are initializations that only need to be done 352 * once, because the fields are idempotent across use 353 * of the inode, so let the slab aware of that. 354 */ 355 void inode_init_once(struct inode *inode) 356 { 357 memset(inode, 0, sizeof(*inode)); 358 INIT_HLIST_NODE(&inode->i_hash); 359 INIT_LIST_HEAD(&inode->i_devices); 360 INIT_LIST_HEAD(&inode->i_io_list); 361 INIT_LIST_HEAD(&inode->i_lru); 362 address_space_init_once(&inode->i_data); 363 i_size_ordered_init(inode); 364 #ifdef CONFIG_FSNOTIFY 365 INIT_HLIST_HEAD(&inode->i_fsnotify_marks); 366 #endif 367 } 368 EXPORT_SYMBOL(inode_init_once); 369 370 static void init_once(void *foo) 371 { 372 struct inode *inode = (struct inode *) foo; 373 374 inode_init_once(inode); 375 } 376 377 /* 378 * inode->i_lock must be held 379 */ 380 void __iget(struct inode *inode) 381 { 382 atomic_inc(&inode->i_count); 383 } 384 385 /* 386 * get additional reference to inode; caller must already hold one. 387 */ 388 void ihold(struct inode *inode) 389 { 390 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 391 } 392 EXPORT_SYMBOL(ihold); 393 394 static void inode_lru_list_add(struct inode *inode) 395 { 396 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) 397 this_cpu_inc(nr_unused); 398 } 399 400 /* 401 * Add inode to LRU if needed (inode is unused and clean). 402 * 403 * Needs inode->i_lock held. 404 */ 405 void inode_add_lru(struct inode *inode) 406 { 407 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC | 408 I_FREEING | I_WILL_FREE)) && 409 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE) 410 inode_lru_list_add(inode); 411 } 412 413 414 static void inode_lru_list_del(struct inode *inode) 415 { 416 417 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) 418 this_cpu_dec(nr_unused); 419 } 420 421 /** 422 * inode_sb_list_add - add inode to the superblock list of inodes 423 * @inode: inode to add 424 */ 425 void inode_sb_list_add(struct inode *inode) 426 { 427 spin_lock(&inode->i_sb->s_inode_list_lock); 428 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 429 spin_unlock(&inode->i_sb->s_inode_list_lock); 430 } 431 EXPORT_SYMBOL_GPL(inode_sb_list_add); 432 433 static inline void inode_sb_list_del(struct inode *inode) 434 { 435 if (!list_empty(&inode->i_sb_list)) { 436 spin_lock(&inode->i_sb->s_inode_list_lock); 437 list_del_init(&inode->i_sb_list); 438 spin_unlock(&inode->i_sb->s_inode_list_lock); 439 } 440 } 441 442 static unsigned long hash(struct super_block *sb, unsigned long hashval) 443 { 444 unsigned long tmp; 445 446 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 447 L1_CACHE_BYTES; 448 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 449 return tmp & i_hash_mask; 450 } 451 452 /** 453 * __insert_inode_hash - hash an inode 454 * @inode: unhashed inode 455 * @hashval: unsigned long value used to locate this object in the 456 * inode_hashtable. 457 * 458 * Add an inode to the inode hash for this superblock. 459 */ 460 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 461 { 462 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 463 464 spin_lock(&inode_hash_lock); 465 spin_lock(&inode->i_lock); 466 hlist_add_head(&inode->i_hash, b); 467 spin_unlock(&inode->i_lock); 468 spin_unlock(&inode_hash_lock); 469 } 470 EXPORT_SYMBOL(__insert_inode_hash); 471 472 /** 473 * __remove_inode_hash - remove an inode from the hash 474 * @inode: inode to unhash 475 * 476 * Remove an inode from the superblock. 477 */ 478 void __remove_inode_hash(struct inode *inode) 479 { 480 spin_lock(&inode_hash_lock); 481 spin_lock(&inode->i_lock); 482 hlist_del_init(&inode->i_hash); 483 spin_unlock(&inode->i_lock); 484 spin_unlock(&inode_hash_lock); 485 } 486 EXPORT_SYMBOL(__remove_inode_hash); 487 488 void clear_inode(struct inode *inode) 489 { 490 might_sleep(); 491 /* 492 * We have to cycle tree_lock here because reclaim can be still in the 493 * process of removing the last page (in __delete_from_page_cache()) 494 * and we must not free mapping under it. 495 */ 496 spin_lock_irq(&inode->i_data.tree_lock); 497 BUG_ON(inode->i_data.nrpages); 498 BUG_ON(inode->i_data.nrshadows); 499 spin_unlock_irq(&inode->i_data.tree_lock); 500 BUG_ON(!list_empty(&inode->i_data.private_list)); 501 BUG_ON(!(inode->i_state & I_FREEING)); 502 BUG_ON(inode->i_state & I_CLEAR); 503 /* don't need i_lock here, no concurrent mods to i_state */ 504 inode->i_state = I_FREEING | I_CLEAR; 505 } 506 EXPORT_SYMBOL(clear_inode); 507 508 /* 509 * Free the inode passed in, removing it from the lists it is still connected 510 * to. We remove any pages still attached to the inode and wait for any IO that 511 * is still in progress before finally destroying the inode. 512 * 513 * An inode must already be marked I_FREEING so that we avoid the inode being 514 * moved back onto lists if we race with other code that manipulates the lists 515 * (e.g. writeback_single_inode). The caller is responsible for setting this. 516 * 517 * An inode must already be removed from the LRU list before being evicted from 518 * the cache. This should occur atomically with setting the I_FREEING state 519 * flag, so no inodes here should ever be on the LRU when being evicted. 520 */ 521 static void evict(struct inode *inode) 522 { 523 const struct super_operations *op = inode->i_sb->s_op; 524 525 BUG_ON(!(inode->i_state & I_FREEING)); 526 BUG_ON(!list_empty(&inode->i_lru)); 527 528 if (!list_empty(&inode->i_io_list)) 529 inode_io_list_del(inode); 530 531 inode_sb_list_del(inode); 532 533 /* 534 * Wait for flusher thread to be done with the inode so that filesystem 535 * does not start destroying it while writeback is still running. Since 536 * the inode has I_FREEING set, flusher thread won't start new work on 537 * the inode. We just have to wait for running writeback to finish. 538 */ 539 inode_wait_for_writeback(inode); 540 541 if (op->evict_inode) { 542 op->evict_inode(inode); 543 } else { 544 truncate_inode_pages_final(&inode->i_data); 545 clear_inode(inode); 546 } 547 if (S_ISBLK(inode->i_mode) && inode->i_bdev) 548 bd_forget(inode); 549 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 550 cd_forget(inode); 551 552 remove_inode_hash(inode); 553 554 spin_lock(&inode->i_lock); 555 wake_up_bit(&inode->i_state, __I_NEW); 556 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 557 spin_unlock(&inode->i_lock); 558 559 destroy_inode(inode); 560 } 561 562 /* 563 * dispose_list - dispose of the contents of a local list 564 * @head: the head of the list to free 565 * 566 * Dispose-list gets a local list with local inodes in it, so it doesn't 567 * need to worry about list corruption and SMP locks. 568 */ 569 static void dispose_list(struct list_head *head) 570 { 571 while (!list_empty(head)) { 572 struct inode *inode; 573 574 inode = list_first_entry(head, struct inode, i_lru); 575 list_del_init(&inode->i_lru); 576 577 evict(inode); 578 cond_resched(); 579 } 580 } 581 582 /** 583 * evict_inodes - evict all evictable inodes for a superblock 584 * @sb: superblock to operate on 585 * 586 * Make sure that no inodes with zero refcount are retained. This is 587 * called by superblock shutdown after having MS_ACTIVE flag removed, 588 * so any inode reaching zero refcount during or after that call will 589 * be immediately evicted. 590 */ 591 void evict_inodes(struct super_block *sb) 592 { 593 struct inode *inode, *next; 594 LIST_HEAD(dispose); 595 596 again: 597 spin_lock(&sb->s_inode_list_lock); 598 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 599 if (atomic_read(&inode->i_count)) 600 continue; 601 602 spin_lock(&inode->i_lock); 603 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 604 spin_unlock(&inode->i_lock); 605 continue; 606 } 607 608 inode->i_state |= I_FREEING; 609 inode_lru_list_del(inode); 610 spin_unlock(&inode->i_lock); 611 list_add(&inode->i_lru, &dispose); 612 613 /* 614 * We can have a ton of inodes to evict at unmount time given 615 * enough memory, check to see if we need to go to sleep for a 616 * bit so we don't livelock. 617 */ 618 if (need_resched()) { 619 spin_unlock(&sb->s_inode_list_lock); 620 cond_resched(); 621 dispose_list(&dispose); 622 goto again; 623 } 624 } 625 spin_unlock(&sb->s_inode_list_lock); 626 627 dispose_list(&dispose); 628 } 629 630 /** 631 * invalidate_inodes - attempt to free all inodes on a superblock 632 * @sb: superblock to operate on 633 * @kill_dirty: flag to guide handling of dirty inodes 634 * 635 * Attempts to free all inodes for a given superblock. If there were any 636 * busy inodes return a non-zero value, else zero. 637 * If @kill_dirty is set, discard dirty inodes too, otherwise treat 638 * them as busy. 639 */ 640 int invalidate_inodes(struct super_block *sb, bool kill_dirty) 641 { 642 int busy = 0; 643 struct inode *inode, *next; 644 LIST_HEAD(dispose); 645 646 spin_lock(&sb->s_inode_list_lock); 647 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 648 spin_lock(&inode->i_lock); 649 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 650 spin_unlock(&inode->i_lock); 651 continue; 652 } 653 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) { 654 spin_unlock(&inode->i_lock); 655 busy = 1; 656 continue; 657 } 658 if (atomic_read(&inode->i_count)) { 659 spin_unlock(&inode->i_lock); 660 busy = 1; 661 continue; 662 } 663 664 inode->i_state |= I_FREEING; 665 inode_lru_list_del(inode); 666 spin_unlock(&inode->i_lock); 667 list_add(&inode->i_lru, &dispose); 668 } 669 spin_unlock(&sb->s_inode_list_lock); 670 671 dispose_list(&dispose); 672 673 return busy; 674 } 675 676 /* 677 * Isolate the inode from the LRU in preparation for freeing it. 678 * 679 * Any inodes which are pinned purely because of attached pagecache have their 680 * pagecache removed. If the inode has metadata buffers attached to 681 * mapping->private_list then try to remove them. 682 * 683 * If the inode has the I_REFERENCED flag set, then it means that it has been 684 * used recently - the flag is set in iput_final(). When we encounter such an 685 * inode, clear the flag and move it to the back of the LRU so it gets another 686 * pass through the LRU before it gets reclaimed. This is necessary because of 687 * the fact we are doing lazy LRU updates to minimise lock contention so the 688 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 689 * with this flag set because they are the inodes that are out of order. 690 */ 691 static enum lru_status inode_lru_isolate(struct list_head *item, 692 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 693 { 694 struct list_head *freeable = arg; 695 struct inode *inode = container_of(item, struct inode, i_lru); 696 697 /* 698 * we are inverting the lru lock/inode->i_lock here, so use a trylock. 699 * If we fail to get the lock, just skip it. 700 */ 701 if (!spin_trylock(&inode->i_lock)) 702 return LRU_SKIP; 703 704 /* 705 * Referenced or dirty inodes are still in use. Give them another pass 706 * through the LRU as we canot reclaim them now. 707 */ 708 if (atomic_read(&inode->i_count) || 709 (inode->i_state & ~I_REFERENCED)) { 710 list_lru_isolate(lru, &inode->i_lru); 711 spin_unlock(&inode->i_lock); 712 this_cpu_dec(nr_unused); 713 return LRU_REMOVED; 714 } 715 716 /* recently referenced inodes get one more pass */ 717 if (inode->i_state & I_REFERENCED) { 718 inode->i_state &= ~I_REFERENCED; 719 spin_unlock(&inode->i_lock); 720 return LRU_ROTATE; 721 } 722 723 if (inode_has_buffers(inode) || inode->i_data.nrpages) { 724 __iget(inode); 725 spin_unlock(&inode->i_lock); 726 spin_unlock(lru_lock); 727 if (remove_inode_buffers(inode)) { 728 unsigned long reap; 729 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 730 if (current_is_kswapd()) 731 __count_vm_events(KSWAPD_INODESTEAL, reap); 732 else 733 __count_vm_events(PGINODESTEAL, reap); 734 if (current->reclaim_state) 735 current->reclaim_state->reclaimed_slab += reap; 736 } 737 iput(inode); 738 spin_lock(lru_lock); 739 return LRU_RETRY; 740 } 741 742 WARN_ON(inode->i_state & I_NEW); 743 inode->i_state |= I_FREEING; 744 list_lru_isolate_move(lru, &inode->i_lru, freeable); 745 spin_unlock(&inode->i_lock); 746 747 this_cpu_dec(nr_unused); 748 return LRU_REMOVED; 749 } 750 751 /* 752 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 753 * This is called from the superblock shrinker function with a number of inodes 754 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 755 * then are freed outside inode_lock by dispose_list(). 756 */ 757 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 758 { 759 LIST_HEAD(freeable); 760 long freed; 761 762 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 763 inode_lru_isolate, &freeable); 764 dispose_list(&freeable); 765 return freed; 766 } 767 768 static void __wait_on_freeing_inode(struct inode *inode); 769 /* 770 * Called with the inode lock held. 771 */ 772 static struct inode *find_inode(struct super_block *sb, 773 struct hlist_head *head, 774 int (*test)(struct inode *, void *), 775 void *data) 776 { 777 struct inode *inode = NULL; 778 779 repeat: 780 hlist_for_each_entry(inode, head, i_hash) { 781 if (inode->i_sb != sb) 782 continue; 783 if (!test(inode, data)) 784 continue; 785 spin_lock(&inode->i_lock); 786 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 787 __wait_on_freeing_inode(inode); 788 goto repeat; 789 } 790 __iget(inode); 791 spin_unlock(&inode->i_lock); 792 return inode; 793 } 794 return NULL; 795 } 796 797 /* 798 * find_inode_fast is the fast path version of find_inode, see the comment at 799 * iget_locked for details. 800 */ 801 static struct inode *find_inode_fast(struct super_block *sb, 802 struct hlist_head *head, unsigned long ino) 803 { 804 struct inode *inode = NULL; 805 806 repeat: 807 hlist_for_each_entry(inode, head, i_hash) { 808 if (inode->i_ino != ino) 809 continue; 810 if (inode->i_sb != sb) 811 continue; 812 spin_lock(&inode->i_lock); 813 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 814 __wait_on_freeing_inode(inode); 815 goto repeat; 816 } 817 __iget(inode); 818 spin_unlock(&inode->i_lock); 819 return inode; 820 } 821 return NULL; 822 } 823 824 /* 825 * Each cpu owns a range of LAST_INO_BATCH numbers. 826 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 827 * to renew the exhausted range. 828 * 829 * This does not significantly increase overflow rate because every CPU can 830 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 831 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 832 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 833 * overflow rate by 2x, which does not seem too significant. 834 * 835 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 836 * error if st_ino won't fit in target struct field. Use 32bit counter 837 * here to attempt to avoid that. 838 */ 839 #define LAST_INO_BATCH 1024 840 static DEFINE_PER_CPU(unsigned int, last_ino); 841 842 unsigned int get_next_ino(void) 843 { 844 unsigned int *p = &get_cpu_var(last_ino); 845 unsigned int res = *p; 846 847 #ifdef CONFIG_SMP 848 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 849 static atomic_t shared_last_ino; 850 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 851 852 res = next - LAST_INO_BATCH; 853 } 854 #endif 855 856 res++; 857 /* get_next_ino should not provide a 0 inode number */ 858 if (unlikely(!res)) 859 res++; 860 *p = res; 861 put_cpu_var(last_ino); 862 return res; 863 } 864 EXPORT_SYMBOL(get_next_ino); 865 866 /** 867 * new_inode_pseudo - obtain an inode 868 * @sb: superblock 869 * 870 * Allocates a new inode for given superblock. 871 * Inode wont be chained in superblock s_inodes list 872 * This means : 873 * - fs can't be unmount 874 * - quotas, fsnotify, writeback can't work 875 */ 876 struct inode *new_inode_pseudo(struct super_block *sb) 877 { 878 struct inode *inode = alloc_inode(sb); 879 880 if (inode) { 881 spin_lock(&inode->i_lock); 882 inode->i_state = 0; 883 spin_unlock(&inode->i_lock); 884 INIT_LIST_HEAD(&inode->i_sb_list); 885 } 886 return inode; 887 } 888 889 /** 890 * new_inode - obtain an inode 891 * @sb: superblock 892 * 893 * Allocates a new inode for given superblock. The default gfp_mask 894 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 895 * If HIGHMEM pages are unsuitable or it is known that pages allocated 896 * for the page cache are not reclaimable or migratable, 897 * mapping_set_gfp_mask() must be called with suitable flags on the 898 * newly created inode's mapping 899 * 900 */ 901 struct inode *new_inode(struct super_block *sb) 902 { 903 struct inode *inode; 904 905 spin_lock_prefetch(&sb->s_inode_list_lock); 906 907 inode = new_inode_pseudo(sb); 908 if (inode) 909 inode_sb_list_add(inode); 910 return inode; 911 } 912 EXPORT_SYMBOL(new_inode); 913 914 #ifdef CONFIG_DEBUG_LOCK_ALLOC 915 void lockdep_annotate_inode_mutex_key(struct inode *inode) 916 { 917 if (S_ISDIR(inode->i_mode)) { 918 struct file_system_type *type = inode->i_sb->s_type; 919 920 /* Set new key only if filesystem hasn't already changed it */ 921 if (lockdep_match_class(&inode->i_mutex, &type->i_mutex_key)) { 922 /* 923 * ensure nobody is actually holding i_mutex 924 */ 925 mutex_destroy(&inode->i_mutex); 926 mutex_init(&inode->i_mutex); 927 lockdep_set_class(&inode->i_mutex, 928 &type->i_mutex_dir_key); 929 } 930 } 931 } 932 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 933 #endif 934 935 /** 936 * unlock_new_inode - clear the I_NEW state and wake up any waiters 937 * @inode: new inode to unlock 938 * 939 * Called when the inode is fully initialised to clear the new state of the 940 * inode and wake up anyone waiting for the inode to finish initialisation. 941 */ 942 void unlock_new_inode(struct inode *inode) 943 { 944 lockdep_annotate_inode_mutex_key(inode); 945 spin_lock(&inode->i_lock); 946 WARN_ON(!(inode->i_state & I_NEW)); 947 inode->i_state &= ~I_NEW; 948 smp_mb(); 949 wake_up_bit(&inode->i_state, __I_NEW); 950 spin_unlock(&inode->i_lock); 951 } 952 EXPORT_SYMBOL(unlock_new_inode); 953 954 /** 955 * lock_two_nondirectories - take two i_mutexes on non-directory objects 956 * 957 * Lock any non-NULL argument that is not a directory. 958 * Zero, one or two objects may be locked by this function. 959 * 960 * @inode1: first inode to lock 961 * @inode2: second inode to lock 962 */ 963 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 964 { 965 if (inode1 > inode2) 966 swap(inode1, inode2); 967 968 if (inode1 && !S_ISDIR(inode1->i_mode)) 969 mutex_lock(&inode1->i_mutex); 970 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 971 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_NONDIR2); 972 } 973 EXPORT_SYMBOL(lock_two_nondirectories); 974 975 /** 976 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 977 * @inode1: first inode to unlock 978 * @inode2: second inode to unlock 979 */ 980 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 981 { 982 if (inode1 && !S_ISDIR(inode1->i_mode)) 983 mutex_unlock(&inode1->i_mutex); 984 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1) 985 mutex_unlock(&inode2->i_mutex); 986 } 987 EXPORT_SYMBOL(unlock_two_nondirectories); 988 989 /** 990 * iget5_locked - obtain an inode from a mounted file system 991 * @sb: super block of file system 992 * @hashval: hash value (usually inode number) to get 993 * @test: callback used for comparisons between inodes 994 * @set: callback used to initialize a new struct inode 995 * @data: opaque data pointer to pass to @test and @set 996 * 997 * Search for the inode specified by @hashval and @data in the inode cache, 998 * and if present it is return it with an increased reference count. This is 999 * a generalized version of iget_locked() for file systems where the inode 1000 * number is not sufficient for unique identification of an inode. 1001 * 1002 * If the inode is not in cache, allocate a new inode and return it locked, 1003 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1004 * before unlocking it via unlock_new_inode(). 1005 * 1006 * Note both @test and @set are called with the inode_hash_lock held, so can't 1007 * sleep. 1008 */ 1009 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1010 int (*test)(struct inode *, void *), 1011 int (*set)(struct inode *, void *), void *data) 1012 { 1013 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1014 struct inode *inode; 1015 1016 spin_lock(&inode_hash_lock); 1017 inode = find_inode(sb, head, test, data); 1018 spin_unlock(&inode_hash_lock); 1019 1020 if (inode) { 1021 wait_on_inode(inode); 1022 return inode; 1023 } 1024 1025 inode = alloc_inode(sb); 1026 if (inode) { 1027 struct inode *old; 1028 1029 spin_lock(&inode_hash_lock); 1030 /* We released the lock, so.. */ 1031 old = find_inode(sb, head, test, data); 1032 if (!old) { 1033 if (set(inode, data)) 1034 goto set_failed; 1035 1036 spin_lock(&inode->i_lock); 1037 inode->i_state = I_NEW; 1038 hlist_add_head(&inode->i_hash, head); 1039 spin_unlock(&inode->i_lock); 1040 inode_sb_list_add(inode); 1041 spin_unlock(&inode_hash_lock); 1042 1043 /* Return the locked inode with I_NEW set, the 1044 * caller is responsible for filling in the contents 1045 */ 1046 return inode; 1047 } 1048 1049 /* 1050 * Uhhuh, somebody else created the same inode under 1051 * us. Use the old inode instead of the one we just 1052 * allocated. 1053 */ 1054 spin_unlock(&inode_hash_lock); 1055 destroy_inode(inode); 1056 inode = old; 1057 wait_on_inode(inode); 1058 } 1059 return inode; 1060 1061 set_failed: 1062 spin_unlock(&inode_hash_lock); 1063 destroy_inode(inode); 1064 return NULL; 1065 } 1066 EXPORT_SYMBOL(iget5_locked); 1067 1068 /** 1069 * iget_locked - obtain an inode from a mounted file system 1070 * @sb: super block of file system 1071 * @ino: inode number to get 1072 * 1073 * Search for the inode specified by @ino in the inode cache and if present 1074 * return it with an increased reference count. This is for file systems 1075 * where the inode number is sufficient for unique identification of an inode. 1076 * 1077 * If the inode is not in cache, allocate a new inode and return it locked, 1078 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1079 * before unlocking it via unlock_new_inode(). 1080 */ 1081 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1082 { 1083 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1084 struct inode *inode; 1085 1086 spin_lock(&inode_hash_lock); 1087 inode = find_inode_fast(sb, head, ino); 1088 spin_unlock(&inode_hash_lock); 1089 if (inode) { 1090 wait_on_inode(inode); 1091 return inode; 1092 } 1093 1094 inode = alloc_inode(sb); 1095 if (inode) { 1096 struct inode *old; 1097 1098 spin_lock(&inode_hash_lock); 1099 /* We released the lock, so.. */ 1100 old = find_inode_fast(sb, head, ino); 1101 if (!old) { 1102 inode->i_ino = ino; 1103 spin_lock(&inode->i_lock); 1104 inode->i_state = I_NEW; 1105 hlist_add_head(&inode->i_hash, head); 1106 spin_unlock(&inode->i_lock); 1107 inode_sb_list_add(inode); 1108 spin_unlock(&inode_hash_lock); 1109 1110 /* Return the locked inode with I_NEW set, the 1111 * caller is responsible for filling in the contents 1112 */ 1113 return inode; 1114 } 1115 1116 /* 1117 * Uhhuh, somebody else created the same inode under 1118 * us. Use the old inode instead of the one we just 1119 * allocated. 1120 */ 1121 spin_unlock(&inode_hash_lock); 1122 destroy_inode(inode); 1123 inode = old; 1124 wait_on_inode(inode); 1125 } 1126 return inode; 1127 } 1128 EXPORT_SYMBOL(iget_locked); 1129 1130 /* 1131 * search the inode cache for a matching inode number. 1132 * If we find one, then the inode number we are trying to 1133 * allocate is not unique and so we should not use it. 1134 * 1135 * Returns 1 if the inode number is unique, 0 if it is not. 1136 */ 1137 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1138 { 1139 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1140 struct inode *inode; 1141 1142 spin_lock(&inode_hash_lock); 1143 hlist_for_each_entry(inode, b, i_hash) { 1144 if (inode->i_ino == ino && inode->i_sb == sb) { 1145 spin_unlock(&inode_hash_lock); 1146 return 0; 1147 } 1148 } 1149 spin_unlock(&inode_hash_lock); 1150 1151 return 1; 1152 } 1153 1154 /** 1155 * iunique - get a unique inode number 1156 * @sb: superblock 1157 * @max_reserved: highest reserved inode number 1158 * 1159 * Obtain an inode number that is unique on the system for a given 1160 * superblock. This is used by file systems that have no natural 1161 * permanent inode numbering system. An inode number is returned that 1162 * is higher than the reserved limit but unique. 1163 * 1164 * BUGS: 1165 * With a large number of inodes live on the file system this function 1166 * currently becomes quite slow. 1167 */ 1168 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1169 { 1170 /* 1171 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1172 * error if st_ino won't fit in target struct field. Use 32bit counter 1173 * here to attempt to avoid that. 1174 */ 1175 static DEFINE_SPINLOCK(iunique_lock); 1176 static unsigned int counter; 1177 ino_t res; 1178 1179 spin_lock(&iunique_lock); 1180 do { 1181 if (counter <= max_reserved) 1182 counter = max_reserved + 1; 1183 res = counter++; 1184 } while (!test_inode_iunique(sb, res)); 1185 spin_unlock(&iunique_lock); 1186 1187 return res; 1188 } 1189 EXPORT_SYMBOL(iunique); 1190 1191 struct inode *igrab(struct inode *inode) 1192 { 1193 spin_lock(&inode->i_lock); 1194 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1195 __iget(inode); 1196 spin_unlock(&inode->i_lock); 1197 } else { 1198 spin_unlock(&inode->i_lock); 1199 /* 1200 * Handle the case where s_op->clear_inode is not been 1201 * called yet, and somebody is calling igrab 1202 * while the inode is getting freed. 1203 */ 1204 inode = NULL; 1205 } 1206 return inode; 1207 } 1208 EXPORT_SYMBOL(igrab); 1209 1210 /** 1211 * ilookup5_nowait - search for an inode in the inode cache 1212 * @sb: super block of file system to search 1213 * @hashval: hash value (usually inode number) to search for 1214 * @test: callback used for comparisons between inodes 1215 * @data: opaque data pointer to pass to @test 1216 * 1217 * Search for the inode specified by @hashval and @data in the inode cache. 1218 * If the inode is in the cache, the inode is returned with an incremented 1219 * reference count. 1220 * 1221 * Note: I_NEW is not waited upon so you have to be very careful what you do 1222 * with the returned inode. You probably should be using ilookup5() instead. 1223 * 1224 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1225 */ 1226 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1227 int (*test)(struct inode *, void *), void *data) 1228 { 1229 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1230 struct inode *inode; 1231 1232 spin_lock(&inode_hash_lock); 1233 inode = find_inode(sb, head, test, data); 1234 spin_unlock(&inode_hash_lock); 1235 1236 return inode; 1237 } 1238 EXPORT_SYMBOL(ilookup5_nowait); 1239 1240 /** 1241 * ilookup5 - search for an inode in the inode cache 1242 * @sb: super block of file system to search 1243 * @hashval: hash value (usually inode number) to search for 1244 * @test: callback used for comparisons between inodes 1245 * @data: opaque data pointer to pass to @test 1246 * 1247 * Search for the inode specified by @hashval and @data in the inode cache, 1248 * and if the inode is in the cache, return the inode with an incremented 1249 * reference count. Waits on I_NEW before returning the inode. 1250 * returned with an incremented reference count. 1251 * 1252 * This is a generalized version of ilookup() for file systems where the 1253 * inode number is not sufficient for unique identification of an inode. 1254 * 1255 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1256 */ 1257 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1258 int (*test)(struct inode *, void *), void *data) 1259 { 1260 struct inode *inode = ilookup5_nowait(sb, hashval, test, data); 1261 1262 if (inode) 1263 wait_on_inode(inode); 1264 return inode; 1265 } 1266 EXPORT_SYMBOL(ilookup5); 1267 1268 /** 1269 * ilookup - search for an inode in the inode cache 1270 * @sb: super block of file system to search 1271 * @ino: inode number to search for 1272 * 1273 * Search for the inode @ino in the inode cache, and if the inode is in the 1274 * cache, the inode is returned with an incremented reference count. 1275 */ 1276 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1277 { 1278 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1279 struct inode *inode; 1280 1281 spin_lock(&inode_hash_lock); 1282 inode = find_inode_fast(sb, head, ino); 1283 spin_unlock(&inode_hash_lock); 1284 1285 if (inode) 1286 wait_on_inode(inode); 1287 return inode; 1288 } 1289 EXPORT_SYMBOL(ilookup); 1290 1291 /** 1292 * find_inode_nowait - find an inode in the inode cache 1293 * @sb: super block of file system to search 1294 * @hashval: hash value (usually inode number) to search for 1295 * @match: callback used for comparisons between inodes 1296 * @data: opaque data pointer to pass to @match 1297 * 1298 * Search for the inode specified by @hashval and @data in the inode 1299 * cache, where the helper function @match will return 0 if the inode 1300 * does not match, 1 if the inode does match, and -1 if the search 1301 * should be stopped. The @match function must be responsible for 1302 * taking the i_lock spin_lock and checking i_state for an inode being 1303 * freed or being initialized, and incrementing the reference count 1304 * before returning 1. It also must not sleep, since it is called with 1305 * the inode_hash_lock spinlock held. 1306 * 1307 * This is a even more generalized version of ilookup5() when the 1308 * function must never block --- find_inode() can block in 1309 * __wait_on_freeing_inode() --- or when the caller can not increment 1310 * the reference count because the resulting iput() might cause an 1311 * inode eviction. The tradeoff is that the @match funtion must be 1312 * very carefully implemented. 1313 */ 1314 struct inode *find_inode_nowait(struct super_block *sb, 1315 unsigned long hashval, 1316 int (*match)(struct inode *, unsigned long, 1317 void *), 1318 void *data) 1319 { 1320 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1321 struct inode *inode, *ret_inode = NULL; 1322 int mval; 1323 1324 spin_lock(&inode_hash_lock); 1325 hlist_for_each_entry(inode, head, i_hash) { 1326 if (inode->i_sb != sb) 1327 continue; 1328 mval = match(inode, hashval, data); 1329 if (mval == 0) 1330 continue; 1331 if (mval == 1) 1332 ret_inode = inode; 1333 goto out; 1334 } 1335 out: 1336 spin_unlock(&inode_hash_lock); 1337 return ret_inode; 1338 } 1339 EXPORT_SYMBOL(find_inode_nowait); 1340 1341 int insert_inode_locked(struct inode *inode) 1342 { 1343 struct super_block *sb = inode->i_sb; 1344 ino_t ino = inode->i_ino; 1345 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1346 1347 while (1) { 1348 struct inode *old = NULL; 1349 spin_lock(&inode_hash_lock); 1350 hlist_for_each_entry(old, head, i_hash) { 1351 if (old->i_ino != ino) 1352 continue; 1353 if (old->i_sb != sb) 1354 continue; 1355 spin_lock(&old->i_lock); 1356 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1357 spin_unlock(&old->i_lock); 1358 continue; 1359 } 1360 break; 1361 } 1362 if (likely(!old)) { 1363 spin_lock(&inode->i_lock); 1364 inode->i_state |= I_NEW; 1365 hlist_add_head(&inode->i_hash, head); 1366 spin_unlock(&inode->i_lock); 1367 spin_unlock(&inode_hash_lock); 1368 return 0; 1369 } 1370 __iget(old); 1371 spin_unlock(&old->i_lock); 1372 spin_unlock(&inode_hash_lock); 1373 wait_on_inode(old); 1374 if (unlikely(!inode_unhashed(old))) { 1375 iput(old); 1376 return -EBUSY; 1377 } 1378 iput(old); 1379 } 1380 } 1381 EXPORT_SYMBOL(insert_inode_locked); 1382 1383 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1384 int (*test)(struct inode *, void *), void *data) 1385 { 1386 struct super_block *sb = inode->i_sb; 1387 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1388 1389 while (1) { 1390 struct inode *old = NULL; 1391 1392 spin_lock(&inode_hash_lock); 1393 hlist_for_each_entry(old, head, i_hash) { 1394 if (old->i_sb != sb) 1395 continue; 1396 if (!test(old, data)) 1397 continue; 1398 spin_lock(&old->i_lock); 1399 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1400 spin_unlock(&old->i_lock); 1401 continue; 1402 } 1403 break; 1404 } 1405 if (likely(!old)) { 1406 spin_lock(&inode->i_lock); 1407 inode->i_state |= I_NEW; 1408 hlist_add_head(&inode->i_hash, head); 1409 spin_unlock(&inode->i_lock); 1410 spin_unlock(&inode_hash_lock); 1411 return 0; 1412 } 1413 __iget(old); 1414 spin_unlock(&old->i_lock); 1415 spin_unlock(&inode_hash_lock); 1416 wait_on_inode(old); 1417 if (unlikely(!inode_unhashed(old))) { 1418 iput(old); 1419 return -EBUSY; 1420 } 1421 iput(old); 1422 } 1423 } 1424 EXPORT_SYMBOL(insert_inode_locked4); 1425 1426 1427 int generic_delete_inode(struct inode *inode) 1428 { 1429 return 1; 1430 } 1431 EXPORT_SYMBOL(generic_delete_inode); 1432 1433 /* 1434 * Called when we're dropping the last reference 1435 * to an inode. 1436 * 1437 * Call the FS "drop_inode()" function, defaulting to 1438 * the legacy UNIX filesystem behaviour. If it tells 1439 * us to evict inode, do so. Otherwise, retain inode 1440 * in cache if fs is alive, sync and evict if fs is 1441 * shutting down. 1442 */ 1443 static void iput_final(struct inode *inode) 1444 { 1445 struct super_block *sb = inode->i_sb; 1446 const struct super_operations *op = inode->i_sb->s_op; 1447 int drop; 1448 1449 WARN_ON(inode->i_state & I_NEW); 1450 1451 if (op->drop_inode) 1452 drop = op->drop_inode(inode); 1453 else 1454 drop = generic_drop_inode(inode); 1455 1456 if (!drop && (sb->s_flags & MS_ACTIVE)) { 1457 inode->i_state |= I_REFERENCED; 1458 inode_add_lru(inode); 1459 spin_unlock(&inode->i_lock); 1460 return; 1461 } 1462 1463 if (!drop) { 1464 inode->i_state |= I_WILL_FREE; 1465 spin_unlock(&inode->i_lock); 1466 write_inode_now(inode, 1); 1467 spin_lock(&inode->i_lock); 1468 WARN_ON(inode->i_state & I_NEW); 1469 inode->i_state &= ~I_WILL_FREE; 1470 } 1471 1472 inode->i_state |= I_FREEING; 1473 if (!list_empty(&inode->i_lru)) 1474 inode_lru_list_del(inode); 1475 spin_unlock(&inode->i_lock); 1476 1477 evict(inode); 1478 } 1479 1480 /** 1481 * iput - put an inode 1482 * @inode: inode to put 1483 * 1484 * Puts an inode, dropping its usage count. If the inode use count hits 1485 * zero, the inode is then freed and may also be destroyed. 1486 * 1487 * Consequently, iput() can sleep. 1488 */ 1489 void iput(struct inode *inode) 1490 { 1491 if (!inode) 1492 return; 1493 BUG_ON(inode->i_state & I_CLEAR); 1494 retry: 1495 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1496 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1497 atomic_inc(&inode->i_count); 1498 inode->i_state &= ~I_DIRTY_TIME; 1499 spin_unlock(&inode->i_lock); 1500 trace_writeback_lazytime_iput(inode); 1501 mark_inode_dirty_sync(inode); 1502 goto retry; 1503 } 1504 iput_final(inode); 1505 } 1506 } 1507 EXPORT_SYMBOL(iput); 1508 1509 /** 1510 * bmap - find a block number in a file 1511 * @inode: inode of file 1512 * @block: block to find 1513 * 1514 * Returns the block number on the device holding the inode that 1515 * is the disk block number for the block of the file requested. 1516 * That is, asked for block 4 of inode 1 the function will return the 1517 * disk block relative to the disk start that holds that block of the 1518 * file. 1519 */ 1520 sector_t bmap(struct inode *inode, sector_t block) 1521 { 1522 sector_t res = 0; 1523 if (inode->i_mapping->a_ops->bmap) 1524 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block); 1525 return res; 1526 } 1527 EXPORT_SYMBOL(bmap); 1528 1529 /* 1530 * With relative atime, only update atime if the previous atime is 1531 * earlier than either the ctime or mtime or if at least a day has 1532 * passed since the last atime update. 1533 */ 1534 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1535 struct timespec now) 1536 { 1537 1538 if (!(mnt->mnt_flags & MNT_RELATIME)) 1539 return 1; 1540 /* 1541 * Is mtime younger than atime? If yes, update atime: 1542 */ 1543 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1544 return 1; 1545 /* 1546 * Is ctime younger than atime? If yes, update atime: 1547 */ 1548 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0) 1549 return 1; 1550 1551 /* 1552 * Is the previous atime value older than a day? If yes, 1553 * update atime: 1554 */ 1555 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1556 return 1; 1557 /* 1558 * Good, we can skip the atime update: 1559 */ 1560 return 0; 1561 } 1562 1563 int generic_update_time(struct inode *inode, struct timespec *time, int flags) 1564 { 1565 int iflags = I_DIRTY_TIME; 1566 1567 if (flags & S_ATIME) 1568 inode->i_atime = *time; 1569 if (flags & S_VERSION) 1570 inode_inc_iversion(inode); 1571 if (flags & S_CTIME) 1572 inode->i_ctime = *time; 1573 if (flags & S_MTIME) 1574 inode->i_mtime = *time; 1575 1576 if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION)) 1577 iflags |= I_DIRTY_SYNC; 1578 __mark_inode_dirty(inode, iflags); 1579 return 0; 1580 } 1581 EXPORT_SYMBOL(generic_update_time); 1582 1583 /* 1584 * This does the actual work of updating an inodes time or version. Must have 1585 * had called mnt_want_write() before calling this. 1586 */ 1587 static int update_time(struct inode *inode, struct timespec *time, int flags) 1588 { 1589 int (*update_time)(struct inode *, struct timespec *, int); 1590 1591 update_time = inode->i_op->update_time ? inode->i_op->update_time : 1592 generic_update_time; 1593 1594 return update_time(inode, time, flags); 1595 } 1596 1597 /** 1598 * touch_atime - update the access time 1599 * @path: the &struct path to update 1600 * @inode: inode to update 1601 * 1602 * Update the accessed time on an inode and mark it for writeback. 1603 * This function automatically handles read only file systems and media, 1604 * as well as the "noatime" flag and inode specific "noatime" markers. 1605 */ 1606 bool atime_needs_update(const struct path *path, struct inode *inode) 1607 { 1608 struct vfsmount *mnt = path->mnt; 1609 struct timespec now; 1610 1611 if (inode->i_flags & S_NOATIME) 1612 return false; 1613 if (IS_NOATIME(inode)) 1614 return false; 1615 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode)) 1616 return false; 1617 1618 if (mnt->mnt_flags & MNT_NOATIME) 1619 return false; 1620 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 1621 return false; 1622 1623 now = current_fs_time(inode->i_sb); 1624 1625 if (!relatime_need_update(mnt, inode, now)) 1626 return false; 1627 1628 if (timespec_equal(&inode->i_atime, &now)) 1629 return false; 1630 1631 return true; 1632 } 1633 1634 void touch_atime(const struct path *path) 1635 { 1636 struct vfsmount *mnt = path->mnt; 1637 struct inode *inode = d_inode(path->dentry); 1638 struct timespec now; 1639 1640 if (!atime_needs_update(path, inode)) 1641 return; 1642 1643 if (!sb_start_write_trylock(inode->i_sb)) 1644 return; 1645 1646 if (__mnt_want_write(mnt) != 0) 1647 goto skip_update; 1648 /* 1649 * File systems can error out when updating inodes if they need to 1650 * allocate new space to modify an inode (such is the case for 1651 * Btrfs), but since we touch atime while walking down the path we 1652 * really don't care if we failed to update the atime of the file, 1653 * so just ignore the return value. 1654 * We may also fail on filesystems that have the ability to make parts 1655 * of the fs read only, e.g. subvolumes in Btrfs. 1656 */ 1657 now = current_fs_time(inode->i_sb); 1658 update_time(inode, &now, S_ATIME); 1659 __mnt_drop_write(mnt); 1660 skip_update: 1661 sb_end_write(inode->i_sb); 1662 } 1663 EXPORT_SYMBOL(touch_atime); 1664 1665 /* 1666 * The logic we want is 1667 * 1668 * if suid or (sgid and xgrp) 1669 * remove privs 1670 */ 1671 int should_remove_suid(struct dentry *dentry) 1672 { 1673 umode_t mode = d_inode(dentry)->i_mode; 1674 int kill = 0; 1675 1676 /* suid always must be killed */ 1677 if (unlikely(mode & S_ISUID)) 1678 kill = ATTR_KILL_SUID; 1679 1680 /* 1681 * sgid without any exec bits is just a mandatory locking mark; leave 1682 * it alone. If some exec bits are set, it's a real sgid; kill it. 1683 */ 1684 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1685 kill |= ATTR_KILL_SGID; 1686 1687 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1688 return kill; 1689 1690 return 0; 1691 } 1692 EXPORT_SYMBOL(should_remove_suid); 1693 1694 /* 1695 * Return mask of changes for notify_change() that need to be done as a 1696 * response to write or truncate. Return 0 if nothing has to be changed. 1697 * Negative value on error (change should be denied). 1698 */ 1699 int dentry_needs_remove_privs(struct dentry *dentry) 1700 { 1701 struct inode *inode = d_inode(dentry); 1702 int mask = 0; 1703 int ret; 1704 1705 if (IS_NOSEC(inode)) 1706 return 0; 1707 1708 mask = should_remove_suid(dentry); 1709 ret = security_inode_need_killpriv(dentry); 1710 if (ret < 0) 1711 return ret; 1712 if (ret) 1713 mask |= ATTR_KILL_PRIV; 1714 return mask; 1715 } 1716 EXPORT_SYMBOL(dentry_needs_remove_privs); 1717 1718 static int __remove_privs(struct dentry *dentry, int kill) 1719 { 1720 struct iattr newattrs; 1721 1722 newattrs.ia_valid = ATTR_FORCE | kill; 1723 /* 1724 * Note we call this on write, so notify_change will not 1725 * encounter any conflicting delegations: 1726 */ 1727 return notify_change(dentry, &newattrs, NULL); 1728 } 1729 1730 /* 1731 * Remove special file priviledges (suid, capabilities) when file is written 1732 * to or truncated. 1733 */ 1734 int file_remove_privs(struct file *file) 1735 { 1736 struct dentry *dentry = file->f_path.dentry; 1737 struct inode *inode = d_inode(dentry); 1738 int kill; 1739 int error = 0; 1740 1741 /* Fast path for nothing security related */ 1742 if (IS_NOSEC(inode)) 1743 return 0; 1744 1745 kill = file_needs_remove_privs(file); 1746 if (kill < 0) 1747 return kill; 1748 if (kill) 1749 error = __remove_privs(dentry, kill); 1750 if (!error) 1751 inode_has_no_xattr(inode); 1752 1753 return error; 1754 } 1755 EXPORT_SYMBOL(file_remove_privs); 1756 1757 /** 1758 * file_update_time - update mtime and ctime time 1759 * @file: file accessed 1760 * 1761 * Update the mtime and ctime members of an inode and mark the inode 1762 * for writeback. Note that this function is meant exclusively for 1763 * usage in the file write path of filesystems, and filesystems may 1764 * choose to explicitly ignore update via this function with the 1765 * S_NOCMTIME inode flag, e.g. for network filesystem where these 1766 * timestamps are handled by the server. This can return an error for 1767 * file systems who need to allocate space in order to update an inode. 1768 */ 1769 1770 int file_update_time(struct file *file) 1771 { 1772 struct inode *inode = file_inode(file); 1773 struct timespec now; 1774 int sync_it = 0; 1775 int ret; 1776 1777 /* First try to exhaust all avenues to not sync */ 1778 if (IS_NOCMTIME(inode)) 1779 return 0; 1780 1781 now = current_fs_time(inode->i_sb); 1782 if (!timespec_equal(&inode->i_mtime, &now)) 1783 sync_it = S_MTIME; 1784 1785 if (!timespec_equal(&inode->i_ctime, &now)) 1786 sync_it |= S_CTIME; 1787 1788 if (IS_I_VERSION(inode)) 1789 sync_it |= S_VERSION; 1790 1791 if (!sync_it) 1792 return 0; 1793 1794 /* Finally allowed to write? Takes lock. */ 1795 if (__mnt_want_write_file(file)) 1796 return 0; 1797 1798 ret = update_time(inode, &now, sync_it); 1799 __mnt_drop_write_file(file); 1800 1801 return ret; 1802 } 1803 EXPORT_SYMBOL(file_update_time); 1804 1805 int inode_needs_sync(struct inode *inode) 1806 { 1807 if (IS_SYNC(inode)) 1808 return 1; 1809 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 1810 return 1; 1811 return 0; 1812 } 1813 EXPORT_SYMBOL(inode_needs_sync); 1814 1815 /* 1816 * If we try to find an inode in the inode hash while it is being 1817 * deleted, we have to wait until the filesystem completes its 1818 * deletion before reporting that it isn't found. This function waits 1819 * until the deletion _might_ have completed. Callers are responsible 1820 * to recheck inode state. 1821 * 1822 * It doesn't matter if I_NEW is not set initially, a call to 1823 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 1824 * will DTRT. 1825 */ 1826 static void __wait_on_freeing_inode(struct inode *inode) 1827 { 1828 wait_queue_head_t *wq; 1829 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 1830 wq = bit_waitqueue(&inode->i_state, __I_NEW); 1831 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE); 1832 spin_unlock(&inode->i_lock); 1833 spin_unlock(&inode_hash_lock); 1834 schedule(); 1835 finish_wait(wq, &wait.wait); 1836 spin_lock(&inode_hash_lock); 1837 } 1838 1839 static __initdata unsigned long ihash_entries; 1840 static int __init set_ihash_entries(char *str) 1841 { 1842 if (!str) 1843 return 0; 1844 ihash_entries = simple_strtoul(str, &str, 0); 1845 return 1; 1846 } 1847 __setup("ihash_entries=", set_ihash_entries); 1848 1849 /* 1850 * Initialize the waitqueues and inode hash table. 1851 */ 1852 void __init inode_init_early(void) 1853 { 1854 unsigned int loop; 1855 1856 /* If hashes are distributed across NUMA nodes, defer 1857 * hash allocation until vmalloc space is available. 1858 */ 1859 if (hashdist) 1860 return; 1861 1862 inode_hashtable = 1863 alloc_large_system_hash("Inode-cache", 1864 sizeof(struct hlist_head), 1865 ihash_entries, 1866 14, 1867 HASH_EARLY, 1868 &i_hash_shift, 1869 &i_hash_mask, 1870 0, 1871 0); 1872 1873 for (loop = 0; loop < (1U << i_hash_shift); loop++) 1874 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1875 } 1876 1877 void __init inode_init(void) 1878 { 1879 unsigned int loop; 1880 1881 /* inode slab cache */ 1882 inode_cachep = kmem_cache_create("inode_cache", 1883 sizeof(struct inode), 1884 0, 1885 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 1886 SLAB_MEM_SPREAD), 1887 init_once); 1888 1889 /* Hash may have been set up in inode_init_early */ 1890 if (!hashdist) 1891 return; 1892 1893 inode_hashtable = 1894 alloc_large_system_hash("Inode-cache", 1895 sizeof(struct hlist_head), 1896 ihash_entries, 1897 14, 1898 0, 1899 &i_hash_shift, 1900 &i_hash_mask, 1901 0, 1902 0); 1903 1904 for (loop = 0; loop < (1U << i_hash_shift); loop++) 1905 INIT_HLIST_HEAD(&inode_hashtable[loop]); 1906 } 1907 1908 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 1909 { 1910 inode->i_mode = mode; 1911 if (S_ISCHR(mode)) { 1912 inode->i_fop = &def_chr_fops; 1913 inode->i_rdev = rdev; 1914 } else if (S_ISBLK(mode)) { 1915 inode->i_fop = &def_blk_fops; 1916 inode->i_rdev = rdev; 1917 } else if (S_ISFIFO(mode)) 1918 inode->i_fop = &pipefifo_fops; 1919 else if (S_ISSOCK(mode)) 1920 ; /* leave it no_open_fops */ 1921 else 1922 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 1923 " inode %s:%lu\n", mode, inode->i_sb->s_id, 1924 inode->i_ino); 1925 } 1926 EXPORT_SYMBOL(init_special_inode); 1927 1928 /** 1929 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 1930 * @inode: New inode 1931 * @dir: Directory inode 1932 * @mode: mode of the new inode 1933 */ 1934 void inode_init_owner(struct inode *inode, const struct inode *dir, 1935 umode_t mode) 1936 { 1937 inode->i_uid = current_fsuid(); 1938 if (dir && dir->i_mode & S_ISGID) { 1939 inode->i_gid = dir->i_gid; 1940 if (S_ISDIR(mode)) 1941 mode |= S_ISGID; 1942 } else 1943 inode->i_gid = current_fsgid(); 1944 inode->i_mode = mode; 1945 } 1946 EXPORT_SYMBOL(inode_init_owner); 1947 1948 /** 1949 * inode_owner_or_capable - check current task permissions to inode 1950 * @inode: inode being checked 1951 * 1952 * Return true if current either has CAP_FOWNER in a namespace with the 1953 * inode owner uid mapped, or owns the file. 1954 */ 1955 bool inode_owner_or_capable(const struct inode *inode) 1956 { 1957 struct user_namespace *ns; 1958 1959 if (uid_eq(current_fsuid(), inode->i_uid)) 1960 return true; 1961 1962 ns = current_user_ns(); 1963 if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid)) 1964 return true; 1965 return false; 1966 } 1967 EXPORT_SYMBOL(inode_owner_or_capable); 1968 1969 /* 1970 * Direct i/o helper functions 1971 */ 1972 static void __inode_dio_wait(struct inode *inode) 1973 { 1974 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 1975 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 1976 1977 do { 1978 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE); 1979 if (atomic_read(&inode->i_dio_count)) 1980 schedule(); 1981 } while (atomic_read(&inode->i_dio_count)); 1982 finish_wait(wq, &q.wait); 1983 } 1984 1985 /** 1986 * inode_dio_wait - wait for outstanding DIO requests to finish 1987 * @inode: inode to wait for 1988 * 1989 * Waits for all pending direct I/O requests to finish so that we can 1990 * proceed with a truncate or equivalent operation. 1991 * 1992 * Must be called under a lock that serializes taking new references 1993 * to i_dio_count, usually by inode->i_mutex. 1994 */ 1995 void inode_dio_wait(struct inode *inode) 1996 { 1997 if (atomic_read(&inode->i_dio_count)) 1998 __inode_dio_wait(inode); 1999 } 2000 EXPORT_SYMBOL(inode_dio_wait); 2001 2002 /* 2003 * inode_set_flags - atomically set some inode flags 2004 * 2005 * Note: the caller should be holding i_mutex, or else be sure that 2006 * they have exclusive access to the inode structure (i.e., while the 2007 * inode is being instantiated). The reason for the cmpxchg() loop 2008 * --- which wouldn't be necessary if all code paths which modify 2009 * i_flags actually followed this rule, is that there is at least one 2010 * code path which doesn't today so we use cmpxchg() out of an abundance 2011 * of caution. 2012 * 2013 * In the long run, i_mutex is overkill, and we should probably look 2014 * at using the i_lock spinlock to protect i_flags, and then make sure 2015 * it is so documented in include/linux/fs.h and that all code follows 2016 * the locking convention!! 2017 */ 2018 void inode_set_flags(struct inode *inode, unsigned int flags, 2019 unsigned int mask) 2020 { 2021 unsigned int old_flags, new_flags; 2022 2023 WARN_ON_ONCE(flags & ~mask); 2024 do { 2025 old_flags = ACCESS_ONCE(inode->i_flags); 2026 new_flags = (old_flags & ~mask) | flags; 2027 } while (unlikely(cmpxchg(&inode->i_flags, old_flags, 2028 new_flags) != old_flags)); 2029 } 2030 EXPORT_SYMBOL(inode_set_flags); 2031