1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * (C) 1997 Linus Torvalds 4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation) 5 */ 6 #include <linux/export.h> 7 #include <linux/fs.h> 8 #include <linux/filelock.h> 9 #include <linux/mm.h> 10 #include <linux/backing-dev.h> 11 #include <linux/hash.h> 12 #include <linux/swap.h> 13 #include <linux/security.h> 14 #include <linux/cdev.h> 15 #include <linux/memblock.h> 16 #include <linux/fsnotify.h> 17 #include <linux/mount.h> 18 #include <linux/posix_acl.h> 19 #include <linux/buffer_head.h> /* for inode_has_buffers */ 20 #include <linux/ratelimit.h> 21 #include <linux/list_lru.h> 22 #include <linux/iversion.h> 23 #include <trace/events/writeback.h> 24 #include "internal.h" 25 26 /* 27 * Inode locking rules: 28 * 29 * inode->i_lock protects: 30 * inode->i_state, inode->i_hash, __iget(), inode->i_io_list 31 * Inode LRU list locks protect: 32 * inode->i_sb->s_inode_lru, inode->i_lru 33 * inode->i_sb->s_inode_list_lock protects: 34 * inode->i_sb->s_inodes, inode->i_sb_list 35 * bdi->wb.list_lock protects: 36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list 37 * inode_hash_lock protects: 38 * inode_hashtable, inode->i_hash 39 * 40 * Lock ordering: 41 * 42 * inode->i_sb->s_inode_list_lock 43 * inode->i_lock 44 * Inode LRU list locks 45 * 46 * bdi->wb.list_lock 47 * inode->i_lock 48 * 49 * inode_hash_lock 50 * inode->i_sb->s_inode_list_lock 51 * inode->i_lock 52 * 53 * iunique_lock 54 * inode_hash_lock 55 */ 56 57 static unsigned int i_hash_mask __read_mostly; 58 static unsigned int i_hash_shift __read_mostly; 59 static struct hlist_head *inode_hashtable __read_mostly; 60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock); 61 62 /* 63 * Empty aops. Can be used for the cases where the user does not 64 * define any of the address_space operations. 65 */ 66 const struct address_space_operations empty_aops = { 67 }; 68 EXPORT_SYMBOL(empty_aops); 69 70 static DEFINE_PER_CPU(unsigned long, nr_inodes); 71 static DEFINE_PER_CPU(unsigned long, nr_unused); 72 73 static struct kmem_cache *inode_cachep __read_mostly; 74 75 static long get_nr_inodes(void) 76 { 77 int i; 78 long sum = 0; 79 for_each_possible_cpu(i) 80 sum += per_cpu(nr_inodes, i); 81 return sum < 0 ? 0 : sum; 82 } 83 84 static inline long get_nr_inodes_unused(void) 85 { 86 int i; 87 long sum = 0; 88 for_each_possible_cpu(i) 89 sum += per_cpu(nr_unused, i); 90 return sum < 0 ? 0 : sum; 91 } 92 93 long get_nr_dirty_inodes(void) 94 { 95 /* not actually dirty inodes, but a wild approximation */ 96 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused(); 97 return nr_dirty > 0 ? nr_dirty : 0; 98 } 99 100 /* 101 * Handle nr_inode sysctl 102 */ 103 #ifdef CONFIG_SYSCTL 104 /* 105 * Statistics gathering.. 106 */ 107 static struct inodes_stat_t inodes_stat; 108 109 static int proc_nr_inodes(struct ctl_table *table, int write, void *buffer, 110 size_t *lenp, loff_t *ppos) 111 { 112 inodes_stat.nr_inodes = get_nr_inodes(); 113 inodes_stat.nr_unused = get_nr_inodes_unused(); 114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 115 } 116 117 static struct ctl_table inodes_sysctls[] = { 118 { 119 .procname = "inode-nr", 120 .data = &inodes_stat, 121 .maxlen = 2*sizeof(long), 122 .mode = 0444, 123 .proc_handler = proc_nr_inodes, 124 }, 125 { 126 .procname = "inode-state", 127 .data = &inodes_stat, 128 .maxlen = 7*sizeof(long), 129 .mode = 0444, 130 .proc_handler = proc_nr_inodes, 131 }, 132 { } 133 }; 134 135 static int __init init_fs_inode_sysctls(void) 136 { 137 register_sysctl_init("fs", inodes_sysctls); 138 return 0; 139 } 140 early_initcall(init_fs_inode_sysctls); 141 #endif 142 143 static int no_open(struct inode *inode, struct file *file) 144 { 145 return -ENXIO; 146 } 147 148 /** 149 * inode_init_always - perform inode structure initialisation 150 * @sb: superblock inode belongs to 151 * @inode: inode to initialise 152 * 153 * These are initializations that need to be done on every inode 154 * allocation as the fields are not initialised by slab allocation. 155 */ 156 int inode_init_always(struct super_block *sb, struct inode *inode) 157 { 158 static const struct inode_operations empty_iops; 159 static const struct file_operations no_open_fops = {.open = no_open}; 160 struct address_space *const mapping = &inode->i_data; 161 162 inode->i_sb = sb; 163 inode->i_blkbits = sb->s_blocksize_bits; 164 inode->i_flags = 0; 165 atomic64_set(&inode->i_sequence, 0); 166 atomic_set(&inode->i_count, 1); 167 inode->i_op = &empty_iops; 168 inode->i_fop = &no_open_fops; 169 inode->i_ino = 0; 170 inode->__i_nlink = 1; 171 inode->i_opflags = 0; 172 if (sb->s_xattr) 173 inode->i_opflags |= IOP_XATTR; 174 i_uid_write(inode, 0); 175 i_gid_write(inode, 0); 176 atomic_set(&inode->i_writecount, 0); 177 inode->i_size = 0; 178 inode->i_write_hint = WRITE_LIFE_NOT_SET; 179 inode->i_blocks = 0; 180 inode->i_bytes = 0; 181 inode->i_generation = 0; 182 inode->i_pipe = NULL; 183 inode->i_cdev = NULL; 184 inode->i_link = NULL; 185 inode->i_dir_seq = 0; 186 inode->i_rdev = 0; 187 inode->dirtied_when = 0; 188 189 #ifdef CONFIG_CGROUP_WRITEBACK 190 inode->i_wb_frn_winner = 0; 191 inode->i_wb_frn_avg_time = 0; 192 inode->i_wb_frn_history = 0; 193 #endif 194 195 spin_lock_init(&inode->i_lock); 196 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key); 197 198 init_rwsem(&inode->i_rwsem); 199 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key); 200 201 atomic_set(&inode->i_dio_count, 0); 202 203 mapping->a_ops = &empty_aops; 204 mapping->host = inode; 205 mapping->flags = 0; 206 mapping->wb_err = 0; 207 atomic_set(&mapping->i_mmap_writable, 0); 208 #ifdef CONFIG_READ_ONLY_THP_FOR_FS 209 atomic_set(&mapping->nr_thps, 0); 210 #endif 211 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE); 212 mapping->private_data = NULL; 213 mapping->writeback_index = 0; 214 init_rwsem(&mapping->invalidate_lock); 215 lockdep_set_class_and_name(&mapping->invalidate_lock, 216 &sb->s_type->invalidate_lock_key, 217 "mapping.invalidate_lock"); 218 if (sb->s_iflags & SB_I_STABLE_WRITES) 219 mapping_set_stable_writes(mapping); 220 inode->i_private = NULL; 221 inode->i_mapping = mapping; 222 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */ 223 #ifdef CONFIG_FS_POSIX_ACL 224 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED; 225 #endif 226 227 #ifdef CONFIG_FSNOTIFY 228 inode->i_fsnotify_mask = 0; 229 #endif 230 inode->i_flctx = NULL; 231 232 if (unlikely(security_inode_alloc(inode))) 233 return -ENOMEM; 234 this_cpu_inc(nr_inodes); 235 236 return 0; 237 } 238 EXPORT_SYMBOL(inode_init_always); 239 240 void free_inode_nonrcu(struct inode *inode) 241 { 242 kmem_cache_free(inode_cachep, inode); 243 } 244 EXPORT_SYMBOL(free_inode_nonrcu); 245 246 static void i_callback(struct rcu_head *head) 247 { 248 struct inode *inode = container_of(head, struct inode, i_rcu); 249 if (inode->free_inode) 250 inode->free_inode(inode); 251 else 252 free_inode_nonrcu(inode); 253 } 254 255 static struct inode *alloc_inode(struct super_block *sb) 256 { 257 const struct super_operations *ops = sb->s_op; 258 struct inode *inode; 259 260 if (ops->alloc_inode) 261 inode = ops->alloc_inode(sb); 262 else 263 inode = alloc_inode_sb(sb, inode_cachep, GFP_KERNEL); 264 265 if (!inode) 266 return NULL; 267 268 if (unlikely(inode_init_always(sb, inode))) { 269 if (ops->destroy_inode) { 270 ops->destroy_inode(inode); 271 if (!ops->free_inode) 272 return NULL; 273 } 274 inode->free_inode = ops->free_inode; 275 i_callback(&inode->i_rcu); 276 return NULL; 277 } 278 279 return inode; 280 } 281 282 void __destroy_inode(struct inode *inode) 283 { 284 BUG_ON(inode_has_buffers(inode)); 285 inode_detach_wb(inode); 286 security_inode_free(inode); 287 fsnotify_inode_delete(inode); 288 locks_free_lock_context(inode); 289 if (!inode->i_nlink) { 290 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0); 291 atomic_long_dec(&inode->i_sb->s_remove_count); 292 } 293 294 #ifdef CONFIG_FS_POSIX_ACL 295 if (inode->i_acl && !is_uncached_acl(inode->i_acl)) 296 posix_acl_release(inode->i_acl); 297 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl)) 298 posix_acl_release(inode->i_default_acl); 299 #endif 300 this_cpu_dec(nr_inodes); 301 } 302 EXPORT_SYMBOL(__destroy_inode); 303 304 static void destroy_inode(struct inode *inode) 305 { 306 const struct super_operations *ops = inode->i_sb->s_op; 307 308 BUG_ON(!list_empty(&inode->i_lru)); 309 __destroy_inode(inode); 310 if (ops->destroy_inode) { 311 ops->destroy_inode(inode); 312 if (!ops->free_inode) 313 return; 314 } 315 inode->free_inode = ops->free_inode; 316 call_rcu(&inode->i_rcu, i_callback); 317 } 318 319 /** 320 * drop_nlink - directly drop an inode's link count 321 * @inode: inode 322 * 323 * This is a low-level filesystem helper to replace any 324 * direct filesystem manipulation of i_nlink. In cases 325 * where we are attempting to track writes to the 326 * filesystem, a decrement to zero means an imminent 327 * write when the file is truncated and actually unlinked 328 * on the filesystem. 329 */ 330 void drop_nlink(struct inode *inode) 331 { 332 WARN_ON(inode->i_nlink == 0); 333 inode->__i_nlink--; 334 if (!inode->i_nlink) 335 atomic_long_inc(&inode->i_sb->s_remove_count); 336 } 337 EXPORT_SYMBOL(drop_nlink); 338 339 /** 340 * clear_nlink - directly zero an inode's link count 341 * @inode: inode 342 * 343 * This is a low-level filesystem helper to replace any 344 * direct filesystem manipulation of i_nlink. See 345 * drop_nlink() for why we care about i_nlink hitting zero. 346 */ 347 void clear_nlink(struct inode *inode) 348 { 349 if (inode->i_nlink) { 350 inode->__i_nlink = 0; 351 atomic_long_inc(&inode->i_sb->s_remove_count); 352 } 353 } 354 EXPORT_SYMBOL(clear_nlink); 355 356 /** 357 * set_nlink - directly set an inode's link count 358 * @inode: inode 359 * @nlink: new nlink (should be non-zero) 360 * 361 * This is a low-level filesystem helper to replace any 362 * direct filesystem manipulation of i_nlink. 363 */ 364 void set_nlink(struct inode *inode, unsigned int nlink) 365 { 366 if (!nlink) { 367 clear_nlink(inode); 368 } else { 369 /* Yes, some filesystems do change nlink from zero to one */ 370 if (inode->i_nlink == 0) 371 atomic_long_dec(&inode->i_sb->s_remove_count); 372 373 inode->__i_nlink = nlink; 374 } 375 } 376 EXPORT_SYMBOL(set_nlink); 377 378 /** 379 * inc_nlink - directly increment an inode's link count 380 * @inode: inode 381 * 382 * This is a low-level filesystem helper to replace any 383 * direct filesystem manipulation of i_nlink. Currently, 384 * it is only here for parity with dec_nlink(). 385 */ 386 void inc_nlink(struct inode *inode) 387 { 388 if (unlikely(inode->i_nlink == 0)) { 389 WARN_ON(!(inode->i_state & I_LINKABLE)); 390 atomic_long_dec(&inode->i_sb->s_remove_count); 391 } 392 393 inode->__i_nlink++; 394 } 395 EXPORT_SYMBOL(inc_nlink); 396 397 static void __address_space_init_once(struct address_space *mapping) 398 { 399 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT); 400 init_rwsem(&mapping->i_mmap_rwsem); 401 INIT_LIST_HEAD(&mapping->private_list); 402 spin_lock_init(&mapping->private_lock); 403 mapping->i_mmap = RB_ROOT_CACHED; 404 } 405 406 void address_space_init_once(struct address_space *mapping) 407 { 408 memset(mapping, 0, sizeof(*mapping)); 409 __address_space_init_once(mapping); 410 } 411 EXPORT_SYMBOL(address_space_init_once); 412 413 /* 414 * These are initializations that only need to be done 415 * once, because the fields are idempotent across use 416 * of the inode, so let the slab aware of that. 417 */ 418 void inode_init_once(struct inode *inode) 419 { 420 memset(inode, 0, sizeof(*inode)); 421 INIT_HLIST_NODE(&inode->i_hash); 422 INIT_LIST_HEAD(&inode->i_devices); 423 INIT_LIST_HEAD(&inode->i_io_list); 424 INIT_LIST_HEAD(&inode->i_wb_list); 425 INIT_LIST_HEAD(&inode->i_lru); 426 INIT_LIST_HEAD(&inode->i_sb_list); 427 __address_space_init_once(&inode->i_data); 428 i_size_ordered_init(inode); 429 } 430 EXPORT_SYMBOL(inode_init_once); 431 432 static void init_once(void *foo) 433 { 434 struct inode *inode = (struct inode *) foo; 435 436 inode_init_once(inode); 437 } 438 439 /* 440 * inode->i_lock must be held 441 */ 442 void __iget(struct inode *inode) 443 { 444 atomic_inc(&inode->i_count); 445 } 446 447 /* 448 * get additional reference to inode; caller must already hold one. 449 */ 450 void ihold(struct inode *inode) 451 { 452 WARN_ON(atomic_inc_return(&inode->i_count) < 2); 453 } 454 EXPORT_SYMBOL(ihold); 455 456 static void __inode_add_lru(struct inode *inode, bool rotate) 457 { 458 if (inode->i_state & (I_DIRTY_ALL | I_SYNC | I_FREEING | I_WILL_FREE)) 459 return; 460 if (atomic_read(&inode->i_count)) 461 return; 462 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 463 return; 464 if (!mapping_shrinkable(&inode->i_data)) 465 return; 466 467 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru)) 468 this_cpu_inc(nr_unused); 469 else if (rotate) 470 inode->i_state |= I_REFERENCED; 471 } 472 473 /* 474 * Add inode to LRU if needed (inode is unused and clean). 475 * 476 * Needs inode->i_lock held. 477 */ 478 void inode_add_lru(struct inode *inode) 479 { 480 __inode_add_lru(inode, false); 481 } 482 483 static void inode_lru_list_del(struct inode *inode) 484 { 485 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru)) 486 this_cpu_dec(nr_unused); 487 } 488 489 static void inode_pin_lru_isolating(struct inode *inode) 490 { 491 lockdep_assert_held(&inode->i_lock); 492 WARN_ON(inode->i_state & (I_LRU_ISOLATING | I_FREEING | I_WILL_FREE)); 493 inode->i_state |= I_LRU_ISOLATING; 494 } 495 496 static void inode_unpin_lru_isolating(struct inode *inode) 497 { 498 spin_lock(&inode->i_lock); 499 WARN_ON(!(inode->i_state & I_LRU_ISOLATING)); 500 inode->i_state &= ~I_LRU_ISOLATING; 501 smp_mb(); 502 wake_up_bit(&inode->i_state, __I_LRU_ISOLATING); 503 spin_unlock(&inode->i_lock); 504 } 505 506 static void inode_wait_for_lru_isolating(struct inode *inode) 507 { 508 spin_lock(&inode->i_lock); 509 if (inode->i_state & I_LRU_ISOLATING) { 510 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_LRU_ISOLATING); 511 wait_queue_head_t *wqh; 512 513 wqh = bit_waitqueue(&inode->i_state, __I_LRU_ISOLATING); 514 spin_unlock(&inode->i_lock); 515 __wait_on_bit(wqh, &wq, bit_wait, TASK_UNINTERRUPTIBLE); 516 spin_lock(&inode->i_lock); 517 WARN_ON(inode->i_state & I_LRU_ISOLATING); 518 } 519 spin_unlock(&inode->i_lock); 520 } 521 522 /** 523 * inode_sb_list_add - add inode to the superblock list of inodes 524 * @inode: inode to add 525 */ 526 void inode_sb_list_add(struct inode *inode) 527 { 528 spin_lock(&inode->i_sb->s_inode_list_lock); 529 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes); 530 spin_unlock(&inode->i_sb->s_inode_list_lock); 531 } 532 EXPORT_SYMBOL_GPL(inode_sb_list_add); 533 534 static inline void inode_sb_list_del(struct inode *inode) 535 { 536 if (!list_empty(&inode->i_sb_list)) { 537 spin_lock(&inode->i_sb->s_inode_list_lock); 538 list_del_init(&inode->i_sb_list); 539 spin_unlock(&inode->i_sb->s_inode_list_lock); 540 } 541 } 542 543 static unsigned long hash(struct super_block *sb, unsigned long hashval) 544 { 545 unsigned long tmp; 546 547 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) / 548 L1_CACHE_BYTES; 549 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift); 550 return tmp & i_hash_mask; 551 } 552 553 /** 554 * __insert_inode_hash - hash an inode 555 * @inode: unhashed inode 556 * @hashval: unsigned long value used to locate this object in the 557 * inode_hashtable. 558 * 559 * Add an inode to the inode hash for this superblock. 560 */ 561 void __insert_inode_hash(struct inode *inode, unsigned long hashval) 562 { 563 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval); 564 565 spin_lock(&inode_hash_lock); 566 spin_lock(&inode->i_lock); 567 hlist_add_head_rcu(&inode->i_hash, b); 568 spin_unlock(&inode->i_lock); 569 spin_unlock(&inode_hash_lock); 570 } 571 EXPORT_SYMBOL(__insert_inode_hash); 572 573 /** 574 * __remove_inode_hash - remove an inode from the hash 575 * @inode: inode to unhash 576 * 577 * Remove an inode from the superblock. 578 */ 579 void __remove_inode_hash(struct inode *inode) 580 { 581 spin_lock(&inode_hash_lock); 582 spin_lock(&inode->i_lock); 583 hlist_del_init_rcu(&inode->i_hash); 584 spin_unlock(&inode->i_lock); 585 spin_unlock(&inode_hash_lock); 586 } 587 EXPORT_SYMBOL(__remove_inode_hash); 588 589 void dump_mapping(const struct address_space *mapping) 590 { 591 struct inode *host; 592 const struct address_space_operations *a_ops; 593 struct hlist_node *dentry_first; 594 struct dentry *dentry_ptr; 595 struct dentry dentry; 596 unsigned long ino; 597 598 /* 599 * If mapping is an invalid pointer, we don't want to crash 600 * accessing it, so probe everything depending on it carefully. 601 */ 602 if (get_kernel_nofault(host, &mapping->host) || 603 get_kernel_nofault(a_ops, &mapping->a_ops)) { 604 pr_warn("invalid mapping:%px\n", mapping); 605 return; 606 } 607 608 if (!host) { 609 pr_warn("aops:%ps\n", a_ops); 610 return; 611 } 612 613 if (get_kernel_nofault(dentry_first, &host->i_dentry.first) || 614 get_kernel_nofault(ino, &host->i_ino)) { 615 pr_warn("aops:%ps invalid inode:%px\n", a_ops, host); 616 return; 617 } 618 619 if (!dentry_first) { 620 pr_warn("aops:%ps ino:%lx\n", a_ops, ino); 621 return; 622 } 623 624 dentry_ptr = container_of(dentry_first, struct dentry, d_u.d_alias); 625 if (get_kernel_nofault(dentry, dentry_ptr)) { 626 pr_warn("aops:%ps ino:%lx invalid dentry:%px\n", 627 a_ops, ino, dentry_ptr); 628 return; 629 } 630 631 /* 632 * if dentry is corrupted, the %pd handler may still crash, 633 * but it's unlikely that we reach here with a corrupt mapping 634 */ 635 pr_warn("aops:%ps ino:%lx dentry name:\"%pd\"\n", a_ops, ino, &dentry); 636 } 637 638 void clear_inode(struct inode *inode) 639 { 640 /* 641 * We have to cycle the i_pages lock here because reclaim can be in the 642 * process of removing the last page (in __filemap_remove_folio()) 643 * and we must not free the mapping under it. 644 */ 645 xa_lock_irq(&inode->i_data.i_pages); 646 BUG_ON(inode->i_data.nrpages); 647 /* 648 * Almost always, mapping_empty(&inode->i_data) here; but there are 649 * two known and long-standing ways in which nodes may get left behind 650 * (when deep radix-tree node allocation failed partway; or when THP 651 * collapse_file() failed). Until those two known cases are cleaned up, 652 * or a cleanup function is called here, do not BUG_ON(!mapping_empty), 653 * nor even WARN_ON(!mapping_empty). 654 */ 655 xa_unlock_irq(&inode->i_data.i_pages); 656 BUG_ON(!list_empty(&inode->i_data.private_list)); 657 BUG_ON(!(inode->i_state & I_FREEING)); 658 BUG_ON(inode->i_state & I_CLEAR); 659 BUG_ON(!list_empty(&inode->i_wb_list)); 660 /* don't need i_lock here, no concurrent mods to i_state */ 661 inode->i_state = I_FREEING | I_CLEAR; 662 } 663 EXPORT_SYMBOL(clear_inode); 664 665 /* 666 * Free the inode passed in, removing it from the lists it is still connected 667 * to. We remove any pages still attached to the inode and wait for any IO that 668 * is still in progress before finally destroying the inode. 669 * 670 * An inode must already be marked I_FREEING so that we avoid the inode being 671 * moved back onto lists if we race with other code that manipulates the lists 672 * (e.g. writeback_single_inode). The caller is responsible for setting this. 673 * 674 * An inode must already be removed from the LRU list before being evicted from 675 * the cache. This should occur atomically with setting the I_FREEING state 676 * flag, so no inodes here should ever be on the LRU when being evicted. 677 */ 678 static void evict(struct inode *inode) 679 { 680 const struct super_operations *op = inode->i_sb->s_op; 681 682 BUG_ON(!(inode->i_state & I_FREEING)); 683 BUG_ON(!list_empty(&inode->i_lru)); 684 685 if (!list_empty(&inode->i_io_list)) 686 inode_io_list_del(inode); 687 688 inode_sb_list_del(inode); 689 690 inode_wait_for_lru_isolating(inode); 691 692 /* 693 * Wait for flusher thread to be done with the inode so that filesystem 694 * does not start destroying it while writeback is still running. Since 695 * the inode has I_FREEING set, flusher thread won't start new work on 696 * the inode. We just have to wait for running writeback to finish. 697 */ 698 inode_wait_for_writeback(inode); 699 700 if (op->evict_inode) { 701 op->evict_inode(inode); 702 } else { 703 truncate_inode_pages_final(&inode->i_data); 704 clear_inode(inode); 705 } 706 if (S_ISCHR(inode->i_mode) && inode->i_cdev) 707 cd_forget(inode); 708 709 remove_inode_hash(inode); 710 711 spin_lock(&inode->i_lock); 712 wake_up_bit(&inode->i_state, __I_NEW); 713 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR)); 714 spin_unlock(&inode->i_lock); 715 716 destroy_inode(inode); 717 } 718 719 /* 720 * dispose_list - dispose of the contents of a local list 721 * @head: the head of the list to free 722 * 723 * Dispose-list gets a local list with local inodes in it, so it doesn't 724 * need to worry about list corruption and SMP locks. 725 */ 726 static void dispose_list(struct list_head *head) 727 { 728 while (!list_empty(head)) { 729 struct inode *inode; 730 731 inode = list_first_entry(head, struct inode, i_lru); 732 list_del_init(&inode->i_lru); 733 734 evict(inode); 735 cond_resched(); 736 } 737 } 738 739 /** 740 * evict_inodes - evict all evictable inodes for a superblock 741 * @sb: superblock to operate on 742 * 743 * Make sure that no inodes with zero refcount are retained. This is 744 * called by superblock shutdown after having SB_ACTIVE flag removed, 745 * so any inode reaching zero refcount during or after that call will 746 * be immediately evicted. 747 */ 748 void evict_inodes(struct super_block *sb) 749 { 750 struct inode *inode, *next; 751 LIST_HEAD(dispose); 752 753 again: 754 spin_lock(&sb->s_inode_list_lock); 755 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 756 if (atomic_read(&inode->i_count)) 757 continue; 758 759 spin_lock(&inode->i_lock); 760 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 761 spin_unlock(&inode->i_lock); 762 continue; 763 } 764 765 inode->i_state |= I_FREEING; 766 inode_lru_list_del(inode); 767 spin_unlock(&inode->i_lock); 768 list_add(&inode->i_lru, &dispose); 769 770 /* 771 * We can have a ton of inodes to evict at unmount time given 772 * enough memory, check to see if we need to go to sleep for a 773 * bit so we don't livelock. 774 */ 775 if (need_resched()) { 776 spin_unlock(&sb->s_inode_list_lock); 777 cond_resched(); 778 dispose_list(&dispose); 779 goto again; 780 } 781 } 782 spin_unlock(&sb->s_inode_list_lock); 783 784 dispose_list(&dispose); 785 } 786 EXPORT_SYMBOL_GPL(evict_inodes); 787 788 /** 789 * invalidate_inodes - attempt to free all inodes on a superblock 790 * @sb: superblock to operate on 791 * 792 * Attempts to free all inodes (including dirty inodes) for a given superblock. 793 */ 794 void invalidate_inodes(struct super_block *sb) 795 { 796 struct inode *inode, *next; 797 LIST_HEAD(dispose); 798 799 again: 800 spin_lock(&sb->s_inode_list_lock); 801 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) { 802 spin_lock(&inode->i_lock); 803 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 804 spin_unlock(&inode->i_lock); 805 continue; 806 } 807 if (atomic_read(&inode->i_count)) { 808 spin_unlock(&inode->i_lock); 809 continue; 810 } 811 812 inode->i_state |= I_FREEING; 813 inode_lru_list_del(inode); 814 spin_unlock(&inode->i_lock); 815 list_add(&inode->i_lru, &dispose); 816 if (need_resched()) { 817 spin_unlock(&sb->s_inode_list_lock); 818 cond_resched(); 819 dispose_list(&dispose); 820 goto again; 821 } 822 } 823 spin_unlock(&sb->s_inode_list_lock); 824 825 dispose_list(&dispose); 826 } 827 828 /* 829 * Isolate the inode from the LRU in preparation for freeing it. 830 * 831 * If the inode has the I_REFERENCED flag set, then it means that it has been 832 * used recently - the flag is set in iput_final(). When we encounter such an 833 * inode, clear the flag and move it to the back of the LRU so it gets another 834 * pass through the LRU before it gets reclaimed. This is necessary because of 835 * the fact we are doing lazy LRU updates to minimise lock contention so the 836 * LRU does not have strict ordering. Hence we don't want to reclaim inodes 837 * with this flag set because they are the inodes that are out of order. 838 */ 839 static enum lru_status inode_lru_isolate(struct list_head *item, 840 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg) 841 { 842 struct list_head *freeable = arg; 843 struct inode *inode = container_of(item, struct inode, i_lru); 844 845 /* 846 * We are inverting the lru lock/inode->i_lock here, so use a 847 * trylock. If we fail to get the lock, just skip it. 848 */ 849 if (!spin_trylock(&inode->i_lock)) 850 return LRU_SKIP; 851 852 /* 853 * Inodes can get referenced, redirtied, or repopulated while 854 * they're already on the LRU, and this can make them 855 * unreclaimable for a while. Remove them lazily here; iput, 856 * sync, or the last page cache deletion will requeue them. 857 */ 858 if (atomic_read(&inode->i_count) || 859 (inode->i_state & ~I_REFERENCED) || 860 !mapping_shrinkable(&inode->i_data)) { 861 list_lru_isolate(lru, &inode->i_lru); 862 spin_unlock(&inode->i_lock); 863 this_cpu_dec(nr_unused); 864 return LRU_REMOVED; 865 } 866 867 /* Recently referenced inodes get one more pass */ 868 if (inode->i_state & I_REFERENCED) { 869 inode->i_state &= ~I_REFERENCED; 870 spin_unlock(&inode->i_lock); 871 return LRU_ROTATE; 872 } 873 874 /* 875 * On highmem systems, mapping_shrinkable() permits dropping 876 * page cache in order to free up struct inodes: lowmem might 877 * be under pressure before the cache inside the highmem zone. 878 */ 879 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) { 880 inode_pin_lru_isolating(inode); 881 spin_unlock(&inode->i_lock); 882 spin_unlock(lru_lock); 883 if (remove_inode_buffers(inode)) { 884 unsigned long reap; 885 reap = invalidate_mapping_pages(&inode->i_data, 0, -1); 886 if (current_is_kswapd()) 887 __count_vm_events(KSWAPD_INODESTEAL, reap); 888 else 889 __count_vm_events(PGINODESTEAL, reap); 890 mm_account_reclaimed_pages(reap); 891 } 892 inode_unpin_lru_isolating(inode); 893 spin_lock(lru_lock); 894 return LRU_RETRY; 895 } 896 897 WARN_ON(inode->i_state & I_NEW); 898 inode->i_state |= I_FREEING; 899 list_lru_isolate_move(lru, &inode->i_lru, freeable); 900 spin_unlock(&inode->i_lock); 901 902 this_cpu_dec(nr_unused); 903 return LRU_REMOVED; 904 } 905 906 /* 907 * Walk the superblock inode LRU for freeable inodes and attempt to free them. 908 * This is called from the superblock shrinker function with a number of inodes 909 * to trim from the LRU. Inodes to be freed are moved to a temporary list and 910 * then are freed outside inode_lock by dispose_list(). 911 */ 912 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc) 913 { 914 LIST_HEAD(freeable); 915 long freed; 916 917 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc, 918 inode_lru_isolate, &freeable); 919 dispose_list(&freeable); 920 return freed; 921 } 922 923 static void __wait_on_freeing_inode(struct inode *inode); 924 /* 925 * Called with the inode lock held. 926 */ 927 static struct inode *find_inode(struct super_block *sb, 928 struct hlist_head *head, 929 int (*test)(struct inode *, void *), 930 void *data) 931 { 932 struct inode *inode = NULL; 933 934 repeat: 935 hlist_for_each_entry(inode, head, i_hash) { 936 if (inode->i_sb != sb) 937 continue; 938 if (!test(inode, data)) 939 continue; 940 spin_lock(&inode->i_lock); 941 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 942 __wait_on_freeing_inode(inode); 943 goto repeat; 944 } 945 if (unlikely(inode->i_state & I_CREATING)) { 946 spin_unlock(&inode->i_lock); 947 return ERR_PTR(-ESTALE); 948 } 949 __iget(inode); 950 spin_unlock(&inode->i_lock); 951 return inode; 952 } 953 return NULL; 954 } 955 956 /* 957 * find_inode_fast is the fast path version of find_inode, see the comment at 958 * iget_locked for details. 959 */ 960 static struct inode *find_inode_fast(struct super_block *sb, 961 struct hlist_head *head, unsigned long ino) 962 { 963 struct inode *inode = NULL; 964 965 repeat: 966 hlist_for_each_entry(inode, head, i_hash) { 967 if (inode->i_ino != ino) 968 continue; 969 if (inode->i_sb != sb) 970 continue; 971 spin_lock(&inode->i_lock); 972 if (inode->i_state & (I_FREEING|I_WILL_FREE)) { 973 __wait_on_freeing_inode(inode); 974 goto repeat; 975 } 976 if (unlikely(inode->i_state & I_CREATING)) { 977 spin_unlock(&inode->i_lock); 978 return ERR_PTR(-ESTALE); 979 } 980 __iget(inode); 981 spin_unlock(&inode->i_lock); 982 return inode; 983 } 984 return NULL; 985 } 986 987 /* 988 * Each cpu owns a range of LAST_INO_BATCH numbers. 989 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations, 990 * to renew the exhausted range. 991 * 992 * This does not significantly increase overflow rate because every CPU can 993 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is 994 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the 995 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase 996 * overflow rate by 2x, which does not seem too significant. 997 * 998 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 999 * error if st_ino won't fit in target struct field. Use 32bit counter 1000 * here to attempt to avoid that. 1001 */ 1002 #define LAST_INO_BATCH 1024 1003 static DEFINE_PER_CPU(unsigned int, last_ino); 1004 1005 unsigned int get_next_ino(void) 1006 { 1007 unsigned int *p = &get_cpu_var(last_ino); 1008 unsigned int res = *p; 1009 1010 #ifdef CONFIG_SMP 1011 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) { 1012 static atomic_t shared_last_ino; 1013 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino); 1014 1015 res = next - LAST_INO_BATCH; 1016 } 1017 #endif 1018 1019 res++; 1020 /* get_next_ino should not provide a 0 inode number */ 1021 if (unlikely(!res)) 1022 res++; 1023 *p = res; 1024 put_cpu_var(last_ino); 1025 return res; 1026 } 1027 EXPORT_SYMBOL(get_next_ino); 1028 1029 /** 1030 * new_inode_pseudo - obtain an inode 1031 * @sb: superblock 1032 * 1033 * Allocates a new inode for given superblock. 1034 * Inode wont be chained in superblock s_inodes list 1035 * This means : 1036 * - fs can't be unmount 1037 * - quotas, fsnotify, writeback can't work 1038 */ 1039 struct inode *new_inode_pseudo(struct super_block *sb) 1040 { 1041 struct inode *inode = alloc_inode(sb); 1042 1043 if (inode) { 1044 spin_lock(&inode->i_lock); 1045 inode->i_state = 0; 1046 spin_unlock(&inode->i_lock); 1047 } 1048 return inode; 1049 } 1050 1051 /** 1052 * new_inode - obtain an inode 1053 * @sb: superblock 1054 * 1055 * Allocates a new inode for given superblock. The default gfp_mask 1056 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE. 1057 * If HIGHMEM pages are unsuitable or it is known that pages allocated 1058 * for the page cache are not reclaimable or migratable, 1059 * mapping_set_gfp_mask() must be called with suitable flags on the 1060 * newly created inode's mapping 1061 * 1062 */ 1063 struct inode *new_inode(struct super_block *sb) 1064 { 1065 struct inode *inode; 1066 1067 inode = new_inode_pseudo(sb); 1068 if (inode) 1069 inode_sb_list_add(inode); 1070 return inode; 1071 } 1072 EXPORT_SYMBOL(new_inode); 1073 1074 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1075 void lockdep_annotate_inode_mutex_key(struct inode *inode) 1076 { 1077 if (S_ISDIR(inode->i_mode)) { 1078 struct file_system_type *type = inode->i_sb->s_type; 1079 1080 /* Set new key only if filesystem hasn't already changed it */ 1081 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) { 1082 /* 1083 * ensure nobody is actually holding i_mutex 1084 */ 1085 // mutex_destroy(&inode->i_mutex); 1086 init_rwsem(&inode->i_rwsem); 1087 lockdep_set_class(&inode->i_rwsem, 1088 &type->i_mutex_dir_key); 1089 } 1090 } 1091 } 1092 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key); 1093 #endif 1094 1095 /** 1096 * unlock_new_inode - clear the I_NEW state and wake up any waiters 1097 * @inode: new inode to unlock 1098 * 1099 * Called when the inode is fully initialised to clear the new state of the 1100 * inode and wake up anyone waiting for the inode to finish initialisation. 1101 */ 1102 void unlock_new_inode(struct inode *inode) 1103 { 1104 lockdep_annotate_inode_mutex_key(inode); 1105 spin_lock(&inode->i_lock); 1106 WARN_ON(!(inode->i_state & I_NEW)); 1107 inode->i_state &= ~I_NEW & ~I_CREATING; 1108 smp_mb(); 1109 wake_up_bit(&inode->i_state, __I_NEW); 1110 spin_unlock(&inode->i_lock); 1111 } 1112 EXPORT_SYMBOL(unlock_new_inode); 1113 1114 void discard_new_inode(struct inode *inode) 1115 { 1116 lockdep_annotate_inode_mutex_key(inode); 1117 spin_lock(&inode->i_lock); 1118 WARN_ON(!(inode->i_state & I_NEW)); 1119 inode->i_state &= ~I_NEW; 1120 smp_mb(); 1121 wake_up_bit(&inode->i_state, __I_NEW); 1122 spin_unlock(&inode->i_lock); 1123 iput(inode); 1124 } 1125 EXPORT_SYMBOL(discard_new_inode); 1126 1127 /** 1128 * lock_two_inodes - lock two inodes (may be regular files but also dirs) 1129 * 1130 * Lock any non-NULL argument. The caller must make sure that if he is passing 1131 * in two directories, one is not ancestor of the other. Zero, one or two 1132 * objects may be locked by this function. 1133 * 1134 * @inode1: first inode to lock 1135 * @inode2: second inode to lock 1136 * @subclass1: inode lock subclass for the first lock obtained 1137 * @subclass2: inode lock subclass for the second lock obtained 1138 */ 1139 void lock_two_inodes(struct inode *inode1, struct inode *inode2, 1140 unsigned subclass1, unsigned subclass2) 1141 { 1142 if (!inode1 || !inode2) { 1143 /* 1144 * Make sure @subclass1 will be used for the acquired lock. 1145 * This is not strictly necessary (no current caller cares) but 1146 * let's keep things consistent. 1147 */ 1148 if (!inode1) 1149 swap(inode1, inode2); 1150 goto lock; 1151 } 1152 1153 /* 1154 * If one object is directory and the other is not, we must make sure 1155 * to lock directory first as the other object may be its child. 1156 */ 1157 if (S_ISDIR(inode2->i_mode) == S_ISDIR(inode1->i_mode)) { 1158 if (inode1 > inode2) 1159 swap(inode1, inode2); 1160 } else if (!S_ISDIR(inode1->i_mode)) 1161 swap(inode1, inode2); 1162 lock: 1163 if (inode1) 1164 inode_lock_nested(inode1, subclass1); 1165 if (inode2 && inode2 != inode1) 1166 inode_lock_nested(inode2, subclass2); 1167 } 1168 1169 /** 1170 * lock_two_nondirectories - take two i_mutexes on non-directory objects 1171 * 1172 * Lock any non-NULL argument. Passed objects must not be directories. 1173 * Zero, one or two objects may be locked by this function. 1174 * 1175 * @inode1: first inode to lock 1176 * @inode2: second inode to lock 1177 */ 1178 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1179 { 1180 if (inode1) 1181 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1182 if (inode2) 1183 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1184 lock_two_inodes(inode1, inode2, I_MUTEX_NORMAL, I_MUTEX_NONDIR2); 1185 } 1186 EXPORT_SYMBOL(lock_two_nondirectories); 1187 1188 /** 1189 * unlock_two_nondirectories - release locks from lock_two_nondirectories() 1190 * @inode1: first inode to unlock 1191 * @inode2: second inode to unlock 1192 */ 1193 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2) 1194 { 1195 if (inode1) { 1196 WARN_ON_ONCE(S_ISDIR(inode1->i_mode)); 1197 inode_unlock(inode1); 1198 } 1199 if (inode2 && inode2 != inode1) { 1200 WARN_ON_ONCE(S_ISDIR(inode2->i_mode)); 1201 inode_unlock(inode2); 1202 } 1203 } 1204 EXPORT_SYMBOL(unlock_two_nondirectories); 1205 1206 /** 1207 * inode_insert5 - obtain an inode from a mounted file system 1208 * @inode: pre-allocated inode to use for insert to cache 1209 * @hashval: hash value (usually inode number) to get 1210 * @test: callback used for comparisons between inodes 1211 * @set: callback used to initialize a new struct inode 1212 * @data: opaque data pointer to pass to @test and @set 1213 * 1214 * Search for the inode specified by @hashval and @data in the inode cache, 1215 * and if present it is return it with an increased reference count. This is 1216 * a variant of iget5_locked() for callers that don't want to fail on memory 1217 * allocation of inode. 1218 * 1219 * If the inode is not in cache, insert the pre-allocated inode to cache and 1220 * return it locked, hashed, and with the I_NEW flag set. The file system gets 1221 * to fill it in before unlocking it via unlock_new_inode(). 1222 * 1223 * Note both @test and @set are called with the inode_hash_lock held, so can't 1224 * sleep. 1225 */ 1226 struct inode *inode_insert5(struct inode *inode, unsigned long hashval, 1227 int (*test)(struct inode *, void *), 1228 int (*set)(struct inode *, void *), void *data) 1229 { 1230 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval); 1231 struct inode *old; 1232 1233 again: 1234 spin_lock(&inode_hash_lock); 1235 old = find_inode(inode->i_sb, head, test, data); 1236 if (unlikely(old)) { 1237 /* 1238 * Uhhuh, somebody else created the same inode under us. 1239 * Use the old inode instead of the preallocated one. 1240 */ 1241 spin_unlock(&inode_hash_lock); 1242 if (IS_ERR(old)) 1243 return NULL; 1244 wait_on_inode(old); 1245 if (unlikely(inode_unhashed(old))) { 1246 iput(old); 1247 goto again; 1248 } 1249 return old; 1250 } 1251 1252 if (set && unlikely(set(inode, data))) { 1253 inode = NULL; 1254 goto unlock; 1255 } 1256 1257 /* 1258 * Return the locked inode with I_NEW set, the 1259 * caller is responsible for filling in the contents 1260 */ 1261 spin_lock(&inode->i_lock); 1262 inode->i_state |= I_NEW; 1263 hlist_add_head_rcu(&inode->i_hash, head); 1264 spin_unlock(&inode->i_lock); 1265 1266 /* 1267 * Add inode to the sb list if it's not already. It has I_NEW at this 1268 * point, so it should be safe to test i_sb_list locklessly. 1269 */ 1270 if (list_empty(&inode->i_sb_list)) 1271 inode_sb_list_add(inode); 1272 unlock: 1273 spin_unlock(&inode_hash_lock); 1274 1275 return inode; 1276 } 1277 EXPORT_SYMBOL(inode_insert5); 1278 1279 /** 1280 * iget5_locked - obtain an inode from a mounted file system 1281 * @sb: super block of file system 1282 * @hashval: hash value (usually inode number) to get 1283 * @test: callback used for comparisons between inodes 1284 * @set: callback used to initialize a new struct inode 1285 * @data: opaque data pointer to pass to @test and @set 1286 * 1287 * Search for the inode specified by @hashval and @data in the inode cache, 1288 * and if present it is return it with an increased reference count. This is 1289 * a generalized version of iget_locked() for file systems where the inode 1290 * number is not sufficient for unique identification of an inode. 1291 * 1292 * If the inode is not in cache, allocate a new inode and return it locked, 1293 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1294 * before unlocking it via unlock_new_inode(). 1295 * 1296 * Note both @test and @set are called with the inode_hash_lock held, so can't 1297 * sleep. 1298 */ 1299 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval, 1300 int (*test)(struct inode *, void *), 1301 int (*set)(struct inode *, void *), void *data) 1302 { 1303 struct inode *inode = ilookup5(sb, hashval, test, data); 1304 1305 if (!inode) { 1306 struct inode *new = alloc_inode(sb); 1307 1308 if (new) { 1309 new->i_state = 0; 1310 inode = inode_insert5(new, hashval, test, set, data); 1311 if (unlikely(inode != new)) 1312 destroy_inode(new); 1313 } 1314 } 1315 return inode; 1316 } 1317 EXPORT_SYMBOL(iget5_locked); 1318 1319 /** 1320 * iget_locked - obtain an inode from a mounted file system 1321 * @sb: super block of file system 1322 * @ino: inode number to get 1323 * 1324 * Search for the inode specified by @ino in the inode cache and if present 1325 * return it with an increased reference count. This is for file systems 1326 * where the inode number is sufficient for unique identification of an inode. 1327 * 1328 * If the inode is not in cache, allocate a new inode and return it locked, 1329 * hashed, and with the I_NEW flag set. The file system gets to fill it in 1330 * before unlocking it via unlock_new_inode(). 1331 */ 1332 struct inode *iget_locked(struct super_block *sb, unsigned long ino) 1333 { 1334 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1335 struct inode *inode; 1336 again: 1337 spin_lock(&inode_hash_lock); 1338 inode = find_inode_fast(sb, head, ino); 1339 spin_unlock(&inode_hash_lock); 1340 if (inode) { 1341 if (IS_ERR(inode)) 1342 return NULL; 1343 wait_on_inode(inode); 1344 if (unlikely(inode_unhashed(inode))) { 1345 iput(inode); 1346 goto again; 1347 } 1348 return inode; 1349 } 1350 1351 inode = alloc_inode(sb); 1352 if (inode) { 1353 struct inode *old; 1354 1355 spin_lock(&inode_hash_lock); 1356 /* We released the lock, so.. */ 1357 old = find_inode_fast(sb, head, ino); 1358 if (!old) { 1359 inode->i_ino = ino; 1360 spin_lock(&inode->i_lock); 1361 inode->i_state = I_NEW; 1362 hlist_add_head_rcu(&inode->i_hash, head); 1363 spin_unlock(&inode->i_lock); 1364 inode_sb_list_add(inode); 1365 spin_unlock(&inode_hash_lock); 1366 1367 /* Return the locked inode with I_NEW set, the 1368 * caller is responsible for filling in the contents 1369 */ 1370 return inode; 1371 } 1372 1373 /* 1374 * Uhhuh, somebody else created the same inode under 1375 * us. Use the old inode instead of the one we just 1376 * allocated. 1377 */ 1378 spin_unlock(&inode_hash_lock); 1379 destroy_inode(inode); 1380 if (IS_ERR(old)) 1381 return NULL; 1382 inode = old; 1383 wait_on_inode(inode); 1384 if (unlikely(inode_unhashed(inode))) { 1385 iput(inode); 1386 goto again; 1387 } 1388 } 1389 return inode; 1390 } 1391 EXPORT_SYMBOL(iget_locked); 1392 1393 /* 1394 * search the inode cache for a matching inode number. 1395 * If we find one, then the inode number we are trying to 1396 * allocate is not unique and so we should not use it. 1397 * 1398 * Returns 1 if the inode number is unique, 0 if it is not. 1399 */ 1400 static int test_inode_iunique(struct super_block *sb, unsigned long ino) 1401 { 1402 struct hlist_head *b = inode_hashtable + hash(sb, ino); 1403 struct inode *inode; 1404 1405 hlist_for_each_entry_rcu(inode, b, i_hash) { 1406 if (inode->i_ino == ino && inode->i_sb == sb) 1407 return 0; 1408 } 1409 return 1; 1410 } 1411 1412 /** 1413 * iunique - get a unique inode number 1414 * @sb: superblock 1415 * @max_reserved: highest reserved inode number 1416 * 1417 * Obtain an inode number that is unique on the system for a given 1418 * superblock. This is used by file systems that have no natural 1419 * permanent inode numbering system. An inode number is returned that 1420 * is higher than the reserved limit but unique. 1421 * 1422 * BUGS: 1423 * With a large number of inodes live on the file system this function 1424 * currently becomes quite slow. 1425 */ 1426 ino_t iunique(struct super_block *sb, ino_t max_reserved) 1427 { 1428 /* 1429 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW 1430 * error if st_ino won't fit in target struct field. Use 32bit counter 1431 * here to attempt to avoid that. 1432 */ 1433 static DEFINE_SPINLOCK(iunique_lock); 1434 static unsigned int counter; 1435 ino_t res; 1436 1437 rcu_read_lock(); 1438 spin_lock(&iunique_lock); 1439 do { 1440 if (counter <= max_reserved) 1441 counter = max_reserved + 1; 1442 res = counter++; 1443 } while (!test_inode_iunique(sb, res)); 1444 spin_unlock(&iunique_lock); 1445 rcu_read_unlock(); 1446 1447 return res; 1448 } 1449 EXPORT_SYMBOL(iunique); 1450 1451 struct inode *igrab(struct inode *inode) 1452 { 1453 spin_lock(&inode->i_lock); 1454 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) { 1455 __iget(inode); 1456 spin_unlock(&inode->i_lock); 1457 } else { 1458 spin_unlock(&inode->i_lock); 1459 /* 1460 * Handle the case where s_op->clear_inode is not been 1461 * called yet, and somebody is calling igrab 1462 * while the inode is getting freed. 1463 */ 1464 inode = NULL; 1465 } 1466 return inode; 1467 } 1468 EXPORT_SYMBOL(igrab); 1469 1470 /** 1471 * ilookup5_nowait - search for an inode in the inode cache 1472 * @sb: super block of file system to search 1473 * @hashval: hash value (usually inode number) to search for 1474 * @test: callback used for comparisons between inodes 1475 * @data: opaque data pointer to pass to @test 1476 * 1477 * Search for the inode specified by @hashval and @data in the inode cache. 1478 * If the inode is in the cache, the inode is returned with an incremented 1479 * reference count. 1480 * 1481 * Note: I_NEW is not waited upon so you have to be very careful what you do 1482 * with the returned inode. You probably should be using ilookup5() instead. 1483 * 1484 * Note2: @test is called with the inode_hash_lock held, so can't sleep. 1485 */ 1486 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval, 1487 int (*test)(struct inode *, void *), void *data) 1488 { 1489 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1490 struct inode *inode; 1491 1492 spin_lock(&inode_hash_lock); 1493 inode = find_inode(sb, head, test, data); 1494 spin_unlock(&inode_hash_lock); 1495 1496 return IS_ERR(inode) ? NULL : inode; 1497 } 1498 EXPORT_SYMBOL(ilookup5_nowait); 1499 1500 /** 1501 * ilookup5 - search for an inode in the inode cache 1502 * @sb: super block of file system to search 1503 * @hashval: hash value (usually inode number) to search for 1504 * @test: callback used for comparisons between inodes 1505 * @data: opaque data pointer to pass to @test 1506 * 1507 * Search for the inode specified by @hashval and @data in the inode cache, 1508 * and if the inode is in the cache, return the inode with an incremented 1509 * reference count. Waits on I_NEW before returning the inode. 1510 * returned with an incremented reference count. 1511 * 1512 * This is a generalized version of ilookup() for file systems where the 1513 * inode number is not sufficient for unique identification of an inode. 1514 * 1515 * Note: @test is called with the inode_hash_lock held, so can't sleep. 1516 */ 1517 struct inode *ilookup5(struct super_block *sb, unsigned long hashval, 1518 int (*test)(struct inode *, void *), void *data) 1519 { 1520 struct inode *inode; 1521 again: 1522 inode = ilookup5_nowait(sb, hashval, test, data); 1523 if (inode) { 1524 wait_on_inode(inode); 1525 if (unlikely(inode_unhashed(inode))) { 1526 iput(inode); 1527 goto again; 1528 } 1529 } 1530 return inode; 1531 } 1532 EXPORT_SYMBOL(ilookup5); 1533 1534 /** 1535 * ilookup - search for an inode in the inode cache 1536 * @sb: super block of file system to search 1537 * @ino: inode number to search for 1538 * 1539 * Search for the inode @ino in the inode cache, and if the inode is in the 1540 * cache, the inode is returned with an incremented reference count. 1541 */ 1542 struct inode *ilookup(struct super_block *sb, unsigned long ino) 1543 { 1544 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1545 struct inode *inode; 1546 again: 1547 spin_lock(&inode_hash_lock); 1548 inode = find_inode_fast(sb, head, ino); 1549 spin_unlock(&inode_hash_lock); 1550 1551 if (inode) { 1552 if (IS_ERR(inode)) 1553 return NULL; 1554 wait_on_inode(inode); 1555 if (unlikely(inode_unhashed(inode))) { 1556 iput(inode); 1557 goto again; 1558 } 1559 } 1560 return inode; 1561 } 1562 EXPORT_SYMBOL(ilookup); 1563 1564 /** 1565 * find_inode_nowait - find an inode in the inode cache 1566 * @sb: super block of file system to search 1567 * @hashval: hash value (usually inode number) to search for 1568 * @match: callback used for comparisons between inodes 1569 * @data: opaque data pointer to pass to @match 1570 * 1571 * Search for the inode specified by @hashval and @data in the inode 1572 * cache, where the helper function @match will return 0 if the inode 1573 * does not match, 1 if the inode does match, and -1 if the search 1574 * should be stopped. The @match function must be responsible for 1575 * taking the i_lock spin_lock and checking i_state for an inode being 1576 * freed or being initialized, and incrementing the reference count 1577 * before returning 1. It also must not sleep, since it is called with 1578 * the inode_hash_lock spinlock held. 1579 * 1580 * This is a even more generalized version of ilookup5() when the 1581 * function must never block --- find_inode() can block in 1582 * __wait_on_freeing_inode() --- or when the caller can not increment 1583 * the reference count because the resulting iput() might cause an 1584 * inode eviction. The tradeoff is that the @match funtion must be 1585 * very carefully implemented. 1586 */ 1587 struct inode *find_inode_nowait(struct super_block *sb, 1588 unsigned long hashval, 1589 int (*match)(struct inode *, unsigned long, 1590 void *), 1591 void *data) 1592 { 1593 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1594 struct inode *inode, *ret_inode = NULL; 1595 int mval; 1596 1597 spin_lock(&inode_hash_lock); 1598 hlist_for_each_entry(inode, head, i_hash) { 1599 if (inode->i_sb != sb) 1600 continue; 1601 mval = match(inode, hashval, data); 1602 if (mval == 0) 1603 continue; 1604 if (mval == 1) 1605 ret_inode = inode; 1606 goto out; 1607 } 1608 out: 1609 spin_unlock(&inode_hash_lock); 1610 return ret_inode; 1611 } 1612 EXPORT_SYMBOL(find_inode_nowait); 1613 1614 /** 1615 * find_inode_rcu - find an inode in the inode cache 1616 * @sb: Super block of file system to search 1617 * @hashval: Key to hash 1618 * @test: Function to test match on an inode 1619 * @data: Data for test function 1620 * 1621 * Search for the inode specified by @hashval and @data in the inode cache, 1622 * where the helper function @test will return 0 if the inode does not match 1623 * and 1 if it does. The @test function must be responsible for taking the 1624 * i_lock spin_lock and checking i_state for an inode being freed or being 1625 * initialized. 1626 * 1627 * If successful, this will return the inode for which the @test function 1628 * returned 1 and NULL otherwise. 1629 * 1630 * The @test function is not permitted to take a ref on any inode presented. 1631 * It is also not permitted to sleep. 1632 * 1633 * The caller must hold the RCU read lock. 1634 */ 1635 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval, 1636 int (*test)(struct inode *, void *), void *data) 1637 { 1638 struct hlist_head *head = inode_hashtable + hash(sb, hashval); 1639 struct inode *inode; 1640 1641 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1642 "suspicious find_inode_rcu() usage"); 1643 1644 hlist_for_each_entry_rcu(inode, head, i_hash) { 1645 if (inode->i_sb == sb && 1646 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) && 1647 test(inode, data)) 1648 return inode; 1649 } 1650 return NULL; 1651 } 1652 EXPORT_SYMBOL(find_inode_rcu); 1653 1654 /** 1655 * find_inode_by_ino_rcu - Find an inode in the inode cache 1656 * @sb: Super block of file system to search 1657 * @ino: The inode number to match 1658 * 1659 * Search for the inode specified by @hashval and @data in the inode cache, 1660 * where the helper function @test will return 0 if the inode does not match 1661 * and 1 if it does. The @test function must be responsible for taking the 1662 * i_lock spin_lock and checking i_state for an inode being freed or being 1663 * initialized. 1664 * 1665 * If successful, this will return the inode for which the @test function 1666 * returned 1 and NULL otherwise. 1667 * 1668 * The @test function is not permitted to take a ref on any inode presented. 1669 * It is also not permitted to sleep. 1670 * 1671 * The caller must hold the RCU read lock. 1672 */ 1673 struct inode *find_inode_by_ino_rcu(struct super_block *sb, 1674 unsigned long ino) 1675 { 1676 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1677 struct inode *inode; 1678 1679 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 1680 "suspicious find_inode_by_ino_rcu() usage"); 1681 1682 hlist_for_each_entry_rcu(inode, head, i_hash) { 1683 if (inode->i_ino == ino && 1684 inode->i_sb == sb && 1685 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE))) 1686 return inode; 1687 } 1688 return NULL; 1689 } 1690 EXPORT_SYMBOL(find_inode_by_ino_rcu); 1691 1692 int insert_inode_locked(struct inode *inode) 1693 { 1694 struct super_block *sb = inode->i_sb; 1695 ino_t ino = inode->i_ino; 1696 struct hlist_head *head = inode_hashtable + hash(sb, ino); 1697 1698 while (1) { 1699 struct inode *old = NULL; 1700 spin_lock(&inode_hash_lock); 1701 hlist_for_each_entry(old, head, i_hash) { 1702 if (old->i_ino != ino) 1703 continue; 1704 if (old->i_sb != sb) 1705 continue; 1706 spin_lock(&old->i_lock); 1707 if (old->i_state & (I_FREEING|I_WILL_FREE)) { 1708 spin_unlock(&old->i_lock); 1709 continue; 1710 } 1711 break; 1712 } 1713 if (likely(!old)) { 1714 spin_lock(&inode->i_lock); 1715 inode->i_state |= I_NEW | I_CREATING; 1716 hlist_add_head_rcu(&inode->i_hash, head); 1717 spin_unlock(&inode->i_lock); 1718 spin_unlock(&inode_hash_lock); 1719 return 0; 1720 } 1721 if (unlikely(old->i_state & I_CREATING)) { 1722 spin_unlock(&old->i_lock); 1723 spin_unlock(&inode_hash_lock); 1724 return -EBUSY; 1725 } 1726 __iget(old); 1727 spin_unlock(&old->i_lock); 1728 spin_unlock(&inode_hash_lock); 1729 wait_on_inode(old); 1730 if (unlikely(!inode_unhashed(old))) { 1731 iput(old); 1732 return -EBUSY; 1733 } 1734 iput(old); 1735 } 1736 } 1737 EXPORT_SYMBOL(insert_inode_locked); 1738 1739 int insert_inode_locked4(struct inode *inode, unsigned long hashval, 1740 int (*test)(struct inode *, void *), void *data) 1741 { 1742 struct inode *old; 1743 1744 inode->i_state |= I_CREATING; 1745 old = inode_insert5(inode, hashval, test, NULL, data); 1746 1747 if (old != inode) { 1748 iput(old); 1749 return -EBUSY; 1750 } 1751 return 0; 1752 } 1753 EXPORT_SYMBOL(insert_inode_locked4); 1754 1755 1756 int generic_delete_inode(struct inode *inode) 1757 { 1758 return 1; 1759 } 1760 EXPORT_SYMBOL(generic_delete_inode); 1761 1762 /* 1763 * Called when we're dropping the last reference 1764 * to an inode. 1765 * 1766 * Call the FS "drop_inode()" function, defaulting to 1767 * the legacy UNIX filesystem behaviour. If it tells 1768 * us to evict inode, do so. Otherwise, retain inode 1769 * in cache if fs is alive, sync and evict if fs is 1770 * shutting down. 1771 */ 1772 static void iput_final(struct inode *inode) 1773 { 1774 struct super_block *sb = inode->i_sb; 1775 const struct super_operations *op = inode->i_sb->s_op; 1776 unsigned long state; 1777 int drop; 1778 1779 WARN_ON(inode->i_state & I_NEW); 1780 1781 if (op->drop_inode) 1782 drop = op->drop_inode(inode); 1783 else 1784 drop = generic_drop_inode(inode); 1785 1786 if (!drop && 1787 !(inode->i_state & I_DONTCACHE) && 1788 (sb->s_flags & SB_ACTIVE)) { 1789 __inode_add_lru(inode, true); 1790 spin_unlock(&inode->i_lock); 1791 return; 1792 } 1793 1794 state = inode->i_state; 1795 if (!drop) { 1796 WRITE_ONCE(inode->i_state, state | I_WILL_FREE); 1797 spin_unlock(&inode->i_lock); 1798 1799 write_inode_now(inode, 1); 1800 1801 spin_lock(&inode->i_lock); 1802 state = inode->i_state; 1803 WARN_ON(state & I_NEW); 1804 state &= ~I_WILL_FREE; 1805 } 1806 1807 WRITE_ONCE(inode->i_state, state | I_FREEING); 1808 if (!list_empty(&inode->i_lru)) 1809 inode_lru_list_del(inode); 1810 spin_unlock(&inode->i_lock); 1811 1812 evict(inode); 1813 } 1814 1815 /** 1816 * iput - put an inode 1817 * @inode: inode to put 1818 * 1819 * Puts an inode, dropping its usage count. If the inode use count hits 1820 * zero, the inode is then freed and may also be destroyed. 1821 * 1822 * Consequently, iput() can sleep. 1823 */ 1824 void iput(struct inode *inode) 1825 { 1826 if (!inode) 1827 return; 1828 BUG_ON(inode->i_state & I_CLEAR); 1829 retry: 1830 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) { 1831 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) { 1832 atomic_inc(&inode->i_count); 1833 spin_unlock(&inode->i_lock); 1834 trace_writeback_lazytime_iput(inode); 1835 mark_inode_dirty_sync(inode); 1836 goto retry; 1837 } 1838 iput_final(inode); 1839 } 1840 } 1841 EXPORT_SYMBOL(iput); 1842 1843 #ifdef CONFIG_BLOCK 1844 /** 1845 * bmap - find a block number in a file 1846 * @inode: inode owning the block number being requested 1847 * @block: pointer containing the block to find 1848 * 1849 * Replaces the value in ``*block`` with the block number on the device holding 1850 * corresponding to the requested block number in the file. 1851 * That is, asked for block 4 of inode 1 the function will replace the 1852 * 4 in ``*block``, with disk block relative to the disk start that holds that 1853 * block of the file. 1854 * 1855 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a 1856 * hole, returns 0 and ``*block`` is also set to 0. 1857 */ 1858 int bmap(struct inode *inode, sector_t *block) 1859 { 1860 if (!inode->i_mapping->a_ops->bmap) 1861 return -EINVAL; 1862 1863 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block); 1864 return 0; 1865 } 1866 EXPORT_SYMBOL(bmap); 1867 #endif 1868 1869 /* 1870 * With relative atime, only update atime if the previous atime is 1871 * earlier than or equal to either the ctime or mtime, 1872 * or if at least a day has passed since the last atime update. 1873 */ 1874 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode, 1875 struct timespec64 now) 1876 { 1877 struct timespec64 ctime; 1878 1879 if (!(mnt->mnt_flags & MNT_RELATIME)) 1880 return 1; 1881 /* 1882 * Is mtime younger than or equal to atime? If yes, update atime: 1883 */ 1884 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0) 1885 return 1; 1886 /* 1887 * Is ctime younger than or equal to atime? If yes, update atime: 1888 */ 1889 ctime = inode_get_ctime(inode); 1890 if (timespec64_compare(&ctime, &inode->i_atime) >= 0) 1891 return 1; 1892 1893 /* 1894 * Is the previous atime value older than a day? If yes, 1895 * update atime: 1896 */ 1897 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60) 1898 return 1; 1899 /* 1900 * Good, we can skip the atime update: 1901 */ 1902 return 0; 1903 } 1904 1905 /** 1906 * inode_update_timestamps - update the timestamps on the inode 1907 * @inode: inode to be updated 1908 * @flags: S_* flags that needed to be updated 1909 * 1910 * The update_time function is called when an inode's timestamps need to be 1911 * updated for a read or write operation. This function handles updating the 1912 * actual timestamps. It's up to the caller to ensure that the inode is marked 1913 * dirty appropriately. 1914 * 1915 * In the case where any of S_MTIME, S_CTIME, or S_VERSION need to be updated, 1916 * attempt to update all three of them. S_ATIME updates can be handled 1917 * independently of the rest. 1918 * 1919 * Returns a set of S_* flags indicating which values changed. 1920 */ 1921 int inode_update_timestamps(struct inode *inode, int flags) 1922 { 1923 int updated = 0; 1924 struct timespec64 now; 1925 1926 if (flags & (S_MTIME|S_CTIME|S_VERSION)) { 1927 struct timespec64 ctime = inode_get_ctime(inode); 1928 1929 now = inode_set_ctime_current(inode); 1930 if (!timespec64_equal(&now, &ctime)) 1931 updated |= S_CTIME; 1932 if (!timespec64_equal(&now, &inode->i_mtime)) { 1933 inode->i_mtime = now; 1934 updated |= S_MTIME; 1935 } 1936 if (IS_I_VERSION(inode) && inode_maybe_inc_iversion(inode, updated)) 1937 updated |= S_VERSION; 1938 } else { 1939 now = current_time(inode); 1940 } 1941 1942 if (flags & S_ATIME) { 1943 if (!timespec64_equal(&now, &inode->i_atime)) { 1944 inode->i_atime = now; 1945 updated |= S_ATIME; 1946 } 1947 } 1948 return updated; 1949 } 1950 EXPORT_SYMBOL(inode_update_timestamps); 1951 1952 /** 1953 * generic_update_time - update the timestamps on the inode 1954 * @inode: inode to be updated 1955 * @flags: S_* flags that needed to be updated 1956 * 1957 * The update_time function is called when an inode's timestamps need to be 1958 * updated for a read or write operation. In the case where any of S_MTIME, S_CTIME, 1959 * or S_VERSION need to be updated we attempt to update all three of them. S_ATIME 1960 * updates can be handled done independently of the rest. 1961 * 1962 * Returns a S_* mask indicating which fields were updated. 1963 */ 1964 int generic_update_time(struct inode *inode, int flags) 1965 { 1966 int updated = inode_update_timestamps(inode, flags); 1967 int dirty_flags = 0; 1968 1969 if (updated & (S_ATIME|S_MTIME|S_CTIME)) 1970 dirty_flags = inode->i_sb->s_flags & SB_LAZYTIME ? I_DIRTY_TIME : I_DIRTY_SYNC; 1971 if (updated & S_VERSION) 1972 dirty_flags |= I_DIRTY_SYNC; 1973 __mark_inode_dirty(inode, dirty_flags); 1974 return updated; 1975 } 1976 EXPORT_SYMBOL(generic_update_time); 1977 1978 /* 1979 * This does the actual work of updating an inodes time or version. Must have 1980 * had called mnt_want_write() before calling this. 1981 */ 1982 int inode_update_time(struct inode *inode, int flags) 1983 { 1984 if (inode->i_op->update_time) 1985 return inode->i_op->update_time(inode, flags); 1986 generic_update_time(inode, flags); 1987 return 0; 1988 } 1989 EXPORT_SYMBOL(inode_update_time); 1990 1991 /** 1992 * atime_needs_update - update the access time 1993 * @path: the &struct path to update 1994 * @inode: inode to update 1995 * 1996 * Update the accessed time on an inode and mark it for writeback. 1997 * This function automatically handles read only file systems and media, 1998 * as well as the "noatime" flag and inode specific "noatime" markers. 1999 */ 2000 bool atime_needs_update(const struct path *path, struct inode *inode) 2001 { 2002 struct vfsmount *mnt = path->mnt; 2003 struct timespec64 now; 2004 2005 if (inode->i_flags & S_NOATIME) 2006 return false; 2007 2008 /* Atime updates will likely cause i_uid and i_gid to be written 2009 * back improprely if their true value is unknown to the vfs. 2010 */ 2011 if (HAS_UNMAPPED_ID(mnt_idmap(mnt), inode)) 2012 return false; 2013 2014 if (IS_NOATIME(inode)) 2015 return false; 2016 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode)) 2017 return false; 2018 2019 if (mnt->mnt_flags & MNT_NOATIME) 2020 return false; 2021 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode)) 2022 return false; 2023 2024 now = current_time(inode); 2025 2026 if (!relatime_need_update(mnt, inode, now)) 2027 return false; 2028 2029 if (timespec64_equal(&inode->i_atime, &now)) 2030 return false; 2031 2032 return true; 2033 } 2034 2035 void touch_atime(const struct path *path) 2036 { 2037 struct vfsmount *mnt = path->mnt; 2038 struct inode *inode = d_inode(path->dentry); 2039 2040 if (!atime_needs_update(path, inode)) 2041 return; 2042 2043 if (!sb_start_write_trylock(inode->i_sb)) 2044 return; 2045 2046 if (__mnt_want_write(mnt) != 0) 2047 goto skip_update; 2048 /* 2049 * File systems can error out when updating inodes if they need to 2050 * allocate new space to modify an inode (such is the case for 2051 * Btrfs), but since we touch atime while walking down the path we 2052 * really don't care if we failed to update the atime of the file, 2053 * so just ignore the return value. 2054 * We may also fail on filesystems that have the ability to make parts 2055 * of the fs read only, e.g. subvolumes in Btrfs. 2056 */ 2057 inode_update_time(inode, S_ATIME); 2058 __mnt_drop_write(mnt); 2059 skip_update: 2060 sb_end_write(inode->i_sb); 2061 } 2062 EXPORT_SYMBOL(touch_atime); 2063 2064 /* 2065 * Return mask of changes for notify_change() that need to be done as a 2066 * response to write or truncate. Return 0 if nothing has to be changed. 2067 * Negative value on error (change should be denied). 2068 */ 2069 int dentry_needs_remove_privs(struct mnt_idmap *idmap, 2070 struct dentry *dentry) 2071 { 2072 struct inode *inode = d_inode(dentry); 2073 int mask = 0; 2074 int ret; 2075 2076 if (IS_NOSEC(inode)) 2077 return 0; 2078 2079 mask = setattr_should_drop_suidgid(idmap, inode); 2080 ret = security_inode_need_killpriv(dentry); 2081 if (ret < 0) 2082 return ret; 2083 if (ret) 2084 mask |= ATTR_KILL_PRIV; 2085 return mask; 2086 } 2087 2088 static int __remove_privs(struct mnt_idmap *idmap, 2089 struct dentry *dentry, int kill) 2090 { 2091 struct iattr newattrs; 2092 2093 newattrs.ia_valid = ATTR_FORCE | kill; 2094 /* 2095 * Note we call this on write, so notify_change will not 2096 * encounter any conflicting delegations: 2097 */ 2098 return notify_change(idmap, dentry, &newattrs, NULL); 2099 } 2100 2101 static int __file_remove_privs(struct file *file, unsigned int flags) 2102 { 2103 struct dentry *dentry = file_dentry(file); 2104 struct inode *inode = file_inode(file); 2105 int error = 0; 2106 int kill; 2107 2108 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode)) 2109 return 0; 2110 2111 kill = dentry_needs_remove_privs(file_mnt_idmap(file), dentry); 2112 if (kill < 0) 2113 return kill; 2114 2115 if (kill) { 2116 if (flags & IOCB_NOWAIT) 2117 return -EAGAIN; 2118 2119 error = __remove_privs(file_mnt_idmap(file), dentry, kill); 2120 } 2121 2122 if (!error) 2123 inode_has_no_xattr(inode); 2124 return error; 2125 } 2126 2127 /** 2128 * file_remove_privs - remove special file privileges (suid, capabilities) 2129 * @file: file to remove privileges from 2130 * 2131 * When file is modified by a write or truncation ensure that special 2132 * file privileges are removed. 2133 * 2134 * Return: 0 on success, negative errno on failure. 2135 */ 2136 int file_remove_privs(struct file *file) 2137 { 2138 return __file_remove_privs(file, 0); 2139 } 2140 EXPORT_SYMBOL(file_remove_privs); 2141 2142 static int inode_needs_update_time(struct inode *inode) 2143 { 2144 int sync_it = 0; 2145 struct timespec64 now = current_time(inode); 2146 struct timespec64 ctime; 2147 2148 /* First try to exhaust all avenues to not sync */ 2149 if (IS_NOCMTIME(inode)) 2150 return 0; 2151 2152 if (!timespec64_equal(&inode->i_mtime, &now)) 2153 sync_it = S_MTIME; 2154 2155 ctime = inode_get_ctime(inode); 2156 if (!timespec64_equal(&ctime, &now)) 2157 sync_it |= S_CTIME; 2158 2159 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode)) 2160 sync_it |= S_VERSION; 2161 2162 return sync_it; 2163 } 2164 2165 static int __file_update_time(struct file *file, int sync_mode) 2166 { 2167 int ret = 0; 2168 struct inode *inode = file_inode(file); 2169 2170 /* try to update time settings */ 2171 if (!__mnt_want_write_file(file)) { 2172 ret = inode_update_time(inode, sync_mode); 2173 __mnt_drop_write_file(file); 2174 } 2175 2176 return ret; 2177 } 2178 2179 /** 2180 * file_update_time - update mtime and ctime time 2181 * @file: file accessed 2182 * 2183 * Update the mtime and ctime members of an inode and mark the inode for 2184 * writeback. Note that this function is meant exclusively for usage in 2185 * the file write path of filesystems, and filesystems may choose to 2186 * explicitly ignore updates via this function with the _NOCMTIME inode 2187 * flag, e.g. for network filesystem where these imestamps are handled 2188 * by the server. This can return an error for file systems who need to 2189 * allocate space in order to update an inode. 2190 * 2191 * Return: 0 on success, negative errno on failure. 2192 */ 2193 int file_update_time(struct file *file) 2194 { 2195 int ret; 2196 struct inode *inode = file_inode(file); 2197 2198 ret = inode_needs_update_time(inode); 2199 if (ret <= 0) 2200 return ret; 2201 2202 return __file_update_time(file, ret); 2203 } 2204 EXPORT_SYMBOL(file_update_time); 2205 2206 /** 2207 * file_modified_flags - handle mandated vfs changes when modifying a file 2208 * @file: file that was modified 2209 * @flags: kiocb flags 2210 * 2211 * When file has been modified ensure that special 2212 * file privileges are removed and time settings are updated. 2213 * 2214 * If IOCB_NOWAIT is set, special file privileges will not be removed and 2215 * time settings will not be updated. It will return -EAGAIN. 2216 * 2217 * Context: Caller must hold the file's inode lock. 2218 * 2219 * Return: 0 on success, negative errno on failure. 2220 */ 2221 static int file_modified_flags(struct file *file, int flags) 2222 { 2223 int ret; 2224 struct inode *inode = file_inode(file); 2225 2226 /* 2227 * Clear the security bits if the process is not being run by root. 2228 * This keeps people from modifying setuid and setgid binaries. 2229 */ 2230 ret = __file_remove_privs(file, flags); 2231 if (ret) 2232 return ret; 2233 2234 if (unlikely(file->f_mode & FMODE_NOCMTIME)) 2235 return 0; 2236 2237 ret = inode_needs_update_time(inode); 2238 if (ret <= 0) 2239 return ret; 2240 if (flags & IOCB_NOWAIT) 2241 return -EAGAIN; 2242 2243 return __file_update_time(file, ret); 2244 } 2245 2246 /** 2247 * file_modified - handle mandated vfs changes when modifying a file 2248 * @file: file that was modified 2249 * 2250 * When file has been modified ensure that special 2251 * file privileges are removed and time settings are updated. 2252 * 2253 * Context: Caller must hold the file's inode lock. 2254 * 2255 * Return: 0 on success, negative errno on failure. 2256 */ 2257 int file_modified(struct file *file) 2258 { 2259 return file_modified_flags(file, 0); 2260 } 2261 EXPORT_SYMBOL(file_modified); 2262 2263 /** 2264 * kiocb_modified - handle mandated vfs changes when modifying a file 2265 * @iocb: iocb that was modified 2266 * 2267 * When file has been modified ensure that special 2268 * file privileges are removed and time settings are updated. 2269 * 2270 * Context: Caller must hold the file's inode lock. 2271 * 2272 * Return: 0 on success, negative errno on failure. 2273 */ 2274 int kiocb_modified(struct kiocb *iocb) 2275 { 2276 return file_modified_flags(iocb->ki_filp, iocb->ki_flags); 2277 } 2278 EXPORT_SYMBOL_GPL(kiocb_modified); 2279 2280 int inode_needs_sync(struct inode *inode) 2281 { 2282 if (IS_SYNC(inode)) 2283 return 1; 2284 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode)) 2285 return 1; 2286 return 0; 2287 } 2288 EXPORT_SYMBOL(inode_needs_sync); 2289 2290 /* 2291 * If we try to find an inode in the inode hash while it is being 2292 * deleted, we have to wait until the filesystem completes its 2293 * deletion before reporting that it isn't found. This function waits 2294 * until the deletion _might_ have completed. Callers are responsible 2295 * to recheck inode state. 2296 * 2297 * It doesn't matter if I_NEW is not set initially, a call to 2298 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list 2299 * will DTRT. 2300 */ 2301 static void __wait_on_freeing_inode(struct inode *inode) 2302 { 2303 wait_queue_head_t *wq; 2304 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW); 2305 wq = bit_waitqueue(&inode->i_state, __I_NEW); 2306 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE); 2307 spin_unlock(&inode->i_lock); 2308 spin_unlock(&inode_hash_lock); 2309 schedule(); 2310 finish_wait(wq, &wait.wq_entry); 2311 spin_lock(&inode_hash_lock); 2312 } 2313 2314 static __initdata unsigned long ihash_entries; 2315 static int __init set_ihash_entries(char *str) 2316 { 2317 if (!str) 2318 return 0; 2319 ihash_entries = simple_strtoul(str, &str, 0); 2320 return 1; 2321 } 2322 __setup("ihash_entries=", set_ihash_entries); 2323 2324 /* 2325 * Initialize the waitqueues and inode hash table. 2326 */ 2327 void __init inode_init_early(void) 2328 { 2329 /* If hashes are distributed across NUMA nodes, defer 2330 * hash allocation until vmalloc space is available. 2331 */ 2332 if (hashdist) 2333 return; 2334 2335 inode_hashtable = 2336 alloc_large_system_hash("Inode-cache", 2337 sizeof(struct hlist_head), 2338 ihash_entries, 2339 14, 2340 HASH_EARLY | HASH_ZERO, 2341 &i_hash_shift, 2342 &i_hash_mask, 2343 0, 2344 0); 2345 } 2346 2347 void __init inode_init(void) 2348 { 2349 /* inode slab cache */ 2350 inode_cachep = kmem_cache_create("inode_cache", 2351 sizeof(struct inode), 2352 0, 2353 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 2354 SLAB_MEM_SPREAD|SLAB_ACCOUNT), 2355 init_once); 2356 2357 /* Hash may have been set up in inode_init_early */ 2358 if (!hashdist) 2359 return; 2360 2361 inode_hashtable = 2362 alloc_large_system_hash("Inode-cache", 2363 sizeof(struct hlist_head), 2364 ihash_entries, 2365 14, 2366 HASH_ZERO, 2367 &i_hash_shift, 2368 &i_hash_mask, 2369 0, 2370 0); 2371 } 2372 2373 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev) 2374 { 2375 inode->i_mode = mode; 2376 if (S_ISCHR(mode)) { 2377 inode->i_fop = &def_chr_fops; 2378 inode->i_rdev = rdev; 2379 } else if (S_ISBLK(mode)) { 2380 if (IS_ENABLED(CONFIG_BLOCK)) 2381 inode->i_fop = &def_blk_fops; 2382 inode->i_rdev = rdev; 2383 } else if (S_ISFIFO(mode)) 2384 inode->i_fop = &pipefifo_fops; 2385 else if (S_ISSOCK(mode)) 2386 ; /* leave it no_open_fops */ 2387 else 2388 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for" 2389 " inode %s:%lu\n", mode, inode->i_sb->s_id, 2390 inode->i_ino); 2391 } 2392 EXPORT_SYMBOL(init_special_inode); 2393 2394 /** 2395 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards 2396 * @idmap: idmap of the mount the inode was created from 2397 * @inode: New inode 2398 * @dir: Directory inode 2399 * @mode: mode of the new inode 2400 * 2401 * If the inode has been created through an idmapped mount the idmap of 2402 * the vfsmount must be passed through @idmap. This function will then take 2403 * care to map the inode according to @idmap before checking permissions 2404 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission 2405 * checking is to be performed on the raw inode simply pass @nop_mnt_idmap. 2406 */ 2407 void inode_init_owner(struct mnt_idmap *idmap, struct inode *inode, 2408 const struct inode *dir, umode_t mode) 2409 { 2410 inode_fsuid_set(inode, idmap); 2411 if (dir && dir->i_mode & S_ISGID) { 2412 inode->i_gid = dir->i_gid; 2413 2414 /* Directories are special, and always inherit S_ISGID */ 2415 if (S_ISDIR(mode)) 2416 mode |= S_ISGID; 2417 } else 2418 inode_fsgid_set(inode, idmap); 2419 inode->i_mode = mode; 2420 } 2421 EXPORT_SYMBOL(inode_init_owner); 2422 2423 /** 2424 * inode_owner_or_capable - check current task permissions to inode 2425 * @idmap: idmap of the mount the inode was found from 2426 * @inode: inode being checked 2427 * 2428 * Return true if current either has CAP_FOWNER in a namespace with the 2429 * inode owner uid mapped, or owns the file. 2430 * 2431 * If the inode has been found through an idmapped mount the idmap of 2432 * the vfsmount must be passed through @idmap. This function will then take 2433 * care to map the inode according to @idmap before checking permissions. 2434 * On non-idmapped mounts or if permission checking is to be performed on the 2435 * raw inode simply passs @nop_mnt_idmap. 2436 */ 2437 bool inode_owner_or_capable(struct mnt_idmap *idmap, 2438 const struct inode *inode) 2439 { 2440 vfsuid_t vfsuid; 2441 struct user_namespace *ns; 2442 2443 vfsuid = i_uid_into_vfsuid(idmap, inode); 2444 if (vfsuid_eq_kuid(vfsuid, current_fsuid())) 2445 return true; 2446 2447 ns = current_user_ns(); 2448 if (vfsuid_has_mapping(ns, vfsuid) && ns_capable(ns, CAP_FOWNER)) 2449 return true; 2450 return false; 2451 } 2452 EXPORT_SYMBOL(inode_owner_or_capable); 2453 2454 /* 2455 * Direct i/o helper functions 2456 */ 2457 static void __inode_dio_wait(struct inode *inode) 2458 { 2459 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP); 2460 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP); 2461 2462 do { 2463 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE); 2464 if (atomic_read(&inode->i_dio_count)) 2465 schedule(); 2466 } while (atomic_read(&inode->i_dio_count)); 2467 finish_wait(wq, &q.wq_entry); 2468 } 2469 2470 /** 2471 * inode_dio_wait - wait for outstanding DIO requests to finish 2472 * @inode: inode to wait for 2473 * 2474 * Waits for all pending direct I/O requests to finish so that we can 2475 * proceed with a truncate or equivalent operation. 2476 * 2477 * Must be called under a lock that serializes taking new references 2478 * to i_dio_count, usually by inode->i_mutex. 2479 */ 2480 void inode_dio_wait(struct inode *inode) 2481 { 2482 if (atomic_read(&inode->i_dio_count)) 2483 __inode_dio_wait(inode); 2484 } 2485 EXPORT_SYMBOL(inode_dio_wait); 2486 2487 /* 2488 * inode_set_flags - atomically set some inode flags 2489 * 2490 * Note: the caller should be holding i_mutex, or else be sure that 2491 * they have exclusive access to the inode structure (i.e., while the 2492 * inode is being instantiated). The reason for the cmpxchg() loop 2493 * --- which wouldn't be necessary if all code paths which modify 2494 * i_flags actually followed this rule, is that there is at least one 2495 * code path which doesn't today so we use cmpxchg() out of an abundance 2496 * of caution. 2497 * 2498 * In the long run, i_mutex is overkill, and we should probably look 2499 * at using the i_lock spinlock to protect i_flags, and then make sure 2500 * it is so documented in include/linux/fs.h and that all code follows 2501 * the locking convention!! 2502 */ 2503 void inode_set_flags(struct inode *inode, unsigned int flags, 2504 unsigned int mask) 2505 { 2506 WARN_ON_ONCE(flags & ~mask); 2507 set_mask_bits(&inode->i_flags, mask, flags); 2508 } 2509 EXPORT_SYMBOL(inode_set_flags); 2510 2511 void inode_nohighmem(struct inode *inode) 2512 { 2513 mapping_set_gfp_mask(inode->i_mapping, GFP_USER); 2514 } 2515 EXPORT_SYMBOL(inode_nohighmem); 2516 2517 /** 2518 * timestamp_truncate - Truncate timespec to a granularity 2519 * @t: Timespec 2520 * @inode: inode being updated 2521 * 2522 * Truncate a timespec to the granularity supported by the fs 2523 * containing the inode. Always rounds down. gran must 2524 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns). 2525 */ 2526 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode) 2527 { 2528 struct super_block *sb = inode->i_sb; 2529 unsigned int gran = sb->s_time_gran; 2530 2531 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max); 2532 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min)) 2533 t.tv_nsec = 0; 2534 2535 /* Avoid division in the common cases 1 ns and 1 s. */ 2536 if (gran == 1) 2537 ; /* nothing */ 2538 else if (gran == NSEC_PER_SEC) 2539 t.tv_nsec = 0; 2540 else if (gran > 1 && gran < NSEC_PER_SEC) 2541 t.tv_nsec -= t.tv_nsec % gran; 2542 else 2543 WARN(1, "invalid file time granularity: %u", gran); 2544 return t; 2545 } 2546 EXPORT_SYMBOL(timestamp_truncate); 2547 2548 /** 2549 * current_time - Return FS time 2550 * @inode: inode. 2551 * 2552 * Return the current time truncated to the time granularity supported by 2553 * the fs. 2554 * 2555 * Note that inode and inode->sb cannot be NULL. 2556 * Otherwise, the function warns and returns time without truncation. 2557 */ 2558 struct timespec64 current_time(struct inode *inode) 2559 { 2560 struct timespec64 now; 2561 2562 ktime_get_coarse_real_ts64(&now); 2563 return timestamp_truncate(now, inode); 2564 } 2565 EXPORT_SYMBOL(current_time); 2566 2567 /** 2568 * inode_set_ctime_current - set the ctime to current_time 2569 * @inode: inode 2570 * 2571 * Set the inode->i_ctime to the current value for the inode. Returns 2572 * the current value that was assigned to i_ctime. 2573 */ 2574 struct timespec64 inode_set_ctime_current(struct inode *inode) 2575 { 2576 struct timespec64 now = current_time(inode); 2577 2578 inode_set_ctime(inode, now.tv_sec, now.tv_nsec); 2579 return now; 2580 } 2581 EXPORT_SYMBOL(inode_set_ctime_current); 2582 2583 /** 2584 * in_group_or_capable - check whether caller is CAP_FSETID privileged 2585 * @idmap: idmap of the mount @inode was found from 2586 * @inode: inode to check 2587 * @vfsgid: the new/current vfsgid of @inode 2588 * 2589 * Check wether @vfsgid is in the caller's group list or if the caller is 2590 * privileged with CAP_FSETID over @inode. This can be used to determine 2591 * whether the setgid bit can be kept or must be dropped. 2592 * 2593 * Return: true if the caller is sufficiently privileged, false if not. 2594 */ 2595 bool in_group_or_capable(struct mnt_idmap *idmap, 2596 const struct inode *inode, vfsgid_t vfsgid) 2597 { 2598 if (vfsgid_in_group_p(vfsgid)) 2599 return true; 2600 if (capable_wrt_inode_uidgid(idmap, inode, CAP_FSETID)) 2601 return true; 2602 return false; 2603 } 2604 2605 /** 2606 * mode_strip_sgid - handle the sgid bit for non-directories 2607 * @idmap: idmap of the mount the inode was created from 2608 * @dir: parent directory inode 2609 * @mode: mode of the file to be created in @dir 2610 * 2611 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit 2612 * raised and @dir has the S_ISGID bit raised ensure that the caller is 2613 * either in the group of the parent directory or they have CAP_FSETID 2614 * in their user namespace and are privileged over the parent directory. 2615 * In all other cases, strip the S_ISGID bit from @mode. 2616 * 2617 * Return: the new mode to use for the file 2618 */ 2619 umode_t mode_strip_sgid(struct mnt_idmap *idmap, 2620 const struct inode *dir, umode_t mode) 2621 { 2622 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP)) 2623 return mode; 2624 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID)) 2625 return mode; 2626 if (in_group_or_capable(idmap, dir, i_gid_into_vfsgid(idmap, dir))) 2627 return mode; 2628 return mode & ~S_ISGID; 2629 } 2630 EXPORT_SYMBOL(mode_strip_sgid); 2631