xref: /openbmc/linux/fs/hugetlbfs/inode.c (revision fe7498ef)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>		/* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39 
40 #include <linux/uaccess.h>
41 #include <linux/sched/mm.h>
42 
43 static const struct super_operations hugetlbfs_ops;
44 static const struct address_space_operations hugetlbfs_aops;
45 const struct file_operations hugetlbfs_file_operations;
46 static const struct inode_operations hugetlbfs_dir_inode_operations;
47 static const struct inode_operations hugetlbfs_inode_operations;
48 
49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
50 
51 struct hugetlbfs_fs_context {
52 	struct hstate		*hstate;
53 	unsigned long long	max_size_opt;
54 	unsigned long long	min_size_opt;
55 	long			max_hpages;
56 	long			nr_inodes;
57 	long			min_hpages;
58 	enum hugetlbfs_size_type max_val_type;
59 	enum hugetlbfs_size_type min_val_type;
60 	kuid_t			uid;
61 	kgid_t			gid;
62 	umode_t			mode;
63 };
64 
65 int sysctl_hugetlb_shm_group;
66 
67 enum hugetlb_param {
68 	Opt_gid,
69 	Opt_min_size,
70 	Opt_mode,
71 	Opt_nr_inodes,
72 	Opt_pagesize,
73 	Opt_size,
74 	Opt_uid,
75 };
76 
77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
78 	fsparam_u32   ("gid",		Opt_gid),
79 	fsparam_string("min_size",	Opt_min_size),
80 	fsparam_u32oct("mode",		Opt_mode),
81 	fsparam_string("nr_inodes",	Opt_nr_inodes),
82 	fsparam_string("pagesize",	Opt_pagesize),
83 	fsparam_string("size",		Opt_size),
84 	fsparam_u32   ("uid",		Opt_uid),
85 	{}
86 };
87 
88 #ifdef CONFIG_NUMA
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90 					struct inode *inode, pgoff_t index)
91 {
92 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93 							index);
94 }
95 
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98 	mpol_cond_put(vma->vm_policy);
99 }
100 #else
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102 					struct inode *inode, pgoff_t index)
103 {
104 }
105 
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110 
111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113 	int i;
114 
115 	for (i = 0; i < pagevec_count(pvec); ++i)
116 		put_page(pvec->pages[i]);
117 
118 	pagevec_reinit(pvec);
119 }
120 
121 /*
122  * Mask used when checking the page offset value passed in via system
123  * calls.  This value will be converted to a loff_t which is signed.
124  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
125  * value.  The extra bit (- 1 in the shift value) is to take the sign
126  * bit into account.
127  */
128 #define PGOFF_LOFFT_MAX \
129 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
130 
131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
132 {
133 	struct inode *inode = file_inode(file);
134 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
135 	loff_t len, vma_len;
136 	int ret;
137 	struct hstate *h = hstate_file(file);
138 
139 	/*
140 	 * vma address alignment (but not the pgoff alignment) has
141 	 * already been checked by prepare_hugepage_range.  If you add
142 	 * any error returns here, do so after setting VM_HUGETLB, so
143 	 * is_vm_hugetlb_page tests below unmap_region go the right
144 	 * way when do_mmap unwinds (may be important on powerpc
145 	 * and ia64).
146 	 */
147 	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
148 	vma->vm_ops = &hugetlb_vm_ops;
149 
150 	ret = seal_check_future_write(info->seals, vma);
151 	if (ret)
152 		return ret;
153 
154 	/*
155 	 * page based offset in vm_pgoff could be sufficiently large to
156 	 * overflow a loff_t when converted to byte offset.  This can
157 	 * only happen on architectures where sizeof(loff_t) ==
158 	 * sizeof(unsigned long).  So, only check in those instances.
159 	 */
160 	if (sizeof(unsigned long) == sizeof(loff_t)) {
161 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
162 			return -EINVAL;
163 	}
164 
165 	/* must be huge page aligned */
166 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
167 		return -EINVAL;
168 
169 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
170 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
171 	/* check for overflow */
172 	if (len < vma_len)
173 		return -EINVAL;
174 
175 	inode_lock(inode);
176 	file_accessed(file);
177 
178 	ret = -ENOMEM;
179 	if (!hugetlb_reserve_pages(inode,
180 				vma->vm_pgoff >> huge_page_order(h),
181 				len >> huge_page_shift(h), vma,
182 				vma->vm_flags))
183 		goto out;
184 
185 	ret = 0;
186 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
187 		i_size_write(inode, len);
188 out:
189 	inode_unlock(inode);
190 
191 	return ret;
192 }
193 
194 /*
195  * Called under mmap_write_lock(mm).
196  */
197 
198 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
199 static unsigned long
200 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
201 		unsigned long len, unsigned long pgoff, unsigned long flags)
202 {
203 	struct hstate *h = hstate_file(file);
204 	struct vm_unmapped_area_info info;
205 
206 	info.flags = 0;
207 	info.length = len;
208 	info.low_limit = current->mm->mmap_base;
209 	info.high_limit = TASK_SIZE;
210 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
211 	info.align_offset = 0;
212 	return vm_unmapped_area(&info);
213 }
214 
215 static unsigned long
216 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
217 		unsigned long len, unsigned long pgoff, unsigned long flags)
218 {
219 	struct hstate *h = hstate_file(file);
220 	struct vm_unmapped_area_info info;
221 
222 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
223 	info.length = len;
224 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
225 	info.high_limit = current->mm->mmap_base;
226 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
227 	info.align_offset = 0;
228 	addr = vm_unmapped_area(&info);
229 
230 	/*
231 	 * A failed mmap() very likely causes application failure,
232 	 * so fall back to the bottom-up function here. This scenario
233 	 * can happen with large stack limits and large mmap()
234 	 * allocations.
235 	 */
236 	if (unlikely(offset_in_page(addr))) {
237 		VM_BUG_ON(addr != -ENOMEM);
238 		info.flags = 0;
239 		info.low_limit = current->mm->mmap_base;
240 		info.high_limit = TASK_SIZE;
241 		addr = vm_unmapped_area(&info);
242 	}
243 
244 	return addr;
245 }
246 
247 static unsigned long
248 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
249 		unsigned long len, unsigned long pgoff, unsigned long flags)
250 {
251 	struct mm_struct *mm = current->mm;
252 	struct vm_area_struct *vma;
253 	struct hstate *h = hstate_file(file);
254 
255 	if (len & ~huge_page_mask(h))
256 		return -EINVAL;
257 	if (len > TASK_SIZE)
258 		return -ENOMEM;
259 
260 	if (flags & MAP_FIXED) {
261 		if (prepare_hugepage_range(file, addr, len))
262 			return -EINVAL;
263 		return addr;
264 	}
265 
266 	if (addr) {
267 		addr = ALIGN(addr, huge_page_size(h));
268 		vma = find_vma(mm, addr);
269 		if (TASK_SIZE - len >= addr &&
270 		    (!vma || addr + len <= vm_start_gap(vma)))
271 			return addr;
272 	}
273 
274 	/*
275 	 * Use mm->get_unmapped_area value as a hint to use topdown routine.
276 	 * If architectures have special needs, they should define their own
277 	 * version of hugetlb_get_unmapped_area.
278 	 */
279 	if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
280 		return hugetlb_get_unmapped_area_topdown(file, addr, len,
281 				pgoff, flags);
282 	return hugetlb_get_unmapped_area_bottomup(file, addr, len,
283 			pgoff, flags);
284 }
285 #endif
286 
287 static size_t
288 hugetlbfs_read_actor(struct page *page, unsigned long offset,
289 			struct iov_iter *to, unsigned long size)
290 {
291 	size_t copied = 0;
292 	int i, chunksize;
293 
294 	/* Find which 4k chunk and offset with in that chunk */
295 	i = offset >> PAGE_SHIFT;
296 	offset = offset & ~PAGE_MASK;
297 
298 	while (size) {
299 		size_t n;
300 		chunksize = PAGE_SIZE;
301 		if (offset)
302 			chunksize -= offset;
303 		if (chunksize > size)
304 			chunksize = size;
305 		n = copy_page_to_iter(&page[i], offset, chunksize, to);
306 		copied += n;
307 		if (n != chunksize)
308 			return copied;
309 		offset = 0;
310 		size -= chunksize;
311 		i++;
312 	}
313 	return copied;
314 }
315 
316 /*
317  * Support for read() - Find the page attached to f_mapping and copy out the
318  * data. Its *very* similar to generic_file_buffered_read(), we can't use that
319  * since it has PAGE_SIZE assumptions.
320  */
321 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
322 {
323 	struct file *file = iocb->ki_filp;
324 	struct hstate *h = hstate_file(file);
325 	struct address_space *mapping = file->f_mapping;
326 	struct inode *inode = mapping->host;
327 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
328 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
329 	unsigned long end_index;
330 	loff_t isize;
331 	ssize_t retval = 0;
332 
333 	while (iov_iter_count(to)) {
334 		struct page *page;
335 		size_t nr, copied;
336 
337 		/* nr is the maximum number of bytes to copy from this page */
338 		nr = huge_page_size(h);
339 		isize = i_size_read(inode);
340 		if (!isize)
341 			break;
342 		end_index = (isize - 1) >> huge_page_shift(h);
343 		if (index > end_index)
344 			break;
345 		if (index == end_index) {
346 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
347 			if (nr <= offset)
348 				break;
349 		}
350 		nr = nr - offset;
351 
352 		/* Find the page */
353 		page = find_lock_page(mapping, index);
354 		if (unlikely(page == NULL)) {
355 			/*
356 			 * We have a HOLE, zero out the user-buffer for the
357 			 * length of the hole or request.
358 			 */
359 			copied = iov_iter_zero(nr, to);
360 		} else {
361 			unlock_page(page);
362 
363 			/*
364 			 * We have the page, copy it to user space buffer.
365 			 */
366 			copied = hugetlbfs_read_actor(page, offset, to, nr);
367 			put_page(page);
368 		}
369 		offset += copied;
370 		retval += copied;
371 		if (copied != nr && iov_iter_count(to)) {
372 			if (!retval)
373 				retval = -EFAULT;
374 			break;
375 		}
376 		index += offset >> huge_page_shift(h);
377 		offset &= ~huge_page_mask(h);
378 	}
379 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
380 	return retval;
381 }
382 
383 static int hugetlbfs_write_begin(struct file *file,
384 			struct address_space *mapping,
385 			loff_t pos, unsigned len, unsigned flags,
386 			struct page **pagep, void **fsdata)
387 {
388 	return -EINVAL;
389 }
390 
391 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
392 			loff_t pos, unsigned len, unsigned copied,
393 			struct page *page, void *fsdata)
394 {
395 	BUG();
396 	return -EINVAL;
397 }
398 
399 static void remove_huge_page(struct page *page)
400 {
401 	ClearPageDirty(page);
402 	ClearPageUptodate(page);
403 	delete_from_page_cache(page);
404 }
405 
406 static void
407 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
408 {
409 	struct vm_area_struct *vma;
410 
411 	/*
412 	 * end == 0 indicates that the entire range after
413 	 * start should be unmapped.
414 	 */
415 	vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
416 		unsigned long v_offset;
417 		unsigned long v_end;
418 
419 		/*
420 		 * Can the expression below overflow on 32-bit arches?
421 		 * No, because the interval tree returns us only those vmas
422 		 * which overlap the truncated area starting at pgoff,
423 		 * and no vma on a 32-bit arch can span beyond the 4GB.
424 		 */
425 		if (vma->vm_pgoff < start)
426 			v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
427 		else
428 			v_offset = 0;
429 
430 		if (!end)
431 			v_end = vma->vm_end;
432 		else {
433 			v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
434 							+ vma->vm_start;
435 			if (v_end > vma->vm_end)
436 				v_end = vma->vm_end;
437 		}
438 
439 		unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
440 									NULL);
441 	}
442 }
443 
444 /*
445  * remove_inode_hugepages handles two distinct cases: truncation and hole
446  * punch.  There are subtle differences in operation for each case.
447  *
448  * truncation is indicated by end of range being LLONG_MAX
449  *	In this case, we first scan the range and release found pages.
450  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
451  *	maps and global counts.  Page faults can not race with truncation
452  *	in this routine.  hugetlb_no_page() holds i_mmap_rwsem and prevents
453  *	page faults in the truncated range by checking i_size.  i_size is
454  *	modified while holding i_mmap_rwsem.
455  * hole punch is indicated if end is not LLONG_MAX
456  *	In the hole punch case we scan the range and release found pages.
457  *	Only when releasing a page is the associated region/reserve map
458  *	deleted.  The region/reserve map for ranges without associated
459  *	pages are not modified.  Page faults can race with hole punch.
460  *	This is indicated if we find a mapped page.
461  * Note: If the passed end of range value is beyond the end of file, but
462  * not LLONG_MAX this routine still performs a hole punch operation.
463  */
464 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
465 				   loff_t lend)
466 {
467 	struct hstate *h = hstate_inode(inode);
468 	struct address_space *mapping = &inode->i_data;
469 	const pgoff_t start = lstart >> huge_page_shift(h);
470 	const pgoff_t end = lend >> huge_page_shift(h);
471 	struct pagevec pvec;
472 	pgoff_t next, index;
473 	int i, freed = 0;
474 	bool truncate_op = (lend == LLONG_MAX);
475 
476 	pagevec_init(&pvec);
477 	next = start;
478 	while (next < end) {
479 		/*
480 		 * When no more pages are found, we are done.
481 		 */
482 		if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
483 			break;
484 
485 		for (i = 0; i < pagevec_count(&pvec); ++i) {
486 			struct page *page = pvec.pages[i];
487 			u32 hash = 0;
488 
489 			index = page->index;
490 			if (!truncate_op) {
491 				/*
492 				 * Only need to hold the fault mutex in the
493 				 * hole punch case.  This prevents races with
494 				 * page faults.  Races are not possible in the
495 				 * case of truncation.
496 				 */
497 				hash = hugetlb_fault_mutex_hash(mapping, index);
498 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
499 			}
500 
501 			/*
502 			 * If page is mapped, it was faulted in after being
503 			 * unmapped in caller.  Unmap (again) now after taking
504 			 * the fault mutex.  The mutex will prevent faults
505 			 * until we finish removing the page.
506 			 *
507 			 * This race can only happen in the hole punch case.
508 			 * Getting here in a truncate operation is a bug.
509 			 */
510 			if (unlikely(page_mapped(page))) {
511 				BUG_ON(truncate_op);
512 
513 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
514 				i_mmap_lock_write(mapping);
515 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
516 				hugetlb_vmdelete_list(&mapping->i_mmap,
517 					index * pages_per_huge_page(h),
518 					(index + 1) * pages_per_huge_page(h));
519 				i_mmap_unlock_write(mapping);
520 			}
521 
522 			lock_page(page);
523 			/*
524 			 * We must free the huge page and remove from page
525 			 * cache (remove_huge_page) BEFORE removing the
526 			 * region/reserve map (hugetlb_unreserve_pages).  In
527 			 * rare out of memory conditions, removal of the
528 			 * region/reserve map could fail. Correspondingly,
529 			 * the subpool and global reserve usage count can need
530 			 * to be adjusted.
531 			 */
532 			VM_BUG_ON(HPageRestoreReserve(page));
533 			remove_huge_page(page);
534 			freed++;
535 			if (!truncate_op) {
536 				if (unlikely(hugetlb_unreserve_pages(inode,
537 							index, index + 1, 1)))
538 					hugetlb_fix_reserve_counts(inode);
539 			}
540 
541 			unlock_page(page);
542 			if (!truncate_op)
543 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
544 		}
545 		huge_pagevec_release(&pvec);
546 		cond_resched();
547 	}
548 
549 	if (truncate_op)
550 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
551 }
552 
553 static void hugetlbfs_evict_inode(struct inode *inode)
554 {
555 	struct resv_map *resv_map;
556 
557 	remove_inode_hugepages(inode, 0, LLONG_MAX);
558 
559 	/*
560 	 * Get the resv_map from the address space embedded in the inode.
561 	 * This is the address space which points to any resv_map allocated
562 	 * at inode creation time.  If this is a device special inode,
563 	 * i_mapping may not point to the original address space.
564 	 */
565 	resv_map = (struct resv_map *)(&inode->i_data)->private_data;
566 	/* Only regular and link inodes have associated reserve maps */
567 	if (resv_map)
568 		resv_map_release(&resv_map->refs);
569 	clear_inode(inode);
570 }
571 
572 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
573 {
574 	pgoff_t pgoff;
575 	struct address_space *mapping = inode->i_mapping;
576 	struct hstate *h = hstate_inode(inode);
577 
578 	BUG_ON(offset & ~huge_page_mask(h));
579 	pgoff = offset >> PAGE_SHIFT;
580 
581 	i_mmap_lock_write(mapping);
582 	i_size_write(inode, offset);
583 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
584 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
585 	i_mmap_unlock_write(mapping);
586 	remove_inode_hugepages(inode, offset, LLONG_MAX);
587 }
588 
589 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
590 {
591 	struct hstate *h = hstate_inode(inode);
592 	loff_t hpage_size = huge_page_size(h);
593 	loff_t hole_start, hole_end;
594 
595 	/*
596 	 * For hole punch round up the beginning offset of the hole and
597 	 * round down the end.
598 	 */
599 	hole_start = round_up(offset, hpage_size);
600 	hole_end = round_down(offset + len, hpage_size);
601 
602 	if (hole_end > hole_start) {
603 		struct address_space *mapping = inode->i_mapping;
604 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
605 
606 		inode_lock(inode);
607 
608 		/* protected by i_rwsem */
609 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
610 			inode_unlock(inode);
611 			return -EPERM;
612 		}
613 
614 		i_mmap_lock_write(mapping);
615 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
616 			hugetlb_vmdelete_list(&mapping->i_mmap,
617 						hole_start >> PAGE_SHIFT,
618 						hole_end  >> PAGE_SHIFT);
619 		i_mmap_unlock_write(mapping);
620 		remove_inode_hugepages(inode, hole_start, hole_end);
621 		inode_unlock(inode);
622 	}
623 
624 	return 0;
625 }
626 
627 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
628 				loff_t len)
629 {
630 	struct inode *inode = file_inode(file);
631 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
632 	struct address_space *mapping = inode->i_mapping;
633 	struct hstate *h = hstate_inode(inode);
634 	struct vm_area_struct pseudo_vma;
635 	struct mm_struct *mm = current->mm;
636 	loff_t hpage_size = huge_page_size(h);
637 	unsigned long hpage_shift = huge_page_shift(h);
638 	pgoff_t start, index, end;
639 	int error;
640 	u32 hash;
641 
642 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
643 		return -EOPNOTSUPP;
644 
645 	if (mode & FALLOC_FL_PUNCH_HOLE)
646 		return hugetlbfs_punch_hole(inode, offset, len);
647 
648 	/*
649 	 * Default preallocate case.
650 	 * For this range, start is rounded down and end is rounded up
651 	 * as well as being converted to page offsets.
652 	 */
653 	start = offset >> hpage_shift;
654 	end = (offset + len + hpage_size - 1) >> hpage_shift;
655 
656 	inode_lock(inode);
657 
658 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
659 	error = inode_newsize_ok(inode, offset + len);
660 	if (error)
661 		goto out;
662 
663 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
664 		error = -EPERM;
665 		goto out;
666 	}
667 
668 	/*
669 	 * Initialize a pseudo vma as this is required by the huge page
670 	 * allocation routines.  If NUMA is configured, use page index
671 	 * as input to create an allocation policy.
672 	 */
673 	vma_init(&pseudo_vma, mm);
674 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
675 	pseudo_vma.vm_file = file;
676 
677 	for (index = start; index < end; index++) {
678 		/*
679 		 * This is supposed to be the vaddr where the page is being
680 		 * faulted in, but we have no vaddr here.
681 		 */
682 		struct page *page;
683 		unsigned long addr;
684 
685 		cond_resched();
686 
687 		/*
688 		 * fallocate(2) manpage permits EINTR; we may have been
689 		 * interrupted because we are using up too much memory.
690 		 */
691 		if (signal_pending(current)) {
692 			error = -EINTR;
693 			break;
694 		}
695 
696 		/* Set numa allocation policy based on index */
697 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
698 
699 		/* addr is the offset within the file (zero based) */
700 		addr = index * hpage_size;
701 
702 		/*
703 		 * fault mutex taken here, protects against fault path
704 		 * and hole punch.  inode_lock previously taken protects
705 		 * against truncation.
706 		 */
707 		hash = hugetlb_fault_mutex_hash(mapping, index);
708 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
709 
710 		/* See if already present in mapping to avoid alloc/free */
711 		page = find_get_page(mapping, index);
712 		if (page) {
713 			put_page(page);
714 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
715 			hugetlb_drop_vma_policy(&pseudo_vma);
716 			continue;
717 		}
718 
719 		/*
720 		 * Allocate page without setting the avoid_reserve argument.
721 		 * There certainly are no reserves associated with the
722 		 * pseudo_vma.  However, there could be shared mappings with
723 		 * reserves for the file at the inode level.  If we fallocate
724 		 * pages in these areas, we need to consume the reserves
725 		 * to keep reservation accounting consistent.
726 		 */
727 		page = alloc_huge_page(&pseudo_vma, addr, 0);
728 		hugetlb_drop_vma_policy(&pseudo_vma);
729 		if (IS_ERR(page)) {
730 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
731 			error = PTR_ERR(page);
732 			goto out;
733 		}
734 		clear_huge_page(page, addr, pages_per_huge_page(h));
735 		__SetPageUptodate(page);
736 		error = huge_add_to_page_cache(page, mapping, index);
737 		if (unlikely(error)) {
738 			restore_reserve_on_error(h, &pseudo_vma, addr, page);
739 			put_page(page);
740 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
741 			goto out;
742 		}
743 
744 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
745 
746 		SetHPageMigratable(page);
747 		/*
748 		 * unlock_page because locked by add_to_page_cache()
749 		 * put_page() due to reference from alloc_huge_page()
750 		 */
751 		unlock_page(page);
752 		put_page(page);
753 	}
754 
755 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
756 		i_size_write(inode, offset + len);
757 	inode->i_ctime = current_time(inode);
758 out:
759 	inode_unlock(inode);
760 	return error;
761 }
762 
763 static int hugetlbfs_setattr(struct user_namespace *mnt_userns,
764 			     struct dentry *dentry, struct iattr *attr)
765 {
766 	struct inode *inode = d_inode(dentry);
767 	struct hstate *h = hstate_inode(inode);
768 	int error;
769 	unsigned int ia_valid = attr->ia_valid;
770 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
771 
772 	error = setattr_prepare(&init_user_ns, dentry, attr);
773 	if (error)
774 		return error;
775 
776 	if (ia_valid & ATTR_SIZE) {
777 		loff_t oldsize = inode->i_size;
778 		loff_t newsize = attr->ia_size;
779 
780 		if (newsize & ~huge_page_mask(h))
781 			return -EINVAL;
782 		/* protected by i_rwsem */
783 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
784 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
785 			return -EPERM;
786 		hugetlb_vmtruncate(inode, newsize);
787 	}
788 
789 	setattr_copy(&init_user_ns, inode, attr);
790 	mark_inode_dirty(inode);
791 	return 0;
792 }
793 
794 static struct inode *hugetlbfs_get_root(struct super_block *sb,
795 					struct hugetlbfs_fs_context *ctx)
796 {
797 	struct inode *inode;
798 
799 	inode = new_inode(sb);
800 	if (inode) {
801 		inode->i_ino = get_next_ino();
802 		inode->i_mode = S_IFDIR | ctx->mode;
803 		inode->i_uid = ctx->uid;
804 		inode->i_gid = ctx->gid;
805 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
806 		inode->i_op = &hugetlbfs_dir_inode_operations;
807 		inode->i_fop = &simple_dir_operations;
808 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
809 		inc_nlink(inode);
810 		lockdep_annotate_inode_mutex_key(inode);
811 	}
812 	return inode;
813 }
814 
815 /*
816  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
817  * be taken from reclaim -- unlike regular filesystems. This needs an
818  * annotation because huge_pmd_share() does an allocation under hugetlb's
819  * i_mmap_rwsem.
820  */
821 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
822 
823 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
824 					struct inode *dir,
825 					umode_t mode, dev_t dev)
826 {
827 	struct inode *inode;
828 	struct resv_map *resv_map = NULL;
829 
830 	/*
831 	 * Reserve maps are only needed for inodes that can have associated
832 	 * page allocations.
833 	 */
834 	if (S_ISREG(mode) || S_ISLNK(mode)) {
835 		resv_map = resv_map_alloc();
836 		if (!resv_map)
837 			return NULL;
838 	}
839 
840 	inode = new_inode(sb);
841 	if (inode) {
842 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
843 
844 		inode->i_ino = get_next_ino();
845 		inode_init_owner(&init_user_ns, inode, dir, mode);
846 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
847 				&hugetlbfs_i_mmap_rwsem_key);
848 		inode->i_mapping->a_ops = &hugetlbfs_aops;
849 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
850 		inode->i_mapping->private_data = resv_map;
851 		info->seals = F_SEAL_SEAL;
852 		switch (mode & S_IFMT) {
853 		default:
854 			init_special_inode(inode, mode, dev);
855 			break;
856 		case S_IFREG:
857 			inode->i_op = &hugetlbfs_inode_operations;
858 			inode->i_fop = &hugetlbfs_file_operations;
859 			break;
860 		case S_IFDIR:
861 			inode->i_op = &hugetlbfs_dir_inode_operations;
862 			inode->i_fop = &simple_dir_operations;
863 
864 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
865 			inc_nlink(inode);
866 			break;
867 		case S_IFLNK:
868 			inode->i_op = &page_symlink_inode_operations;
869 			inode_nohighmem(inode);
870 			break;
871 		}
872 		lockdep_annotate_inode_mutex_key(inode);
873 	} else {
874 		if (resv_map)
875 			kref_put(&resv_map->refs, resv_map_release);
876 	}
877 
878 	return inode;
879 }
880 
881 /*
882  * File creation. Allocate an inode, and we're done..
883  */
884 static int do_hugetlbfs_mknod(struct inode *dir,
885 			struct dentry *dentry,
886 			umode_t mode,
887 			dev_t dev,
888 			bool tmpfile)
889 {
890 	struct inode *inode;
891 	int error = -ENOSPC;
892 
893 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
894 	if (inode) {
895 		dir->i_ctime = dir->i_mtime = current_time(dir);
896 		if (tmpfile) {
897 			d_tmpfile(dentry, inode);
898 		} else {
899 			d_instantiate(dentry, inode);
900 			dget(dentry);/* Extra count - pin the dentry in core */
901 		}
902 		error = 0;
903 	}
904 	return error;
905 }
906 
907 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
908 			   struct dentry *dentry, umode_t mode, dev_t dev)
909 {
910 	return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
911 }
912 
913 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
914 			   struct dentry *dentry, umode_t mode)
915 {
916 	int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry,
917 				     mode | S_IFDIR, 0);
918 	if (!retval)
919 		inc_nlink(dir);
920 	return retval;
921 }
922 
923 static int hugetlbfs_create(struct user_namespace *mnt_userns,
924 			    struct inode *dir, struct dentry *dentry,
925 			    umode_t mode, bool excl)
926 {
927 	return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
928 }
929 
930 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns,
931 			     struct inode *dir, struct dentry *dentry,
932 			     umode_t mode)
933 {
934 	return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
935 }
936 
937 static int hugetlbfs_symlink(struct user_namespace *mnt_userns,
938 			     struct inode *dir, struct dentry *dentry,
939 			     const char *symname)
940 {
941 	struct inode *inode;
942 	int error = -ENOSPC;
943 
944 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
945 	if (inode) {
946 		int l = strlen(symname)+1;
947 		error = page_symlink(inode, symname, l);
948 		if (!error) {
949 			d_instantiate(dentry, inode);
950 			dget(dentry);
951 		} else
952 			iput(inode);
953 	}
954 	dir->i_ctime = dir->i_mtime = current_time(dir);
955 
956 	return error;
957 }
958 
959 static int hugetlbfs_migrate_page(struct address_space *mapping,
960 				struct page *newpage, struct page *page,
961 				enum migrate_mode mode)
962 {
963 	int rc;
964 
965 	rc = migrate_huge_page_move_mapping(mapping, newpage, page);
966 	if (rc != MIGRATEPAGE_SUCCESS)
967 		return rc;
968 
969 	if (hugetlb_page_subpool(page)) {
970 		hugetlb_set_page_subpool(newpage, hugetlb_page_subpool(page));
971 		hugetlb_set_page_subpool(page, NULL);
972 	}
973 
974 	if (mode != MIGRATE_SYNC_NO_COPY)
975 		migrate_page_copy(newpage, page);
976 	else
977 		migrate_page_states(newpage, page);
978 
979 	return MIGRATEPAGE_SUCCESS;
980 }
981 
982 static int hugetlbfs_error_remove_page(struct address_space *mapping,
983 				struct page *page)
984 {
985 	struct inode *inode = mapping->host;
986 	pgoff_t index = page->index;
987 
988 	remove_huge_page(page);
989 	if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
990 		hugetlb_fix_reserve_counts(inode);
991 
992 	return 0;
993 }
994 
995 /*
996  * Display the mount options in /proc/mounts.
997  */
998 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
999 {
1000 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1001 	struct hugepage_subpool *spool = sbinfo->spool;
1002 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1003 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1004 	char mod;
1005 
1006 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1007 		seq_printf(m, ",uid=%u",
1008 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1009 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1010 		seq_printf(m, ",gid=%u",
1011 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1012 	if (sbinfo->mode != 0755)
1013 		seq_printf(m, ",mode=%o", sbinfo->mode);
1014 	if (sbinfo->max_inodes != -1)
1015 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1016 
1017 	hpage_size /= 1024;
1018 	mod = 'K';
1019 	if (hpage_size >= 1024) {
1020 		hpage_size /= 1024;
1021 		mod = 'M';
1022 	}
1023 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1024 	if (spool) {
1025 		if (spool->max_hpages != -1)
1026 			seq_printf(m, ",size=%llu",
1027 				   (unsigned long long)spool->max_hpages << hpage_shift);
1028 		if (spool->min_hpages != -1)
1029 			seq_printf(m, ",min_size=%llu",
1030 				   (unsigned long long)spool->min_hpages << hpage_shift);
1031 	}
1032 	return 0;
1033 }
1034 
1035 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1036 {
1037 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1038 	struct hstate *h = hstate_inode(d_inode(dentry));
1039 
1040 	buf->f_type = HUGETLBFS_MAGIC;
1041 	buf->f_bsize = huge_page_size(h);
1042 	if (sbinfo) {
1043 		spin_lock(&sbinfo->stat_lock);
1044 		/* If no limits set, just report 0 for max/free/used
1045 		 * blocks, like simple_statfs() */
1046 		if (sbinfo->spool) {
1047 			long free_pages;
1048 
1049 			spin_lock(&sbinfo->spool->lock);
1050 			buf->f_blocks = sbinfo->spool->max_hpages;
1051 			free_pages = sbinfo->spool->max_hpages
1052 				- sbinfo->spool->used_hpages;
1053 			buf->f_bavail = buf->f_bfree = free_pages;
1054 			spin_unlock(&sbinfo->spool->lock);
1055 			buf->f_files = sbinfo->max_inodes;
1056 			buf->f_ffree = sbinfo->free_inodes;
1057 		}
1058 		spin_unlock(&sbinfo->stat_lock);
1059 	}
1060 	buf->f_namelen = NAME_MAX;
1061 	return 0;
1062 }
1063 
1064 static void hugetlbfs_put_super(struct super_block *sb)
1065 {
1066 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1067 
1068 	if (sbi) {
1069 		sb->s_fs_info = NULL;
1070 
1071 		if (sbi->spool)
1072 			hugepage_put_subpool(sbi->spool);
1073 
1074 		kfree(sbi);
1075 	}
1076 }
1077 
1078 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1079 {
1080 	if (sbinfo->free_inodes >= 0) {
1081 		spin_lock(&sbinfo->stat_lock);
1082 		if (unlikely(!sbinfo->free_inodes)) {
1083 			spin_unlock(&sbinfo->stat_lock);
1084 			return 0;
1085 		}
1086 		sbinfo->free_inodes--;
1087 		spin_unlock(&sbinfo->stat_lock);
1088 	}
1089 
1090 	return 1;
1091 }
1092 
1093 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1094 {
1095 	if (sbinfo->free_inodes >= 0) {
1096 		spin_lock(&sbinfo->stat_lock);
1097 		sbinfo->free_inodes++;
1098 		spin_unlock(&sbinfo->stat_lock);
1099 	}
1100 }
1101 
1102 
1103 static struct kmem_cache *hugetlbfs_inode_cachep;
1104 
1105 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1106 {
1107 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1108 	struct hugetlbfs_inode_info *p;
1109 
1110 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1111 		return NULL;
1112 	p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1113 	if (unlikely(!p)) {
1114 		hugetlbfs_inc_free_inodes(sbinfo);
1115 		return NULL;
1116 	}
1117 
1118 	/*
1119 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
1120 	 * for the inode.  mpol_free_shared_policy is unconditionally called
1121 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1122 	 * in case of a quick call to destroy.
1123 	 *
1124 	 * Note that the policy is initialized even if we are creating a
1125 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
1126 	 */
1127 	mpol_shared_policy_init(&p->policy, NULL);
1128 
1129 	return &p->vfs_inode;
1130 }
1131 
1132 static void hugetlbfs_free_inode(struct inode *inode)
1133 {
1134 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1135 }
1136 
1137 static void hugetlbfs_destroy_inode(struct inode *inode)
1138 {
1139 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1140 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1141 }
1142 
1143 static const struct address_space_operations hugetlbfs_aops = {
1144 	.write_begin	= hugetlbfs_write_begin,
1145 	.write_end	= hugetlbfs_write_end,
1146 	.set_page_dirty	=  __set_page_dirty_no_writeback,
1147 	.migratepage    = hugetlbfs_migrate_page,
1148 	.error_remove_page	= hugetlbfs_error_remove_page,
1149 };
1150 
1151 
1152 static void init_once(void *foo)
1153 {
1154 	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1155 
1156 	inode_init_once(&ei->vfs_inode);
1157 }
1158 
1159 const struct file_operations hugetlbfs_file_operations = {
1160 	.read_iter		= hugetlbfs_read_iter,
1161 	.mmap			= hugetlbfs_file_mmap,
1162 	.fsync			= noop_fsync,
1163 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1164 	.llseek			= default_llseek,
1165 	.fallocate		= hugetlbfs_fallocate,
1166 };
1167 
1168 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1169 	.create		= hugetlbfs_create,
1170 	.lookup		= simple_lookup,
1171 	.link		= simple_link,
1172 	.unlink		= simple_unlink,
1173 	.symlink	= hugetlbfs_symlink,
1174 	.mkdir		= hugetlbfs_mkdir,
1175 	.rmdir		= simple_rmdir,
1176 	.mknod		= hugetlbfs_mknod,
1177 	.rename		= simple_rename,
1178 	.setattr	= hugetlbfs_setattr,
1179 	.tmpfile	= hugetlbfs_tmpfile,
1180 };
1181 
1182 static const struct inode_operations hugetlbfs_inode_operations = {
1183 	.setattr	= hugetlbfs_setattr,
1184 };
1185 
1186 static const struct super_operations hugetlbfs_ops = {
1187 	.alloc_inode    = hugetlbfs_alloc_inode,
1188 	.free_inode     = hugetlbfs_free_inode,
1189 	.destroy_inode  = hugetlbfs_destroy_inode,
1190 	.evict_inode	= hugetlbfs_evict_inode,
1191 	.statfs		= hugetlbfs_statfs,
1192 	.put_super	= hugetlbfs_put_super,
1193 	.show_options	= hugetlbfs_show_options,
1194 };
1195 
1196 /*
1197  * Convert size option passed from command line to number of huge pages
1198  * in the pool specified by hstate.  Size option could be in bytes
1199  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1200  */
1201 static long
1202 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1203 			 enum hugetlbfs_size_type val_type)
1204 {
1205 	if (val_type == NO_SIZE)
1206 		return -1;
1207 
1208 	if (val_type == SIZE_PERCENT) {
1209 		size_opt <<= huge_page_shift(h);
1210 		size_opt *= h->max_huge_pages;
1211 		do_div(size_opt, 100);
1212 	}
1213 
1214 	size_opt >>= huge_page_shift(h);
1215 	return size_opt;
1216 }
1217 
1218 /*
1219  * Parse one mount parameter.
1220  */
1221 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1222 {
1223 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1224 	struct fs_parse_result result;
1225 	char *rest;
1226 	unsigned long ps;
1227 	int opt;
1228 
1229 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1230 	if (opt < 0)
1231 		return opt;
1232 
1233 	switch (opt) {
1234 	case Opt_uid:
1235 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1236 		if (!uid_valid(ctx->uid))
1237 			goto bad_val;
1238 		return 0;
1239 
1240 	case Opt_gid:
1241 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1242 		if (!gid_valid(ctx->gid))
1243 			goto bad_val;
1244 		return 0;
1245 
1246 	case Opt_mode:
1247 		ctx->mode = result.uint_32 & 01777U;
1248 		return 0;
1249 
1250 	case Opt_size:
1251 		/* memparse() will accept a K/M/G without a digit */
1252 		if (!isdigit(param->string[0]))
1253 			goto bad_val;
1254 		ctx->max_size_opt = memparse(param->string, &rest);
1255 		ctx->max_val_type = SIZE_STD;
1256 		if (*rest == '%')
1257 			ctx->max_val_type = SIZE_PERCENT;
1258 		return 0;
1259 
1260 	case Opt_nr_inodes:
1261 		/* memparse() will accept a K/M/G without a digit */
1262 		if (!isdigit(param->string[0]))
1263 			goto bad_val;
1264 		ctx->nr_inodes = memparse(param->string, &rest);
1265 		return 0;
1266 
1267 	case Opt_pagesize:
1268 		ps = memparse(param->string, &rest);
1269 		ctx->hstate = size_to_hstate(ps);
1270 		if (!ctx->hstate) {
1271 			pr_err("Unsupported page size %lu MB\n", ps >> 20);
1272 			return -EINVAL;
1273 		}
1274 		return 0;
1275 
1276 	case Opt_min_size:
1277 		/* memparse() will accept a K/M/G without a digit */
1278 		if (!isdigit(param->string[0]))
1279 			goto bad_val;
1280 		ctx->min_size_opt = memparse(param->string, &rest);
1281 		ctx->min_val_type = SIZE_STD;
1282 		if (*rest == '%')
1283 			ctx->min_val_type = SIZE_PERCENT;
1284 		return 0;
1285 
1286 	default:
1287 		return -EINVAL;
1288 	}
1289 
1290 bad_val:
1291 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1292 		      param->string, param->key);
1293 }
1294 
1295 /*
1296  * Validate the parsed options.
1297  */
1298 static int hugetlbfs_validate(struct fs_context *fc)
1299 {
1300 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1301 
1302 	/*
1303 	 * Use huge page pool size (in hstate) to convert the size
1304 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1305 	 */
1306 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1307 						   ctx->max_size_opt,
1308 						   ctx->max_val_type);
1309 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1310 						   ctx->min_size_opt,
1311 						   ctx->min_val_type);
1312 
1313 	/*
1314 	 * If max_size was specified, then min_size must be smaller
1315 	 */
1316 	if (ctx->max_val_type > NO_SIZE &&
1317 	    ctx->min_hpages > ctx->max_hpages) {
1318 		pr_err("Minimum size can not be greater than maximum size\n");
1319 		return -EINVAL;
1320 	}
1321 
1322 	return 0;
1323 }
1324 
1325 static int
1326 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1327 {
1328 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1329 	struct hugetlbfs_sb_info *sbinfo;
1330 
1331 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1332 	if (!sbinfo)
1333 		return -ENOMEM;
1334 	sb->s_fs_info = sbinfo;
1335 	spin_lock_init(&sbinfo->stat_lock);
1336 	sbinfo->hstate		= ctx->hstate;
1337 	sbinfo->max_inodes	= ctx->nr_inodes;
1338 	sbinfo->free_inodes	= ctx->nr_inodes;
1339 	sbinfo->spool		= NULL;
1340 	sbinfo->uid		= ctx->uid;
1341 	sbinfo->gid		= ctx->gid;
1342 	sbinfo->mode		= ctx->mode;
1343 
1344 	/*
1345 	 * Allocate and initialize subpool if maximum or minimum size is
1346 	 * specified.  Any needed reservations (for minimum size) are taken
1347 	 * taken when the subpool is created.
1348 	 */
1349 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1350 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1351 						     ctx->max_hpages,
1352 						     ctx->min_hpages);
1353 		if (!sbinfo->spool)
1354 			goto out_free;
1355 	}
1356 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1357 	sb->s_blocksize = huge_page_size(ctx->hstate);
1358 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1359 	sb->s_magic = HUGETLBFS_MAGIC;
1360 	sb->s_op = &hugetlbfs_ops;
1361 	sb->s_time_gran = 1;
1362 
1363 	/*
1364 	 * Due to the special and limited functionality of hugetlbfs, it does
1365 	 * not work well as a stacking filesystem.
1366 	 */
1367 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1368 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1369 	if (!sb->s_root)
1370 		goto out_free;
1371 	return 0;
1372 out_free:
1373 	kfree(sbinfo->spool);
1374 	kfree(sbinfo);
1375 	return -ENOMEM;
1376 }
1377 
1378 static int hugetlbfs_get_tree(struct fs_context *fc)
1379 {
1380 	int err = hugetlbfs_validate(fc);
1381 	if (err)
1382 		return err;
1383 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1384 }
1385 
1386 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1387 {
1388 	kfree(fc->fs_private);
1389 }
1390 
1391 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1392 	.free		= hugetlbfs_fs_context_free,
1393 	.parse_param	= hugetlbfs_parse_param,
1394 	.get_tree	= hugetlbfs_get_tree,
1395 };
1396 
1397 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1398 {
1399 	struct hugetlbfs_fs_context *ctx;
1400 
1401 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1402 	if (!ctx)
1403 		return -ENOMEM;
1404 
1405 	ctx->max_hpages	= -1; /* No limit on size by default */
1406 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1407 	ctx->uid	= current_fsuid();
1408 	ctx->gid	= current_fsgid();
1409 	ctx->mode	= 0755;
1410 	ctx->hstate	= &default_hstate;
1411 	ctx->min_hpages	= -1; /* No default minimum size */
1412 	ctx->max_val_type = NO_SIZE;
1413 	ctx->min_val_type = NO_SIZE;
1414 	fc->fs_private = ctx;
1415 	fc->ops	= &hugetlbfs_fs_context_ops;
1416 	return 0;
1417 }
1418 
1419 static struct file_system_type hugetlbfs_fs_type = {
1420 	.name			= "hugetlbfs",
1421 	.init_fs_context	= hugetlbfs_init_fs_context,
1422 	.parameters		= hugetlb_fs_parameters,
1423 	.kill_sb		= kill_litter_super,
1424 };
1425 
1426 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1427 
1428 static int can_do_hugetlb_shm(void)
1429 {
1430 	kgid_t shm_group;
1431 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1432 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1433 }
1434 
1435 static int get_hstate_idx(int page_size_log)
1436 {
1437 	struct hstate *h = hstate_sizelog(page_size_log);
1438 
1439 	if (!h)
1440 		return -1;
1441 	return hstate_index(h);
1442 }
1443 
1444 /*
1445  * Note that size should be aligned to proper hugepage size in caller side,
1446  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1447  */
1448 struct file *hugetlb_file_setup(const char *name, size_t size,
1449 				vm_flags_t acctflag, int creat_flags,
1450 				int page_size_log)
1451 {
1452 	struct inode *inode;
1453 	struct vfsmount *mnt;
1454 	int hstate_idx;
1455 	struct file *file;
1456 
1457 	hstate_idx = get_hstate_idx(page_size_log);
1458 	if (hstate_idx < 0)
1459 		return ERR_PTR(-ENODEV);
1460 
1461 	mnt = hugetlbfs_vfsmount[hstate_idx];
1462 	if (!mnt)
1463 		return ERR_PTR(-ENOENT);
1464 
1465 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1466 		struct ucounts *ucounts = current_ucounts();
1467 
1468 		if (user_shm_lock(size, ucounts)) {
1469 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1470 				current->comm, current->pid);
1471 			user_shm_unlock(size, ucounts);
1472 		}
1473 		return ERR_PTR(-EPERM);
1474 	}
1475 
1476 	file = ERR_PTR(-ENOSPC);
1477 	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1478 	if (!inode)
1479 		goto out;
1480 	if (creat_flags == HUGETLB_SHMFS_INODE)
1481 		inode->i_flags |= S_PRIVATE;
1482 
1483 	inode->i_size = size;
1484 	clear_nlink(inode);
1485 
1486 	if (!hugetlb_reserve_pages(inode, 0,
1487 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1488 			acctflag))
1489 		file = ERR_PTR(-ENOMEM);
1490 	else
1491 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1492 					&hugetlbfs_file_operations);
1493 	if (!IS_ERR(file))
1494 		return file;
1495 
1496 	iput(inode);
1497 out:
1498 	return file;
1499 }
1500 
1501 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1502 {
1503 	struct fs_context *fc;
1504 	struct vfsmount *mnt;
1505 
1506 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1507 	if (IS_ERR(fc)) {
1508 		mnt = ERR_CAST(fc);
1509 	} else {
1510 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1511 		ctx->hstate = h;
1512 		mnt = fc_mount(fc);
1513 		put_fs_context(fc);
1514 	}
1515 	if (IS_ERR(mnt))
1516 		pr_err("Cannot mount internal hugetlbfs for page size %luK",
1517 		       huge_page_size(h) >> 10);
1518 	return mnt;
1519 }
1520 
1521 static int __init init_hugetlbfs_fs(void)
1522 {
1523 	struct vfsmount *mnt;
1524 	struct hstate *h;
1525 	int error;
1526 	int i;
1527 
1528 	if (!hugepages_supported()) {
1529 		pr_info("disabling because there are no supported hugepage sizes\n");
1530 		return -ENOTSUPP;
1531 	}
1532 
1533 	error = -ENOMEM;
1534 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1535 					sizeof(struct hugetlbfs_inode_info),
1536 					0, SLAB_ACCOUNT, init_once);
1537 	if (hugetlbfs_inode_cachep == NULL)
1538 		goto out;
1539 
1540 	error = register_filesystem(&hugetlbfs_fs_type);
1541 	if (error)
1542 		goto out_free;
1543 
1544 	/* default hstate mount is required */
1545 	mnt = mount_one_hugetlbfs(&default_hstate);
1546 	if (IS_ERR(mnt)) {
1547 		error = PTR_ERR(mnt);
1548 		goto out_unreg;
1549 	}
1550 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1551 
1552 	/* other hstates are optional */
1553 	i = 0;
1554 	for_each_hstate(h) {
1555 		if (i == default_hstate_idx) {
1556 			i++;
1557 			continue;
1558 		}
1559 
1560 		mnt = mount_one_hugetlbfs(h);
1561 		if (IS_ERR(mnt))
1562 			hugetlbfs_vfsmount[i] = NULL;
1563 		else
1564 			hugetlbfs_vfsmount[i] = mnt;
1565 		i++;
1566 	}
1567 
1568 	return 0;
1569 
1570  out_unreg:
1571 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1572  out_free:
1573 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1574  out:
1575 	return error;
1576 }
1577 fs_initcall(init_hugetlbfs_fs)
1578