xref: /openbmc/linux/fs/hugetlbfs/inode.c (revision fbb6b31a)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>		/* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39 
40 #include <linux/uaccess.h>
41 #include <linux/sched/mm.h>
42 
43 static const struct super_operations hugetlbfs_ops;
44 static const struct address_space_operations hugetlbfs_aops;
45 const struct file_operations hugetlbfs_file_operations;
46 static const struct inode_operations hugetlbfs_dir_inode_operations;
47 static const struct inode_operations hugetlbfs_inode_operations;
48 
49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
50 
51 struct hugetlbfs_fs_context {
52 	struct hstate		*hstate;
53 	unsigned long long	max_size_opt;
54 	unsigned long long	min_size_opt;
55 	long			max_hpages;
56 	long			nr_inodes;
57 	long			min_hpages;
58 	enum hugetlbfs_size_type max_val_type;
59 	enum hugetlbfs_size_type min_val_type;
60 	kuid_t			uid;
61 	kgid_t			gid;
62 	umode_t			mode;
63 };
64 
65 int sysctl_hugetlb_shm_group;
66 
67 enum hugetlb_param {
68 	Opt_gid,
69 	Opt_min_size,
70 	Opt_mode,
71 	Opt_nr_inodes,
72 	Opt_pagesize,
73 	Opt_size,
74 	Opt_uid,
75 };
76 
77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
78 	fsparam_u32   ("gid",		Opt_gid),
79 	fsparam_string("min_size",	Opt_min_size),
80 	fsparam_u32oct("mode",		Opt_mode),
81 	fsparam_string("nr_inodes",	Opt_nr_inodes),
82 	fsparam_string("pagesize",	Opt_pagesize),
83 	fsparam_string("size",		Opt_size),
84 	fsparam_u32   ("uid",		Opt_uid),
85 	{}
86 };
87 
88 #ifdef CONFIG_NUMA
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90 					struct inode *inode, pgoff_t index)
91 {
92 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93 							index);
94 }
95 
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98 	mpol_cond_put(vma->vm_policy);
99 }
100 #else
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102 					struct inode *inode, pgoff_t index)
103 {
104 }
105 
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110 
111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113 	int i;
114 
115 	for (i = 0; i < pagevec_count(pvec); ++i)
116 		put_page(pvec->pages[i]);
117 
118 	pagevec_reinit(pvec);
119 }
120 
121 /*
122  * Mask used when checking the page offset value passed in via system
123  * calls.  This value will be converted to a loff_t which is signed.
124  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
125  * value.  The extra bit (- 1 in the shift value) is to take the sign
126  * bit into account.
127  */
128 #define PGOFF_LOFFT_MAX \
129 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
130 
131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
132 {
133 	struct inode *inode = file_inode(file);
134 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
135 	loff_t len, vma_len;
136 	int ret;
137 	struct hstate *h = hstate_file(file);
138 
139 	/*
140 	 * vma address alignment (but not the pgoff alignment) has
141 	 * already been checked by prepare_hugepage_range.  If you add
142 	 * any error returns here, do so after setting VM_HUGETLB, so
143 	 * is_vm_hugetlb_page tests below unmap_region go the right
144 	 * way when do_mmap unwinds (may be important on powerpc
145 	 * and ia64).
146 	 */
147 	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
148 	vma->vm_ops = &hugetlb_vm_ops;
149 
150 	ret = seal_check_future_write(info->seals, vma);
151 	if (ret)
152 		return ret;
153 
154 	/*
155 	 * page based offset in vm_pgoff could be sufficiently large to
156 	 * overflow a loff_t when converted to byte offset.  This can
157 	 * only happen on architectures where sizeof(loff_t) ==
158 	 * sizeof(unsigned long).  So, only check in those instances.
159 	 */
160 	if (sizeof(unsigned long) == sizeof(loff_t)) {
161 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
162 			return -EINVAL;
163 	}
164 
165 	/* must be huge page aligned */
166 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
167 		return -EINVAL;
168 
169 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
170 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
171 	/* check for overflow */
172 	if (len < vma_len)
173 		return -EINVAL;
174 
175 	inode_lock(inode);
176 	file_accessed(file);
177 
178 	ret = -ENOMEM;
179 	if (!hugetlb_reserve_pages(inode,
180 				vma->vm_pgoff >> huge_page_order(h),
181 				len >> huge_page_shift(h), vma,
182 				vma->vm_flags))
183 		goto out;
184 
185 	ret = 0;
186 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
187 		i_size_write(inode, len);
188 out:
189 	inode_unlock(inode);
190 
191 	return ret;
192 }
193 
194 /*
195  * Called under mmap_write_lock(mm).
196  */
197 
198 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
199 static unsigned long
200 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
201 		unsigned long len, unsigned long pgoff, unsigned long flags)
202 {
203 	struct hstate *h = hstate_file(file);
204 	struct vm_unmapped_area_info info;
205 
206 	info.flags = 0;
207 	info.length = len;
208 	info.low_limit = current->mm->mmap_base;
209 	info.high_limit = arch_get_mmap_end(addr);
210 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
211 	info.align_offset = 0;
212 	return vm_unmapped_area(&info);
213 }
214 
215 static unsigned long
216 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
217 		unsigned long len, unsigned long pgoff, unsigned long flags)
218 {
219 	struct hstate *h = hstate_file(file);
220 	struct vm_unmapped_area_info info;
221 
222 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
223 	info.length = len;
224 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
225 	info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
226 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
227 	info.align_offset = 0;
228 	addr = vm_unmapped_area(&info);
229 
230 	/*
231 	 * A failed mmap() very likely causes application failure,
232 	 * so fall back to the bottom-up function here. This scenario
233 	 * can happen with large stack limits and large mmap()
234 	 * allocations.
235 	 */
236 	if (unlikely(offset_in_page(addr))) {
237 		VM_BUG_ON(addr != -ENOMEM);
238 		info.flags = 0;
239 		info.low_limit = current->mm->mmap_base;
240 		info.high_limit = arch_get_mmap_end(addr);
241 		addr = vm_unmapped_area(&info);
242 	}
243 
244 	return addr;
245 }
246 
247 static unsigned long
248 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
249 		unsigned long len, unsigned long pgoff, unsigned long flags)
250 {
251 	struct mm_struct *mm = current->mm;
252 	struct vm_area_struct *vma;
253 	struct hstate *h = hstate_file(file);
254 	const unsigned long mmap_end = arch_get_mmap_end(addr);
255 
256 	if (len & ~huge_page_mask(h))
257 		return -EINVAL;
258 	if (len > TASK_SIZE)
259 		return -ENOMEM;
260 
261 	if (flags & MAP_FIXED) {
262 		if (prepare_hugepage_range(file, addr, len))
263 			return -EINVAL;
264 		return addr;
265 	}
266 
267 	if (addr) {
268 		addr = ALIGN(addr, huge_page_size(h));
269 		vma = find_vma(mm, addr);
270 		if (mmap_end - len >= addr &&
271 		    (!vma || addr + len <= vm_start_gap(vma)))
272 			return addr;
273 	}
274 
275 	/*
276 	 * Use mm->get_unmapped_area value as a hint to use topdown routine.
277 	 * If architectures have special needs, they should define their own
278 	 * version of hugetlb_get_unmapped_area.
279 	 */
280 	if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
281 		return hugetlb_get_unmapped_area_topdown(file, addr, len,
282 				pgoff, flags);
283 	return hugetlb_get_unmapped_area_bottomup(file, addr, len,
284 			pgoff, flags);
285 }
286 #endif
287 
288 static size_t
289 hugetlbfs_read_actor(struct page *page, unsigned long offset,
290 			struct iov_iter *to, unsigned long size)
291 {
292 	size_t copied = 0;
293 	int i, chunksize;
294 
295 	/* Find which 4k chunk and offset with in that chunk */
296 	i = offset >> PAGE_SHIFT;
297 	offset = offset & ~PAGE_MASK;
298 
299 	while (size) {
300 		size_t n;
301 		chunksize = PAGE_SIZE;
302 		if (offset)
303 			chunksize -= offset;
304 		if (chunksize > size)
305 			chunksize = size;
306 		n = copy_page_to_iter(&page[i], offset, chunksize, to);
307 		copied += n;
308 		if (n != chunksize)
309 			return copied;
310 		offset = 0;
311 		size -= chunksize;
312 		i++;
313 	}
314 	return copied;
315 }
316 
317 /*
318  * Support for read() - Find the page attached to f_mapping and copy out the
319  * data. Its *very* similar to generic_file_buffered_read(), we can't use that
320  * since it has PAGE_SIZE assumptions.
321  */
322 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
323 {
324 	struct file *file = iocb->ki_filp;
325 	struct hstate *h = hstate_file(file);
326 	struct address_space *mapping = file->f_mapping;
327 	struct inode *inode = mapping->host;
328 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
329 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
330 	unsigned long end_index;
331 	loff_t isize;
332 	ssize_t retval = 0;
333 
334 	while (iov_iter_count(to)) {
335 		struct page *page;
336 		size_t nr, copied;
337 
338 		/* nr is the maximum number of bytes to copy from this page */
339 		nr = huge_page_size(h);
340 		isize = i_size_read(inode);
341 		if (!isize)
342 			break;
343 		end_index = (isize - 1) >> huge_page_shift(h);
344 		if (index > end_index)
345 			break;
346 		if (index == end_index) {
347 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
348 			if (nr <= offset)
349 				break;
350 		}
351 		nr = nr - offset;
352 
353 		/* Find the page */
354 		page = find_lock_page(mapping, index);
355 		if (unlikely(page == NULL)) {
356 			/*
357 			 * We have a HOLE, zero out the user-buffer for the
358 			 * length of the hole or request.
359 			 */
360 			copied = iov_iter_zero(nr, to);
361 		} else {
362 			unlock_page(page);
363 
364 			/*
365 			 * We have the page, copy it to user space buffer.
366 			 */
367 			copied = hugetlbfs_read_actor(page, offset, to, nr);
368 			put_page(page);
369 		}
370 		offset += copied;
371 		retval += copied;
372 		if (copied != nr && iov_iter_count(to)) {
373 			if (!retval)
374 				retval = -EFAULT;
375 			break;
376 		}
377 		index += offset >> huge_page_shift(h);
378 		offset &= ~huge_page_mask(h);
379 	}
380 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
381 	return retval;
382 }
383 
384 static int hugetlbfs_write_begin(struct file *file,
385 			struct address_space *mapping,
386 			loff_t pos, unsigned len, unsigned flags,
387 			struct page **pagep, void **fsdata)
388 {
389 	return -EINVAL;
390 }
391 
392 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
393 			loff_t pos, unsigned len, unsigned copied,
394 			struct page *page, void *fsdata)
395 {
396 	BUG();
397 	return -EINVAL;
398 }
399 
400 static void remove_huge_page(struct page *page)
401 {
402 	ClearPageDirty(page);
403 	ClearPageUptodate(page);
404 	delete_from_page_cache(page);
405 }
406 
407 static void
408 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
409 {
410 	struct vm_area_struct *vma;
411 
412 	/*
413 	 * end == 0 indicates that the entire range after start should be
414 	 * unmapped.  Note, end is exclusive, whereas the interval tree takes
415 	 * an inclusive "last".
416 	 */
417 	vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
418 		unsigned long v_offset;
419 		unsigned long v_end;
420 
421 		/*
422 		 * Can the expression below overflow on 32-bit arches?
423 		 * No, because the interval tree returns us only those vmas
424 		 * which overlap the truncated area starting at pgoff,
425 		 * and no vma on a 32-bit arch can span beyond the 4GB.
426 		 */
427 		if (vma->vm_pgoff < start)
428 			v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
429 		else
430 			v_offset = 0;
431 
432 		if (!end)
433 			v_end = vma->vm_end;
434 		else {
435 			v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
436 							+ vma->vm_start;
437 			if (v_end > vma->vm_end)
438 				v_end = vma->vm_end;
439 		}
440 
441 		unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
442 									NULL);
443 	}
444 }
445 
446 /*
447  * remove_inode_hugepages handles two distinct cases: truncation and hole
448  * punch.  There are subtle differences in operation for each case.
449  *
450  * truncation is indicated by end of range being LLONG_MAX
451  *	In this case, we first scan the range and release found pages.
452  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
453  *	maps and global counts.  Page faults can not race with truncation
454  *	in this routine.  hugetlb_no_page() holds i_mmap_rwsem and prevents
455  *	page faults in the truncated range by checking i_size.  i_size is
456  *	modified while holding i_mmap_rwsem.
457  * hole punch is indicated if end is not LLONG_MAX
458  *	In the hole punch case we scan the range and release found pages.
459  *	Only when releasing a page is the associated region/reserve map
460  *	deleted.  The region/reserve map for ranges without associated
461  *	pages are not modified.  Page faults can race with hole punch.
462  *	This is indicated if we find a mapped page.
463  * Note: If the passed end of range value is beyond the end of file, but
464  * not LLONG_MAX this routine still performs a hole punch operation.
465  */
466 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
467 				   loff_t lend)
468 {
469 	struct hstate *h = hstate_inode(inode);
470 	struct address_space *mapping = &inode->i_data;
471 	const pgoff_t start = lstart >> huge_page_shift(h);
472 	const pgoff_t end = lend >> huge_page_shift(h);
473 	struct pagevec pvec;
474 	pgoff_t next, index;
475 	int i, freed = 0;
476 	bool truncate_op = (lend == LLONG_MAX);
477 
478 	pagevec_init(&pvec);
479 	next = start;
480 	while (next < end) {
481 		/*
482 		 * When no more pages are found, we are done.
483 		 */
484 		if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
485 			break;
486 
487 		for (i = 0; i < pagevec_count(&pvec); ++i) {
488 			struct page *page = pvec.pages[i];
489 			u32 hash = 0;
490 
491 			index = page->index;
492 			if (!truncate_op) {
493 				/*
494 				 * Only need to hold the fault mutex in the
495 				 * hole punch case.  This prevents races with
496 				 * page faults.  Races are not possible in the
497 				 * case of truncation.
498 				 */
499 				hash = hugetlb_fault_mutex_hash(mapping, index);
500 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
501 			}
502 
503 			/*
504 			 * If page is mapped, it was faulted in after being
505 			 * unmapped in caller.  Unmap (again) now after taking
506 			 * the fault mutex.  The mutex will prevent faults
507 			 * until we finish removing the page.
508 			 *
509 			 * This race can only happen in the hole punch case.
510 			 * Getting here in a truncate operation is a bug.
511 			 */
512 			if (unlikely(page_mapped(page))) {
513 				BUG_ON(truncate_op);
514 
515 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
516 				i_mmap_lock_write(mapping);
517 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
518 				hugetlb_vmdelete_list(&mapping->i_mmap,
519 					index * pages_per_huge_page(h),
520 					(index + 1) * pages_per_huge_page(h));
521 				i_mmap_unlock_write(mapping);
522 			}
523 
524 			lock_page(page);
525 			/*
526 			 * We must free the huge page and remove from page
527 			 * cache (remove_huge_page) BEFORE removing the
528 			 * region/reserve map (hugetlb_unreserve_pages).  In
529 			 * rare out of memory conditions, removal of the
530 			 * region/reserve map could fail. Correspondingly,
531 			 * the subpool and global reserve usage count can need
532 			 * to be adjusted.
533 			 */
534 			VM_BUG_ON(HPageRestoreReserve(page));
535 			remove_huge_page(page);
536 			freed++;
537 			if (!truncate_op) {
538 				if (unlikely(hugetlb_unreserve_pages(inode,
539 							index, index + 1, 1)))
540 					hugetlb_fix_reserve_counts(inode);
541 			}
542 
543 			unlock_page(page);
544 			if (!truncate_op)
545 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
546 		}
547 		huge_pagevec_release(&pvec);
548 		cond_resched();
549 	}
550 
551 	if (truncate_op)
552 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
553 }
554 
555 static void hugetlbfs_evict_inode(struct inode *inode)
556 {
557 	struct resv_map *resv_map;
558 
559 	remove_inode_hugepages(inode, 0, LLONG_MAX);
560 
561 	/*
562 	 * Get the resv_map from the address space embedded in the inode.
563 	 * This is the address space which points to any resv_map allocated
564 	 * at inode creation time.  If this is a device special inode,
565 	 * i_mapping may not point to the original address space.
566 	 */
567 	resv_map = (struct resv_map *)(&inode->i_data)->private_data;
568 	/* Only regular and link inodes have associated reserve maps */
569 	if (resv_map)
570 		resv_map_release(&resv_map->refs);
571 	clear_inode(inode);
572 }
573 
574 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
575 {
576 	pgoff_t pgoff;
577 	struct address_space *mapping = inode->i_mapping;
578 	struct hstate *h = hstate_inode(inode);
579 
580 	BUG_ON(offset & ~huge_page_mask(h));
581 	pgoff = offset >> PAGE_SHIFT;
582 
583 	i_mmap_lock_write(mapping);
584 	i_size_write(inode, offset);
585 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
586 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
587 	i_mmap_unlock_write(mapping);
588 	remove_inode_hugepages(inode, offset, LLONG_MAX);
589 }
590 
591 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
592 {
593 	struct hstate *h = hstate_inode(inode);
594 	loff_t hpage_size = huge_page_size(h);
595 	loff_t hole_start, hole_end;
596 
597 	/*
598 	 * For hole punch round up the beginning offset of the hole and
599 	 * round down the end.
600 	 */
601 	hole_start = round_up(offset, hpage_size);
602 	hole_end = round_down(offset + len, hpage_size);
603 
604 	if (hole_end > hole_start) {
605 		struct address_space *mapping = inode->i_mapping;
606 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
607 
608 		inode_lock(inode);
609 
610 		/* protected by i_rwsem */
611 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
612 			inode_unlock(inode);
613 			return -EPERM;
614 		}
615 
616 		i_mmap_lock_write(mapping);
617 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
618 			hugetlb_vmdelete_list(&mapping->i_mmap,
619 						hole_start >> PAGE_SHIFT,
620 						hole_end  >> PAGE_SHIFT);
621 		i_mmap_unlock_write(mapping);
622 		remove_inode_hugepages(inode, hole_start, hole_end);
623 		inode_unlock(inode);
624 	}
625 
626 	return 0;
627 }
628 
629 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
630 				loff_t len)
631 {
632 	struct inode *inode = file_inode(file);
633 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
634 	struct address_space *mapping = inode->i_mapping;
635 	struct hstate *h = hstate_inode(inode);
636 	struct vm_area_struct pseudo_vma;
637 	struct mm_struct *mm = current->mm;
638 	loff_t hpage_size = huge_page_size(h);
639 	unsigned long hpage_shift = huge_page_shift(h);
640 	pgoff_t start, index, end;
641 	int error;
642 	u32 hash;
643 
644 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
645 		return -EOPNOTSUPP;
646 
647 	if (mode & FALLOC_FL_PUNCH_HOLE)
648 		return hugetlbfs_punch_hole(inode, offset, len);
649 
650 	/*
651 	 * Default preallocate case.
652 	 * For this range, start is rounded down and end is rounded up
653 	 * as well as being converted to page offsets.
654 	 */
655 	start = offset >> hpage_shift;
656 	end = (offset + len + hpage_size - 1) >> hpage_shift;
657 
658 	inode_lock(inode);
659 
660 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
661 	error = inode_newsize_ok(inode, offset + len);
662 	if (error)
663 		goto out;
664 
665 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
666 		error = -EPERM;
667 		goto out;
668 	}
669 
670 	/*
671 	 * Initialize a pseudo vma as this is required by the huge page
672 	 * allocation routines.  If NUMA is configured, use page index
673 	 * as input to create an allocation policy.
674 	 */
675 	vma_init(&pseudo_vma, mm);
676 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
677 	pseudo_vma.vm_file = file;
678 
679 	for (index = start; index < end; index++) {
680 		/*
681 		 * This is supposed to be the vaddr where the page is being
682 		 * faulted in, but we have no vaddr here.
683 		 */
684 		struct page *page;
685 		unsigned long addr;
686 
687 		cond_resched();
688 
689 		/*
690 		 * fallocate(2) manpage permits EINTR; we may have been
691 		 * interrupted because we are using up too much memory.
692 		 */
693 		if (signal_pending(current)) {
694 			error = -EINTR;
695 			break;
696 		}
697 
698 		/* Set numa allocation policy based on index */
699 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
700 
701 		/* addr is the offset within the file (zero based) */
702 		addr = index * hpage_size;
703 
704 		/*
705 		 * fault mutex taken here, protects against fault path
706 		 * and hole punch.  inode_lock previously taken protects
707 		 * against truncation.
708 		 */
709 		hash = hugetlb_fault_mutex_hash(mapping, index);
710 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
711 
712 		/* See if already present in mapping to avoid alloc/free */
713 		page = find_get_page(mapping, index);
714 		if (page) {
715 			put_page(page);
716 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
717 			hugetlb_drop_vma_policy(&pseudo_vma);
718 			continue;
719 		}
720 
721 		/*
722 		 * Allocate page without setting the avoid_reserve argument.
723 		 * There certainly are no reserves associated with the
724 		 * pseudo_vma.  However, there could be shared mappings with
725 		 * reserves for the file at the inode level.  If we fallocate
726 		 * pages in these areas, we need to consume the reserves
727 		 * to keep reservation accounting consistent.
728 		 */
729 		page = alloc_huge_page(&pseudo_vma, addr, 0);
730 		hugetlb_drop_vma_policy(&pseudo_vma);
731 		if (IS_ERR(page)) {
732 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
733 			error = PTR_ERR(page);
734 			goto out;
735 		}
736 		clear_huge_page(page, addr, pages_per_huge_page(h));
737 		__SetPageUptodate(page);
738 		error = huge_add_to_page_cache(page, mapping, index);
739 		if (unlikely(error)) {
740 			restore_reserve_on_error(h, &pseudo_vma, addr, page);
741 			put_page(page);
742 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
743 			goto out;
744 		}
745 
746 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
747 
748 		SetHPageMigratable(page);
749 		/*
750 		 * unlock_page because locked by add_to_page_cache()
751 		 * put_page() due to reference from alloc_huge_page()
752 		 */
753 		unlock_page(page);
754 		put_page(page);
755 	}
756 
757 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
758 		i_size_write(inode, offset + len);
759 	inode->i_ctime = current_time(inode);
760 out:
761 	inode_unlock(inode);
762 	return error;
763 }
764 
765 static int hugetlbfs_setattr(struct user_namespace *mnt_userns,
766 			     struct dentry *dentry, struct iattr *attr)
767 {
768 	struct inode *inode = d_inode(dentry);
769 	struct hstate *h = hstate_inode(inode);
770 	int error;
771 	unsigned int ia_valid = attr->ia_valid;
772 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
773 
774 	error = setattr_prepare(&init_user_ns, dentry, attr);
775 	if (error)
776 		return error;
777 
778 	if (ia_valid & ATTR_SIZE) {
779 		loff_t oldsize = inode->i_size;
780 		loff_t newsize = attr->ia_size;
781 
782 		if (newsize & ~huge_page_mask(h))
783 			return -EINVAL;
784 		/* protected by i_rwsem */
785 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
786 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
787 			return -EPERM;
788 		hugetlb_vmtruncate(inode, newsize);
789 	}
790 
791 	setattr_copy(&init_user_ns, inode, attr);
792 	mark_inode_dirty(inode);
793 	return 0;
794 }
795 
796 static struct inode *hugetlbfs_get_root(struct super_block *sb,
797 					struct hugetlbfs_fs_context *ctx)
798 {
799 	struct inode *inode;
800 
801 	inode = new_inode(sb);
802 	if (inode) {
803 		inode->i_ino = get_next_ino();
804 		inode->i_mode = S_IFDIR | ctx->mode;
805 		inode->i_uid = ctx->uid;
806 		inode->i_gid = ctx->gid;
807 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
808 		inode->i_op = &hugetlbfs_dir_inode_operations;
809 		inode->i_fop = &simple_dir_operations;
810 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
811 		inc_nlink(inode);
812 		lockdep_annotate_inode_mutex_key(inode);
813 	}
814 	return inode;
815 }
816 
817 /*
818  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
819  * be taken from reclaim -- unlike regular filesystems. This needs an
820  * annotation because huge_pmd_share() does an allocation under hugetlb's
821  * i_mmap_rwsem.
822  */
823 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
824 
825 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
826 					struct inode *dir,
827 					umode_t mode, dev_t dev)
828 {
829 	struct inode *inode;
830 	struct resv_map *resv_map = NULL;
831 
832 	/*
833 	 * Reserve maps are only needed for inodes that can have associated
834 	 * page allocations.
835 	 */
836 	if (S_ISREG(mode) || S_ISLNK(mode)) {
837 		resv_map = resv_map_alloc();
838 		if (!resv_map)
839 			return NULL;
840 	}
841 
842 	inode = new_inode(sb);
843 	if (inode) {
844 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
845 
846 		inode->i_ino = get_next_ino();
847 		inode_init_owner(&init_user_ns, inode, dir, mode);
848 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
849 				&hugetlbfs_i_mmap_rwsem_key);
850 		inode->i_mapping->a_ops = &hugetlbfs_aops;
851 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
852 		inode->i_mapping->private_data = resv_map;
853 		info->seals = F_SEAL_SEAL;
854 		switch (mode & S_IFMT) {
855 		default:
856 			init_special_inode(inode, mode, dev);
857 			break;
858 		case S_IFREG:
859 			inode->i_op = &hugetlbfs_inode_operations;
860 			inode->i_fop = &hugetlbfs_file_operations;
861 			break;
862 		case S_IFDIR:
863 			inode->i_op = &hugetlbfs_dir_inode_operations;
864 			inode->i_fop = &simple_dir_operations;
865 
866 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
867 			inc_nlink(inode);
868 			break;
869 		case S_IFLNK:
870 			inode->i_op = &page_symlink_inode_operations;
871 			inode_nohighmem(inode);
872 			break;
873 		}
874 		lockdep_annotate_inode_mutex_key(inode);
875 	} else {
876 		if (resv_map)
877 			kref_put(&resv_map->refs, resv_map_release);
878 	}
879 
880 	return inode;
881 }
882 
883 /*
884  * File creation. Allocate an inode, and we're done..
885  */
886 static int do_hugetlbfs_mknod(struct inode *dir,
887 			struct dentry *dentry,
888 			umode_t mode,
889 			dev_t dev,
890 			bool tmpfile)
891 {
892 	struct inode *inode;
893 	int error = -ENOSPC;
894 
895 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
896 	if (inode) {
897 		dir->i_ctime = dir->i_mtime = current_time(dir);
898 		if (tmpfile) {
899 			d_tmpfile(dentry, inode);
900 		} else {
901 			d_instantiate(dentry, inode);
902 			dget(dentry);/* Extra count - pin the dentry in core */
903 		}
904 		error = 0;
905 	}
906 	return error;
907 }
908 
909 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
910 			   struct dentry *dentry, umode_t mode, dev_t dev)
911 {
912 	return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
913 }
914 
915 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
916 			   struct dentry *dentry, umode_t mode)
917 {
918 	int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry,
919 				     mode | S_IFDIR, 0);
920 	if (!retval)
921 		inc_nlink(dir);
922 	return retval;
923 }
924 
925 static int hugetlbfs_create(struct user_namespace *mnt_userns,
926 			    struct inode *dir, struct dentry *dentry,
927 			    umode_t mode, bool excl)
928 {
929 	return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
930 }
931 
932 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns,
933 			     struct inode *dir, struct dentry *dentry,
934 			     umode_t mode)
935 {
936 	return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
937 }
938 
939 static int hugetlbfs_symlink(struct user_namespace *mnt_userns,
940 			     struct inode *dir, struct dentry *dentry,
941 			     const char *symname)
942 {
943 	struct inode *inode;
944 	int error = -ENOSPC;
945 
946 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
947 	if (inode) {
948 		int l = strlen(symname)+1;
949 		error = page_symlink(inode, symname, l);
950 		if (!error) {
951 			d_instantiate(dentry, inode);
952 			dget(dentry);
953 		} else
954 			iput(inode);
955 	}
956 	dir->i_ctime = dir->i_mtime = current_time(dir);
957 
958 	return error;
959 }
960 
961 static int hugetlbfs_migrate_page(struct address_space *mapping,
962 				struct page *newpage, struct page *page,
963 				enum migrate_mode mode)
964 {
965 	int rc;
966 
967 	rc = migrate_huge_page_move_mapping(mapping, newpage, page);
968 	if (rc != MIGRATEPAGE_SUCCESS)
969 		return rc;
970 
971 	if (hugetlb_page_subpool(page)) {
972 		hugetlb_set_page_subpool(newpage, hugetlb_page_subpool(page));
973 		hugetlb_set_page_subpool(page, NULL);
974 	}
975 
976 	if (mode != MIGRATE_SYNC_NO_COPY)
977 		migrate_page_copy(newpage, page);
978 	else
979 		migrate_page_states(newpage, page);
980 
981 	return MIGRATEPAGE_SUCCESS;
982 }
983 
984 static int hugetlbfs_error_remove_page(struct address_space *mapping,
985 				struct page *page)
986 {
987 	struct inode *inode = mapping->host;
988 	pgoff_t index = page->index;
989 
990 	remove_huge_page(page);
991 	if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
992 		hugetlb_fix_reserve_counts(inode);
993 
994 	return 0;
995 }
996 
997 /*
998  * Display the mount options in /proc/mounts.
999  */
1000 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1001 {
1002 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1003 	struct hugepage_subpool *spool = sbinfo->spool;
1004 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1005 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1006 	char mod;
1007 
1008 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1009 		seq_printf(m, ",uid=%u",
1010 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1011 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1012 		seq_printf(m, ",gid=%u",
1013 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1014 	if (sbinfo->mode != 0755)
1015 		seq_printf(m, ",mode=%o", sbinfo->mode);
1016 	if (sbinfo->max_inodes != -1)
1017 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1018 
1019 	hpage_size /= 1024;
1020 	mod = 'K';
1021 	if (hpage_size >= 1024) {
1022 		hpage_size /= 1024;
1023 		mod = 'M';
1024 	}
1025 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1026 	if (spool) {
1027 		if (spool->max_hpages != -1)
1028 			seq_printf(m, ",size=%llu",
1029 				   (unsigned long long)spool->max_hpages << hpage_shift);
1030 		if (spool->min_hpages != -1)
1031 			seq_printf(m, ",min_size=%llu",
1032 				   (unsigned long long)spool->min_hpages << hpage_shift);
1033 	}
1034 	return 0;
1035 }
1036 
1037 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1038 {
1039 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1040 	struct hstate *h = hstate_inode(d_inode(dentry));
1041 
1042 	buf->f_type = HUGETLBFS_MAGIC;
1043 	buf->f_bsize = huge_page_size(h);
1044 	if (sbinfo) {
1045 		spin_lock(&sbinfo->stat_lock);
1046 		/* If no limits set, just report 0 for max/free/used
1047 		 * blocks, like simple_statfs() */
1048 		if (sbinfo->spool) {
1049 			long free_pages;
1050 
1051 			spin_lock(&sbinfo->spool->lock);
1052 			buf->f_blocks = sbinfo->spool->max_hpages;
1053 			free_pages = sbinfo->spool->max_hpages
1054 				- sbinfo->spool->used_hpages;
1055 			buf->f_bavail = buf->f_bfree = free_pages;
1056 			spin_unlock(&sbinfo->spool->lock);
1057 			buf->f_files = sbinfo->max_inodes;
1058 			buf->f_ffree = sbinfo->free_inodes;
1059 		}
1060 		spin_unlock(&sbinfo->stat_lock);
1061 	}
1062 	buf->f_namelen = NAME_MAX;
1063 	return 0;
1064 }
1065 
1066 static void hugetlbfs_put_super(struct super_block *sb)
1067 {
1068 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1069 
1070 	if (sbi) {
1071 		sb->s_fs_info = NULL;
1072 
1073 		if (sbi->spool)
1074 			hugepage_put_subpool(sbi->spool);
1075 
1076 		kfree(sbi);
1077 	}
1078 }
1079 
1080 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1081 {
1082 	if (sbinfo->free_inodes >= 0) {
1083 		spin_lock(&sbinfo->stat_lock);
1084 		if (unlikely(!sbinfo->free_inodes)) {
1085 			spin_unlock(&sbinfo->stat_lock);
1086 			return 0;
1087 		}
1088 		sbinfo->free_inodes--;
1089 		spin_unlock(&sbinfo->stat_lock);
1090 	}
1091 
1092 	return 1;
1093 }
1094 
1095 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1096 {
1097 	if (sbinfo->free_inodes >= 0) {
1098 		spin_lock(&sbinfo->stat_lock);
1099 		sbinfo->free_inodes++;
1100 		spin_unlock(&sbinfo->stat_lock);
1101 	}
1102 }
1103 
1104 
1105 static struct kmem_cache *hugetlbfs_inode_cachep;
1106 
1107 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1108 {
1109 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1110 	struct hugetlbfs_inode_info *p;
1111 
1112 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1113 		return NULL;
1114 	p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1115 	if (unlikely(!p)) {
1116 		hugetlbfs_inc_free_inodes(sbinfo);
1117 		return NULL;
1118 	}
1119 
1120 	/*
1121 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
1122 	 * for the inode.  mpol_free_shared_policy is unconditionally called
1123 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1124 	 * in case of a quick call to destroy.
1125 	 *
1126 	 * Note that the policy is initialized even if we are creating a
1127 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
1128 	 */
1129 	mpol_shared_policy_init(&p->policy, NULL);
1130 
1131 	return &p->vfs_inode;
1132 }
1133 
1134 static void hugetlbfs_free_inode(struct inode *inode)
1135 {
1136 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1137 }
1138 
1139 static void hugetlbfs_destroy_inode(struct inode *inode)
1140 {
1141 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1142 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1143 }
1144 
1145 static const struct address_space_operations hugetlbfs_aops = {
1146 	.write_begin	= hugetlbfs_write_begin,
1147 	.write_end	= hugetlbfs_write_end,
1148 	.dirty_folio	= noop_dirty_folio,
1149 	.migratepage    = hugetlbfs_migrate_page,
1150 	.error_remove_page	= hugetlbfs_error_remove_page,
1151 };
1152 
1153 
1154 static void init_once(void *foo)
1155 {
1156 	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1157 
1158 	inode_init_once(&ei->vfs_inode);
1159 }
1160 
1161 const struct file_operations hugetlbfs_file_operations = {
1162 	.read_iter		= hugetlbfs_read_iter,
1163 	.mmap			= hugetlbfs_file_mmap,
1164 	.fsync			= noop_fsync,
1165 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1166 	.llseek			= default_llseek,
1167 	.fallocate		= hugetlbfs_fallocate,
1168 };
1169 
1170 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1171 	.create		= hugetlbfs_create,
1172 	.lookup		= simple_lookup,
1173 	.link		= simple_link,
1174 	.unlink		= simple_unlink,
1175 	.symlink	= hugetlbfs_symlink,
1176 	.mkdir		= hugetlbfs_mkdir,
1177 	.rmdir		= simple_rmdir,
1178 	.mknod		= hugetlbfs_mknod,
1179 	.rename		= simple_rename,
1180 	.setattr	= hugetlbfs_setattr,
1181 	.tmpfile	= hugetlbfs_tmpfile,
1182 };
1183 
1184 static const struct inode_operations hugetlbfs_inode_operations = {
1185 	.setattr	= hugetlbfs_setattr,
1186 };
1187 
1188 static const struct super_operations hugetlbfs_ops = {
1189 	.alloc_inode    = hugetlbfs_alloc_inode,
1190 	.free_inode     = hugetlbfs_free_inode,
1191 	.destroy_inode  = hugetlbfs_destroy_inode,
1192 	.evict_inode	= hugetlbfs_evict_inode,
1193 	.statfs		= hugetlbfs_statfs,
1194 	.put_super	= hugetlbfs_put_super,
1195 	.show_options	= hugetlbfs_show_options,
1196 };
1197 
1198 /*
1199  * Convert size option passed from command line to number of huge pages
1200  * in the pool specified by hstate.  Size option could be in bytes
1201  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1202  */
1203 static long
1204 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1205 			 enum hugetlbfs_size_type val_type)
1206 {
1207 	if (val_type == NO_SIZE)
1208 		return -1;
1209 
1210 	if (val_type == SIZE_PERCENT) {
1211 		size_opt <<= huge_page_shift(h);
1212 		size_opt *= h->max_huge_pages;
1213 		do_div(size_opt, 100);
1214 	}
1215 
1216 	size_opt >>= huge_page_shift(h);
1217 	return size_opt;
1218 }
1219 
1220 /*
1221  * Parse one mount parameter.
1222  */
1223 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1224 {
1225 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1226 	struct fs_parse_result result;
1227 	char *rest;
1228 	unsigned long ps;
1229 	int opt;
1230 
1231 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1232 	if (opt < 0)
1233 		return opt;
1234 
1235 	switch (opt) {
1236 	case Opt_uid:
1237 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1238 		if (!uid_valid(ctx->uid))
1239 			goto bad_val;
1240 		return 0;
1241 
1242 	case Opt_gid:
1243 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1244 		if (!gid_valid(ctx->gid))
1245 			goto bad_val;
1246 		return 0;
1247 
1248 	case Opt_mode:
1249 		ctx->mode = result.uint_32 & 01777U;
1250 		return 0;
1251 
1252 	case Opt_size:
1253 		/* memparse() will accept a K/M/G without a digit */
1254 		if (!isdigit(param->string[0]))
1255 			goto bad_val;
1256 		ctx->max_size_opt = memparse(param->string, &rest);
1257 		ctx->max_val_type = SIZE_STD;
1258 		if (*rest == '%')
1259 			ctx->max_val_type = SIZE_PERCENT;
1260 		return 0;
1261 
1262 	case Opt_nr_inodes:
1263 		/* memparse() will accept a K/M/G without a digit */
1264 		if (!isdigit(param->string[0]))
1265 			goto bad_val;
1266 		ctx->nr_inodes = memparse(param->string, &rest);
1267 		return 0;
1268 
1269 	case Opt_pagesize:
1270 		ps = memparse(param->string, &rest);
1271 		ctx->hstate = size_to_hstate(ps);
1272 		if (!ctx->hstate) {
1273 			pr_err("Unsupported page size %lu MB\n", ps >> 20);
1274 			return -EINVAL;
1275 		}
1276 		return 0;
1277 
1278 	case Opt_min_size:
1279 		/* memparse() will accept a K/M/G without a digit */
1280 		if (!isdigit(param->string[0]))
1281 			goto bad_val;
1282 		ctx->min_size_opt = memparse(param->string, &rest);
1283 		ctx->min_val_type = SIZE_STD;
1284 		if (*rest == '%')
1285 			ctx->min_val_type = SIZE_PERCENT;
1286 		return 0;
1287 
1288 	default:
1289 		return -EINVAL;
1290 	}
1291 
1292 bad_val:
1293 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1294 		      param->string, param->key);
1295 }
1296 
1297 /*
1298  * Validate the parsed options.
1299  */
1300 static int hugetlbfs_validate(struct fs_context *fc)
1301 {
1302 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1303 
1304 	/*
1305 	 * Use huge page pool size (in hstate) to convert the size
1306 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1307 	 */
1308 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1309 						   ctx->max_size_opt,
1310 						   ctx->max_val_type);
1311 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1312 						   ctx->min_size_opt,
1313 						   ctx->min_val_type);
1314 
1315 	/*
1316 	 * If max_size was specified, then min_size must be smaller
1317 	 */
1318 	if (ctx->max_val_type > NO_SIZE &&
1319 	    ctx->min_hpages > ctx->max_hpages) {
1320 		pr_err("Minimum size can not be greater than maximum size\n");
1321 		return -EINVAL;
1322 	}
1323 
1324 	return 0;
1325 }
1326 
1327 static int
1328 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1329 {
1330 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1331 	struct hugetlbfs_sb_info *sbinfo;
1332 
1333 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1334 	if (!sbinfo)
1335 		return -ENOMEM;
1336 	sb->s_fs_info = sbinfo;
1337 	spin_lock_init(&sbinfo->stat_lock);
1338 	sbinfo->hstate		= ctx->hstate;
1339 	sbinfo->max_inodes	= ctx->nr_inodes;
1340 	sbinfo->free_inodes	= ctx->nr_inodes;
1341 	sbinfo->spool		= NULL;
1342 	sbinfo->uid		= ctx->uid;
1343 	sbinfo->gid		= ctx->gid;
1344 	sbinfo->mode		= ctx->mode;
1345 
1346 	/*
1347 	 * Allocate and initialize subpool if maximum or minimum size is
1348 	 * specified.  Any needed reservations (for minimum size) are taken
1349 	 * taken when the subpool is created.
1350 	 */
1351 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1352 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1353 						     ctx->max_hpages,
1354 						     ctx->min_hpages);
1355 		if (!sbinfo->spool)
1356 			goto out_free;
1357 	}
1358 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1359 	sb->s_blocksize = huge_page_size(ctx->hstate);
1360 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1361 	sb->s_magic = HUGETLBFS_MAGIC;
1362 	sb->s_op = &hugetlbfs_ops;
1363 	sb->s_time_gran = 1;
1364 
1365 	/*
1366 	 * Due to the special and limited functionality of hugetlbfs, it does
1367 	 * not work well as a stacking filesystem.
1368 	 */
1369 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1370 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1371 	if (!sb->s_root)
1372 		goto out_free;
1373 	return 0;
1374 out_free:
1375 	kfree(sbinfo->spool);
1376 	kfree(sbinfo);
1377 	return -ENOMEM;
1378 }
1379 
1380 static int hugetlbfs_get_tree(struct fs_context *fc)
1381 {
1382 	int err = hugetlbfs_validate(fc);
1383 	if (err)
1384 		return err;
1385 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1386 }
1387 
1388 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1389 {
1390 	kfree(fc->fs_private);
1391 }
1392 
1393 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1394 	.free		= hugetlbfs_fs_context_free,
1395 	.parse_param	= hugetlbfs_parse_param,
1396 	.get_tree	= hugetlbfs_get_tree,
1397 };
1398 
1399 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1400 {
1401 	struct hugetlbfs_fs_context *ctx;
1402 
1403 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1404 	if (!ctx)
1405 		return -ENOMEM;
1406 
1407 	ctx->max_hpages	= -1; /* No limit on size by default */
1408 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1409 	ctx->uid	= current_fsuid();
1410 	ctx->gid	= current_fsgid();
1411 	ctx->mode	= 0755;
1412 	ctx->hstate	= &default_hstate;
1413 	ctx->min_hpages	= -1; /* No default minimum size */
1414 	ctx->max_val_type = NO_SIZE;
1415 	ctx->min_val_type = NO_SIZE;
1416 	fc->fs_private = ctx;
1417 	fc->ops	= &hugetlbfs_fs_context_ops;
1418 	return 0;
1419 }
1420 
1421 static struct file_system_type hugetlbfs_fs_type = {
1422 	.name			= "hugetlbfs",
1423 	.init_fs_context	= hugetlbfs_init_fs_context,
1424 	.parameters		= hugetlb_fs_parameters,
1425 	.kill_sb		= kill_litter_super,
1426 };
1427 
1428 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1429 
1430 static int can_do_hugetlb_shm(void)
1431 {
1432 	kgid_t shm_group;
1433 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1434 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1435 }
1436 
1437 static int get_hstate_idx(int page_size_log)
1438 {
1439 	struct hstate *h = hstate_sizelog(page_size_log);
1440 
1441 	if (!h)
1442 		return -1;
1443 	return hstate_index(h);
1444 }
1445 
1446 /*
1447  * Note that size should be aligned to proper hugepage size in caller side,
1448  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1449  */
1450 struct file *hugetlb_file_setup(const char *name, size_t size,
1451 				vm_flags_t acctflag, int creat_flags,
1452 				int page_size_log)
1453 {
1454 	struct inode *inode;
1455 	struct vfsmount *mnt;
1456 	int hstate_idx;
1457 	struct file *file;
1458 
1459 	hstate_idx = get_hstate_idx(page_size_log);
1460 	if (hstate_idx < 0)
1461 		return ERR_PTR(-ENODEV);
1462 
1463 	mnt = hugetlbfs_vfsmount[hstate_idx];
1464 	if (!mnt)
1465 		return ERR_PTR(-ENOENT);
1466 
1467 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1468 		struct ucounts *ucounts = current_ucounts();
1469 
1470 		if (user_shm_lock(size, ucounts)) {
1471 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1472 				current->comm, current->pid);
1473 			user_shm_unlock(size, ucounts);
1474 		}
1475 		return ERR_PTR(-EPERM);
1476 	}
1477 
1478 	file = ERR_PTR(-ENOSPC);
1479 	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1480 	if (!inode)
1481 		goto out;
1482 	if (creat_flags == HUGETLB_SHMFS_INODE)
1483 		inode->i_flags |= S_PRIVATE;
1484 
1485 	inode->i_size = size;
1486 	clear_nlink(inode);
1487 
1488 	if (!hugetlb_reserve_pages(inode, 0,
1489 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1490 			acctflag))
1491 		file = ERR_PTR(-ENOMEM);
1492 	else
1493 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1494 					&hugetlbfs_file_operations);
1495 	if (!IS_ERR(file))
1496 		return file;
1497 
1498 	iput(inode);
1499 out:
1500 	return file;
1501 }
1502 
1503 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1504 {
1505 	struct fs_context *fc;
1506 	struct vfsmount *mnt;
1507 
1508 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1509 	if (IS_ERR(fc)) {
1510 		mnt = ERR_CAST(fc);
1511 	} else {
1512 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1513 		ctx->hstate = h;
1514 		mnt = fc_mount(fc);
1515 		put_fs_context(fc);
1516 	}
1517 	if (IS_ERR(mnt))
1518 		pr_err("Cannot mount internal hugetlbfs for page size %luK",
1519 		       huge_page_size(h) >> 10);
1520 	return mnt;
1521 }
1522 
1523 static int __init init_hugetlbfs_fs(void)
1524 {
1525 	struct vfsmount *mnt;
1526 	struct hstate *h;
1527 	int error;
1528 	int i;
1529 
1530 	if (!hugepages_supported()) {
1531 		pr_info("disabling because there are no supported hugepage sizes\n");
1532 		return -ENOTSUPP;
1533 	}
1534 
1535 	error = -ENOMEM;
1536 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1537 					sizeof(struct hugetlbfs_inode_info),
1538 					0, SLAB_ACCOUNT, init_once);
1539 	if (hugetlbfs_inode_cachep == NULL)
1540 		goto out;
1541 
1542 	error = register_filesystem(&hugetlbfs_fs_type);
1543 	if (error)
1544 		goto out_free;
1545 
1546 	/* default hstate mount is required */
1547 	mnt = mount_one_hugetlbfs(&default_hstate);
1548 	if (IS_ERR(mnt)) {
1549 		error = PTR_ERR(mnt);
1550 		goto out_unreg;
1551 	}
1552 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1553 
1554 	/* other hstates are optional */
1555 	i = 0;
1556 	for_each_hstate(h) {
1557 		if (i == default_hstate_idx) {
1558 			i++;
1559 			continue;
1560 		}
1561 
1562 		mnt = mount_one_hugetlbfs(h);
1563 		if (IS_ERR(mnt))
1564 			hugetlbfs_vfsmount[i] = NULL;
1565 		else
1566 			hugetlbfs_vfsmount[i] = mnt;
1567 		i++;
1568 	}
1569 
1570 	return 0;
1571 
1572  out_unreg:
1573 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1574  out_free:
1575 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1576  out:
1577 	return error;
1578 }
1579 fs_initcall(init_hugetlbfs_fs)
1580