xref: /openbmc/linux/fs/hugetlbfs/inode.c (revision f0931824)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/falloc.h>
15 #include <linux/fs.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/fs_parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
38 
39 #include <linux/uaccess.h>
40 #include <linux/sched/mm.h>
41 
42 static const struct address_space_operations hugetlbfs_aops;
43 const struct file_operations hugetlbfs_file_operations;
44 static const struct inode_operations hugetlbfs_dir_inode_operations;
45 static const struct inode_operations hugetlbfs_inode_operations;
46 
47 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
48 
49 struct hugetlbfs_fs_context {
50 	struct hstate		*hstate;
51 	unsigned long long	max_size_opt;
52 	unsigned long long	min_size_opt;
53 	long			max_hpages;
54 	long			nr_inodes;
55 	long			min_hpages;
56 	enum hugetlbfs_size_type max_val_type;
57 	enum hugetlbfs_size_type min_val_type;
58 	kuid_t			uid;
59 	kgid_t			gid;
60 	umode_t			mode;
61 };
62 
63 int sysctl_hugetlb_shm_group;
64 
65 enum hugetlb_param {
66 	Opt_gid,
67 	Opt_min_size,
68 	Opt_mode,
69 	Opt_nr_inodes,
70 	Opt_pagesize,
71 	Opt_size,
72 	Opt_uid,
73 };
74 
75 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
76 	fsparam_u32   ("gid",		Opt_gid),
77 	fsparam_string("min_size",	Opt_min_size),
78 	fsparam_u32oct("mode",		Opt_mode),
79 	fsparam_string("nr_inodes",	Opt_nr_inodes),
80 	fsparam_string("pagesize",	Opt_pagesize),
81 	fsparam_string("size",		Opt_size),
82 	fsparam_u32   ("uid",		Opt_uid),
83 	{}
84 };
85 
86 #ifdef CONFIG_NUMA
87 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
88 					struct inode *inode, pgoff_t index)
89 {
90 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
91 							index);
92 }
93 
94 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
95 {
96 	mpol_cond_put(vma->vm_policy);
97 }
98 #else
99 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
100 					struct inode *inode, pgoff_t index)
101 {
102 }
103 
104 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
105 {
106 }
107 #endif
108 
109 /*
110  * Mask used when checking the page offset value passed in via system
111  * calls.  This value will be converted to a loff_t which is signed.
112  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
113  * value.  The extra bit (- 1 in the shift value) is to take the sign
114  * bit into account.
115  */
116 #define PGOFF_LOFFT_MAX \
117 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
118 
119 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
120 {
121 	struct inode *inode = file_inode(file);
122 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
123 	loff_t len, vma_len;
124 	int ret;
125 	struct hstate *h = hstate_file(file);
126 	vm_flags_t vm_flags;
127 
128 	/*
129 	 * vma address alignment (but not the pgoff alignment) has
130 	 * already been checked by prepare_hugepage_range.  If you add
131 	 * any error returns here, do so after setting VM_HUGETLB, so
132 	 * is_vm_hugetlb_page tests below unmap_region go the right
133 	 * way when do_mmap unwinds (may be important on powerpc
134 	 * and ia64).
135 	 */
136 	vm_flags_set(vma, VM_HUGETLB | VM_DONTEXPAND);
137 	vma->vm_ops = &hugetlb_vm_ops;
138 
139 	ret = seal_check_future_write(info->seals, vma);
140 	if (ret)
141 		return ret;
142 
143 	/*
144 	 * page based offset in vm_pgoff could be sufficiently large to
145 	 * overflow a loff_t when converted to byte offset.  This can
146 	 * only happen on architectures where sizeof(loff_t) ==
147 	 * sizeof(unsigned long).  So, only check in those instances.
148 	 */
149 	if (sizeof(unsigned long) == sizeof(loff_t)) {
150 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
151 			return -EINVAL;
152 	}
153 
154 	/* must be huge page aligned */
155 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
156 		return -EINVAL;
157 
158 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
159 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
160 	/* check for overflow */
161 	if (len < vma_len)
162 		return -EINVAL;
163 
164 	inode_lock(inode);
165 	file_accessed(file);
166 
167 	ret = -ENOMEM;
168 
169 	vm_flags = vma->vm_flags;
170 	/*
171 	 * for SHM_HUGETLB, the pages are reserved in the shmget() call so skip
172 	 * reserving here. Note: only for SHM hugetlbfs file, the inode
173 	 * flag S_PRIVATE is set.
174 	 */
175 	if (inode->i_flags & S_PRIVATE)
176 		vm_flags |= VM_NORESERVE;
177 
178 	if (!hugetlb_reserve_pages(inode,
179 				vma->vm_pgoff >> huge_page_order(h),
180 				len >> huge_page_shift(h), vma,
181 				vm_flags))
182 		goto out;
183 
184 	ret = 0;
185 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
186 		i_size_write(inode, len);
187 out:
188 	inode_unlock(inode);
189 
190 	return ret;
191 }
192 
193 /*
194  * Called under mmap_write_lock(mm).
195  */
196 
197 static unsigned long
198 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
199 		unsigned long len, unsigned long pgoff, unsigned long flags)
200 {
201 	struct hstate *h = hstate_file(file);
202 	struct vm_unmapped_area_info info;
203 
204 	info.flags = 0;
205 	info.length = len;
206 	info.low_limit = current->mm->mmap_base;
207 	info.high_limit = arch_get_mmap_end(addr, len, flags);
208 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
209 	info.align_offset = 0;
210 	return vm_unmapped_area(&info);
211 }
212 
213 static unsigned long
214 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
215 		unsigned long len, unsigned long pgoff, unsigned long flags)
216 {
217 	struct hstate *h = hstate_file(file);
218 	struct vm_unmapped_area_info info;
219 
220 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
221 	info.length = len;
222 	info.low_limit = PAGE_SIZE;
223 	info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
224 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
225 	info.align_offset = 0;
226 	addr = vm_unmapped_area(&info);
227 
228 	/*
229 	 * A failed mmap() very likely causes application failure,
230 	 * so fall back to the bottom-up function here. This scenario
231 	 * can happen with large stack limits and large mmap()
232 	 * allocations.
233 	 */
234 	if (unlikely(offset_in_page(addr))) {
235 		VM_BUG_ON(addr != -ENOMEM);
236 		info.flags = 0;
237 		info.low_limit = current->mm->mmap_base;
238 		info.high_limit = arch_get_mmap_end(addr, len, flags);
239 		addr = vm_unmapped_area(&info);
240 	}
241 
242 	return addr;
243 }
244 
245 unsigned long
246 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
247 				  unsigned long len, unsigned long pgoff,
248 				  unsigned long flags)
249 {
250 	struct mm_struct *mm = current->mm;
251 	struct vm_area_struct *vma;
252 	struct hstate *h = hstate_file(file);
253 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
254 
255 	if (len & ~huge_page_mask(h))
256 		return -EINVAL;
257 	if (len > TASK_SIZE)
258 		return -ENOMEM;
259 
260 	if (flags & MAP_FIXED) {
261 		if (prepare_hugepage_range(file, addr, len))
262 			return -EINVAL;
263 		return addr;
264 	}
265 
266 	if (addr) {
267 		addr = ALIGN(addr, huge_page_size(h));
268 		vma = find_vma(mm, addr);
269 		if (mmap_end - len >= addr &&
270 		    (!vma || addr + len <= vm_start_gap(vma)))
271 			return addr;
272 	}
273 
274 	/*
275 	 * Use mm->get_unmapped_area value as a hint to use topdown routine.
276 	 * If architectures have special needs, they should define their own
277 	 * version of hugetlb_get_unmapped_area.
278 	 */
279 	if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
280 		return hugetlb_get_unmapped_area_topdown(file, addr, len,
281 				pgoff, flags);
282 	return hugetlb_get_unmapped_area_bottomup(file, addr, len,
283 			pgoff, flags);
284 }
285 
286 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
287 static unsigned long
288 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
289 			  unsigned long len, unsigned long pgoff,
290 			  unsigned long flags)
291 {
292 	return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
293 }
294 #endif
295 
296 /*
297  * Someone wants to read @bytes from a HWPOISON hugetlb @page from @offset.
298  * Returns the maximum number of bytes one can read without touching the 1st raw
299  * HWPOISON subpage.
300  *
301  * The implementation borrows the iteration logic from copy_page_to_iter*.
302  */
303 static size_t adjust_range_hwpoison(struct page *page, size_t offset, size_t bytes)
304 {
305 	size_t n = 0;
306 	size_t res = 0;
307 
308 	/* First subpage to start the loop. */
309 	page = nth_page(page, offset / PAGE_SIZE);
310 	offset %= PAGE_SIZE;
311 	while (1) {
312 		if (is_raw_hwpoison_page_in_hugepage(page))
313 			break;
314 
315 		/* Safe to read n bytes without touching HWPOISON subpage. */
316 		n = min(bytes, (size_t)PAGE_SIZE - offset);
317 		res += n;
318 		bytes -= n;
319 		if (!bytes || !n)
320 			break;
321 		offset += n;
322 		if (offset == PAGE_SIZE) {
323 			page = nth_page(page, 1);
324 			offset = 0;
325 		}
326 	}
327 
328 	return res;
329 }
330 
331 /*
332  * Support for read() - Find the page attached to f_mapping and copy out the
333  * data. This provides functionality similar to filemap_read().
334  */
335 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
336 {
337 	struct file *file = iocb->ki_filp;
338 	struct hstate *h = hstate_file(file);
339 	struct address_space *mapping = file->f_mapping;
340 	struct inode *inode = mapping->host;
341 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
342 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
343 	unsigned long end_index;
344 	loff_t isize;
345 	ssize_t retval = 0;
346 
347 	while (iov_iter_count(to)) {
348 		struct page *page;
349 		size_t nr, copied, want;
350 
351 		/* nr is the maximum number of bytes to copy from this page */
352 		nr = huge_page_size(h);
353 		isize = i_size_read(inode);
354 		if (!isize)
355 			break;
356 		end_index = (isize - 1) >> huge_page_shift(h);
357 		if (index > end_index)
358 			break;
359 		if (index == end_index) {
360 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
361 			if (nr <= offset)
362 				break;
363 		}
364 		nr = nr - offset;
365 
366 		/* Find the page */
367 		page = find_lock_page(mapping, index);
368 		if (unlikely(page == NULL)) {
369 			/*
370 			 * We have a HOLE, zero out the user-buffer for the
371 			 * length of the hole or request.
372 			 */
373 			copied = iov_iter_zero(nr, to);
374 		} else {
375 			unlock_page(page);
376 
377 			if (!PageHWPoison(page))
378 				want = nr;
379 			else {
380 				/*
381 				 * Adjust how many bytes safe to read without
382 				 * touching the 1st raw HWPOISON subpage after
383 				 * offset.
384 				 */
385 				want = adjust_range_hwpoison(page, offset, nr);
386 				if (want == 0) {
387 					put_page(page);
388 					retval = -EIO;
389 					break;
390 				}
391 			}
392 
393 			/*
394 			 * We have the page, copy it to user space buffer.
395 			 */
396 			copied = copy_page_to_iter(page, offset, want, to);
397 			put_page(page);
398 		}
399 		offset += copied;
400 		retval += copied;
401 		if (copied != nr && iov_iter_count(to)) {
402 			if (!retval)
403 				retval = -EFAULT;
404 			break;
405 		}
406 		index += offset >> huge_page_shift(h);
407 		offset &= ~huge_page_mask(h);
408 	}
409 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
410 	return retval;
411 }
412 
413 static int hugetlbfs_write_begin(struct file *file,
414 			struct address_space *mapping,
415 			loff_t pos, unsigned len,
416 			struct page **pagep, void **fsdata)
417 {
418 	return -EINVAL;
419 }
420 
421 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
422 			loff_t pos, unsigned len, unsigned copied,
423 			struct page *page, void *fsdata)
424 {
425 	BUG();
426 	return -EINVAL;
427 }
428 
429 static void hugetlb_delete_from_page_cache(struct folio *folio)
430 {
431 	folio_clear_dirty(folio);
432 	folio_clear_uptodate(folio);
433 	filemap_remove_folio(folio);
434 }
435 
436 /*
437  * Called with i_mmap_rwsem held for inode based vma maps.  This makes
438  * sure vma (and vm_mm) will not go away.  We also hold the hugetlb fault
439  * mutex for the page in the mapping.  So, we can not race with page being
440  * faulted into the vma.
441  */
442 static bool hugetlb_vma_maps_page(struct vm_area_struct *vma,
443 				unsigned long addr, struct page *page)
444 {
445 	pte_t *ptep, pte;
446 
447 	ptep = hugetlb_walk(vma, addr, huge_page_size(hstate_vma(vma)));
448 	if (!ptep)
449 		return false;
450 
451 	pte = huge_ptep_get(ptep);
452 	if (huge_pte_none(pte) || !pte_present(pte))
453 		return false;
454 
455 	if (pte_page(pte) == page)
456 		return true;
457 
458 	return false;
459 }
460 
461 /*
462  * Can vma_offset_start/vma_offset_end overflow on 32-bit arches?
463  * No, because the interval tree returns us only those vmas
464  * which overlap the truncated area starting at pgoff,
465  * and no vma on a 32-bit arch can span beyond the 4GB.
466  */
467 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start)
468 {
469 	unsigned long offset = 0;
470 
471 	if (vma->vm_pgoff < start)
472 		offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
473 
474 	return vma->vm_start + offset;
475 }
476 
477 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end)
478 {
479 	unsigned long t_end;
480 
481 	if (!end)
482 		return vma->vm_end;
483 
484 	t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start;
485 	if (t_end > vma->vm_end)
486 		t_end = vma->vm_end;
487 	return t_end;
488 }
489 
490 /*
491  * Called with hugetlb fault mutex held.  Therefore, no more mappings to
492  * this folio can be created while executing the routine.
493  */
494 static void hugetlb_unmap_file_folio(struct hstate *h,
495 					struct address_space *mapping,
496 					struct folio *folio, pgoff_t index)
497 {
498 	struct rb_root_cached *root = &mapping->i_mmap;
499 	struct hugetlb_vma_lock *vma_lock;
500 	struct page *page = &folio->page;
501 	struct vm_area_struct *vma;
502 	unsigned long v_start;
503 	unsigned long v_end;
504 	pgoff_t start, end;
505 
506 	start = index * pages_per_huge_page(h);
507 	end = (index + 1) * pages_per_huge_page(h);
508 
509 	i_mmap_lock_write(mapping);
510 retry:
511 	vma_lock = NULL;
512 	vma_interval_tree_foreach(vma, root, start, end - 1) {
513 		v_start = vma_offset_start(vma, start);
514 		v_end = vma_offset_end(vma, end);
515 
516 		if (!hugetlb_vma_maps_page(vma, v_start, page))
517 			continue;
518 
519 		if (!hugetlb_vma_trylock_write(vma)) {
520 			vma_lock = vma->vm_private_data;
521 			/*
522 			 * If we can not get vma lock, we need to drop
523 			 * immap_sema and take locks in order.  First,
524 			 * take a ref on the vma_lock structure so that
525 			 * we can be guaranteed it will not go away when
526 			 * dropping immap_sema.
527 			 */
528 			kref_get(&vma_lock->refs);
529 			break;
530 		}
531 
532 		unmap_hugepage_range(vma, v_start, v_end, NULL,
533 				     ZAP_FLAG_DROP_MARKER);
534 		hugetlb_vma_unlock_write(vma);
535 	}
536 
537 	i_mmap_unlock_write(mapping);
538 
539 	if (vma_lock) {
540 		/*
541 		 * Wait on vma_lock.  We know it is still valid as we have
542 		 * a reference.  We must 'open code' vma locking as we do
543 		 * not know if vma_lock is still attached to vma.
544 		 */
545 		down_write(&vma_lock->rw_sema);
546 		i_mmap_lock_write(mapping);
547 
548 		vma = vma_lock->vma;
549 		if (!vma) {
550 			/*
551 			 * If lock is no longer attached to vma, then just
552 			 * unlock, drop our reference and retry looking for
553 			 * other vmas.
554 			 */
555 			up_write(&vma_lock->rw_sema);
556 			kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
557 			goto retry;
558 		}
559 
560 		/*
561 		 * vma_lock is still attached to vma.  Check to see if vma
562 		 * still maps page and if so, unmap.
563 		 */
564 		v_start = vma_offset_start(vma, start);
565 		v_end = vma_offset_end(vma, end);
566 		if (hugetlb_vma_maps_page(vma, v_start, page))
567 			unmap_hugepage_range(vma, v_start, v_end, NULL,
568 					     ZAP_FLAG_DROP_MARKER);
569 
570 		kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
571 		hugetlb_vma_unlock_write(vma);
572 
573 		goto retry;
574 	}
575 }
576 
577 static void
578 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
579 		      zap_flags_t zap_flags)
580 {
581 	struct vm_area_struct *vma;
582 
583 	/*
584 	 * end == 0 indicates that the entire range after start should be
585 	 * unmapped.  Note, end is exclusive, whereas the interval tree takes
586 	 * an inclusive "last".
587 	 */
588 	vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
589 		unsigned long v_start;
590 		unsigned long v_end;
591 
592 		if (!hugetlb_vma_trylock_write(vma))
593 			continue;
594 
595 		v_start = vma_offset_start(vma, start);
596 		v_end = vma_offset_end(vma, end);
597 
598 		unmap_hugepage_range(vma, v_start, v_end, NULL, zap_flags);
599 
600 		/*
601 		 * Note that vma lock only exists for shared/non-private
602 		 * vmas.  Therefore, lock is not held when calling
603 		 * unmap_hugepage_range for private vmas.
604 		 */
605 		hugetlb_vma_unlock_write(vma);
606 	}
607 }
608 
609 /*
610  * Called with hugetlb fault mutex held.
611  * Returns true if page was actually removed, false otherwise.
612  */
613 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode,
614 					struct address_space *mapping,
615 					struct folio *folio, pgoff_t index,
616 					bool truncate_op)
617 {
618 	bool ret = false;
619 
620 	/*
621 	 * If folio is mapped, it was faulted in after being
622 	 * unmapped in caller.  Unmap (again) while holding
623 	 * the fault mutex.  The mutex will prevent faults
624 	 * until we finish removing the folio.
625 	 */
626 	if (unlikely(folio_mapped(folio)))
627 		hugetlb_unmap_file_folio(h, mapping, folio, index);
628 
629 	folio_lock(folio);
630 	/*
631 	 * We must remove the folio from page cache before removing
632 	 * the region/ reserve map (hugetlb_unreserve_pages).  In
633 	 * rare out of memory conditions, removal of the region/reserve
634 	 * map could fail.  Correspondingly, the subpool and global
635 	 * reserve usage count can need to be adjusted.
636 	 */
637 	VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio);
638 	hugetlb_delete_from_page_cache(folio);
639 	ret = true;
640 	if (!truncate_op) {
641 		if (unlikely(hugetlb_unreserve_pages(inode, index,
642 							index + 1, 1)))
643 			hugetlb_fix_reserve_counts(inode);
644 	}
645 
646 	folio_unlock(folio);
647 	return ret;
648 }
649 
650 /*
651  * remove_inode_hugepages handles two distinct cases: truncation and hole
652  * punch.  There are subtle differences in operation for each case.
653  *
654  * truncation is indicated by end of range being LLONG_MAX
655  *	In this case, we first scan the range and release found pages.
656  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
657  *	maps and global counts.  Page faults can race with truncation.
658  *	During faults, hugetlb_no_page() checks i_size before page allocation,
659  *	and again after obtaining page table lock.  It will 'back out'
660  *	allocations in the truncated range.
661  * hole punch is indicated if end is not LLONG_MAX
662  *	In the hole punch case we scan the range and release found pages.
663  *	Only when releasing a page is the associated region/reserve map
664  *	deleted.  The region/reserve map for ranges without associated
665  *	pages are not modified.  Page faults can race with hole punch.
666  *	This is indicated if we find a mapped page.
667  * Note: If the passed end of range value is beyond the end of file, but
668  * not LLONG_MAX this routine still performs a hole punch operation.
669  */
670 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
671 				   loff_t lend)
672 {
673 	struct hstate *h = hstate_inode(inode);
674 	struct address_space *mapping = &inode->i_data;
675 	const pgoff_t start = lstart >> huge_page_shift(h);
676 	const pgoff_t end = lend >> huge_page_shift(h);
677 	struct folio_batch fbatch;
678 	pgoff_t next, index;
679 	int i, freed = 0;
680 	bool truncate_op = (lend == LLONG_MAX);
681 
682 	folio_batch_init(&fbatch);
683 	next = start;
684 	while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
685 		for (i = 0; i < folio_batch_count(&fbatch); ++i) {
686 			struct folio *folio = fbatch.folios[i];
687 			u32 hash = 0;
688 
689 			index = folio->index;
690 			hash = hugetlb_fault_mutex_hash(mapping, index);
691 			mutex_lock(&hugetlb_fault_mutex_table[hash]);
692 
693 			/*
694 			 * Remove folio that was part of folio_batch.
695 			 */
696 			if (remove_inode_single_folio(h, inode, mapping, folio,
697 							index, truncate_op))
698 				freed++;
699 
700 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
701 		}
702 		folio_batch_release(&fbatch);
703 		cond_resched();
704 	}
705 
706 	if (truncate_op)
707 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
708 }
709 
710 static void hugetlbfs_evict_inode(struct inode *inode)
711 {
712 	struct resv_map *resv_map;
713 
714 	remove_inode_hugepages(inode, 0, LLONG_MAX);
715 
716 	/*
717 	 * Get the resv_map from the address space embedded in the inode.
718 	 * This is the address space which points to any resv_map allocated
719 	 * at inode creation time.  If this is a device special inode,
720 	 * i_mapping may not point to the original address space.
721 	 */
722 	resv_map = (struct resv_map *)(&inode->i_data)->private_data;
723 	/* Only regular and link inodes have associated reserve maps */
724 	if (resv_map)
725 		resv_map_release(&resv_map->refs);
726 	clear_inode(inode);
727 }
728 
729 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
730 {
731 	pgoff_t pgoff;
732 	struct address_space *mapping = inode->i_mapping;
733 	struct hstate *h = hstate_inode(inode);
734 
735 	BUG_ON(offset & ~huge_page_mask(h));
736 	pgoff = offset >> PAGE_SHIFT;
737 
738 	i_size_write(inode, offset);
739 	i_mmap_lock_write(mapping);
740 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
741 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
742 				      ZAP_FLAG_DROP_MARKER);
743 	i_mmap_unlock_write(mapping);
744 	remove_inode_hugepages(inode, offset, LLONG_MAX);
745 }
746 
747 static void hugetlbfs_zero_partial_page(struct hstate *h,
748 					struct address_space *mapping,
749 					loff_t start,
750 					loff_t end)
751 {
752 	pgoff_t idx = start >> huge_page_shift(h);
753 	struct folio *folio;
754 
755 	folio = filemap_lock_folio(mapping, idx);
756 	if (IS_ERR(folio))
757 		return;
758 
759 	start = start & ~huge_page_mask(h);
760 	end = end & ~huge_page_mask(h);
761 	if (!end)
762 		end = huge_page_size(h);
763 
764 	folio_zero_segment(folio, (size_t)start, (size_t)end);
765 
766 	folio_unlock(folio);
767 	folio_put(folio);
768 }
769 
770 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
771 {
772 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
773 	struct address_space *mapping = inode->i_mapping;
774 	struct hstate *h = hstate_inode(inode);
775 	loff_t hpage_size = huge_page_size(h);
776 	loff_t hole_start, hole_end;
777 
778 	/*
779 	 * hole_start and hole_end indicate the full pages within the hole.
780 	 */
781 	hole_start = round_up(offset, hpage_size);
782 	hole_end = round_down(offset + len, hpage_size);
783 
784 	inode_lock(inode);
785 
786 	/* protected by i_rwsem */
787 	if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
788 		inode_unlock(inode);
789 		return -EPERM;
790 	}
791 
792 	i_mmap_lock_write(mapping);
793 
794 	/* If range starts before first full page, zero partial page. */
795 	if (offset < hole_start)
796 		hugetlbfs_zero_partial_page(h, mapping,
797 				offset, min(offset + len, hole_start));
798 
799 	/* Unmap users of full pages in the hole. */
800 	if (hole_end > hole_start) {
801 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
802 			hugetlb_vmdelete_list(&mapping->i_mmap,
803 					      hole_start >> PAGE_SHIFT,
804 					      hole_end >> PAGE_SHIFT, 0);
805 	}
806 
807 	/* If range extends beyond last full page, zero partial page. */
808 	if ((offset + len) > hole_end && (offset + len) > hole_start)
809 		hugetlbfs_zero_partial_page(h, mapping,
810 				hole_end, offset + len);
811 
812 	i_mmap_unlock_write(mapping);
813 
814 	/* Remove full pages from the file. */
815 	if (hole_end > hole_start)
816 		remove_inode_hugepages(inode, hole_start, hole_end);
817 
818 	inode_unlock(inode);
819 
820 	return 0;
821 }
822 
823 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
824 				loff_t len)
825 {
826 	struct inode *inode = file_inode(file);
827 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
828 	struct address_space *mapping = inode->i_mapping;
829 	struct hstate *h = hstate_inode(inode);
830 	struct vm_area_struct pseudo_vma;
831 	struct mm_struct *mm = current->mm;
832 	loff_t hpage_size = huge_page_size(h);
833 	unsigned long hpage_shift = huge_page_shift(h);
834 	pgoff_t start, index, end;
835 	int error;
836 	u32 hash;
837 
838 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
839 		return -EOPNOTSUPP;
840 
841 	if (mode & FALLOC_FL_PUNCH_HOLE)
842 		return hugetlbfs_punch_hole(inode, offset, len);
843 
844 	/*
845 	 * Default preallocate case.
846 	 * For this range, start is rounded down and end is rounded up
847 	 * as well as being converted to page offsets.
848 	 */
849 	start = offset >> hpage_shift;
850 	end = (offset + len + hpage_size - 1) >> hpage_shift;
851 
852 	inode_lock(inode);
853 
854 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
855 	error = inode_newsize_ok(inode, offset + len);
856 	if (error)
857 		goto out;
858 
859 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
860 		error = -EPERM;
861 		goto out;
862 	}
863 
864 	/*
865 	 * Initialize a pseudo vma as this is required by the huge page
866 	 * allocation routines.  If NUMA is configured, use page index
867 	 * as input to create an allocation policy.
868 	 */
869 	vma_init(&pseudo_vma, mm);
870 	vm_flags_init(&pseudo_vma, VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
871 	pseudo_vma.vm_file = file;
872 
873 	for (index = start; index < end; index++) {
874 		/*
875 		 * This is supposed to be the vaddr where the page is being
876 		 * faulted in, but we have no vaddr here.
877 		 */
878 		struct folio *folio;
879 		unsigned long addr;
880 
881 		cond_resched();
882 
883 		/*
884 		 * fallocate(2) manpage permits EINTR; we may have been
885 		 * interrupted because we are using up too much memory.
886 		 */
887 		if (signal_pending(current)) {
888 			error = -EINTR;
889 			break;
890 		}
891 
892 		/* addr is the offset within the file (zero based) */
893 		addr = index * hpage_size;
894 
895 		/* mutex taken here, fault path and hole punch */
896 		hash = hugetlb_fault_mutex_hash(mapping, index);
897 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
898 
899 		/* See if already present in mapping to avoid alloc/free */
900 		folio = filemap_get_folio(mapping, index);
901 		if (!IS_ERR(folio)) {
902 			folio_put(folio);
903 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
904 			continue;
905 		}
906 
907 		/*
908 		 * Allocate folio without setting the avoid_reserve argument.
909 		 * There certainly are no reserves associated with the
910 		 * pseudo_vma.  However, there could be shared mappings with
911 		 * reserves for the file at the inode level.  If we fallocate
912 		 * folios in these areas, we need to consume the reserves
913 		 * to keep reservation accounting consistent.
914 		 */
915 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
916 		folio = alloc_hugetlb_folio(&pseudo_vma, addr, 0);
917 		hugetlb_drop_vma_policy(&pseudo_vma);
918 		if (IS_ERR(folio)) {
919 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
920 			error = PTR_ERR(folio);
921 			goto out;
922 		}
923 		clear_huge_page(&folio->page, addr, pages_per_huge_page(h));
924 		__folio_mark_uptodate(folio);
925 		error = hugetlb_add_to_page_cache(folio, mapping, index);
926 		if (unlikely(error)) {
927 			restore_reserve_on_error(h, &pseudo_vma, addr, folio);
928 			folio_put(folio);
929 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
930 			goto out;
931 		}
932 
933 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
934 
935 		folio_set_hugetlb_migratable(folio);
936 		/*
937 		 * folio_unlock because locked by hugetlb_add_to_page_cache()
938 		 * folio_put() due to reference from alloc_hugetlb_folio()
939 		 */
940 		folio_unlock(folio);
941 		folio_put(folio);
942 	}
943 
944 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
945 		i_size_write(inode, offset + len);
946 	inode_set_ctime_current(inode);
947 out:
948 	inode_unlock(inode);
949 	return error;
950 }
951 
952 static int hugetlbfs_setattr(struct mnt_idmap *idmap,
953 			     struct dentry *dentry, struct iattr *attr)
954 {
955 	struct inode *inode = d_inode(dentry);
956 	struct hstate *h = hstate_inode(inode);
957 	int error;
958 	unsigned int ia_valid = attr->ia_valid;
959 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
960 
961 	error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
962 	if (error)
963 		return error;
964 
965 	if (ia_valid & ATTR_SIZE) {
966 		loff_t oldsize = inode->i_size;
967 		loff_t newsize = attr->ia_size;
968 
969 		if (newsize & ~huge_page_mask(h))
970 			return -EINVAL;
971 		/* protected by i_rwsem */
972 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
973 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
974 			return -EPERM;
975 		hugetlb_vmtruncate(inode, newsize);
976 	}
977 
978 	setattr_copy(&nop_mnt_idmap, inode, attr);
979 	mark_inode_dirty(inode);
980 	return 0;
981 }
982 
983 static struct inode *hugetlbfs_get_root(struct super_block *sb,
984 					struct hugetlbfs_fs_context *ctx)
985 {
986 	struct inode *inode;
987 
988 	inode = new_inode(sb);
989 	if (inode) {
990 		inode->i_ino = get_next_ino();
991 		inode->i_mode = S_IFDIR | ctx->mode;
992 		inode->i_uid = ctx->uid;
993 		inode->i_gid = ctx->gid;
994 		inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
995 		inode->i_op = &hugetlbfs_dir_inode_operations;
996 		inode->i_fop = &simple_dir_operations;
997 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
998 		inc_nlink(inode);
999 		lockdep_annotate_inode_mutex_key(inode);
1000 	}
1001 	return inode;
1002 }
1003 
1004 /*
1005  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
1006  * be taken from reclaim -- unlike regular filesystems. This needs an
1007  * annotation because huge_pmd_share() does an allocation under hugetlb's
1008  * i_mmap_rwsem.
1009  */
1010 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
1011 
1012 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
1013 					struct inode *dir,
1014 					umode_t mode, dev_t dev)
1015 {
1016 	struct inode *inode;
1017 	struct resv_map *resv_map = NULL;
1018 
1019 	/*
1020 	 * Reserve maps are only needed for inodes that can have associated
1021 	 * page allocations.
1022 	 */
1023 	if (S_ISREG(mode) || S_ISLNK(mode)) {
1024 		resv_map = resv_map_alloc();
1025 		if (!resv_map)
1026 			return NULL;
1027 	}
1028 
1029 	inode = new_inode(sb);
1030 	if (inode) {
1031 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
1032 
1033 		inode->i_ino = get_next_ino();
1034 		inode_init_owner(&nop_mnt_idmap, inode, dir, mode);
1035 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
1036 				&hugetlbfs_i_mmap_rwsem_key);
1037 		inode->i_mapping->a_ops = &hugetlbfs_aops;
1038 		inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode);
1039 		inode->i_mapping->private_data = resv_map;
1040 		info->seals = F_SEAL_SEAL;
1041 		switch (mode & S_IFMT) {
1042 		default:
1043 			init_special_inode(inode, mode, dev);
1044 			break;
1045 		case S_IFREG:
1046 			inode->i_op = &hugetlbfs_inode_operations;
1047 			inode->i_fop = &hugetlbfs_file_operations;
1048 			break;
1049 		case S_IFDIR:
1050 			inode->i_op = &hugetlbfs_dir_inode_operations;
1051 			inode->i_fop = &simple_dir_operations;
1052 
1053 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
1054 			inc_nlink(inode);
1055 			break;
1056 		case S_IFLNK:
1057 			inode->i_op = &page_symlink_inode_operations;
1058 			inode_nohighmem(inode);
1059 			break;
1060 		}
1061 		lockdep_annotate_inode_mutex_key(inode);
1062 	} else {
1063 		if (resv_map)
1064 			kref_put(&resv_map->refs, resv_map_release);
1065 	}
1066 
1067 	return inode;
1068 }
1069 
1070 /*
1071  * File creation. Allocate an inode, and we're done..
1072  */
1073 static int hugetlbfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
1074 			   struct dentry *dentry, umode_t mode, dev_t dev)
1075 {
1076 	struct inode *inode;
1077 
1078 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
1079 	if (!inode)
1080 		return -ENOSPC;
1081 	dir->i_mtime = inode_set_ctime_current(dir);
1082 	d_instantiate(dentry, inode);
1083 	dget(dentry);/* Extra count - pin the dentry in core */
1084 	return 0;
1085 }
1086 
1087 static int hugetlbfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
1088 			   struct dentry *dentry, umode_t mode)
1089 {
1090 	int retval = hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry,
1091 				     mode | S_IFDIR, 0);
1092 	if (!retval)
1093 		inc_nlink(dir);
1094 	return retval;
1095 }
1096 
1097 static int hugetlbfs_create(struct mnt_idmap *idmap,
1098 			    struct inode *dir, struct dentry *dentry,
1099 			    umode_t mode, bool excl)
1100 {
1101 	return hugetlbfs_mknod(&nop_mnt_idmap, dir, dentry, mode | S_IFREG, 0);
1102 }
1103 
1104 static int hugetlbfs_tmpfile(struct mnt_idmap *idmap,
1105 			     struct inode *dir, struct file *file,
1106 			     umode_t mode)
1107 {
1108 	struct inode *inode;
1109 
1110 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode | S_IFREG, 0);
1111 	if (!inode)
1112 		return -ENOSPC;
1113 	dir->i_mtime = inode_set_ctime_current(dir);
1114 	d_tmpfile(file, inode);
1115 	return finish_open_simple(file, 0);
1116 }
1117 
1118 static int hugetlbfs_symlink(struct mnt_idmap *idmap,
1119 			     struct inode *dir, struct dentry *dentry,
1120 			     const char *symname)
1121 {
1122 	struct inode *inode;
1123 	int error = -ENOSPC;
1124 
1125 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
1126 	if (inode) {
1127 		int l = strlen(symname)+1;
1128 		error = page_symlink(inode, symname, l);
1129 		if (!error) {
1130 			d_instantiate(dentry, inode);
1131 			dget(dentry);
1132 		} else
1133 			iput(inode);
1134 	}
1135 	dir->i_mtime = inode_set_ctime_current(dir);
1136 
1137 	return error;
1138 }
1139 
1140 #ifdef CONFIG_MIGRATION
1141 static int hugetlbfs_migrate_folio(struct address_space *mapping,
1142 				struct folio *dst, struct folio *src,
1143 				enum migrate_mode mode)
1144 {
1145 	int rc;
1146 
1147 	rc = migrate_huge_page_move_mapping(mapping, dst, src);
1148 	if (rc != MIGRATEPAGE_SUCCESS)
1149 		return rc;
1150 
1151 	if (hugetlb_folio_subpool(src)) {
1152 		hugetlb_set_folio_subpool(dst,
1153 					hugetlb_folio_subpool(src));
1154 		hugetlb_set_folio_subpool(src, NULL);
1155 	}
1156 
1157 	if (mode != MIGRATE_SYNC_NO_COPY)
1158 		folio_migrate_copy(dst, src);
1159 	else
1160 		folio_migrate_flags(dst, src);
1161 
1162 	return MIGRATEPAGE_SUCCESS;
1163 }
1164 #else
1165 #define hugetlbfs_migrate_folio NULL
1166 #endif
1167 
1168 static int hugetlbfs_error_remove_page(struct address_space *mapping,
1169 				struct page *page)
1170 {
1171 	return 0;
1172 }
1173 
1174 /*
1175  * Display the mount options in /proc/mounts.
1176  */
1177 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1178 {
1179 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1180 	struct hugepage_subpool *spool = sbinfo->spool;
1181 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1182 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1183 	char mod;
1184 
1185 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1186 		seq_printf(m, ",uid=%u",
1187 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1188 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1189 		seq_printf(m, ",gid=%u",
1190 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1191 	if (sbinfo->mode != 0755)
1192 		seq_printf(m, ",mode=%o", sbinfo->mode);
1193 	if (sbinfo->max_inodes != -1)
1194 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1195 
1196 	hpage_size /= 1024;
1197 	mod = 'K';
1198 	if (hpage_size >= 1024) {
1199 		hpage_size /= 1024;
1200 		mod = 'M';
1201 	}
1202 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1203 	if (spool) {
1204 		if (spool->max_hpages != -1)
1205 			seq_printf(m, ",size=%llu",
1206 				   (unsigned long long)spool->max_hpages << hpage_shift);
1207 		if (spool->min_hpages != -1)
1208 			seq_printf(m, ",min_size=%llu",
1209 				   (unsigned long long)spool->min_hpages << hpage_shift);
1210 	}
1211 	return 0;
1212 }
1213 
1214 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1215 {
1216 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1217 	struct hstate *h = hstate_inode(d_inode(dentry));
1218 
1219 	buf->f_type = HUGETLBFS_MAGIC;
1220 	buf->f_bsize = huge_page_size(h);
1221 	if (sbinfo) {
1222 		spin_lock(&sbinfo->stat_lock);
1223 		/* If no limits set, just report 0 or -1 for max/free/used
1224 		 * blocks, like simple_statfs() */
1225 		if (sbinfo->spool) {
1226 			long free_pages;
1227 
1228 			spin_lock_irq(&sbinfo->spool->lock);
1229 			buf->f_blocks = sbinfo->spool->max_hpages;
1230 			free_pages = sbinfo->spool->max_hpages
1231 				- sbinfo->spool->used_hpages;
1232 			buf->f_bavail = buf->f_bfree = free_pages;
1233 			spin_unlock_irq(&sbinfo->spool->lock);
1234 			buf->f_files = sbinfo->max_inodes;
1235 			buf->f_ffree = sbinfo->free_inodes;
1236 		}
1237 		spin_unlock(&sbinfo->stat_lock);
1238 	}
1239 	buf->f_namelen = NAME_MAX;
1240 	return 0;
1241 }
1242 
1243 static void hugetlbfs_put_super(struct super_block *sb)
1244 {
1245 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1246 
1247 	if (sbi) {
1248 		sb->s_fs_info = NULL;
1249 
1250 		if (sbi->spool)
1251 			hugepage_put_subpool(sbi->spool);
1252 
1253 		kfree(sbi);
1254 	}
1255 }
1256 
1257 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1258 {
1259 	if (sbinfo->free_inodes >= 0) {
1260 		spin_lock(&sbinfo->stat_lock);
1261 		if (unlikely(!sbinfo->free_inodes)) {
1262 			spin_unlock(&sbinfo->stat_lock);
1263 			return 0;
1264 		}
1265 		sbinfo->free_inodes--;
1266 		spin_unlock(&sbinfo->stat_lock);
1267 	}
1268 
1269 	return 1;
1270 }
1271 
1272 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1273 {
1274 	if (sbinfo->free_inodes >= 0) {
1275 		spin_lock(&sbinfo->stat_lock);
1276 		sbinfo->free_inodes++;
1277 		spin_unlock(&sbinfo->stat_lock);
1278 	}
1279 }
1280 
1281 
1282 static struct kmem_cache *hugetlbfs_inode_cachep;
1283 
1284 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1285 {
1286 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1287 	struct hugetlbfs_inode_info *p;
1288 
1289 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1290 		return NULL;
1291 	p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1292 	if (unlikely(!p)) {
1293 		hugetlbfs_inc_free_inodes(sbinfo);
1294 		return NULL;
1295 	}
1296 
1297 	/*
1298 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
1299 	 * for the inode.  mpol_free_shared_policy is unconditionally called
1300 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1301 	 * in case of a quick call to destroy.
1302 	 *
1303 	 * Note that the policy is initialized even if we are creating a
1304 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
1305 	 */
1306 	mpol_shared_policy_init(&p->policy, NULL);
1307 
1308 	return &p->vfs_inode;
1309 }
1310 
1311 static void hugetlbfs_free_inode(struct inode *inode)
1312 {
1313 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1314 }
1315 
1316 static void hugetlbfs_destroy_inode(struct inode *inode)
1317 {
1318 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1319 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1320 }
1321 
1322 static const struct address_space_operations hugetlbfs_aops = {
1323 	.write_begin	= hugetlbfs_write_begin,
1324 	.write_end	= hugetlbfs_write_end,
1325 	.dirty_folio	= noop_dirty_folio,
1326 	.migrate_folio  = hugetlbfs_migrate_folio,
1327 	.error_remove_page	= hugetlbfs_error_remove_page,
1328 };
1329 
1330 
1331 static void init_once(void *foo)
1332 {
1333 	struct hugetlbfs_inode_info *ei = foo;
1334 
1335 	inode_init_once(&ei->vfs_inode);
1336 }
1337 
1338 const struct file_operations hugetlbfs_file_operations = {
1339 	.read_iter		= hugetlbfs_read_iter,
1340 	.mmap			= hugetlbfs_file_mmap,
1341 	.fsync			= noop_fsync,
1342 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1343 	.llseek			= default_llseek,
1344 	.fallocate		= hugetlbfs_fallocate,
1345 };
1346 
1347 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1348 	.create		= hugetlbfs_create,
1349 	.lookup		= simple_lookup,
1350 	.link		= simple_link,
1351 	.unlink		= simple_unlink,
1352 	.symlink	= hugetlbfs_symlink,
1353 	.mkdir		= hugetlbfs_mkdir,
1354 	.rmdir		= simple_rmdir,
1355 	.mknod		= hugetlbfs_mknod,
1356 	.rename		= simple_rename,
1357 	.setattr	= hugetlbfs_setattr,
1358 	.tmpfile	= hugetlbfs_tmpfile,
1359 };
1360 
1361 static const struct inode_operations hugetlbfs_inode_operations = {
1362 	.setattr	= hugetlbfs_setattr,
1363 };
1364 
1365 static const struct super_operations hugetlbfs_ops = {
1366 	.alloc_inode    = hugetlbfs_alloc_inode,
1367 	.free_inode     = hugetlbfs_free_inode,
1368 	.destroy_inode  = hugetlbfs_destroy_inode,
1369 	.evict_inode	= hugetlbfs_evict_inode,
1370 	.statfs		= hugetlbfs_statfs,
1371 	.put_super	= hugetlbfs_put_super,
1372 	.show_options	= hugetlbfs_show_options,
1373 };
1374 
1375 /*
1376  * Convert size option passed from command line to number of huge pages
1377  * in the pool specified by hstate.  Size option could be in bytes
1378  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1379  */
1380 static long
1381 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1382 			 enum hugetlbfs_size_type val_type)
1383 {
1384 	if (val_type == NO_SIZE)
1385 		return -1;
1386 
1387 	if (val_type == SIZE_PERCENT) {
1388 		size_opt <<= huge_page_shift(h);
1389 		size_opt *= h->max_huge_pages;
1390 		do_div(size_opt, 100);
1391 	}
1392 
1393 	size_opt >>= huge_page_shift(h);
1394 	return size_opt;
1395 }
1396 
1397 /*
1398  * Parse one mount parameter.
1399  */
1400 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1401 {
1402 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1403 	struct fs_parse_result result;
1404 	struct hstate *h;
1405 	char *rest;
1406 	unsigned long ps;
1407 	int opt;
1408 
1409 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1410 	if (opt < 0)
1411 		return opt;
1412 
1413 	switch (opt) {
1414 	case Opt_uid:
1415 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1416 		if (!uid_valid(ctx->uid))
1417 			goto bad_val;
1418 		return 0;
1419 
1420 	case Opt_gid:
1421 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1422 		if (!gid_valid(ctx->gid))
1423 			goto bad_val;
1424 		return 0;
1425 
1426 	case Opt_mode:
1427 		ctx->mode = result.uint_32 & 01777U;
1428 		return 0;
1429 
1430 	case Opt_size:
1431 		/* memparse() will accept a K/M/G without a digit */
1432 		if (!param->string || !isdigit(param->string[0]))
1433 			goto bad_val;
1434 		ctx->max_size_opt = memparse(param->string, &rest);
1435 		ctx->max_val_type = SIZE_STD;
1436 		if (*rest == '%')
1437 			ctx->max_val_type = SIZE_PERCENT;
1438 		return 0;
1439 
1440 	case Opt_nr_inodes:
1441 		/* memparse() will accept a K/M/G without a digit */
1442 		if (!param->string || !isdigit(param->string[0]))
1443 			goto bad_val;
1444 		ctx->nr_inodes = memparse(param->string, &rest);
1445 		return 0;
1446 
1447 	case Opt_pagesize:
1448 		ps = memparse(param->string, &rest);
1449 		h = size_to_hstate(ps);
1450 		if (!h) {
1451 			pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
1452 			return -EINVAL;
1453 		}
1454 		ctx->hstate = h;
1455 		return 0;
1456 
1457 	case Opt_min_size:
1458 		/* memparse() will accept a K/M/G without a digit */
1459 		if (!param->string || !isdigit(param->string[0]))
1460 			goto bad_val;
1461 		ctx->min_size_opt = memparse(param->string, &rest);
1462 		ctx->min_val_type = SIZE_STD;
1463 		if (*rest == '%')
1464 			ctx->min_val_type = SIZE_PERCENT;
1465 		return 0;
1466 
1467 	default:
1468 		return -EINVAL;
1469 	}
1470 
1471 bad_val:
1472 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1473 		      param->string, param->key);
1474 }
1475 
1476 /*
1477  * Validate the parsed options.
1478  */
1479 static int hugetlbfs_validate(struct fs_context *fc)
1480 {
1481 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1482 
1483 	/*
1484 	 * Use huge page pool size (in hstate) to convert the size
1485 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1486 	 */
1487 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1488 						   ctx->max_size_opt,
1489 						   ctx->max_val_type);
1490 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1491 						   ctx->min_size_opt,
1492 						   ctx->min_val_type);
1493 
1494 	/*
1495 	 * If max_size was specified, then min_size must be smaller
1496 	 */
1497 	if (ctx->max_val_type > NO_SIZE &&
1498 	    ctx->min_hpages > ctx->max_hpages) {
1499 		pr_err("Minimum size can not be greater than maximum size\n");
1500 		return -EINVAL;
1501 	}
1502 
1503 	return 0;
1504 }
1505 
1506 static int
1507 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1508 {
1509 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1510 	struct hugetlbfs_sb_info *sbinfo;
1511 
1512 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1513 	if (!sbinfo)
1514 		return -ENOMEM;
1515 	sb->s_fs_info = sbinfo;
1516 	spin_lock_init(&sbinfo->stat_lock);
1517 	sbinfo->hstate		= ctx->hstate;
1518 	sbinfo->max_inodes	= ctx->nr_inodes;
1519 	sbinfo->free_inodes	= ctx->nr_inodes;
1520 	sbinfo->spool		= NULL;
1521 	sbinfo->uid		= ctx->uid;
1522 	sbinfo->gid		= ctx->gid;
1523 	sbinfo->mode		= ctx->mode;
1524 
1525 	/*
1526 	 * Allocate and initialize subpool if maximum or minimum size is
1527 	 * specified.  Any needed reservations (for minimum size) are taken
1528 	 * when the subpool is created.
1529 	 */
1530 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1531 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1532 						     ctx->max_hpages,
1533 						     ctx->min_hpages);
1534 		if (!sbinfo->spool)
1535 			goto out_free;
1536 	}
1537 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1538 	sb->s_blocksize = huge_page_size(ctx->hstate);
1539 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1540 	sb->s_magic = HUGETLBFS_MAGIC;
1541 	sb->s_op = &hugetlbfs_ops;
1542 	sb->s_time_gran = 1;
1543 
1544 	/*
1545 	 * Due to the special and limited functionality of hugetlbfs, it does
1546 	 * not work well as a stacking filesystem.
1547 	 */
1548 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1549 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1550 	if (!sb->s_root)
1551 		goto out_free;
1552 	return 0;
1553 out_free:
1554 	kfree(sbinfo->spool);
1555 	kfree(sbinfo);
1556 	return -ENOMEM;
1557 }
1558 
1559 static int hugetlbfs_get_tree(struct fs_context *fc)
1560 {
1561 	int err = hugetlbfs_validate(fc);
1562 	if (err)
1563 		return err;
1564 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1565 }
1566 
1567 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1568 {
1569 	kfree(fc->fs_private);
1570 }
1571 
1572 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1573 	.free		= hugetlbfs_fs_context_free,
1574 	.parse_param	= hugetlbfs_parse_param,
1575 	.get_tree	= hugetlbfs_get_tree,
1576 };
1577 
1578 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1579 {
1580 	struct hugetlbfs_fs_context *ctx;
1581 
1582 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1583 	if (!ctx)
1584 		return -ENOMEM;
1585 
1586 	ctx->max_hpages	= -1; /* No limit on size by default */
1587 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1588 	ctx->uid	= current_fsuid();
1589 	ctx->gid	= current_fsgid();
1590 	ctx->mode	= 0755;
1591 	ctx->hstate	= &default_hstate;
1592 	ctx->min_hpages	= -1; /* No default minimum size */
1593 	ctx->max_val_type = NO_SIZE;
1594 	ctx->min_val_type = NO_SIZE;
1595 	fc->fs_private = ctx;
1596 	fc->ops	= &hugetlbfs_fs_context_ops;
1597 	return 0;
1598 }
1599 
1600 static struct file_system_type hugetlbfs_fs_type = {
1601 	.name			= "hugetlbfs",
1602 	.init_fs_context	= hugetlbfs_init_fs_context,
1603 	.parameters		= hugetlb_fs_parameters,
1604 	.kill_sb		= kill_litter_super,
1605 };
1606 
1607 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1608 
1609 static int can_do_hugetlb_shm(void)
1610 {
1611 	kgid_t shm_group;
1612 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1613 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1614 }
1615 
1616 static int get_hstate_idx(int page_size_log)
1617 {
1618 	struct hstate *h = hstate_sizelog(page_size_log);
1619 
1620 	if (!h)
1621 		return -1;
1622 	return hstate_index(h);
1623 }
1624 
1625 /*
1626  * Note that size should be aligned to proper hugepage size in caller side,
1627  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1628  */
1629 struct file *hugetlb_file_setup(const char *name, size_t size,
1630 				vm_flags_t acctflag, int creat_flags,
1631 				int page_size_log)
1632 {
1633 	struct inode *inode;
1634 	struct vfsmount *mnt;
1635 	int hstate_idx;
1636 	struct file *file;
1637 
1638 	hstate_idx = get_hstate_idx(page_size_log);
1639 	if (hstate_idx < 0)
1640 		return ERR_PTR(-ENODEV);
1641 
1642 	mnt = hugetlbfs_vfsmount[hstate_idx];
1643 	if (!mnt)
1644 		return ERR_PTR(-ENOENT);
1645 
1646 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1647 		struct ucounts *ucounts = current_ucounts();
1648 
1649 		if (user_shm_lock(size, ucounts)) {
1650 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1651 				current->comm, current->pid);
1652 			user_shm_unlock(size, ucounts);
1653 		}
1654 		return ERR_PTR(-EPERM);
1655 	}
1656 
1657 	file = ERR_PTR(-ENOSPC);
1658 	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1659 	if (!inode)
1660 		goto out;
1661 	if (creat_flags == HUGETLB_SHMFS_INODE)
1662 		inode->i_flags |= S_PRIVATE;
1663 
1664 	inode->i_size = size;
1665 	clear_nlink(inode);
1666 
1667 	if (!hugetlb_reserve_pages(inode, 0,
1668 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1669 			acctflag))
1670 		file = ERR_PTR(-ENOMEM);
1671 	else
1672 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1673 					&hugetlbfs_file_operations);
1674 	if (!IS_ERR(file))
1675 		return file;
1676 
1677 	iput(inode);
1678 out:
1679 	return file;
1680 }
1681 
1682 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1683 {
1684 	struct fs_context *fc;
1685 	struct vfsmount *mnt;
1686 
1687 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1688 	if (IS_ERR(fc)) {
1689 		mnt = ERR_CAST(fc);
1690 	} else {
1691 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1692 		ctx->hstate = h;
1693 		mnt = fc_mount(fc);
1694 		put_fs_context(fc);
1695 	}
1696 	if (IS_ERR(mnt))
1697 		pr_err("Cannot mount internal hugetlbfs for page size %luK",
1698 		       huge_page_size(h) / SZ_1K);
1699 	return mnt;
1700 }
1701 
1702 static int __init init_hugetlbfs_fs(void)
1703 {
1704 	struct vfsmount *mnt;
1705 	struct hstate *h;
1706 	int error;
1707 	int i;
1708 
1709 	if (!hugepages_supported()) {
1710 		pr_info("disabling because there are no supported hugepage sizes\n");
1711 		return -ENOTSUPP;
1712 	}
1713 
1714 	error = -ENOMEM;
1715 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1716 					sizeof(struct hugetlbfs_inode_info),
1717 					0, SLAB_ACCOUNT, init_once);
1718 	if (hugetlbfs_inode_cachep == NULL)
1719 		goto out;
1720 
1721 	error = register_filesystem(&hugetlbfs_fs_type);
1722 	if (error)
1723 		goto out_free;
1724 
1725 	/* default hstate mount is required */
1726 	mnt = mount_one_hugetlbfs(&default_hstate);
1727 	if (IS_ERR(mnt)) {
1728 		error = PTR_ERR(mnt);
1729 		goto out_unreg;
1730 	}
1731 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1732 
1733 	/* other hstates are optional */
1734 	i = 0;
1735 	for_each_hstate(h) {
1736 		if (i == default_hstate_idx) {
1737 			i++;
1738 			continue;
1739 		}
1740 
1741 		mnt = mount_one_hugetlbfs(h);
1742 		if (IS_ERR(mnt))
1743 			hugetlbfs_vfsmount[i] = NULL;
1744 		else
1745 			hugetlbfs_vfsmount[i] = mnt;
1746 		i++;
1747 	}
1748 
1749 	return 0;
1750 
1751  out_unreg:
1752 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1753  out_free:
1754 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1755  out:
1756 	return error;
1757 }
1758 fs_initcall(init_hugetlbfs_fs)
1759