1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/falloc.h> 15 #include <linux/fs.h> 16 #include <linux/mount.h> 17 #include <linux/file.h> 18 #include <linux/kernel.h> 19 #include <linux/writeback.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/init.h> 23 #include <linux/string.h> 24 #include <linux/capability.h> 25 #include <linux/ctype.h> 26 #include <linux/backing-dev.h> 27 #include <linux/hugetlb.h> 28 #include <linux/pagevec.h> 29 #include <linux/fs_parser.h> 30 #include <linux/mman.h> 31 #include <linux/slab.h> 32 #include <linux/dnotify.h> 33 #include <linux/statfs.h> 34 #include <linux/security.h> 35 #include <linux/magic.h> 36 #include <linux/migrate.h> 37 #include <linux/uio.h> 38 39 #include <linux/uaccess.h> 40 #include <linux/sched/mm.h> 41 42 static const struct address_space_operations hugetlbfs_aops; 43 const struct file_operations hugetlbfs_file_operations; 44 static const struct inode_operations hugetlbfs_dir_inode_operations; 45 static const struct inode_operations hugetlbfs_inode_operations; 46 47 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 48 49 struct hugetlbfs_fs_context { 50 struct hstate *hstate; 51 unsigned long long max_size_opt; 52 unsigned long long min_size_opt; 53 long max_hpages; 54 long nr_inodes; 55 long min_hpages; 56 enum hugetlbfs_size_type max_val_type; 57 enum hugetlbfs_size_type min_val_type; 58 kuid_t uid; 59 kgid_t gid; 60 umode_t mode; 61 }; 62 63 int sysctl_hugetlb_shm_group; 64 65 enum hugetlb_param { 66 Opt_gid, 67 Opt_min_size, 68 Opt_mode, 69 Opt_nr_inodes, 70 Opt_pagesize, 71 Opt_size, 72 Opt_uid, 73 }; 74 75 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 76 fsparam_u32 ("gid", Opt_gid), 77 fsparam_string("min_size", Opt_min_size), 78 fsparam_u32oct("mode", Opt_mode), 79 fsparam_string("nr_inodes", Opt_nr_inodes), 80 fsparam_string("pagesize", Opt_pagesize), 81 fsparam_string("size", Opt_size), 82 fsparam_u32 ("uid", Opt_uid), 83 {} 84 }; 85 86 #ifdef CONFIG_NUMA 87 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 88 struct inode *inode, pgoff_t index) 89 { 90 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, 91 index); 92 } 93 94 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 95 { 96 mpol_cond_put(vma->vm_policy); 97 } 98 #else 99 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 100 struct inode *inode, pgoff_t index) 101 { 102 } 103 104 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 105 { 106 } 107 #endif 108 109 /* 110 * Mask used when checking the page offset value passed in via system 111 * calls. This value will be converted to a loff_t which is signed. 112 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 113 * value. The extra bit (- 1 in the shift value) is to take the sign 114 * bit into account. 115 */ 116 #define PGOFF_LOFFT_MAX \ 117 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 118 119 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 120 { 121 struct inode *inode = file_inode(file); 122 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 123 loff_t len, vma_len; 124 int ret; 125 struct hstate *h = hstate_file(file); 126 127 /* 128 * vma address alignment (but not the pgoff alignment) has 129 * already been checked by prepare_hugepage_range. If you add 130 * any error returns here, do so after setting VM_HUGETLB, so 131 * is_vm_hugetlb_page tests below unmap_region go the right 132 * way when do_mmap unwinds (may be important on powerpc 133 * and ia64). 134 */ 135 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; 136 vma->vm_ops = &hugetlb_vm_ops; 137 138 ret = seal_check_future_write(info->seals, vma); 139 if (ret) 140 return ret; 141 142 /* 143 * page based offset in vm_pgoff could be sufficiently large to 144 * overflow a loff_t when converted to byte offset. This can 145 * only happen on architectures where sizeof(loff_t) == 146 * sizeof(unsigned long). So, only check in those instances. 147 */ 148 if (sizeof(unsigned long) == sizeof(loff_t)) { 149 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 150 return -EINVAL; 151 } 152 153 /* must be huge page aligned */ 154 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 155 return -EINVAL; 156 157 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 158 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 159 /* check for overflow */ 160 if (len < vma_len) 161 return -EINVAL; 162 163 inode_lock(inode); 164 file_accessed(file); 165 166 ret = -ENOMEM; 167 if (!hugetlb_reserve_pages(inode, 168 vma->vm_pgoff >> huge_page_order(h), 169 len >> huge_page_shift(h), vma, 170 vma->vm_flags)) 171 goto out; 172 173 ret = 0; 174 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 175 i_size_write(inode, len); 176 out: 177 inode_unlock(inode); 178 179 return ret; 180 } 181 182 /* 183 * Called under mmap_write_lock(mm). 184 */ 185 186 static unsigned long 187 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr, 188 unsigned long len, unsigned long pgoff, unsigned long flags) 189 { 190 struct hstate *h = hstate_file(file); 191 struct vm_unmapped_area_info info; 192 193 info.flags = 0; 194 info.length = len; 195 info.low_limit = current->mm->mmap_base; 196 info.high_limit = arch_get_mmap_end(addr, len, flags); 197 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 198 info.align_offset = 0; 199 return vm_unmapped_area(&info); 200 } 201 202 static unsigned long 203 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr, 204 unsigned long len, unsigned long pgoff, unsigned long flags) 205 { 206 struct hstate *h = hstate_file(file); 207 struct vm_unmapped_area_info info; 208 209 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 210 info.length = len; 211 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 212 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base); 213 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 214 info.align_offset = 0; 215 addr = vm_unmapped_area(&info); 216 217 /* 218 * A failed mmap() very likely causes application failure, 219 * so fall back to the bottom-up function here. This scenario 220 * can happen with large stack limits and large mmap() 221 * allocations. 222 */ 223 if (unlikely(offset_in_page(addr))) { 224 VM_BUG_ON(addr != -ENOMEM); 225 info.flags = 0; 226 info.low_limit = current->mm->mmap_base; 227 info.high_limit = arch_get_mmap_end(addr, len, flags); 228 addr = vm_unmapped_area(&info); 229 } 230 231 return addr; 232 } 233 234 unsigned long 235 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 236 unsigned long len, unsigned long pgoff, 237 unsigned long flags) 238 { 239 struct mm_struct *mm = current->mm; 240 struct vm_area_struct *vma; 241 struct hstate *h = hstate_file(file); 242 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 243 244 if (len & ~huge_page_mask(h)) 245 return -EINVAL; 246 if (len > TASK_SIZE) 247 return -ENOMEM; 248 249 if (flags & MAP_FIXED) { 250 if (prepare_hugepage_range(file, addr, len)) 251 return -EINVAL; 252 return addr; 253 } 254 255 if (addr) { 256 addr = ALIGN(addr, huge_page_size(h)); 257 vma = find_vma(mm, addr); 258 if (mmap_end - len >= addr && 259 (!vma || addr + len <= vm_start_gap(vma))) 260 return addr; 261 } 262 263 /* 264 * Use mm->get_unmapped_area value as a hint to use topdown routine. 265 * If architectures have special needs, they should define their own 266 * version of hugetlb_get_unmapped_area. 267 */ 268 if (mm->get_unmapped_area == arch_get_unmapped_area_topdown) 269 return hugetlb_get_unmapped_area_topdown(file, addr, len, 270 pgoff, flags); 271 return hugetlb_get_unmapped_area_bottomup(file, addr, len, 272 pgoff, flags); 273 } 274 275 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 276 static unsigned long 277 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 278 unsigned long len, unsigned long pgoff, 279 unsigned long flags) 280 { 281 return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags); 282 } 283 #endif 284 285 /* 286 * Support for read() - Find the page attached to f_mapping and copy out the 287 * data. This provides functionality similar to filemap_read(). 288 */ 289 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 290 { 291 struct file *file = iocb->ki_filp; 292 struct hstate *h = hstate_file(file); 293 struct address_space *mapping = file->f_mapping; 294 struct inode *inode = mapping->host; 295 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 296 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 297 unsigned long end_index; 298 loff_t isize; 299 ssize_t retval = 0; 300 301 while (iov_iter_count(to)) { 302 struct page *page; 303 size_t nr, copied; 304 305 /* nr is the maximum number of bytes to copy from this page */ 306 nr = huge_page_size(h); 307 isize = i_size_read(inode); 308 if (!isize) 309 break; 310 end_index = (isize - 1) >> huge_page_shift(h); 311 if (index > end_index) 312 break; 313 if (index == end_index) { 314 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 315 if (nr <= offset) 316 break; 317 } 318 nr = nr - offset; 319 320 /* Find the page */ 321 page = find_lock_page(mapping, index); 322 if (unlikely(page == NULL)) { 323 /* 324 * We have a HOLE, zero out the user-buffer for the 325 * length of the hole or request. 326 */ 327 copied = iov_iter_zero(nr, to); 328 } else { 329 unlock_page(page); 330 331 if (PageHWPoison(page)) { 332 put_page(page); 333 retval = -EIO; 334 break; 335 } 336 337 /* 338 * We have the page, copy it to user space buffer. 339 */ 340 copied = copy_page_to_iter(page, offset, nr, to); 341 put_page(page); 342 } 343 offset += copied; 344 retval += copied; 345 if (copied != nr && iov_iter_count(to)) { 346 if (!retval) 347 retval = -EFAULT; 348 break; 349 } 350 index += offset >> huge_page_shift(h); 351 offset &= ~huge_page_mask(h); 352 } 353 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 354 return retval; 355 } 356 357 static int hugetlbfs_write_begin(struct file *file, 358 struct address_space *mapping, 359 loff_t pos, unsigned len, 360 struct page **pagep, void **fsdata) 361 { 362 return -EINVAL; 363 } 364 365 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 366 loff_t pos, unsigned len, unsigned copied, 367 struct page *page, void *fsdata) 368 { 369 BUG(); 370 return -EINVAL; 371 } 372 373 static void hugetlb_delete_from_page_cache(struct folio *folio) 374 { 375 folio_clear_dirty(folio); 376 folio_clear_uptodate(folio); 377 filemap_remove_folio(folio); 378 } 379 380 /* 381 * Called with i_mmap_rwsem held for inode based vma maps. This makes 382 * sure vma (and vm_mm) will not go away. We also hold the hugetlb fault 383 * mutex for the page in the mapping. So, we can not race with page being 384 * faulted into the vma. 385 */ 386 static bool hugetlb_vma_maps_page(struct vm_area_struct *vma, 387 unsigned long addr, struct page *page) 388 { 389 pte_t *ptep, pte; 390 391 ptep = huge_pte_offset(vma->vm_mm, addr, 392 huge_page_size(hstate_vma(vma))); 393 394 if (!ptep) 395 return false; 396 397 pte = huge_ptep_get(ptep); 398 if (huge_pte_none(pte) || !pte_present(pte)) 399 return false; 400 401 if (pte_page(pte) == page) 402 return true; 403 404 return false; 405 } 406 407 /* 408 * Can vma_offset_start/vma_offset_end overflow on 32-bit arches? 409 * No, because the interval tree returns us only those vmas 410 * which overlap the truncated area starting at pgoff, 411 * and no vma on a 32-bit arch can span beyond the 4GB. 412 */ 413 static unsigned long vma_offset_start(struct vm_area_struct *vma, pgoff_t start) 414 { 415 if (vma->vm_pgoff < start) 416 return (start - vma->vm_pgoff) << PAGE_SHIFT; 417 else 418 return 0; 419 } 420 421 static unsigned long vma_offset_end(struct vm_area_struct *vma, pgoff_t end) 422 { 423 unsigned long t_end; 424 425 if (!end) 426 return vma->vm_end; 427 428 t_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) + vma->vm_start; 429 if (t_end > vma->vm_end) 430 t_end = vma->vm_end; 431 return t_end; 432 } 433 434 /* 435 * Called with hugetlb fault mutex held. Therefore, no more mappings to 436 * this folio can be created while executing the routine. 437 */ 438 static void hugetlb_unmap_file_folio(struct hstate *h, 439 struct address_space *mapping, 440 struct folio *folio, pgoff_t index) 441 { 442 struct rb_root_cached *root = &mapping->i_mmap; 443 struct hugetlb_vma_lock *vma_lock; 444 struct page *page = &folio->page; 445 struct vm_area_struct *vma; 446 unsigned long v_start; 447 unsigned long v_end; 448 pgoff_t start, end; 449 450 start = index * pages_per_huge_page(h); 451 end = (index + 1) * pages_per_huge_page(h); 452 453 i_mmap_lock_write(mapping); 454 retry: 455 vma_lock = NULL; 456 vma_interval_tree_foreach(vma, root, start, end - 1) { 457 v_start = vma_offset_start(vma, start); 458 v_end = vma_offset_end(vma, end); 459 460 if (!hugetlb_vma_maps_page(vma, vma->vm_start + v_start, page)) 461 continue; 462 463 if (!hugetlb_vma_trylock_write(vma)) { 464 vma_lock = vma->vm_private_data; 465 /* 466 * If we can not get vma lock, we need to drop 467 * immap_sema and take locks in order. First, 468 * take a ref on the vma_lock structure so that 469 * we can be guaranteed it will not go away when 470 * dropping immap_sema. 471 */ 472 kref_get(&vma_lock->refs); 473 break; 474 } 475 476 unmap_hugepage_range(vma, vma->vm_start + v_start, v_end, 477 NULL, ZAP_FLAG_DROP_MARKER); 478 hugetlb_vma_unlock_write(vma); 479 } 480 481 i_mmap_unlock_write(mapping); 482 483 if (vma_lock) { 484 /* 485 * Wait on vma_lock. We know it is still valid as we have 486 * a reference. We must 'open code' vma locking as we do 487 * not know if vma_lock is still attached to vma. 488 */ 489 down_write(&vma_lock->rw_sema); 490 i_mmap_lock_write(mapping); 491 492 vma = vma_lock->vma; 493 if (!vma) { 494 /* 495 * If lock is no longer attached to vma, then just 496 * unlock, drop our reference and retry looking for 497 * other vmas. 498 */ 499 up_write(&vma_lock->rw_sema); 500 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 501 goto retry; 502 } 503 504 /* 505 * vma_lock is still attached to vma. Check to see if vma 506 * still maps page and if so, unmap. 507 */ 508 v_start = vma_offset_start(vma, start); 509 v_end = vma_offset_end(vma, end); 510 if (hugetlb_vma_maps_page(vma, vma->vm_start + v_start, page)) 511 unmap_hugepage_range(vma, vma->vm_start + v_start, 512 v_end, NULL, 513 ZAP_FLAG_DROP_MARKER); 514 515 kref_put(&vma_lock->refs, hugetlb_vma_lock_release); 516 hugetlb_vma_unlock_write(vma); 517 518 goto retry; 519 } 520 } 521 522 static void 523 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end, 524 zap_flags_t zap_flags) 525 { 526 struct vm_area_struct *vma; 527 528 /* 529 * end == 0 indicates that the entire range after start should be 530 * unmapped. Note, end is exclusive, whereas the interval tree takes 531 * an inclusive "last". 532 */ 533 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) { 534 unsigned long v_start; 535 unsigned long v_end; 536 537 if (!hugetlb_vma_trylock_write(vma)) 538 continue; 539 540 v_start = vma_offset_start(vma, start); 541 v_end = vma_offset_end(vma, end); 542 543 unmap_hugepage_range(vma, vma->vm_start + v_start, v_end, 544 NULL, zap_flags); 545 546 /* 547 * Note that vma lock only exists for shared/non-private 548 * vmas. Therefore, lock is not held when calling 549 * unmap_hugepage_range for private vmas. 550 */ 551 hugetlb_vma_unlock_write(vma); 552 } 553 } 554 555 /* 556 * Called with hugetlb fault mutex held. 557 * Returns true if page was actually removed, false otherwise. 558 */ 559 static bool remove_inode_single_folio(struct hstate *h, struct inode *inode, 560 struct address_space *mapping, 561 struct folio *folio, pgoff_t index, 562 bool truncate_op) 563 { 564 bool ret = false; 565 566 /* 567 * If folio is mapped, it was faulted in after being 568 * unmapped in caller. Unmap (again) while holding 569 * the fault mutex. The mutex will prevent faults 570 * until we finish removing the folio. 571 */ 572 if (unlikely(folio_mapped(folio))) 573 hugetlb_unmap_file_folio(h, mapping, folio, index); 574 575 folio_lock(folio); 576 /* 577 * We must remove the folio from page cache before removing 578 * the region/ reserve map (hugetlb_unreserve_pages). In 579 * rare out of memory conditions, removal of the region/reserve 580 * map could fail. Correspondingly, the subpool and global 581 * reserve usage count can need to be adjusted. 582 */ 583 VM_BUG_ON_FOLIO(folio_test_hugetlb_restore_reserve(folio), folio); 584 hugetlb_delete_from_page_cache(folio); 585 ret = true; 586 if (!truncate_op) { 587 if (unlikely(hugetlb_unreserve_pages(inode, index, 588 index + 1, 1))) 589 hugetlb_fix_reserve_counts(inode); 590 } 591 592 folio_unlock(folio); 593 return ret; 594 } 595 596 /* 597 * remove_inode_hugepages handles two distinct cases: truncation and hole 598 * punch. There are subtle differences in operation for each case. 599 * 600 * truncation is indicated by end of range being LLONG_MAX 601 * In this case, we first scan the range and release found pages. 602 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve 603 * maps and global counts. Page faults can race with truncation. 604 * During faults, hugetlb_no_page() checks i_size before page allocation, 605 * and again after obtaining page table lock. It will 'back out' 606 * allocations in the truncated range. 607 * hole punch is indicated if end is not LLONG_MAX 608 * In the hole punch case we scan the range and release found pages. 609 * Only when releasing a page is the associated region/reserve map 610 * deleted. The region/reserve map for ranges without associated 611 * pages are not modified. Page faults can race with hole punch. 612 * This is indicated if we find a mapped page. 613 * Note: If the passed end of range value is beyond the end of file, but 614 * not LLONG_MAX this routine still performs a hole punch operation. 615 */ 616 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 617 loff_t lend) 618 { 619 struct hstate *h = hstate_inode(inode); 620 struct address_space *mapping = &inode->i_data; 621 const pgoff_t start = lstart >> huge_page_shift(h); 622 const pgoff_t end = lend >> huge_page_shift(h); 623 struct folio_batch fbatch; 624 pgoff_t next, index; 625 int i, freed = 0; 626 bool truncate_op = (lend == LLONG_MAX); 627 628 folio_batch_init(&fbatch); 629 next = start; 630 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) { 631 for (i = 0; i < folio_batch_count(&fbatch); ++i) { 632 struct folio *folio = fbatch.folios[i]; 633 u32 hash = 0; 634 635 index = folio->index; 636 hash = hugetlb_fault_mutex_hash(mapping, index); 637 mutex_lock(&hugetlb_fault_mutex_table[hash]); 638 639 /* 640 * Remove folio that was part of folio_batch. 641 */ 642 if (remove_inode_single_folio(h, inode, mapping, folio, 643 index, truncate_op)) 644 freed++; 645 646 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 647 } 648 folio_batch_release(&fbatch); 649 cond_resched(); 650 } 651 652 if (truncate_op) 653 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); 654 } 655 656 static void hugetlbfs_evict_inode(struct inode *inode) 657 { 658 struct resv_map *resv_map; 659 660 remove_inode_hugepages(inode, 0, LLONG_MAX); 661 662 /* 663 * Get the resv_map from the address space embedded in the inode. 664 * This is the address space which points to any resv_map allocated 665 * at inode creation time. If this is a device special inode, 666 * i_mapping may not point to the original address space. 667 */ 668 resv_map = (struct resv_map *)(&inode->i_data)->private_data; 669 /* Only regular and link inodes have associated reserve maps */ 670 if (resv_map) 671 resv_map_release(&resv_map->refs); 672 clear_inode(inode); 673 } 674 675 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset) 676 { 677 pgoff_t pgoff; 678 struct address_space *mapping = inode->i_mapping; 679 struct hstate *h = hstate_inode(inode); 680 681 BUG_ON(offset & ~huge_page_mask(h)); 682 pgoff = offset >> PAGE_SHIFT; 683 684 i_size_write(inode, offset); 685 i_mmap_lock_write(mapping); 686 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 687 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0, 688 ZAP_FLAG_DROP_MARKER); 689 i_mmap_unlock_write(mapping); 690 remove_inode_hugepages(inode, offset, LLONG_MAX); 691 } 692 693 static void hugetlbfs_zero_partial_page(struct hstate *h, 694 struct address_space *mapping, 695 loff_t start, 696 loff_t end) 697 { 698 pgoff_t idx = start >> huge_page_shift(h); 699 struct folio *folio; 700 701 folio = filemap_lock_folio(mapping, idx); 702 if (!folio) 703 return; 704 705 start = start & ~huge_page_mask(h); 706 end = end & ~huge_page_mask(h); 707 if (!end) 708 end = huge_page_size(h); 709 710 folio_zero_segment(folio, (size_t)start, (size_t)end); 711 712 folio_unlock(folio); 713 folio_put(folio); 714 } 715 716 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 717 { 718 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 719 struct address_space *mapping = inode->i_mapping; 720 struct hstate *h = hstate_inode(inode); 721 loff_t hpage_size = huge_page_size(h); 722 loff_t hole_start, hole_end; 723 724 /* 725 * hole_start and hole_end indicate the full pages within the hole. 726 */ 727 hole_start = round_up(offset, hpage_size); 728 hole_end = round_down(offset + len, hpage_size); 729 730 inode_lock(inode); 731 732 /* protected by i_rwsem */ 733 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 734 inode_unlock(inode); 735 return -EPERM; 736 } 737 738 i_mmap_lock_write(mapping); 739 740 /* If range starts before first full page, zero partial page. */ 741 if (offset < hole_start) 742 hugetlbfs_zero_partial_page(h, mapping, 743 offset, min(offset + len, hole_start)); 744 745 /* Unmap users of full pages in the hole. */ 746 if (hole_end > hole_start) { 747 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 748 hugetlb_vmdelete_list(&mapping->i_mmap, 749 hole_start >> PAGE_SHIFT, 750 hole_end >> PAGE_SHIFT, 0); 751 } 752 753 /* If range extends beyond last full page, zero partial page. */ 754 if ((offset + len) > hole_end && (offset + len) > hole_start) 755 hugetlbfs_zero_partial_page(h, mapping, 756 hole_end, offset + len); 757 758 i_mmap_unlock_write(mapping); 759 760 /* Remove full pages from the file. */ 761 if (hole_end > hole_start) 762 remove_inode_hugepages(inode, hole_start, hole_end); 763 764 inode_unlock(inode); 765 766 return 0; 767 } 768 769 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 770 loff_t len) 771 { 772 struct inode *inode = file_inode(file); 773 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 774 struct address_space *mapping = inode->i_mapping; 775 struct hstate *h = hstate_inode(inode); 776 struct vm_area_struct pseudo_vma; 777 struct mm_struct *mm = current->mm; 778 loff_t hpage_size = huge_page_size(h); 779 unsigned long hpage_shift = huge_page_shift(h); 780 pgoff_t start, index, end; 781 int error; 782 u32 hash; 783 784 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 785 return -EOPNOTSUPP; 786 787 if (mode & FALLOC_FL_PUNCH_HOLE) 788 return hugetlbfs_punch_hole(inode, offset, len); 789 790 /* 791 * Default preallocate case. 792 * For this range, start is rounded down and end is rounded up 793 * as well as being converted to page offsets. 794 */ 795 start = offset >> hpage_shift; 796 end = (offset + len + hpage_size - 1) >> hpage_shift; 797 798 inode_lock(inode); 799 800 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 801 error = inode_newsize_ok(inode, offset + len); 802 if (error) 803 goto out; 804 805 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 806 error = -EPERM; 807 goto out; 808 } 809 810 /* 811 * Initialize a pseudo vma as this is required by the huge page 812 * allocation routines. If NUMA is configured, use page index 813 * as input to create an allocation policy. 814 */ 815 vma_init(&pseudo_vma, mm); 816 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 817 pseudo_vma.vm_file = file; 818 819 for (index = start; index < end; index++) { 820 /* 821 * This is supposed to be the vaddr where the page is being 822 * faulted in, but we have no vaddr here. 823 */ 824 struct page *page; 825 unsigned long addr; 826 827 cond_resched(); 828 829 /* 830 * fallocate(2) manpage permits EINTR; we may have been 831 * interrupted because we are using up too much memory. 832 */ 833 if (signal_pending(current)) { 834 error = -EINTR; 835 break; 836 } 837 838 /* Set numa allocation policy based on index */ 839 hugetlb_set_vma_policy(&pseudo_vma, inode, index); 840 841 /* addr is the offset within the file (zero based) */ 842 addr = index * hpage_size; 843 844 /* mutex taken here, fault path and hole punch */ 845 hash = hugetlb_fault_mutex_hash(mapping, index); 846 mutex_lock(&hugetlb_fault_mutex_table[hash]); 847 848 /* See if already present in mapping to avoid alloc/free */ 849 page = find_get_page(mapping, index); 850 if (page) { 851 put_page(page); 852 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 853 hugetlb_drop_vma_policy(&pseudo_vma); 854 continue; 855 } 856 857 /* 858 * Allocate page without setting the avoid_reserve argument. 859 * There certainly are no reserves associated with the 860 * pseudo_vma. However, there could be shared mappings with 861 * reserves for the file at the inode level. If we fallocate 862 * pages in these areas, we need to consume the reserves 863 * to keep reservation accounting consistent. 864 */ 865 page = alloc_huge_page(&pseudo_vma, addr, 0); 866 hugetlb_drop_vma_policy(&pseudo_vma); 867 if (IS_ERR(page)) { 868 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 869 error = PTR_ERR(page); 870 goto out; 871 } 872 clear_huge_page(page, addr, pages_per_huge_page(h)); 873 __SetPageUptodate(page); 874 error = hugetlb_add_to_page_cache(page, mapping, index); 875 if (unlikely(error)) { 876 restore_reserve_on_error(h, &pseudo_vma, addr, page); 877 put_page(page); 878 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 879 goto out; 880 } 881 882 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 883 884 SetHPageMigratable(page); 885 /* 886 * unlock_page because locked by hugetlb_add_to_page_cache() 887 * put_page() due to reference from alloc_huge_page() 888 */ 889 unlock_page(page); 890 put_page(page); 891 } 892 893 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 894 i_size_write(inode, offset + len); 895 inode->i_ctime = current_time(inode); 896 out: 897 inode_unlock(inode); 898 return error; 899 } 900 901 static int hugetlbfs_setattr(struct user_namespace *mnt_userns, 902 struct dentry *dentry, struct iattr *attr) 903 { 904 struct inode *inode = d_inode(dentry); 905 struct hstate *h = hstate_inode(inode); 906 int error; 907 unsigned int ia_valid = attr->ia_valid; 908 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 909 910 error = setattr_prepare(&init_user_ns, dentry, attr); 911 if (error) 912 return error; 913 914 if (ia_valid & ATTR_SIZE) { 915 loff_t oldsize = inode->i_size; 916 loff_t newsize = attr->ia_size; 917 918 if (newsize & ~huge_page_mask(h)) 919 return -EINVAL; 920 /* protected by i_rwsem */ 921 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 922 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 923 return -EPERM; 924 hugetlb_vmtruncate(inode, newsize); 925 } 926 927 setattr_copy(&init_user_ns, inode, attr); 928 mark_inode_dirty(inode); 929 return 0; 930 } 931 932 static struct inode *hugetlbfs_get_root(struct super_block *sb, 933 struct hugetlbfs_fs_context *ctx) 934 { 935 struct inode *inode; 936 937 inode = new_inode(sb); 938 if (inode) { 939 inode->i_ino = get_next_ino(); 940 inode->i_mode = S_IFDIR | ctx->mode; 941 inode->i_uid = ctx->uid; 942 inode->i_gid = ctx->gid; 943 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 944 inode->i_op = &hugetlbfs_dir_inode_operations; 945 inode->i_fop = &simple_dir_operations; 946 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 947 inc_nlink(inode); 948 lockdep_annotate_inode_mutex_key(inode); 949 } 950 return inode; 951 } 952 953 /* 954 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 955 * be taken from reclaim -- unlike regular filesystems. This needs an 956 * annotation because huge_pmd_share() does an allocation under hugetlb's 957 * i_mmap_rwsem. 958 */ 959 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 960 961 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 962 struct inode *dir, 963 umode_t mode, dev_t dev) 964 { 965 struct inode *inode; 966 struct resv_map *resv_map = NULL; 967 968 /* 969 * Reserve maps are only needed for inodes that can have associated 970 * page allocations. 971 */ 972 if (S_ISREG(mode) || S_ISLNK(mode)) { 973 resv_map = resv_map_alloc(); 974 if (!resv_map) 975 return NULL; 976 } 977 978 inode = new_inode(sb); 979 if (inode) { 980 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 981 982 inode->i_ino = get_next_ino(); 983 inode_init_owner(&init_user_ns, inode, dir, mode); 984 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 985 &hugetlbfs_i_mmap_rwsem_key); 986 inode->i_mapping->a_ops = &hugetlbfs_aops; 987 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 988 inode->i_mapping->private_data = resv_map; 989 info->seals = F_SEAL_SEAL; 990 switch (mode & S_IFMT) { 991 default: 992 init_special_inode(inode, mode, dev); 993 break; 994 case S_IFREG: 995 inode->i_op = &hugetlbfs_inode_operations; 996 inode->i_fop = &hugetlbfs_file_operations; 997 break; 998 case S_IFDIR: 999 inode->i_op = &hugetlbfs_dir_inode_operations; 1000 inode->i_fop = &simple_dir_operations; 1001 1002 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 1003 inc_nlink(inode); 1004 break; 1005 case S_IFLNK: 1006 inode->i_op = &page_symlink_inode_operations; 1007 inode_nohighmem(inode); 1008 break; 1009 } 1010 lockdep_annotate_inode_mutex_key(inode); 1011 } else { 1012 if (resv_map) 1013 kref_put(&resv_map->refs, resv_map_release); 1014 } 1015 1016 return inode; 1017 } 1018 1019 /* 1020 * File creation. Allocate an inode, and we're done.. 1021 */ 1022 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 1023 struct dentry *dentry, umode_t mode, dev_t dev) 1024 { 1025 struct inode *inode; 1026 1027 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 1028 if (!inode) 1029 return -ENOSPC; 1030 dir->i_ctime = dir->i_mtime = current_time(dir); 1031 d_instantiate(dentry, inode); 1032 dget(dentry);/* Extra count - pin the dentry in core */ 1033 return 0; 1034 } 1035 1036 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 1037 struct dentry *dentry, umode_t mode) 1038 { 1039 int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry, 1040 mode | S_IFDIR, 0); 1041 if (!retval) 1042 inc_nlink(dir); 1043 return retval; 1044 } 1045 1046 static int hugetlbfs_create(struct user_namespace *mnt_userns, 1047 struct inode *dir, struct dentry *dentry, 1048 umode_t mode, bool excl) 1049 { 1050 return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); 1051 } 1052 1053 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns, 1054 struct inode *dir, struct file *file, 1055 umode_t mode) 1056 { 1057 struct inode *inode; 1058 1059 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode | S_IFREG, 0); 1060 if (!inode) 1061 return -ENOSPC; 1062 dir->i_ctime = dir->i_mtime = current_time(dir); 1063 d_tmpfile(file, inode); 1064 return finish_open_simple(file, 0); 1065 } 1066 1067 static int hugetlbfs_symlink(struct user_namespace *mnt_userns, 1068 struct inode *dir, struct dentry *dentry, 1069 const char *symname) 1070 { 1071 struct inode *inode; 1072 int error = -ENOSPC; 1073 1074 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 1075 if (inode) { 1076 int l = strlen(symname)+1; 1077 error = page_symlink(inode, symname, l); 1078 if (!error) { 1079 d_instantiate(dentry, inode); 1080 dget(dentry); 1081 } else 1082 iput(inode); 1083 } 1084 dir->i_ctime = dir->i_mtime = current_time(dir); 1085 1086 return error; 1087 } 1088 1089 #ifdef CONFIG_MIGRATION 1090 static int hugetlbfs_migrate_folio(struct address_space *mapping, 1091 struct folio *dst, struct folio *src, 1092 enum migrate_mode mode) 1093 { 1094 int rc; 1095 1096 rc = migrate_huge_page_move_mapping(mapping, dst, src); 1097 if (rc != MIGRATEPAGE_SUCCESS) 1098 return rc; 1099 1100 if (hugetlb_folio_subpool(src)) { 1101 hugetlb_set_folio_subpool(dst, 1102 hugetlb_folio_subpool(src)); 1103 hugetlb_set_folio_subpool(src, NULL); 1104 } 1105 1106 if (mode != MIGRATE_SYNC_NO_COPY) 1107 folio_migrate_copy(dst, src); 1108 else 1109 folio_migrate_flags(dst, src); 1110 1111 return MIGRATEPAGE_SUCCESS; 1112 } 1113 #else 1114 #define hugetlbfs_migrate_folio NULL 1115 #endif 1116 1117 static int hugetlbfs_error_remove_page(struct address_space *mapping, 1118 struct page *page) 1119 { 1120 return 0; 1121 } 1122 1123 /* 1124 * Display the mount options in /proc/mounts. 1125 */ 1126 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 1127 { 1128 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 1129 struct hugepage_subpool *spool = sbinfo->spool; 1130 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 1131 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 1132 char mod; 1133 1134 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 1135 seq_printf(m, ",uid=%u", 1136 from_kuid_munged(&init_user_ns, sbinfo->uid)); 1137 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 1138 seq_printf(m, ",gid=%u", 1139 from_kgid_munged(&init_user_ns, sbinfo->gid)); 1140 if (sbinfo->mode != 0755) 1141 seq_printf(m, ",mode=%o", sbinfo->mode); 1142 if (sbinfo->max_inodes != -1) 1143 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 1144 1145 hpage_size /= 1024; 1146 mod = 'K'; 1147 if (hpage_size >= 1024) { 1148 hpage_size /= 1024; 1149 mod = 'M'; 1150 } 1151 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 1152 if (spool) { 1153 if (spool->max_hpages != -1) 1154 seq_printf(m, ",size=%llu", 1155 (unsigned long long)spool->max_hpages << hpage_shift); 1156 if (spool->min_hpages != -1) 1157 seq_printf(m, ",min_size=%llu", 1158 (unsigned long long)spool->min_hpages << hpage_shift); 1159 } 1160 return 0; 1161 } 1162 1163 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1164 { 1165 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 1166 struct hstate *h = hstate_inode(d_inode(dentry)); 1167 1168 buf->f_type = HUGETLBFS_MAGIC; 1169 buf->f_bsize = huge_page_size(h); 1170 if (sbinfo) { 1171 spin_lock(&sbinfo->stat_lock); 1172 /* If no limits set, just report 0 or -1 for max/free/used 1173 * blocks, like simple_statfs() */ 1174 if (sbinfo->spool) { 1175 long free_pages; 1176 1177 spin_lock_irq(&sbinfo->spool->lock); 1178 buf->f_blocks = sbinfo->spool->max_hpages; 1179 free_pages = sbinfo->spool->max_hpages 1180 - sbinfo->spool->used_hpages; 1181 buf->f_bavail = buf->f_bfree = free_pages; 1182 spin_unlock_irq(&sbinfo->spool->lock); 1183 buf->f_files = sbinfo->max_inodes; 1184 buf->f_ffree = sbinfo->free_inodes; 1185 } 1186 spin_unlock(&sbinfo->stat_lock); 1187 } 1188 buf->f_namelen = NAME_MAX; 1189 return 0; 1190 } 1191 1192 static void hugetlbfs_put_super(struct super_block *sb) 1193 { 1194 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1195 1196 if (sbi) { 1197 sb->s_fs_info = NULL; 1198 1199 if (sbi->spool) 1200 hugepage_put_subpool(sbi->spool); 1201 1202 kfree(sbi); 1203 } 1204 } 1205 1206 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1207 { 1208 if (sbinfo->free_inodes >= 0) { 1209 spin_lock(&sbinfo->stat_lock); 1210 if (unlikely(!sbinfo->free_inodes)) { 1211 spin_unlock(&sbinfo->stat_lock); 1212 return 0; 1213 } 1214 sbinfo->free_inodes--; 1215 spin_unlock(&sbinfo->stat_lock); 1216 } 1217 1218 return 1; 1219 } 1220 1221 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1222 { 1223 if (sbinfo->free_inodes >= 0) { 1224 spin_lock(&sbinfo->stat_lock); 1225 sbinfo->free_inodes++; 1226 spin_unlock(&sbinfo->stat_lock); 1227 } 1228 } 1229 1230 1231 static struct kmem_cache *hugetlbfs_inode_cachep; 1232 1233 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1234 { 1235 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1236 struct hugetlbfs_inode_info *p; 1237 1238 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1239 return NULL; 1240 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL); 1241 if (unlikely(!p)) { 1242 hugetlbfs_inc_free_inodes(sbinfo); 1243 return NULL; 1244 } 1245 1246 /* 1247 * Any time after allocation, hugetlbfs_destroy_inode can be called 1248 * for the inode. mpol_free_shared_policy is unconditionally called 1249 * as part of hugetlbfs_destroy_inode. So, initialize policy here 1250 * in case of a quick call to destroy. 1251 * 1252 * Note that the policy is initialized even if we are creating a 1253 * private inode. This simplifies hugetlbfs_destroy_inode. 1254 */ 1255 mpol_shared_policy_init(&p->policy, NULL); 1256 1257 return &p->vfs_inode; 1258 } 1259 1260 static void hugetlbfs_free_inode(struct inode *inode) 1261 { 1262 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1263 } 1264 1265 static void hugetlbfs_destroy_inode(struct inode *inode) 1266 { 1267 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1268 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); 1269 } 1270 1271 static const struct address_space_operations hugetlbfs_aops = { 1272 .write_begin = hugetlbfs_write_begin, 1273 .write_end = hugetlbfs_write_end, 1274 .dirty_folio = noop_dirty_folio, 1275 .migrate_folio = hugetlbfs_migrate_folio, 1276 .error_remove_page = hugetlbfs_error_remove_page, 1277 }; 1278 1279 1280 static void init_once(void *foo) 1281 { 1282 struct hugetlbfs_inode_info *ei = foo; 1283 1284 inode_init_once(&ei->vfs_inode); 1285 } 1286 1287 const struct file_operations hugetlbfs_file_operations = { 1288 .read_iter = hugetlbfs_read_iter, 1289 .mmap = hugetlbfs_file_mmap, 1290 .fsync = noop_fsync, 1291 .get_unmapped_area = hugetlb_get_unmapped_area, 1292 .llseek = default_llseek, 1293 .fallocate = hugetlbfs_fallocate, 1294 }; 1295 1296 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1297 .create = hugetlbfs_create, 1298 .lookup = simple_lookup, 1299 .link = simple_link, 1300 .unlink = simple_unlink, 1301 .symlink = hugetlbfs_symlink, 1302 .mkdir = hugetlbfs_mkdir, 1303 .rmdir = simple_rmdir, 1304 .mknod = hugetlbfs_mknod, 1305 .rename = simple_rename, 1306 .setattr = hugetlbfs_setattr, 1307 .tmpfile = hugetlbfs_tmpfile, 1308 }; 1309 1310 static const struct inode_operations hugetlbfs_inode_operations = { 1311 .setattr = hugetlbfs_setattr, 1312 }; 1313 1314 static const struct super_operations hugetlbfs_ops = { 1315 .alloc_inode = hugetlbfs_alloc_inode, 1316 .free_inode = hugetlbfs_free_inode, 1317 .destroy_inode = hugetlbfs_destroy_inode, 1318 .evict_inode = hugetlbfs_evict_inode, 1319 .statfs = hugetlbfs_statfs, 1320 .put_super = hugetlbfs_put_super, 1321 .show_options = hugetlbfs_show_options, 1322 }; 1323 1324 /* 1325 * Convert size option passed from command line to number of huge pages 1326 * in the pool specified by hstate. Size option could be in bytes 1327 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1328 */ 1329 static long 1330 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1331 enum hugetlbfs_size_type val_type) 1332 { 1333 if (val_type == NO_SIZE) 1334 return -1; 1335 1336 if (val_type == SIZE_PERCENT) { 1337 size_opt <<= huge_page_shift(h); 1338 size_opt *= h->max_huge_pages; 1339 do_div(size_opt, 100); 1340 } 1341 1342 size_opt >>= huge_page_shift(h); 1343 return size_opt; 1344 } 1345 1346 /* 1347 * Parse one mount parameter. 1348 */ 1349 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1350 { 1351 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1352 struct fs_parse_result result; 1353 char *rest; 1354 unsigned long ps; 1355 int opt; 1356 1357 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1358 if (opt < 0) 1359 return opt; 1360 1361 switch (opt) { 1362 case Opt_uid: 1363 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 1364 if (!uid_valid(ctx->uid)) 1365 goto bad_val; 1366 return 0; 1367 1368 case Opt_gid: 1369 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 1370 if (!gid_valid(ctx->gid)) 1371 goto bad_val; 1372 return 0; 1373 1374 case Opt_mode: 1375 ctx->mode = result.uint_32 & 01777U; 1376 return 0; 1377 1378 case Opt_size: 1379 /* memparse() will accept a K/M/G without a digit */ 1380 if (!param->string || !isdigit(param->string[0])) 1381 goto bad_val; 1382 ctx->max_size_opt = memparse(param->string, &rest); 1383 ctx->max_val_type = SIZE_STD; 1384 if (*rest == '%') 1385 ctx->max_val_type = SIZE_PERCENT; 1386 return 0; 1387 1388 case Opt_nr_inodes: 1389 /* memparse() will accept a K/M/G without a digit */ 1390 if (!param->string || !isdigit(param->string[0])) 1391 goto bad_val; 1392 ctx->nr_inodes = memparse(param->string, &rest); 1393 return 0; 1394 1395 case Opt_pagesize: 1396 ps = memparse(param->string, &rest); 1397 ctx->hstate = size_to_hstate(ps); 1398 if (!ctx->hstate) { 1399 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M); 1400 return -EINVAL; 1401 } 1402 return 0; 1403 1404 case Opt_min_size: 1405 /* memparse() will accept a K/M/G without a digit */ 1406 if (!param->string || !isdigit(param->string[0])) 1407 goto bad_val; 1408 ctx->min_size_opt = memparse(param->string, &rest); 1409 ctx->min_val_type = SIZE_STD; 1410 if (*rest == '%') 1411 ctx->min_val_type = SIZE_PERCENT; 1412 return 0; 1413 1414 default: 1415 return -EINVAL; 1416 } 1417 1418 bad_val: 1419 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1420 param->string, param->key); 1421 } 1422 1423 /* 1424 * Validate the parsed options. 1425 */ 1426 static int hugetlbfs_validate(struct fs_context *fc) 1427 { 1428 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1429 1430 /* 1431 * Use huge page pool size (in hstate) to convert the size 1432 * options to number of huge pages. If NO_SIZE, -1 is returned. 1433 */ 1434 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1435 ctx->max_size_opt, 1436 ctx->max_val_type); 1437 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1438 ctx->min_size_opt, 1439 ctx->min_val_type); 1440 1441 /* 1442 * If max_size was specified, then min_size must be smaller 1443 */ 1444 if (ctx->max_val_type > NO_SIZE && 1445 ctx->min_hpages > ctx->max_hpages) { 1446 pr_err("Minimum size can not be greater than maximum size\n"); 1447 return -EINVAL; 1448 } 1449 1450 return 0; 1451 } 1452 1453 static int 1454 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1455 { 1456 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1457 struct hugetlbfs_sb_info *sbinfo; 1458 1459 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1460 if (!sbinfo) 1461 return -ENOMEM; 1462 sb->s_fs_info = sbinfo; 1463 spin_lock_init(&sbinfo->stat_lock); 1464 sbinfo->hstate = ctx->hstate; 1465 sbinfo->max_inodes = ctx->nr_inodes; 1466 sbinfo->free_inodes = ctx->nr_inodes; 1467 sbinfo->spool = NULL; 1468 sbinfo->uid = ctx->uid; 1469 sbinfo->gid = ctx->gid; 1470 sbinfo->mode = ctx->mode; 1471 1472 /* 1473 * Allocate and initialize subpool if maximum or minimum size is 1474 * specified. Any needed reservations (for minimum size) are taken 1475 * when the subpool is created. 1476 */ 1477 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1478 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1479 ctx->max_hpages, 1480 ctx->min_hpages); 1481 if (!sbinfo->spool) 1482 goto out_free; 1483 } 1484 sb->s_maxbytes = MAX_LFS_FILESIZE; 1485 sb->s_blocksize = huge_page_size(ctx->hstate); 1486 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1487 sb->s_magic = HUGETLBFS_MAGIC; 1488 sb->s_op = &hugetlbfs_ops; 1489 sb->s_time_gran = 1; 1490 1491 /* 1492 * Due to the special and limited functionality of hugetlbfs, it does 1493 * not work well as a stacking filesystem. 1494 */ 1495 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; 1496 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1497 if (!sb->s_root) 1498 goto out_free; 1499 return 0; 1500 out_free: 1501 kfree(sbinfo->spool); 1502 kfree(sbinfo); 1503 return -ENOMEM; 1504 } 1505 1506 static int hugetlbfs_get_tree(struct fs_context *fc) 1507 { 1508 int err = hugetlbfs_validate(fc); 1509 if (err) 1510 return err; 1511 return get_tree_nodev(fc, hugetlbfs_fill_super); 1512 } 1513 1514 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1515 { 1516 kfree(fc->fs_private); 1517 } 1518 1519 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1520 .free = hugetlbfs_fs_context_free, 1521 .parse_param = hugetlbfs_parse_param, 1522 .get_tree = hugetlbfs_get_tree, 1523 }; 1524 1525 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1526 { 1527 struct hugetlbfs_fs_context *ctx; 1528 1529 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1530 if (!ctx) 1531 return -ENOMEM; 1532 1533 ctx->max_hpages = -1; /* No limit on size by default */ 1534 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1535 ctx->uid = current_fsuid(); 1536 ctx->gid = current_fsgid(); 1537 ctx->mode = 0755; 1538 ctx->hstate = &default_hstate; 1539 ctx->min_hpages = -1; /* No default minimum size */ 1540 ctx->max_val_type = NO_SIZE; 1541 ctx->min_val_type = NO_SIZE; 1542 fc->fs_private = ctx; 1543 fc->ops = &hugetlbfs_fs_context_ops; 1544 return 0; 1545 } 1546 1547 static struct file_system_type hugetlbfs_fs_type = { 1548 .name = "hugetlbfs", 1549 .init_fs_context = hugetlbfs_init_fs_context, 1550 .parameters = hugetlb_fs_parameters, 1551 .kill_sb = kill_litter_super, 1552 }; 1553 1554 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1555 1556 static int can_do_hugetlb_shm(void) 1557 { 1558 kgid_t shm_group; 1559 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1560 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1561 } 1562 1563 static int get_hstate_idx(int page_size_log) 1564 { 1565 struct hstate *h = hstate_sizelog(page_size_log); 1566 1567 if (!h) 1568 return -1; 1569 return hstate_index(h); 1570 } 1571 1572 /* 1573 * Note that size should be aligned to proper hugepage size in caller side, 1574 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1575 */ 1576 struct file *hugetlb_file_setup(const char *name, size_t size, 1577 vm_flags_t acctflag, int creat_flags, 1578 int page_size_log) 1579 { 1580 struct inode *inode; 1581 struct vfsmount *mnt; 1582 int hstate_idx; 1583 struct file *file; 1584 1585 hstate_idx = get_hstate_idx(page_size_log); 1586 if (hstate_idx < 0) 1587 return ERR_PTR(-ENODEV); 1588 1589 mnt = hugetlbfs_vfsmount[hstate_idx]; 1590 if (!mnt) 1591 return ERR_PTR(-ENOENT); 1592 1593 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1594 struct ucounts *ucounts = current_ucounts(); 1595 1596 if (user_shm_lock(size, ucounts)) { 1597 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n", 1598 current->comm, current->pid); 1599 user_shm_unlock(size, ucounts); 1600 } 1601 return ERR_PTR(-EPERM); 1602 } 1603 1604 file = ERR_PTR(-ENOSPC); 1605 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0); 1606 if (!inode) 1607 goto out; 1608 if (creat_flags == HUGETLB_SHMFS_INODE) 1609 inode->i_flags |= S_PRIVATE; 1610 1611 inode->i_size = size; 1612 clear_nlink(inode); 1613 1614 if (!hugetlb_reserve_pages(inode, 0, 1615 size >> huge_page_shift(hstate_inode(inode)), NULL, 1616 acctflag)) 1617 file = ERR_PTR(-ENOMEM); 1618 else 1619 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1620 &hugetlbfs_file_operations); 1621 if (!IS_ERR(file)) 1622 return file; 1623 1624 iput(inode); 1625 out: 1626 return file; 1627 } 1628 1629 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1630 { 1631 struct fs_context *fc; 1632 struct vfsmount *mnt; 1633 1634 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1635 if (IS_ERR(fc)) { 1636 mnt = ERR_CAST(fc); 1637 } else { 1638 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1639 ctx->hstate = h; 1640 mnt = fc_mount(fc); 1641 put_fs_context(fc); 1642 } 1643 if (IS_ERR(mnt)) 1644 pr_err("Cannot mount internal hugetlbfs for page size %luK", 1645 huge_page_size(h) / SZ_1K); 1646 return mnt; 1647 } 1648 1649 static int __init init_hugetlbfs_fs(void) 1650 { 1651 struct vfsmount *mnt; 1652 struct hstate *h; 1653 int error; 1654 int i; 1655 1656 if (!hugepages_supported()) { 1657 pr_info("disabling because there are no supported hugepage sizes\n"); 1658 return -ENOTSUPP; 1659 } 1660 1661 error = -ENOMEM; 1662 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1663 sizeof(struct hugetlbfs_inode_info), 1664 0, SLAB_ACCOUNT, init_once); 1665 if (hugetlbfs_inode_cachep == NULL) 1666 goto out; 1667 1668 error = register_filesystem(&hugetlbfs_fs_type); 1669 if (error) 1670 goto out_free; 1671 1672 /* default hstate mount is required */ 1673 mnt = mount_one_hugetlbfs(&default_hstate); 1674 if (IS_ERR(mnt)) { 1675 error = PTR_ERR(mnt); 1676 goto out_unreg; 1677 } 1678 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1679 1680 /* other hstates are optional */ 1681 i = 0; 1682 for_each_hstate(h) { 1683 if (i == default_hstate_idx) { 1684 i++; 1685 continue; 1686 } 1687 1688 mnt = mount_one_hugetlbfs(h); 1689 if (IS_ERR(mnt)) 1690 hugetlbfs_vfsmount[i] = NULL; 1691 else 1692 hugetlbfs_vfsmount[i] = mnt; 1693 i++; 1694 } 1695 1696 return 0; 1697 1698 out_unreg: 1699 (void)unregister_filesystem(&hugetlbfs_fs_type); 1700 out_free: 1701 kmem_cache_destroy(hugetlbfs_inode_cachep); 1702 out: 1703 return error; 1704 } 1705 fs_initcall(init_hugetlbfs_fs) 1706