1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/sched/signal.h> /* remove ASAP */ 15 #include <linux/falloc.h> 16 #include <linux/fs.h> 17 #include <linux/mount.h> 18 #include <linux/file.h> 19 #include <linux/kernel.h> 20 #include <linux/writeback.h> 21 #include <linux/pagemap.h> 22 #include <linux/highmem.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/capability.h> 26 #include <linux/ctype.h> 27 #include <linux/backing-dev.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagevec.h> 30 #include <linux/parser.h> 31 #include <linux/mman.h> 32 #include <linux/slab.h> 33 #include <linux/dnotify.h> 34 #include <linux/statfs.h> 35 #include <linux/security.h> 36 #include <linux/magic.h> 37 #include <linux/migrate.h> 38 #include <linux/uio.h> 39 40 #include <linux/uaccess.h> 41 42 static const struct super_operations hugetlbfs_ops; 43 static const struct address_space_operations hugetlbfs_aops; 44 const struct file_operations hugetlbfs_file_operations; 45 static const struct inode_operations hugetlbfs_dir_inode_operations; 46 static const struct inode_operations hugetlbfs_inode_operations; 47 48 struct hugetlbfs_config { 49 struct hstate *hstate; 50 long max_hpages; 51 long nr_inodes; 52 long min_hpages; 53 kuid_t uid; 54 kgid_t gid; 55 umode_t mode; 56 }; 57 58 int sysctl_hugetlb_shm_group; 59 60 enum { 61 Opt_size, Opt_nr_inodes, 62 Opt_mode, Opt_uid, Opt_gid, 63 Opt_pagesize, Opt_min_size, 64 Opt_err, 65 }; 66 67 static const match_table_t tokens = { 68 {Opt_size, "size=%s"}, 69 {Opt_nr_inodes, "nr_inodes=%s"}, 70 {Opt_mode, "mode=%o"}, 71 {Opt_uid, "uid=%u"}, 72 {Opt_gid, "gid=%u"}, 73 {Opt_pagesize, "pagesize=%s"}, 74 {Opt_min_size, "min_size=%s"}, 75 {Opt_err, NULL}, 76 }; 77 78 #ifdef CONFIG_NUMA 79 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 80 struct inode *inode, pgoff_t index) 81 { 82 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, 83 index); 84 } 85 86 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 87 { 88 mpol_cond_put(vma->vm_policy); 89 } 90 #else 91 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 92 struct inode *inode, pgoff_t index) 93 { 94 } 95 96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 97 { 98 } 99 #endif 100 101 static void huge_pagevec_release(struct pagevec *pvec) 102 { 103 int i; 104 105 for (i = 0; i < pagevec_count(pvec); ++i) 106 put_page(pvec->pages[i]); 107 108 pagevec_reinit(pvec); 109 } 110 111 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 112 { 113 struct inode *inode = file_inode(file); 114 loff_t len, vma_len; 115 int ret; 116 struct hstate *h = hstate_file(file); 117 118 /* 119 * vma address alignment (but not the pgoff alignment) has 120 * already been checked by prepare_hugepage_range. If you add 121 * any error returns here, do so after setting VM_HUGETLB, so 122 * is_vm_hugetlb_page tests below unmap_region go the right 123 * way when do_mmap_pgoff unwinds (may be important on powerpc 124 * and ia64). 125 */ 126 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; 127 vma->vm_ops = &hugetlb_vm_ops; 128 129 /* 130 * Offset passed to mmap (before page shift) could have been 131 * negative when represented as a (l)off_t. 132 */ 133 if (((loff_t)vma->vm_pgoff << PAGE_SHIFT) < 0) 134 return -EINVAL; 135 136 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 137 return -EINVAL; 138 139 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 140 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 141 /* check for overflow */ 142 if (len < vma_len) 143 return -EINVAL; 144 145 inode_lock(inode); 146 file_accessed(file); 147 148 ret = -ENOMEM; 149 if (hugetlb_reserve_pages(inode, 150 vma->vm_pgoff >> huge_page_order(h), 151 len >> huge_page_shift(h), vma, 152 vma->vm_flags)) 153 goto out; 154 155 ret = 0; 156 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 157 i_size_write(inode, len); 158 out: 159 inode_unlock(inode); 160 161 return ret; 162 } 163 164 /* 165 * Called under down_write(mmap_sem). 166 */ 167 168 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 169 static unsigned long 170 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 171 unsigned long len, unsigned long pgoff, unsigned long flags) 172 { 173 struct mm_struct *mm = current->mm; 174 struct vm_area_struct *vma; 175 struct hstate *h = hstate_file(file); 176 struct vm_unmapped_area_info info; 177 178 if (len & ~huge_page_mask(h)) 179 return -EINVAL; 180 if (len > TASK_SIZE) 181 return -ENOMEM; 182 183 if (flags & MAP_FIXED) { 184 if (prepare_hugepage_range(file, addr, len)) 185 return -EINVAL; 186 return addr; 187 } 188 189 if (addr) { 190 addr = ALIGN(addr, huge_page_size(h)); 191 vma = find_vma(mm, addr); 192 if (TASK_SIZE - len >= addr && 193 (!vma || addr + len <= vm_start_gap(vma))) 194 return addr; 195 } 196 197 info.flags = 0; 198 info.length = len; 199 info.low_limit = TASK_UNMAPPED_BASE; 200 info.high_limit = TASK_SIZE; 201 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 202 info.align_offset = 0; 203 return vm_unmapped_area(&info); 204 } 205 #endif 206 207 static size_t 208 hugetlbfs_read_actor(struct page *page, unsigned long offset, 209 struct iov_iter *to, unsigned long size) 210 { 211 size_t copied = 0; 212 int i, chunksize; 213 214 /* Find which 4k chunk and offset with in that chunk */ 215 i = offset >> PAGE_SHIFT; 216 offset = offset & ~PAGE_MASK; 217 218 while (size) { 219 size_t n; 220 chunksize = PAGE_SIZE; 221 if (offset) 222 chunksize -= offset; 223 if (chunksize > size) 224 chunksize = size; 225 n = copy_page_to_iter(&page[i], offset, chunksize, to); 226 copied += n; 227 if (n != chunksize) 228 return copied; 229 offset = 0; 230 size -= chunksize; 231 i++; 232 } 233 return copied; 234 } 235 236 /* 237 * Support for read() - Find the page attached to f_mapping and copy out the 238 * data. Its *very* similar to do_generic_mapping_read(), we can't use that 239 * since it has PAGE_SIZE assumptions. 240 */ 241 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 242 { 243 struct file *file = iocb->ki_filp; 244 struct hstate *h = hstate_file(file); 245 struct address_space *mapping = file->f_mapping; 246 struct inode *inode = mapping->host; 247 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 248 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 249 unsigned long end_index; 250 loff_t isize; 251 ssize_t retval = 0; 252 253 while (iov_iter_count(to)) { 254 struct page *page; 255 size_t nr, copied; 256 257 /* nr is the maximum number of bytes to copy from this page */ 258 nr = huge_page_size(h); 259 isize = i_size_read(inode); 260 if (!isize) 261 break; 262 end_index = (isize - 1) >> huge_page_shift(h); 263 if (index > end_index) 264 break; 265 if (index == end_index) { 266 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 267 if (nr <= offset) 268 break; 269 } 270 nr = nr - offset; 271 272 /* Find the page */ 273 page = find_lock_page(mapping, index); 274 if (unlikely(page == NULL)) { 275 /* 276 * We have a HOLE, zero out the user-buffer for the 277 * length of the hole or request. 278 */ 279 copied = iov_iter_zero(nr, to); 280 } else { 281 unlock_page(page); 282 283 /* 284 * We have the page, copy it to user space buffer. 285 */ 286 copied = hugetlbfs_read_actor(page, offset, to, nr); 287 put_page(page); 288 } 289 offset += copied; 290 retval += copied; 291 if (copied != nr && iov_iter_count(to)) { 292 if (!retval) 293 retval = -EFAULT; 294 break; 295 } 296 index += offset >> huge_page_shift(h); 297 offset &= ~huge_page_mask(h); 298 } 299 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 300 return retval; 301 } 302 303 static int hugetlbfs_write_begin(struct file *file, 304 struct address_space *mapping, 305 loff_t pos, unsigned len, unsigned flags, 306 struct page **pagep, void **fsdata) 307 { 308 return -EINVAL; 309 } 310 311 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 312 loff_t pos, unsigned len, unsigned copied, 313 struct page *page, void *fsdata) 314 { 315 BUG(); 316 return -EINVAL; 317 } 318 319 static void remove_huge_page(struct page *page) 320 { 321 ClearPageDirty(page); 322 ClearPageUptodate(page); 323 delete_from_page_cache(page); 324 } 325 326 static void 327 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end) 328 { 329 struct vm_area_struct *vma; 330 331 /* 332 * end == 0 indicates that the entire range after 333 * start should be unmapped. 334 */ 335 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) { 336 unsigned long v_offset; 337 unsigned long v_end; 338 339 /* 340 * Can the expression below overflow on 32-bit arches? 341 * No, because the interval tree returns us only those vmas 342 * which overlap the truncated area starting at pgoff, 343 * and no vma on a 32-bit arch can span beyond the 4GB. 344 */ 345 if (vma->vm_pgoff < start) 346 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 347 else 348 v_offset = 0; 349 350 if (!end) 351 v_end = vma->vm_end; 352 else { 353 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) 354 + vma->vm_start; 355 if (v_end > vma->vm_end) 356 v_end = vma->vm_end; 357 } 358 359 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end, 360 NULL); 361 } 362 } 363 364 /* 365 * remove_inode_hugepages handles two distinct cases: truncation and hole 366 * punch. There are subtle differences in operation for each case. 367 * 368 * truncation is indicated by end of range being LLONG_MAX 369 * In this case, we first scan the range and release found pages. 370 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv 371 * maps and global counts. Page faults can not race with truncation 372 * in this routine. hugetlb_no_page() prevents page faults in the 373 * truncated range. It checks i_size before allocation, and again after 374 * with the page table lock for the page held. The same lock must be 375 * acquired to unmap a page. 376 * hole punch is indicated if end is not LLONG_MAX 377 * In the hole punch case we scan the range and release found pages. 378 * Only when releasing a page is the associated region/reserv map 379 * deleted. The region/reserv map for ranges without associated 380 * pages are not modified. Page faults can race with hole punch. 381 * This is indicated if we find a mapped page. 382 * Note: If the passed end of range value is beyond the end of file, but 383 * not LLONG_MAX this routine still performs a hole punch operation. 384 */ 385 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 386 loff_t lend) 387 { 388 struct hstate *h = hstate_inode(inode); 389 struct address_space *mapping = &inode->i_data; 390 const pgoff_t start = lstart >> huge_page_shift(h); 391 const pgoff_t end = lend >> huge_page_shift(h); 392 struct vm_area_struct pseudo_vma; 393 struct pagevec pvec; 394 pgoff_t next, index; 395 int i, freed = 0; 396 bool truncate_op = (lend == LLONG_MAX); 397 398 memset(&pseudo_vma, 0, sizeof(struct vm_area_struct)); 399 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 400 pagevec_init(&pvec); 401 next = start; 402 while (next < end) { 403 /* 404 * When no more pages are found, we are done. 405 */ 406 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1)) 407 break; 408 409 for (i = 0; i < pagevec_count(&pvec); ++i) { 410 struct page *page = pvec.pages[i]; 411 u32 hash; 412 413 index = page->index; 414 hash = hugetlb_fault_mutex_hash(h, current->mm, 415 &pseudo_vma, 416 mapping, index, 0); 417 mutex_lock(&hugetlb_fault_mutex_table[hash]); 418 419 /* 420 * If page is mapped, it was faulted in after being 421 * unmapped in caller. Unmap (again) now after taking 422 * the fault mutex. The mutex will prevent faults 423 * until we finish removing the page. 424 * 425 * This race can only happen in the hole punch case. 426 * Getting here in a truncate operation is a bug. 427 */ 428 if (unlikely(page_mapped(page))) { 429 BUG_ON(truncate_op); 430 431 i_mmap_lock_write(mapping); 432 hugetlb_vmdelete_list(&mapping->i_mmap, 433 index * pages_per_huge_page(h), 434 (index + 1) * pages_per_huge_page(h)); 435 i_mmap_unlock_write(mapping); 436 } 437 438 lock_page(page); 439 /* 440 * We must free the huge page and remove from page 441 * cache (remove_huge_page) BEFORE removing the 442 * region/reserve map (hugetlb_unreserve_pages). In 443 * rare out of memory conditions, removal of the 444 * region/reserve map could fail. Correspondingly, 445 * the subpool and global reserve usage count can need 446 * to be adjusted. 447 */ 448 VM_BUG_ON(PagePrivate(page)); 449 remove_huge_page(page); 450 freed++; 451 if (!truncate_op) { 452 if (unlikely(hugetlb_unreserve_pages(inode, 453 index, index + 1, 1))) 454 hugetlb_fix_reserve_counts(inode); 455 } 456 457 unlock_page(page); 458 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 459 } 460 huge_pagevec_release(&pvec); 461 cond_resched(); 462 } 463 464 if (truncate_op) 465 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); 466 } 467 468 static void hugetlbfs_evict_inode(struct inode *inode) 469 { 470 struct resv_map *resv_map; 471 472 remove_inode_hugepages(inode, 0, LLONG_MAX); 473 resv_map = (struct resv_map *)inode->i_mapping->private_data; 474 /* root inode doesn't have the resv_map, so we should check it */ 475 if (resv_map) 476 resv_map_release(&resv_map->refs); 477 clear_inode(inode); 478 } 479 480 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset) 481 { 482 pgoff_t pgoff; 483 struct address_space *mapping = inode->i_mapping; 484 struct hstate *h = hstate_inode(inode); 485 486 BUG_ON(offset & ~huge_page_mask(h)); 487 pgoff = offset >> PAGE_SHIFT; 488 489 i_size_write(inode, offset); 490 i_mmap_lock_write(mapping); 491 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 492 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0); 493 i_mmap_unlock_write(mapping); 494 remove_inode_hugepages(inode, offset, LLONG_MAX); 495 return 0; 496 } 497 498 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 499 { 500 struct hstate *h = hstate_inode(inode); 501 loff_t hpage_size = huge_page_size(h); 502 loff_t hole_start, hole_end; 503 504 /* 505 * For hole punch round up the beginning offset of the hole and 506 * round down the end. 507 */ 508 hole_start = round_up(offset, hpage_size); 509 hole_end = round_down(offset + len, hpage_size); 510 511 if (hole_end > hole_start) { 512 struct address_space *mapping = inode->i_mapping; 513 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 514 515 inode_lock(inode); 516 517 /* protected by i_mutex */ 518 if (info->seals & F_SEAL_WRITE) { 519 inode_unlock(inode); 520 return -EPERM; 521 } 522 523 i_mmap_lock_write(mapping); 524 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 525 hugetlb_vmdelete_list(&mapping->i_mmap, 526 hole_start >> PAGE_SHIFT, 527 hole_end >> PAGE_SHIFT); 528 i_mmap_unlock_write(mapping); 529 remove_inode_hugepages(inode, hole_start, hole_end); 530 inode_unlock(inode); 531 } 532 533 return 0; 534 } 535 536 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 537 loff_t len) 538 { 539 struct inode *inode = file_inode(file); 540 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 541 struct address_space *mapping = inode->i_mapping; 542 struct hstate *h = hstate_inode(inode); 543 struct vm_area_struct pseudo_vma; 544 struct mm_struct *mm = current->mm; 545 loff_t hpage_size = huge_page_size(h); 546 unsigned long hpage_shift = huge_page_shift(h); 547 pgoff_t start, index, end; 548 int error; 549 u32 hash; 550 551 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 552 return -EOPNOTSUPP; 553 554 if (mode & FALLOC_FL_PUNCH_HOLE) 555 return hugetlbfs_punch_hole(inode, offset, len); 556 557 /* 558 * Default preallocate case. 559 * For this range, start is rounded down and end is rounded up 560 * as well as being converted to page offsets. 561 */ 562 start = offset >> hpage_shift; 563 end = (offset + len + hpage_size - 1) >> hpage_shift; 564 565 inode_lock(inode); 566 567 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 568 error = inode_newsize_ok(inode, offset + len); 569 if (error) 570 goto out; 571 572 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 573 error = -EPERM; 574 goto out; 575 } 576 577 /* 578 * Initialize a pseudo vma as this is required by the huge page 579 * allocation routines. If NUMA is configured, use page index 580 * as input to create an allocation policy. 581 */ 582 memset(&pseudo_vma, 0, sizeof(struct vm_area_struct)); 583 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 584 pseudo_vma.vm_file = file; 585 586 for (index = start; index < end; index++) { 587 /* 588 * This is supposed to be the vaddr where the page is being 589 * faulted in, but we have no vaddr here. 590 */ 591 struct page *page; 592 unsigned long addr; 593 int avoid_reserve = 0; 594 595 cond_resched(); 596 597 /* 598 * fallocate(2) manpage permits EINTR; we may have been 599 * interrupted because we are using up too much memory. 600 */ 601 if (signal_pending(current)) { 602 error = -EINTR; 603 break; 604 } 605 606 /* Set numa allocation policy based on index */ 607 hugetlb_set_vma_policy(&pseudo_vma, inode, index); 608 609 /* addr is the offset within the file (zero based) */ 610 addr = index * hpage_size; 611 612 /* mutex taken here, fault path and hole punch */ 613 hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping, 614 index, addr); 615 mutex_lock(&hugetlb_fault_mutex_table[hash]); 616 617 /* See if already present in mapping to avoid alloc/free */ 618 page = find_get_page(mapping, index); 619 if (page) { 620 put_page(page); 621 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 622 hugetlb_drop_vma_policy(&pseudo_vma); 623 continue; 624 } 625 626 /* Allocate page and add to page cache */ 627 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve); 628 hugetlb_drop_vma_policy(&pseudo_vma); 629 if (IS_ERR(page)) { 630 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 631 error = PTR_ERR(page); 632 goto out; 633 } 634 clear_huge_page(page, addr, pages_per_huge_page(h)); 635 __SetPageUptodate(page); 636 error = huge_add_to_page_cache(page, mapping, index); 637 if (unlikely(error)) { 638 put_page(page); 639 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 640 goto out; 641 } 642 643 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 644 645 /* 646 * unlock_page because locked by add_to_page_cache() 647 * page_put due to reference from alloc_huge_page() 648 */ 649 unlock_page(page); 650 put_page(page); 651 } 652 653 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 654 i_size_write(inode, offset + len); 655 inode->i_ctime = current_time(inode); 656 out: 657 inode_unlock(inode); 658 return error; 659 } 660 661 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr) 662 { 663 struct inode *inode = d_inode(dentry); 664 struct hstate *h = hstate_inode(inode); 665 int error; 666 unsigned int ia_valid = attr->ia_valid; 667 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 668 669 BUG_ON(!inode); 670 671 error = setattr_prepare(dentry, attr); 672 if (error) 673 return error; 674 675 if (ia_valid & ATTR_SIZE) { 676 loff_t oldsize = inode->i_size; 677 loff_t newsize = attr->ia_size; 678 679 if (newsize & ~huge_page_mask(h)) 680 return -EINVAL; 681 /* protected by i_mutex */ 682 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 683 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 684 return -EPERM; 685 error = hugetlb_vmtruncate(inode, newsize); 686 if (error) 687 return error; 688 } 689 690 setattr_copy(inode, attr); 691 mark_inode_dirty(inode); 692 return 0; 693 } 694 695 static struct inode *hugetlbfs_get_root(struct super_block *sb, 696 struct hugetlbfs_config *config) 697 { 698 struct inode *inode; 699 700 inode = new_inode(sb); 701 if (inode) { 702 inode->i_ino = get_next_ino(); 703 inode->i_mode = S_IFDIR | config->mode; 704 inode->i_uid = config->uid; 705 inode->i_gid = config->gid; 706 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 707 inode->i_op = &hugetlbfs_dir_inode_operations; 708 inode->i_fop = &simple_dir_operations; 709 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 710 inc_nlink(inode); 711 lockdep_annotate_inode_mutex_key(inode); 712 } 713 return inode; 714 } 715 716 /* 717 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 718 * be taken from reclaim -- unlike regular filesystems. This needs an 719 * annotation because huge_pmd_share() does an allocation under hugetlb's 720 * i_mmap_rwsem. 721 */ 722 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 723 724 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 725 struct inode *dir, 726 umode_t mode, dev_t dev) 727 { 728 struct inode *inode; 729 struct resv_map *resv_map; 730 731 resv_map = resv_map_alloc(); 732 if (!resv_map) 733 return NULL; 734 735 inode = new_inode(sb); 736 if (inode) { 737 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 738 739 inode->i_ino = get_next_ino(); 740 inode_init_owner(inode, dir, mode); 741 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 742 &hugetlbfs_i_mmap_rwsem_key); 743 inode->i_mapping->a_ops = &hugetlbfs_aops; 744 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 745 inode->i_mapping->private_data = resv_map; 746 info->seals = F_SEAL_SEAL; 747 switch (mode & S_IFMT) { 748 default: 749 init_special_inode(inode, mode, dev); 750 break; 751 case S_IFREG: 752 inode->i_op = &hugetlbfs_inode_operations; 753 inode->i_fop = &hugetlbfs_file_operations; 754 break; 755 case S_IFDIR: 756 inode->i_op = &hugetlbfs_dir_inode_operations; 757 inode->i_fop = &simple_dir_operations; 758 759 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 760 inc_nlink(inode); 761 break; 762 case S_IFLNK: 763 inode->i_op = &page_symlink_inode_operations; 764 inode_nohighmem(inode); 765 break; 766 } 767 lockdep_annotate_inode_mutex_key(inode); 768 } else 769 kref_put(&resv_map->refs, resv_map_release); 770 771 return inode; 772 } 773 774 /* 775 * File creation. Allocate an inode, and we're done.. 776 */ 777 static int hugetlbfs_mknod(struct inode *dir, 778 struct dentry *dentry, umode_t mode, dev_t dev) 779 { 780 struct inode *inode; 781 int error = -ENOSPC; 782 783 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 784 if (inode) { 785 dir->i_ctime = dir->i_mtime = current_time(dir); 786 d_instantiate(dentry, inode); 787 dget(dentry); /* Extra count - pin the dentry in core */ 788 error = 0; 789 } 790 return error; 791 } 792 793 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 794 { 795 int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0); 796 if (!retval) 797 inc_nlink(dir); 798 return retval; 799 } 800 801 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl) 802 { 803 return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0); 804 } 805 806 static int hugetlbfs_symlink(struct inode *dir, 807 struct dentry *dentry, const char *symname) 808 { 809 struct inode *inode; 810 int error = -ENOSPC; 811 812 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 813 if (inode) { 814 int l = strlen(symname)+1; 815 error = page_symlink(inode, symname, l); 816 if (!error) { 817 d_instantiate(dentry, inode); 818 dget(dentry); 819 } else 820 iput(inode); 821 } 822 dir->i_ctime = dir->i_mtime = current_time(dir); 823 824 return error; 825 } 826 827 /* 828 * mark the head page dirty 829 */ 830 static int hugetlbfs_set_page_dirty(struct page *page) 831 { 832 struct page *head = compound_head(page); 833 834 SetPageDirty(head); 835 return 0; 836 } 837 838 static int hugetlbfs_migrate_page(struct address_space *mapping, 839 struct page *newpage, struct page *page, 840 enum migrate_mode mode) 841 { 842 int rc; 843 844 rc = migrate_huge_page_move_mapping(mapping, newpage, page); 845 if (rc != MIGRATEPAGE_SUCCESS) 846 return rc; 847 if (mode != MIGRATE_SYNC_NO_COPY) 848 migrate_page_copy(newpage, page); 849 else 850 migrate_page_states(newpage, page); 851 852 return MIGRATEPAGE_SUCCESS; 853 } 854 855 static int hugetlbfs_error_remove_page(struct address_space *mapping, 856 struct page *page) 857 { 858 struct inode *inode = mapping->host; 859 pgoff_t index = page->index; 860 861 remove_huge_page(page); 862 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1))) 863 hugetlb_fix_reserve_counts(inode); 864 865 return 0; 866 } 867 868 /* 869 * Display the mount options in /proc/mounts. 870 */ 871 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 872 { 873 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 874 struct hugepage_subpool *spool = sbinfo->spool; 875 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 876 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 877 char mod; 878 879 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 880 seq_printf(m, ",uid=%u", 881 from_kuid_munged(&init_user_ns, sbinfo->uid)); 882 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 883 seq_printf(m, ",gid=%u", 884 from_kgid_munged(&init_user_ns, sbinfo->gid)); 885 if (sbinfo->mode != 0755) 886 seq_printf(m, ",mode=%o", sbinfo->mode); 887 if (sbinfo->max_inodes != -1) 888 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 889 890 hpage_size /= 1024; 891 mod = 'K'; 892 if (hpage_size >= 1024) { 893 hpage_size /= 1024; 894 mod = 'M'; 895 } 896 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 897 if (spool) { 898 if (spool->max_hpages != -1) 899 seq_printf(m, ",size=%llu", 900 (unsigned long long)spool->max_hpages << hpage_shift); 901 if (spool->min_hpages != -1) 902 seq_printf(m, ",min_size=%llu", 903 (unsigned long long)spool->min_hpages << hpage_shift); 904 } 905 return 0; 906 } 907 908 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 909 { 910 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 911 struct hstate *h = hstate_inode(d_inode(dentry)); 912 913 buf->f_type = HUGETLBFS_MAGIC; 914 buf->f_bsize = huge_page_size(h); 915 if (sbinfo) { 916 spin_lock(&sbinfo->stat_lock); 917 /* If no limits set, just report 0 for max/free/used 918 * blocks, like simple_statfs() */ 919 if (sbinfo->spool) { 920 long free_pages; 921 922 spin_lock(&sbinfo->spool->lock); 923 buf->f_blocks = sbinfo->spool->max_hpages; 924 free_pages = sbinfo->spool->max_hpages 925 - sbinfo->spool->used_hpages; 926 buf->f_bavail = buf->f_bfree = free_pages; 927 spin_unlock(&sbinfo->spool->lock); 928 buf->f_files = sbinfo->max_inodes; 929 buf->f_ffree = sbinfo->free_inodes; 930 } 931 spin_unlock(&sbinfo->stat_lock); 932 } 933 buf->f_namelen = NAME_MAX; 934 return 0; 935 } 936 937 static void hugetlbfs_put_super(struct super_block *sb) 938 { 939 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 940 941 if (sbi) { 942 sb->s_fs_info = NULL; 943 944 if (sbi->spool) 945 hugepage_put_subpool(sbi->spool); 946 947 kfree(sbi); 948 } 949 } 950 951 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 952 { 953 if (sbinfo->free_inodes >= 0) { 954 spin_lock(&sbinfo->stat_lock); 955 if (unlikely(!sbinfo->free_inodes)) { 956 spin_unlock(&sbinfo->stat_lock); 957 return 0; 958 } 959 sbinfo->free_inodes--; 960 spin_unlock(&sbinfo->stat_lock); 961 } 962 963 return 1; 964 } 965 966 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 967 { 968 if (sbinfo->free_inodes >= 0) { 969 spin_lock(&sbinfo->stat_lock); 970 sbinfo->free_inodes++; 971 spin_unlock(&sbinfo->stat_lock); 972 } 973 } 974 975 976 static struct kmem_cache *hugetlbfs_inode_cachep; 977 978 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 979 { 980 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 981 struct hugetlbfs_inode_info *p; 982 983 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 984 return NULL; 985 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL); 986 if (unlikely(!p)) { 987 hugetlbfs_inc_free_inodes(sbinfo); 988 return NULL; 989 } 990 991 /* 992 * Any time after allocation, hugetlbfs_destroy_inode can be called 993 * for the inode. mpol_free_shared_policy is unconditionally called 994 * as part of hugetlbfs_destroy_inode. So, initialize policy here 995 * in case of a quick call to destroy. 996 * 997 * Note that the policy is initialized even if we are creating a 998 * private inode. This simplifies hugetlbfs_destroy_inode. 999 */ 1000 mpol_shared_policy_init(&p->policy, NULL); 1001 1002 return &p->vfs_inode; 1003 } 1004 1005 static void hugetlbfs_i_callback(struct rcu_head *head) 1006 { 1007 struct inode *inode = container_of(head, struct inode, i_rcu); 1008 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1009 } 1010 1011 static void hugetlbfs_destroy_inode(struct inode *inode) 1012 { 1013 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1014 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); 1015 call_rcu(&inode->i_rcu, hugetlbfs_i_callback); 1016 } 1017 1018 static const struct address_space_operations hugetlbfs_aops = { 1019 .write_begin = hugetlbfs_write_begin, 1020 .write_end = hugetlbfs_write_end, 1021 .set_page_dirty = hugetlbfs_set_page_dirty, 1022 .migratepage = hugetlbfs_migrate_page, 1023 .error_remove_page = hugetlbfs_error_remove_page, 1024 }; 1025 1026 1027 static void init_once(void *foo) 1028 { 1029 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo; 1030 1031 inode_init_once(&ei->vfs_inode); 1032 } 1033 1034 const struct file_operations hugetlbfs_file_operations = { 1035 .read_iter = hugetlbfs_read_iter, 1036 .mmap = hugetlbfs_file_mmap, 1037 .fsync = noop_fsync, 1038 .get_unmapped_area = hugetlb_get_unmapped_area, 1039 .llseek = default_llseek, 1040 .fallocate = hugetlbfs_fallocate, 1041 }; 1042 1043 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1044 .create = hugetlbfs_create, 1045 .lookup = simple_lookup, 1046 .link = simple_link, 1047 .unlink = simple_unlink, 1048 .symlink = hugetlbfs_symlink, 1049 .mkdir = hugetlbfs_mkdir, 1050 .rmdir = simple_rmdir, 1051 .mknod = hugetlbfs_mknod, 1052 .rename = simple_rename, 1053 .setattr = hugetlbfs_setattr, 1054 }; 1055 1056 static const struct inode_operations hugetlbfs_inode_operations = { 1057 .setattr = hugetlbfs_setattr, 1058 }; 1059 1060 static const struct super_operations hugetlbfs_ops = { 1061 .alloc_inode = hugetlbfs_alloc_inode, 1062 .destroy_inode = hugetlbfs_destroy_inode, 1063 .evict_inode = hugetlbfs_evict_inode, 1064 .statfs = hugetlbfs_statfs, 1065 .put_super = hugetlbfs_put_super, 1066 .show_options = hugetlbfs_show_options, 1067 }; 1068 1069 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 1070 1071 /* 1072 * Convert size option passed from command line to number of huge pages 1073 * in the pool specified by hstate. Size option could be in bytes 1074 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1075 */ 1076 static long 1077 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1078 enum hugetlbfs_size_type val_type) 1079 { 1080 if (val_type == NO_SIZE) 1081 return -1; 1082 1083 if (val_type == SIZE_PERCENT) { 1084 size_opt <<= huge_page_shift(h); 1085 size_opt *= h->max_huge_pages; 1086 do_div(size_opt, 100); 1087 } 1088 1089 size_opt >>= huge_page_shift(h); 1090 return size_opt; 1091 } 1092 1093 static int 1094 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig) 1095 { 1096 char *p, *rest; 1097 substring_t args[MAX_OPT_ARGS]; 1098 int option; 1099 unsigned long long max_size_opt = 0, min_size_opt = 0; 1100 enum hugetlbfs_size_type max_val_type = NO_SIZE, min_val_type = NO_SIZE; 1101 1102 if (!options) 1103 return 0; 1104 1105 while ((p = strsep(&options, ",")) != NULL) { 1106 int token; 1107 if (!*p) 1108 continue; 1109 1110 token = match_token(p, tokens, args); 1111 switch (token) { 1112 case Opt_uid: 1113 if (match_int(&args[0], &option)) 1114 goto bad_val; 1115 pconfig->uid = make_kuid(current_user_ns(), option); 1116 if (!uid_valid(pconfig->uid)) 1117 goto bad_val; 1118 break; 1119 1120 case Opt_gid: 1121 if (match_int(&args[0], &option)) 1122 goto bad_val; 1123 pconfig->gid = make_kgid(current_user_ns(), option); 1124 if (!gid_valid(pconfig->gid)) 1125 goto bad_val; 1126 break; 1127 1128 case Opt_mode: 1129 if (match_octal(&args[0], &option)) 1130 goto bad_val; 1131 pconfig->mode = option & 01777U; 1132 break; 1133 1134 case Opt_size: { 1135 /* memparse() will accept a K/M/G without a digit */ 1136 if (!isdigit(*args[0].from)) 1137 goto bad_val; 1138 max_size_opt = memparse(args[0].from, &rest); 1139 max_val_type = SIZE_STD; 1140 if (*rest == '%') 1141 max_val_type = SIZE_PERCENT; 1142 break; 1143 } 1144 1145 case Opt_nr_inodes: 1146 /* memparse() will accept a K/M/G without a digit */ 1147 if (!isdigit(*args[0].from)) 1148 goto bad_val; 1149 pconfig->nr_inodes = memparse(args[0].from, &rest); 1150 break; 1151 1152 case Opt_pagesize: { 1153 unsigned long ps; 1154 ps = memparse(args[0].from, &rest); 1155 pconfig->hstate = size_to_hstate(ps); 1156 if (!pconfig->hstate) { 1157 pr_err("Unsupported page size %lu MB\n", 1158 ps >> 20); 1159 return -EINVAL; 1160 } 1161 break; 1162 } 1163 1164 case Opt_min_size: { 1165 /* memparse() will accept a K/M/G without a digit */ 1166 if (!isdigit(*args[0].from)) 1167 goto bad_val; 1168 min_size_opt = memparse(args[0].from, &rest); 1169 min_val_type = SIZE_STD; 1170 if (*rest == '%') 1171 min_val_type = SIZE_PERCENT; 1172 break; 1173 } 1174 1175 default: 1176 pr_err("Bad mount option: \"%s\"\n", p); 1177 return -EINVAL; 1178 break; 1179 } 1180 } 1181 1182 /* 1183 * Use huge page pool size (in hstate) to convert the size 1184 * options to number of huge pages. If NO_SIZE, -1 is returned. 1185 */ 1186 pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate, 1187 max_size_opt, max_val_type); 1188 pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate, 1189 min_size_opt, min_val_type); 1190 1191 /* 1192 * If max_size was specified, then min_size must be smaller 1193 */ 1194 if (max_val_type > NO_SIZE && 1195 pconfig->min_hpages > pconfig->max_hpages) { 1196 pr_err("minimum size can not be greater than maximum size\n"); 1197 return -EINVAL; 1198 } 1199 1200 return 0; 1201 1202 bad_val: 1203 pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p); 1204 return -EINVAL; 1205 } 1206 1207 static int 1208 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent) 1209 { 1210 int ret; 1211 struct hugetlbfs_config config; 1212 struct hugetlbfs_sb_info *sbinfo; 1213 1214 config.max_hpages = -1; /* No limit on size by default */ 1215 config.nr_inodes = -1; /* No limit on number of inodes by default */ 1216 config.uid = current_fsuid(); 1217 config.gid = current_fsgid(); 1218 config.mode = 0755; 1219 config.hstate = &default_hstate; 1220 config.min_hpages = -1; /* No default minimum size */ 1221 ret = hugetlbfs_parse_options(data, &config); 1222 if (ret) 1223 return ret; 1224 1225 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1226 if (!sbinfo) 1227 return -ENOMEM; 1228 sb->s_fs_info = sbinfo; 1229 sbinfo->hstate = config.hstate; 1230 spin_lock_init(&sbinfo->stat_lock); 1231 sbinfo->max_inodes = config.nr_inodes; 1232 sbinfo->free_inodes = config.nr_inodes; 1233 sbinfo->spool = NULL; 1234 sbinfo->uid = config.uid; 1235 sbinfo->gid = config.gid; 1236 sbinfo->mode = config.mode; 1237 1238 /* 1239 * Allocate and initialize subpool if maximum or minimum size is 1240 * specified. Any needed reservations (for minimim size) are taken 1241 * taken when the subpool is created. 1242 */ 1243 if (config.max_hpages != -1 || config.min_hpages != -1) { 1244 sbinfo->spool = hugepage_new_subpool(config.hstate, 1245 config.max_hpages, 1246 config.min_hpages); 1247 if (!sbinfo->spool) 1248 goto out_free; 1249 } 1250 sb->s_maxbytes = MAX_LFS_FILESIZE; 1251 sb->s_blocksize = huge_page_size(config.hstate); 1252 sb->s_blocksize_bits = huge_page_shift(config.hstate); 1253 sb->s_magic = HUGETLBFS_MAGIC; 1254 sb->s_op = &hugetlbfs_ops; 1255 sb->s_time_gran = 1; 1256 sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config)); 1257 if (!sb->s_root) 1258 goto out_free; 1259 return 0; 1260 out_free: 1261 kfree(sbinfo->spool); 1262 kfree(sbinfo); 1263 return -ENOMEM; 1264 } 1265 1266 static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type, 1267 int flags, const char *dev_name, void *data) 1268 { 1269 return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super); 1270 } 1271 1272 static struct file_system_type hugetlbfs_fs_type = { 1273 .name = "hugetlbfs", 1274 .mount = hugetlbfs_mount, 1275 .kill_sb = kill_litter_super, 1276 }; 1277 1278 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1279 1280 static int can_do_hugetlb_shm(void) 1281 { 1282 kgid_t shm_group; 1283 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1284 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1285 } 1286 1287 static int get_hstate_idx(int page_size_log) 1288 { 1289 struct hstate *h = hstate_sizelog(page_size_log); 1290 1291 if (!h) 1292 return -1; 1293 return h - hstates; 1294 } 1295 1296 static const struct dentry_operations anon_ops = { 1297 .d_dname = simple_dname 1298 }; 1299 1300 /* 1301 * Note that size should be aligned to proper hugepage size in caller side, 1302 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1303 */ 1304 struct file *hugetlb_file_setup(const char *name, size_t size, 1305 vm_flags_t acctflag, struct user_struct **user, 1306 int creat_flags, int page_size_log) 1307 { 1308 struct file *file = ERR_PTR(-ENOMEM); 1309 struct inode *inode; 1310 struct path path; 1311 struct super_block *sb; 1312 struct qstr quick_string; 1313 int hstate_idx; 1314 1315 hstate_idx = get_hstate_idx(page_size_log); 1316 if (hstate_idx < 0) 1317 return ERR_PTR(-ENODEV); 1318 1319 *user = NULL; 1320 if (!hugetlbfs_vfsmount[hstate_idx]) 1321 return ERR_PTR(-ENOENT); 1322 1323 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1324 *user = current_user(); 1325 if (user_shm_lock(size, *user)) { 1326 task_lock(current); 1327 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n", 1328 current->comm, current->pid); 1329 task_unlock(current); 1330 } else { 1331 *user = NULL; 1332 return ERR_PTR(-EPERM); 1333 } 1334 } 1335 1336 sb = hugetlbfs_vfsmount[hstate_idx]->mnt_sb; 1337 quick_string.name = name; 1338 quick_string.len = strlen(quick_string.name); 1339 quick_string.hash = 0; 1340 path.dentry = d_alloc_pseudo(sb, &quick_string); 1341 if (!path.dentry) 1342 goto out_shm_unlock; 1343 1344 d_set_d_op(path.dentry, &anon_ops); 1345 path.mnt = mntget(hugetlbfs_vfsmount[hstate_idx]); 1346 file = ERR_PTR(-ENOSPC); 1347 inode = hugetlbfs_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0); 1348 if (!inode) 1349 goto out_dentry; 1350 if (creat_flags == HUGETLB_SHMFS_INODE) 1351 inode->i_flags |= S_PRIVATE; 1352 1353 file = ERR_PTR(-ENOMEM); 1354 if (hugetlb_reserve_pages(inode, 0, 1355 size >> huge_page_shift(hstate_inode(inode)), NULL, 1356 acctflag)) 1357 goto out_inode; 1358 1359 d_instantiate(path.dentry, inode); 1360 inode->i_size = size; 1361 clear_nlink(inode); 1362 1363 file = alloc_file(&path, FMODE_WRITE | FMODE_READ, 1364 &hugetlbfs_file_operations); 1365 if (IS_ERR(file)) 1366 goto out_dentry; /* inode is already attached */ 1367 1368 return file; 1369 1370 out_inode: 1371 iput(inode); 1372 out_dentry: 1373 path_put(&path); 1374 out_shm_unlock: 1375 if (*user) { 1376 user_shm_unlock(size, *user); 1377 *user = NULL; 1378 } 1379 return file; 1380 } 1381 1382 static int __init init_hugetlbfs_fs(void) 1383 { 1384 struct hstate *h; 1385 int error; 1386 int i; 1387 1388 if (!hugepages_supported()) { 1389 pr_info("disabling because there are no supported hugepage sizes\n"); 1390 return -ENOTSUPP; 1391 } 1392 1393 error = -ENOMEM; 1394 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1395 sizeof(struct hugetlbfs_inode_info), 1396 0, SLAB_ACCOUNT, init_once); 1397 if (hugetlbfs_inode_cachep == NULL) 1398 goto out2; 1399 1400 error = register_filesystem(&hugetlbfs_fs_type); 1401 if (error) 1402 goto out; 1403 1404 i = 0; 1405 for_each_hstate(h) { 1406 char buf[50]; 1407 unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10); 1408 1409 snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb); 1410 hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type, 1411 buf); 1412 1413 if (IS_ERR(hugetlbfs_vfsmount[i])) { 1414 pr_err("Cannot mount internal hugetlbfs for " 1415 "page size %uK", ps_kb); 1416 error = PTR_ERR(hugetlbfs_vfsmount[i]); 1417 hugetlbfs_vfsmount[i] = NULL; 1418 } 1419 i++; 1420 } 1421 /* Non default hstates are optional */ 1422 if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx])) 1423 return 0; 1424 1425 out: 1426 kmem_cache_destroy(hugetlbfs_inode_cachep); 1427 out2: 1428 return error; 1429 } 1430 fs_initcall(init_hugetlbfs_fs) 1431