1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/sched/signal.h> /* remove ASAP */ 15 #include <linux/falloc.h> 16 #include <linux/fs.h> 17 #include <linux/mount.h> 18 #include <linux/file.h> 19 #include <linux/kernel.h> 20 #include <linux/writeback.h> 21 #include <linux/pagemap.h> 22 #include <linux/highmem.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/capability.h> 26 #include <linux/ctype.h> 27 #include <linux/backing-dev.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagevec.h> 30 #include <linux/fs_parser.h> 31 #include <linux/mman.h> 32 #include <linux/slab.h> 33 #include <linux/dnotify.h> 34 #include <linux/statfs.h> 35 #include <linux/security.h> 36 #include <linux/magic.h> 37 #include <linux/migrate.h> 38 #include <linux/uio.h> 39 40 #include <linux/uaccess.h> 41 42 static const struct super_operations hugetlbfs_ops; 43 static const struct address_space_operations hugetlbfs_aops; 44 const struct file_operations hugetlbfs_file_operations; 45 static const struct inode_operations hugetlbfs_dir_inode_operations; 46 static const struct inode_operations hugetlbfs_inode_operations; 47 48 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 49 50 struct hugetlbfs_fs_context { 51 struct hstate *hstate; 52 unsigned long long max_size_opt; 53 unsigned long long min_size_opt; 54 long max_hpages; 55 long nr_inodes; 56 long min_hpages; 57 enum hugetlbfs_size_type max_val_type; 58 enum hugetlbfs_size_type min_val_type; 59 kuid_t uid; 60 kgid_t gid; 61 umode_t mode; 62 }; 63 64 int sysctl_hugetlb_shm_group; 65 66 enum hugetlb_param { 67 Opt_gid, 68 Opt_min_size, 69 Opt_mode, 70 Opt_nr_inodes, 71 Opt_pagesize, 72 Opt_size, 73 Opt_uid, 74 }; 75 76 static const struct fs_parameter_spec hugetlb_param_specs[] = { 77 fsparam_u32 ("gid", Opt_gid), 78 fsparam_string("min_size", Opt_min_size), 79 fsparam_u32 ("mode", Opt_mode), 80 fsparam_string("nr_inodes", Opt_nr_inodes), 81 fsparam_string("pagesize", Opt_pagesize), 82 fsparam_string("size", Opt_size), 83 fsparam_u32 ("uid", Opt_uid), 84 {} 85 }; 86 87 static const struct fs_parameter_description hugetlb_fs_parameters = { 88 .name = "hugetlbfs", 89 .specs = hugetlb_param_specs, 90 }; 91 92 #ifdef CONFIG_NUMA 93 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 94 struct inode *inode, pgoff_t index) 95 { 96 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, 97 index); 98 } 99 100 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 101 { 102 mpol_cond_put(vma->vm_policy); 103 } 104 #else 105 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 106 struct inode *inode, pgoff_t index) 107 { 108 } 109 110 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 111 { 112 } 113 #endif 114 115 static void huge_pagevec_release(struct pagevec *pvec) 116 { 117 int i; 118 119 for (i = 0; i < pagevec_count(pvec); ++i) 120 put_page(pvec->pages[i]); 121 122 pagevec_reinit(pvec); 123 } 124 125 /* 126 * Mask used when checking the page offset value passed in via system 127 * calls. This value will be converted to a loff_t which is signed. 128 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 129 * value. The extra bit (- 1 in the shift value) is to take the sign 130 * bit into account. 131 */ 132 #define PGOFF_LOFFT_MAX \ 133 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 134 135 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 136 { 137 struct inode *inode = file_inode(file); 138 loff_t len, vma_len; 139 int ret; 140 struct hstate *h = hstate_file(file); 141 142 /* 143 * vma address alignment (but not the pgoff alignment) has 144 * already been checked by prepare_hugepage_range. If you add 145 * any error returns here, do so after setting VM_HUGETLB, so 146 * is_vm_hugetlb_page tests below unmap_region go the right 147 * way when do_mmap_pgoff unwinds (may be important on powerpc 148 * and ia64). 149 */ 150 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; 151 vma->vm_ops = &hugetlb_vm_ops; 152 153 /* 154 * page based offset in vm_pgoff could be sufficiently large to 155 * overflow a loff_t when converted to byte offset. This can 156 * only happen on architectures where sizeof(loff_t) == 157 * sizeof(unsigned long). So, only check in those instances. 158 */ 159 if (sizeof(unsigned long) == sizeof(loff_t)) { 160 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 161 return -EINVAL; 162 } 163 164 /* must be huge page aligned */ 165 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 166 return -EINVAL; 167 168 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 169 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 170 /* check for overflow */ 171 if (len < vma_len) 172 return -EINVAL; 173 174 inode_lock(inode); 175 file_accessed(file); 176 177 ret = -ENOMEM; 178 if (hugetlb_reserve_pages(inode, 179 vma->vm_pgoff >> huge_page_order(h), 180 len >> huge_page_shift(h), vma, 181 vma->vm_flags)) 182 goto out; 183 184 ret = 0; 185 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 186 i_size_write(inode, len); 187 out: 188 inode_unlock(inode); 189 190 return ret; 191 } 192 193 /* 194 * Called under down_write(mmap_sem). 195 */ 196 197 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 198 static unsigned long 199 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 200 unsigned long len, unsigned long pgoff, unsigned long flags) 201 { 202 struct mm_struct *mm = current->mm; 203 struct vm_area_struct *vma; 204 struct hstate *h = hstate_file(file); 205 struct vm_unmapped_area_info info; 206 207 if (len & ~huge_page_mask(h)) 208 return -EINVAL; 209 if (len > TASK_SIZE) 210 return -ENOMEM; 211 212 if (flags & MAP_FIXED) { 213 if (prepare_hugepage_range(file, addr, len)) 214 return -EINVAL; 215 return addr; 216 } 217 218 if (addr) { 219 addr = ALIGN(addr, huge_page_size(h)); 220 vma = find_vma(mm, addr); 221 if (TASK_SIZE - len >= addr && 222 (!vma || addr + len <= vm_start_gap(vma))) 223 return addr; 224 } 225 226 info.flags = 0; 227 info.length = len; 228 info.low_limit = TASK_UNMAPPED_BASE; 229 info.high_limit = TASK_SIZE; 230 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 231 info.align_offset = 0; 232 return vm_unmapped_area(&info); 233 } 234 #endif 235 236 static size_t 237 hugetlbfs_read_actor(struct page *page, unsigned long offset, 238 struct iov_iter *to, unsigned long size) 239 { 240 size_t copied = 0; 241 int i, chunksize; 242 243 /* Find which 4k chunk and offset with in that chunk */ 244 i = offset >> PAGE_SHIFT; 245 offset = offset & ~PAGE_MASK; 246 247 while (size) { 248 size_t n; 249 chunksize = PAGE_SIZE; 250 if (offset) 251 chunksize -= offset; 252 if (chunksize > size) 253 chunksize = size; 254 n = copy_page_to_iter(&page[i], offset, chunksize, to); 255 copied += n; 256 if (n != chunksize) 257 return copied; 258 offset = 0; 259 size -= chunksize; 260 i++; 261 } 262 return copied; 263 } 264 265 /* 266 * Support for read() - Find the page attached to f_mapping and copy out the 267 * data. Its *very* similar to do_generic_mapping_read(), we can't use that 268 * since it has PAGE_SIZE assumptions. 269 */ 270 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 271 { 272 struct file *file = iocb->ki_filp; 273 struct hstate *h = hstate_file(file); 274 struct address_space *mapping = file->f_mapping; 275 struct inode *inode = mapping->host; 276 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 277 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 278 unsigned long end_index; 279 loff_t isize; 280 ssize_t retval = 0; 281 282 while (iov_iter_count(to)) { 283 struct page *page; 284 size_t nr, copied; 285 286 /* nr is the maximum number of bytes to copy from this page */ 287 nr = huge_page_size(h); 288 isize = i_size_read(inode); 289 if (!isize) 290 break; 291 end_index = (isize - 1) >> huge_page_shift(h); 292 if (index > end_index) 293 break; 294 if (index == end_index) { 295 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 296 if (nr <= offset) 297 break; 298 } 299 nr = nr - offset; 300 301 /* Find the page */ 302 page = find_lock_page(mapping, index); 303 if (unlikely(page == NULL)) { 304 /* 305 * We have a HOLE, zero out the user-buffer for the 306 * length of the hole or request. 307 */ 308 copied = iov_iter_zero(nr, to); 309 } else { 310 unlock_page(page); 311 312 /* 313 * We have the page, copy it to user space buffer. 314 */ 315 copied = hugetlbfs_read_actor(page, offset, to, nr); 316 put_page(page); 317 } 318 offset += copied; 319 retval += copied; 320 if (copied != nr && iov_iter_count(to)) { 321 if (!retval) 322 retval = -EFAULT; 323 break; 324 } 325 index += offset >> huge_page_shift(h); 326 offset &= ~huge_page_mask(h); 327 } 328 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 329 return retval; 330 } 331 332 static int hugetlbfs_write_begin(struct file *file, 333 struct address_space *mapping, 334 loff_t pos, unsigned len, unsigned flags, 335 struct page **pagep, void **fsdata) 336 { 337 return -EINVAL; 338 } 339 340 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 341 loff_t pos, unsigned len, unsigned copied, 342 struct page *page, void *fsdata) 343 { 344 BUG(); 345 return -EINVAL; 346 } 347 348 static void remove_huge_page(struct page *page) 349 { 350 ClearPageDirty(page); 351 ClearPageUptodate(page); 352 delete_from_page_cache(page); 353 } 354 355 static void 356 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end) 357 { 358 struct vm_area_struct *vma; 359 360 /* 361 * end == 0 indicates that the entire range after 362 * start should be unmapped. 363 */ 364 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) { 365 unsigned long v_offset; 366 unsigned long v_end; 367 368 /* 369 * Can the expression below overflow on 32-bit arches? 370 * No, because the interval tree returns us only those vmas 371 * which overlap the truncated area starting at pgoff, 372 * and no vma on a 32-bit arch can span beyond the 4GB. 373 */ 374 if (vma->vm_pgoff < start) 375 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 376 else 377 v_offset = 0; 378 379 if (!end) 380 v_end = vma->vm_end; 381 else { 382 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) 383 + vma->vm_start; 384 if (v_end > vma->vm_end) 385 v_end = vma->vm_end; 386 } 387 388 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end, 389 NULL); 390 } 391 } 392 393 /* 394 * remove_inode_hugepages handles two distinct cases: truncation and hole 395 * punch. There are subtle differences in operation for each case. 396 * 397 * truncation is indicated by end of range being LLONG_MAX 398 * In this case, we first scan the range and release found pages. 399 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserv 400 * maps and global counts. Page faults can not race with truncation 401 * in this routine. hugetlb_no_page() prevents page faults in the 402 * truncated range. It checks i_size before allocation, and again after 403 * with the page table lock for the page held. The same lock must be 404 * acquired to unmap a page. 405 * hole punch is indicated if end is not LLONG_MAX 406 * In the hole punch case we scan the range and release found pages. 407 * Only when releasing a page is the associated region/reserv map 408 * deleted. The region/reserv map for ranges without associated 409 * pages are not modified. Page faults can race with hole punch. 410 * This is indicated if we find a mapped page. 411 * Note: If the passed end of range value is beyond the end of file, but 412 * not LLONG_MAX this routine still performs a hole punch operation. 413 */ 414 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 415 loff_t lend) 416 { 417 struct hstate *h = hstate_inode(inode); 418 struct address_space *mapping = &inode->i_data; 419 const pgoff_t start = lstart >> huge_page_shift(h); 420 const pgoff_t end = lend >> huge_page_shift(h); 421 struct vm_area_struct pseudo_vma; 422 struct pagevec pvec; 423 pgoff_t next, index; 424 int i, freed = 0; 425 bool truncate_op = (lend == LLONG_MAX); 426 427 vma_init(&pseudo_vma, current->mm); 428 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 429 pagevec_init(&pvec); 430 next = start; 431 while (next < end) { 432 /* 433 * When no more pages are found, we are done. 434 */ 435 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1)) 436 break; 437 438 for (i = 0; i < pagevec_count(&pvec); ++i) { 439 struct page *page = pvec.pages[i]; 440 u32 hash; 441 442 index = page->index; 443 hash = hugetlb_fault_mutex_hash(h, current->mm, 444 &pseudo_vma, 445 mapping, index, 0); 446 mutex_lock(&hugetlb_fault_mutex_table[hash]); 447 448 /* 449 * If page is mapped, it was faulted in after being 450 * unmapped in caller. Unmap (again) now after taking 451 * the fault mutex. The mutex will prevent faults 452 * until we finish removing the page. 453 * 454 * This race can only happen in the hole punch case. 455 * Getting here in a truncate operation is a bug. 456 */ 457 if (unlikely(page_mapped(page))) { 458 BUG_ON(truncate_op); 459 460 i_mmap_lock_write(mapping); 461 hugetlb_vmdelete_list(&mapping->i_mmap, 462 index * pages_per_huge_page(h), 463 (index + 1) * pages_per_huge_page(h)); 464 i_mmap_unlock_write(mapping); 465 } 466 467 lock_page(page); 468 /* 469 * We must free the huge page and remove from page 470 * cache (remove_huge_page) BEFORE removing the 471 * region/reserve map (hugetlb_unreserve_pages). In 472 * rare out of memory conditions, removal of the 473 * region/reserve map could fail. Correspondingly, 474 * the subpool and global reserve usage count can need 475 * to be adjusted. 476 */ 477 VM_BUG_ON(PagePrivate(page)); 478 remove_huge_page(page); 479 freed++; 480 if (!truncate_op) { 481 if (unlikely(hugetlb_unreserve_pages(inode, 482 index, index + 1, 1))) 483 hugetlb_fix_reserve_counts(inode); 484 } 485 486 unlock_page(page); 487 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 488 } 489 huge_pagevec_release(&pvec); 490 cond_resched(); 491 } 492 493 if (truncate_op) 494 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); 495 } 496 497 static void hugetlbfs_evict_inode(struct inode *inode) 498 { 499 struct resv_map *resv_map; 500 501 remove_inode_hugepages(inode, 0, LLONG_MAX); 502 resv_map = (struct resv_map *)inode->i_mapping->private_data; 503 /* root inode doesn't have the resv_map, so we should check it */ 504 if (resv_map) 505 resv_map_release(&resv_map->refs); 506 clear_inode(inode); 507 } 508 509 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset) 510 { 511 pgoff_t pgoff; 512 struct address_space *mapping = inode->i_mapping; 513 struct hstate *h = hstate_inode(inode); 514 515 BUG_ON(offset & ~huge_page_mask(h)); 516 pgoff = offset >> PAGE_SHIFT; 517 518 i_size_write(inode, offset); 519 i_mmap_lock_write(mapping); 520 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 521 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0); 522 i_mmap_unlock_write(mapping); 523 remove_inode_hugepages(inode, offset, LLONG_MAX); 524 return 0; 525 } 526 527 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 528 { 529 struct hstate *h = hstate_inode(inode); 530 loff_t hpage_size = huge_page_size(h); 531 loff_t hole_start, hole_end; 532 533 /* 534 * For hole punch round up the beginning offset of the hole and 535 * round down the end. 536 */ 537 hole_start = round_up(offset, hpage_size); 538 hole_end = round_down(offset + len, hpage_size); 539 540 if (hole_end > hole_start) { 541 struct address_space *mapping = inode->i_mapping; 542 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 543 544 inode_lock(inode); 545 546 /* protected by i_mutex */ 547 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 548 inode_unlock(inode); 549 return -EPERM; 550 } 551 552 i_mmap_lock_write(mapping); 553 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 554 hugetlb_vmdelete_list(&mapping->i_mmap, 555 hole_start >> PAGE_SHIFT, 556 hole_end >> PAGE_SHIFT); 557 i_mmap_unlock_write(mapping); 558 remove_inode_hugepages(inode, hole_start, hole_end); 559 inode_unlock(inode); 560 } 561 562 return 0; 563 } 564 565 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 566 loff_t len) 567 { 568 struct inode *inode = file_inode(file); 569 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 570 struct address_space *mapping = inode->i_mapping; 571 struct hstate *h = hstate_inode(inode); 572 struct vm_area_struct pseudo_vma; 573 struct mm_struct *mm = current->mm; 574 loff_t hpage_size = huge_page_size(h); 575 unsigned long hpage_shift = huge_page_shift(h); 576 pgoff_t start, index, end; 577 int error; 578 u32 hash; 579 580 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 581 return -EOPNOTSUPP; 582 583 if (mode & FALLOC_FL_PUNCH_HOLE) 584 return hugetlbfs_punch_hole(inode, offset, len); 585 586 /* 587 * Default preallocate case. 588 * For this range, start is rounded down and end is rounded up 589 * as well as being converted to page offsets. 590 */ 591 start = offset >> hpage_shift; 592 end = (offset + len + hpage_size - 1) >> hpage_shift; 593 594 inode_lock(inode); 595 596 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 597 error = inode_newsize_ok(inode, offset + len); 598 if (error) 599 goto out; 600 601 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 602 error = -EPERM; 603 goto out; 604 } 605 606 /* 607 * Initialize a pseudo vma as this is required by the huge page 608 * allocation routines. If NUMA is configured, use page index 609 * as input to create an allocation policy. 610 */ 611 vma_init(&pseudo_vma, mm); 612 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 613 pseudo_vma.vm_file = file; 614 615 for (index = start; index < end; index++) { 616 /* 617 * This is supposed to be the vaddr where the page is being 618 * faulted in, but we have no vaddr here. 619 */ 620 struct page *page; 621 unsigned long addr; 622 int avoid_reserve = 0; 623 624 cond_resched(); 625 626 /* 627 * fallocate(2) manpage permits EINTR; we may have been 628 * interrupted because we are using up too much memory. 629 */ 630 if (signal_pending(current)) { 631 error = -EINTR; 632 break; 633 } 634 635 /* Set numa allocation policy based on index */ 636 hugetlb_set_vma_policy(&pseudo_vma, inode, index); 637 638 /* addr is the offset within the file (zero based) */ 639 addr = index * hpage_size; 640 641 /* mutex taken here, fault path and hole punch */ 642 hash = hugetlb_fault_mutex_hash(h, mm, &pseudo_vma, mapping, 643 index, addr); 644 mutex_lock(&hugetlb_fault_mutex_table[hash]); 645 646 /* See if already present in mapping to avoid alloc/free */ 647 page = find_get_page(mapping, index); 648 if (page) { 649 put_page(page); 650 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 651 hugetlb_drop_vma_policy(&pseudo_vma); 652 continue; 653 } 654 655 /* Allocate page and add to page cache */ 656 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve); 657 hugetlb_drop_vma_policy(&pseudo_vma); 658 if (IS_ERR(page)) { 659 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 660 error = PTR_ERR(page); 661 goto out; 662 } 663 clear_huge_page(page, addr, pages_per_huge_page(h)); 664 __SetPageUptodate(page); 665 error = huge_add_to_page_cache(page, mapping, index); 666 if (unlikely(error)) { 667 put_page(page); 668 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 669 goto out; 670 } 671 672 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 673 674 /* 675 * unlock_page because locked by add_to_page_cache() 676 * page_put due to reference from alloc_huge_page() 677 */ 678 unlock_page(page); 679 put_page(page); 680 } 681 682 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 683 i_size_write(inode, offset + len); 684 inode->i_ctime = current_time(inode); 685 out: 686 inode_unlock(inode); 687 return error; 688 } 689 690 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr) 691 { 692 struct inode *inode = d_inode(dentry); 693 struct hstate *h = hstate_inode(inode); 694 int error; 695 unsigned int ia_valid = attr->ia_valid; 696 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 697 698 BUG_ON(!inode); 699 700 error = setattr_prepare(dentry, attr); 701 if (error) 702 return error; 703 704 if (ia_valid & ATTR_SIZE) { 705 loff_t oldsize = inode->i_size; 706 loff_t newsize = attr->ia_size; 707 708 if (newsize & ~huge_page_mask(h)) 709 return -EINVAL; 710 /* protected by i_mutex */ 711 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 712 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 713 return -EPERM; 714 error = hugetlb_vmtruncate(inode, newsize); 715 if (error) 716 return error; 717 } 718 719 setattr_copy(inode, attr); 720 mark_inode_dirty(inode); 721 return 0; 722 } 723 724 static struct inode *hugetlbfs_get_root(struct super_block *sb, 725 struct hugetlbfs_fs_context *ctx) 726 { 727 struct inode *inode; 728 729 inode = new_inode(sb); 730 if (inode) { 731 inode->i_ino = get_next_ino(); 732 inode->i_mode = S_IFDIR | ctx->mode; 733 inode->i_uid = ctx->uid; 734 inode->i_gid = ctx->gid; 735 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 736 inode->i_op = &hugetlbfs_dir_inode_operations; 737 inode->i_fop = &simple_dir_operations; 738 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 739 inc_nlink(inode); 740 lockdep_annotate_inode_mutex_key(inode); 741 } 742 return inode; 743 } 744 745 /* 746 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 747 * be taken from reclaim -- unlike regular filesystems. This needs an 748 * annotation because huge_pmd_share() does an allocation under hugetlb's 749 * i_mmap_rwsem. 750 */ 751 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 752 753 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 754 struct inode *dir, 755 umode_t mode, dev_t dev) 756 { 757 struct inode *inode; 758 struct resv_map *resv_map = NULL; 759 760 /* 761 * Reserve maps are only needed for inodes that can have associated 762 * page allocations. 763 */ 764 if (S_ISREG(mode) || S_ISLNK(mode)) { 765 resv_map = resv_map_alloc(); 766 if (!resv_map) 767 return NULL; 768 } 769 770 inode = new_inode(sb); 771 if (inode) { 772 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 773 774 inode->i_ino = get_next_ino(); 775 inode_init_owner(inode, dir, mode); 776 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 777 &hugetlbfs_i_mmap_rwsem_key); 778 inode->i_mapping->a_ops = &hugetlbfs_aops; 779 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 780 inode->i_mapping->private_data = resv_map; 781 info->seals = F_SEAL_SEAL; 782 switch (mode & S_IFMT) { 783 default: 784 init_special_inode(inode, mode, dev); 785 break; 786 case S_IFREG: 787 inode->i_op = &hugetlbfs_inode_operations; 788 inode->i_fop = &hugetlbfs_file_operations; 789 break; 790 case S_IFDIR: 791 inode->i_op = &hugetlbfs_dir_inode_operations; 792 inode->i_fop = &simple_dir_operations; 793 794 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 795 inc_nlink(inode); 796 break; 797 case S_IFLNK: 798 inode->i_op = &page_symlink_inode_operations; 799 inode_nohighmem(inode); 800 break; 801 } 802 lockdep_annotate_inode_mutex_key(inode); 803 } else { 804 if (resv_map) 805 kref_put(&resv_map->refs, resv_map_release); 806 } 807 808 return inode; 809 } 810 811 /* 812 * File creation. Allocate an inode, and we're done.. 813 */ 814 static int hugetlbfs_mknod(struct inode *dir, 815 struct dentry *dentry, umode_t mode, dev_t dev) 816 { 817 struct inode *inode; 818 int error = -ENOSPC; 819 820 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 821 if (inode) { 822 dir->i_ctime = dir->i_mtime = current_time(dir); 823 d_instantiate(dentry, inode); 824 dget(dentry); /* Extra count - pin the dentry in core */ 825 error = 0; 826 } 827 return error; 828 } 829 830 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 831 { 832 int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0); 833 if (!retval) 834 inc_nlink(dir); 835 return retval; 836 } 837 838 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl) 839 { 840 return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0); 841 } 842 843 static int hugetlbfs_symlink(struct inode *dir, 844 struct dentry *dentry, const char *symname) 845 { 846 struct inode *inode; 847 int error = -ENOSPC; 848 849 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 850 if (inode) { 851 int l = strlen(symname)+1; 852 error = page_symlink(inode, symname, l); 853 if (!error) { 854 d_instantiate(dentry, inode); 855 dget(dentry); 856 } else 857 iput(inode); 858 } 859 dir->i_ctime = dir->i_mtime = current_time(dir); 860 861 return error; 862 } 863 864 /* 865 * mark the head page dirty 866 */ 867 static int hugetlbfs_set_page_dirty(struct page *page) 868 { 869 struct page *head = compound_head(page); 870 871 SetPageDirty(head); 872 return 0; 873 } 874 875 static int hugetlbfs_migrate_page(struct address_space *mapping, 876 struct page *newpage, struct page *page, 877 enum migrate_mode mode) 878 { 879 int rc; 880 881 rc = migrate_huge_page_move_mapping(mapping, newpage, page); 882 if (rc != MIGRATEPAGE_SUCCESS) 883 return rc; 884 885 /* 886 * page_private is subpool pointer in hugetlb pages. Transfer to 887 * new page. PagePrivate is not associated with page_private for 888 * hugetlb pages and can not be set here as only page_huge_active 889 * pages can be migrated. 890 */ 891 if (page_private(page)) { 892 set_page_private(newpage, page_private(page)); 893 set_page_private(page, 0); 894 } 895 896 if (mode != MIGRATE_SYNC_NO_COPY) 897 migrate_page_copy(newpage, page); 898 else 899 migrate_page_states(newpage, page); 900 901 return MIGRATEPAGE_SUCCESS; 902 } 903 904 static int hugetlbfs_error_remove_page(struct address_space *mapping, 905 struct page *page) 906 { 907 struct inode *inode = mapping->host; 908 pgoff_t index = page->index; 909 910 remove_huge_page(page); 911 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1))) 912 hugetlb_fix_reserve_counts(inode); 913 914 return 0; 915 } 916 917 /* 918 * Display the mount options in /proc/mounts. 919 */ 920 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 921 { 922 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 923 struct hugepage_subpool *spool = sbinfo->spool; 924 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 925 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 926 char mod; 927 928 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 929 seq_printf(m, ",uid=%u", 930 from_kuid_munged(&init_user_ns, sbinfo->uid)); 931 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 932 seq_printf(m, ",gid=%u", 933 from_kgid_munged(&init_user_ns, sbinfo->gid)); 934 if (sbinfo->mode != 0755) 935 seq_printf(m, ",mode=%o", sbinfo->mode); 936 if (sbinfo->max_inodes != -1) 937 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 938 939 hpage_size /= 1024; 940 mod = 'K'; 941 if (hpage_size >= 1024) { 942 hpage_size /= 1024; 943 mod = 'M'; 944 } 945 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 946 if (spool) { 947 if (spool->max_hpages != -1) 948 seq_printf(m, ",size=%llu", 949 (unsigned long long)spool->max_hpages << hpage_shift); 950 if (spool->min_hpages != -1) 951 seq_printf(m, ",min_size=%llu", 952 (unsigned long long)spool->min_hpages << hpage_shift); 953 } 954 return 0; 955 } 956 957 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 958 { 959 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 960 struct hstate *h = hstate_inode(d_inode(dentry)); 961 962 buf->f_type = HUGETLBFS_MAGIC; 963 buf->f_bsize = huge_page_size(h); 964 if (sbinfo) { 965 spin_lock(&sbinfo->stat_lock); 966 /* If no limits set, just report 0 for max/free/used 967 * blocks, like simple_statfs() */ 968 if (sbinfo->spool) { 969 long free_pages; 970 971 spin_lock(&sbinfo->spool->lock); 972 buf->f_blocks = sbinfo->spool->max_hpages; 973 free_pages = sbinfo->spool->max_hpages 974 - sbinfo->spool->used_hpages; 975 buf->f_bavail = buf->f_bfree = free_pages; 976 spin_unlock(&sbinfo->spool->lock); 977 buf->f_files = sbinfo->max_inodes; 978 buf->f_ffree = sbinfo->free_inodes; 979 } 980 spin_unlock(&sbinfo->stat_lock); 981 } 982 buf->f_namelen = NAME_MAX; 983 return 0; 984 } 985 986 static void hugetlbfs_put_super(struct super_block *sb) 987 { 988 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 989 990 if (sbi) { 991 sb->s_fs_info = NULL; 992 993 if (sbi->spool) 994 hugepage_put_subpool(sbi->spool); 995 996 kfree(sbi); 997 } 998 } 999 1000 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1001 { 1002 if (sbinfo->free_inodes >= 0) { 1003 spin_lock(&sbinfo->stat_lock); 1004 if (unlikely(!sbinfo->free_inodes)) { 1005 spin_unlock(&sbinfo->stat_lock); 1006 return 0; 1007 } 1008 sbinfo->free_inodes--; 1009 spin_unlock(&sbinfo->stat_lock); 1010 } 1011 1012 return 1; 1013 } 1014 1015 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1016 { 1017 if (sbinfo->free_inodes >= 0) { 1018 spin_lock(&sbinfo->stat_lock); 1019 sbinfo->free_inodes++; 1020 spin_unlock(&sbinfo->stat_lock); 1021 } 1022 } 1023 1024 1025 static struct kmem_cache *hugetlbfs_inode_cachep; 1026 1027 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1028 { 1029 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1030 struct hugetlbfs_inode_info *p; 1031 1032 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1033 return NULL; 1034 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL); 1035 if (unlikely(!p)) { 1036 hugetlbfs_inc_free_inodes(sbinfo); 1037 return NULL; 1038 } 1039 1040 /* 1041 * Any time after allocation, hugetlbfs_destroy_inode can be called 1042 * for the inode. mpol_free_shared_policy is unconditionally called 1043 * as part of hugetlbfs_destroy_inode. So, initialize policy here 1044 * in case of a quick call to destroy. 1045 * 1046 * Note that the policy is initialized even if we are creating a 1047 * private inode. This simplifies hugetlbfs_destroy_inode. 1048 */ 1049 mpol_shared_policy_init(&p->policy, NULL); 1050 1051 return &p->vfs_inode; 1052 } 1053 1054 static void hugetlbfs_i_callback(struct rcu_head *head) 1055 { 1056 struct inode *inode = container_of(head, struct inode, i_rcu); 1057 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1058 } 1059 1060 static void hugetlbfs_destroy_inode(struct inode *inode) 1061 { 1062 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1063 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); 1064 call_rcu(&inode->i_rcu, hugetlbfs_i_callback); 1065 } 1066 1067 static const struct address_space_operations hugetlbfs_aops = { 1068 .write_begin = hugetlbfs_write_begin, 1069 .write_end = hugetlbfs_write_end, 1070 .set_page_dirty = hugetlbfs_set_page_dirty, 1071 .migratepage = hugetlbfs_migrate_page, 1072 .error_remove_page = hugetlbfs_error_remove_page, 1073 }; 1074 1075 1076 static void init_once(void *foo) 1077 { 1078 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo; 1079 1080 inode_init_once(&ei->vfs_inode); 1081 } 1082 1083 const struct file_operations hugetlbfs_file_operations = { 1084 .read_iter = hugetlbfs_read_iter, 1085 .mmap = hugetlbfs_file_mmap, 1086 .fsync = noop_fsync, 1087 .get_unmapped_area = hugetlb_get_unmapped_area, 1088 .llseek = default_llseek, 1089 .fallocate = hugetlbfs_fallocate, 1090 }; 1091 1092 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1093 .create = hugetlbfs_create, 1094 .lookup = simple_lookup, 1095 .link = simple_link, 1096 .unlink = simple_unlink, 1097 .symlink = hugetlbfs_symlink, 1098 .mkdir = hugetlbfs_mkdir, 1099 .rmdir = simple_rmdir, 1100 .mknod = hugetlbfs_mknod, 1101 .rename = simple_rename, 1102 .setattr = hugetlbfs_setattr, 1103 }; 1104 1105 static const struct inode_operations hugetlbfs_inode_operations = { 1106 .setattr = hugetlbfs_setattr, 1107 }; 1108 1109 static const struct super_operations hugetlbfs_ops = { 1110 .alloc_inode = hugetlbfs_alloc_inode, 1111 .destroy_inode = hugetlbfs_destroy_inode, 1112 .evict_inode = hugetlbfs_evict_inode, 1113 .statfs = hugetlbfs_statfs, 1114 .put_super = hugetlbfs_put_super, 1115 .show_options = hugetlbfs_show_options, 1116 }; 1117 1118 /* 1119 * Convert size option passed from command line to number of huge pages 1120 * in the pool specified by hstate. Size option could be in bytes 1121 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1122 */ 1123 static long 1124 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1125 enum hugetlbfs_size_type val_type) 1126 { 1127 if (val_type == NO_SIZE) 1128 return -1; 1129 1130 if (val_type == SIZE_PERCENT) { 1131 size_opt <<= huge_page_shift(h); 1132 size_opt *= h->max_huge_pages; 1133 do_div(size_opt, 100); 1134 } 1135 1136 size_opt >>= huge_page_shift(h); 1137 return size_opt; 1138 } 1139 1140 /* 1141 * Parse one mount parameter. 1142 */ 1143 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1144 { 1145 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1146 struct fs_parse_result result; 1147 char *rest; 1148 unsigned long ps; 1149 int opt; 1150 1151 opt = fs_parse(fc, &hugetlb_fs_parameters, param, &result); 1152 if (opt < 0) 1153 return opt; 1154 1155 switch (opt) { 1156 case Opt_uid: 1157 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 1158 if (!uid_valid(ctx->uid)) 1159 goto bad_val; 1160 return 0; 1161 1162 case Opt_gid: 1163 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 1164 if (!gid_valid(ctx->gid)) 1165 goto bad_val; 1166 return 0; 1167 1168 case Opt_mode: 1169 ctx->mode = result.uint_32 & 01777U; 1170 return 0; 1171 1172 case Opt_size: 1173 /* memparse() will accept a K/M/G without a digit */ 1174 if (!isdigit(param->string[0])) 1175 goto bad_val; 1176 ctx->max_size_opt = memparse(param->string, &rest); 1177 ctx->max_val_type = SIZE_STD; 1178 if (*rest == '%') 1179 ctx->max_val_type = SIZE_PERCENT; 1180 return 0; 1181 1182 case Opt_nr_inodes: 1183 /* memparse() will accept a K/M/G without a digit */ 1184 if (!isdigit(param->string[0])) 1185 goto bad_val; 1186 ctx->nr_inodes = memparse(param->string, &rest); 1187 return 0; 1188 1189 case Opt_pagesize: 1190 ps = memparse(param->string, &rest); 1191 ctx->hstate = size_to_hstate(ps); 1192 if (!ctx->hstate) { 1193 pr_err("Unsupported page size %lu MB\n", ps >> 20); 1194 return -EINVAL; 1195 } 1196 return 0; 1197 1198 case Opt_min_size: 1199 /* memparse() will accept a K/M/G without a digit */ 1200 if (!isdigit(param->string[0])) 1201 goto bad_val; 1202 ctx->min_size_opt = memparse(param->string, &rest); 1203 ctx->min_val_type = SIZE_STD; 1204 if (*rest == '%') 1205 ctx->min_val_type = SIZE_PERCENT; 1206 return 0; 1207 1208 default: 1209 return -EINVAL; 1210 } 1211 1212 bad_val: 1213 return invalf(fc, "hugetlbfs: Bad value '%s' for mount option '%s'\n", 1214 param->string, param->key); 1215 } 1216 1217 /* 1218 * Validate the parsed options. 1219 */ 1220 static int hugetlbfs_validate(struct fs_context *fc) 1221 { 1222 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1223 1224 /* 1225 * Use huge page pool size (in hstate) to convert the size 1226 * options to number of huge pages. If NO_SIZE, -1 is returned. 1227 */ 1228 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1229 ctx->max_size_opt, 1230 ctx->max_val_type); 1231 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1232 ctx->min_size_opt, 1233 ctx->min_val_type); 1234 1235 /* 1236 * If max_size was specified, then min_size must be smaller 1237 */ 1238 if (ctx->max_val_type > NO_SIZE && 1239 ctx->min_hpages > ctx->max_hpages) { 1240 pr_err("Minimum size can not be greater than maximum size\n"); 1241 return -EINVAL; 1242 } 1243 1244 return 0; 1245 } 1246 1247 static int 1248 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1249 { 1250 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1251 struct hugetlbfs_sb_info *sbinfo; 1252 1253 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1254 if (!sbinfo) 1255 return -ENOMEM; 1256 sb->s_fs_info = sbinfo; 1257 spin_lock_init(&sbinfo->stat_lock); 1258 sbinfo->hstate = ctx->hstate; 1259 sbinfo->max_inodes = ctx->nr_inodes; 1260 sbinfo->free_inodes = ctx->nr_inodes; 1261 sbinfo->spool = NULL; 1262 sbinfo->uid = ctx->uid; 1263 sbinfo->gid = ctx->gid; 1264 sbinfo->mode = ctx->mode; 1265 1266 /* 1267 * Allocate and initialize subpool if maximum or minimum size is 1268 * specified. Any needed reservations (for minimim size) are taken 1269 * taken when the subpool is created. 1270 */ 1271 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1272 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1273 ctx->max_hpages, 1274 ctx->min_hpages); 1275 if (!sbinfo->spool) 1276 goto out_free; 1277 } 1278 sb->s_maxbytes = MAX_LFS_FILESIZE; 1279 sb->s_blocksize = huge_page_size(ctx->hstate); 1280 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1281 sb->s_magic = HUGETLBFS_MAGIC; 1282 sb->s_op = &hugetlbfs_ops; 1283 sb->s_time_gran = 1; 1284 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1285 if (!sb->s_root) 1286 goto out_free; 1287 return 0; 1288 out_free: 1289 kfree(sbinfo->spool); 1290 kfree(sbinfo); 1291 return -ENOMEM; 1292 } 1293 1294 static int hugetlbfs_get_tree(struct fs_context *fc) 1295 { 1296 int err = hugetlbfs_validate(fc); 1297 if (err) 1298 return err; 1299 return vfs_get_super(fc, vfs_get_independent_super, hugetlbfs_fill_super); 1300 } 1301 1302 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1303 { 1304 kfree(fc->fs_private); 1305 } 1306 1307 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1308 .free = hugetlbfs_fs_context_free, 1309 .parse_param = hugetlbfs_parse_param, 1310 .get_tree = hugetlbfs_get_tree, 1311 }; 1312 1313 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1314 { 1315 struct hugetlbfs_fs_context *ctx; 1316 1317 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1318 if (!ctx) 1319 return -ENOMEM; 1320 1321 ctx->max_hpages = -1; /* No limit on size by default */ 1322 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1323 ctx->uid = current_fsuid(); 1324 ctx->gid = current_fsgid(); 1325 ctx->mode = 0755; 1326 ctx->hstate = &default_hstate; 1327 ctx->min_hpages = -1; /* No default minimum size */ 1328 ctx->max_val_type = NO_SIZE; 1329 ctx->min_val_type = NO_SIZE; 1330 fc->fs_private = ctx; 1331 fc->ops = &hugetlbfs_fs_context_ops; 1332 return 0; 1333 } 1334 1335 static struct file_system_type hugetlbfs_fs_type = { 1336 .name = "hugetlbfs", 1337 .init_fs_context = hugetlbfs_init_fs_context, 1338 .parameters = &hugetlb_fs_parameters, 1339 .kill_sb = kill_litter_super, 1340 }; 1341 1342 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1343 1344 static int can_do_hugetlb_shm(void) 1345 { 1346 kgid_t shm_group; 1347 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1348 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1349 } 1350 1351 static int get_hstate_idx(int page_size_log) 1352 { 1353 struct hstate *h = hstate_sizelog(page_size_log); 1354 1355 if (!h) 1356 return -1; 1357 return h - hstates; 1358 } 1359 1360 /* 1361 * Note that size should be aligned to proper hugepage size in caller side, 1362 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1363 */ 1364 struct file *hugetlb_file_setup(const char *name, size_t size, 1365 vm_flags_t acctflag, struct user_struct **user, 1366 int creat_flags, int page_size_log) 1367 { 1368 struct inode *inode; 1369 struct vfsmount *mnt; 1370 int hstate_idx; 1371 struct file *file; 1372 1373 hstate_idx = get_hstate_idx(page_size_log); 1374 if (hstate_idx < 0) 1375 return ERR_PTR(-ENODEV); 1376 1377 *user = NULL; 1378 mnt = hugetlbfs_vfsmount[hstate_idx]; 1379 if (!mnt) 1380 return ERR_PTR(-ENOENT); 1381 1382 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1383 *user = current_user(); 1384 if (user_shm_lock(size, *user)) { 1385 task_lock(current); 1386 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n", 1387 current->comm, current->pid); 1388 task_unlock(current); 1389 } else { 1390 *user = NULL; 1391 return ERR_PTR(-EPERM); 1392 } 1393 } 1394 1395 file = ERR_PTR(-ENOSPC); 1396 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0); 1397 if (!inode) 1398 goto out; 1399 if (creat_flags == HUGETLB_SHMFS_INODE) 1400 inode->i_flags |= S_PRIVATE; 1401 1402 inode->i_size = size; 1403 clear_nlink(inode); 1404 1405 if (hugetlb_reserve_pages(inode, 0, 1406 size >> huge_page_shift(hstate_inode(inode)), NULL, 1407 acctflag)) 1408 file = ERR_PTR(-ENOMEM); 1409 else 1410 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1411 &hugetlbfs_file_operations); 1412 if (!IS_ERR(file)) 1413 return file; 1414 1415 iput(inode); 1416 out: 1417 if (*user) { 1418 user_shm_unlock(size, *user); 1419 *user = NULL; 1420 } 1421 return file; 1422 } 1423 1424 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1425 { 1426 struct fs_context *fc; 1427 struct vfsmount *mnt; 1428 1429 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1430 if (IS_ERR(fc)) { 1431 mnt = ERR_CAST(fc); 1432 } else { 1433 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1434 ctx->hstate = h; 1435 mnt = fc_mount(fc); 1436 put_fs_context(fc); 1437 } 1438 if (IS_ERR(mnt)) 1439 pr_err("Cannot mount internal hugetlbfs for page size %uK", 1440 1U << (h->order + PAGE_SHIFT - 10)); 1441 return mnt; 1442 } 1443 1444 static int __init init_hugetlbfs_fs(void) 1445 { 1446 struct vfsmount *mnt; 1447 struct hstate *h; 1448 int error; 1449 int i; 1450 1451 if (!hugepages_supported()) { 1452 pr_info("disabling because there are no supported hugepage sizes\n"); 1453 return -ENOTSUPP; 1454 } 1455 1456 error = -ENOMEM; 1457 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1458 sizeof(struct hugetlbfs_inode_info), 1459 0, SLAB_ACCOUNT, init_once); 1460 if (hugetlbfs_inode_cachep == NULL) 1461 goto out2; 1462 1463 error = register_filesystem(&hugetlbfs_fs_type); 1464 if (error) 1465 goto out; 1466 1467 i = 0; 1468 for_each_hstate(h) { 1469 mnt = mount_one_hugetlbfs(h); 1470 if (IS_ERR(mnt) && i == 0) { 1471 error = PTR_ERR(mnt); 1472 goto out; 1473 } 1474 hugetlbfs_vfsmount[i] = mnt; 1475 i++; 1476 } 1477 1478 return 0; 1479 1480 out: 1481 kmem_cache_destroy(hugetlbfs_inode_cachep); 1482 out2: 1483 return error; 1484 } 1485 fs_initcall(init_hugetlbfs_fs) 1486