1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/sched/signal.h> /* remove ASAP */ 15 #include <linux/falloc.h> 16 #include <linux/fs.h> 17 #include <linux/mount.h> 18 #include <linux/file.h> 19 #include <linux/kernel.h> 20 #include <linux/writeback.h> 21 #include <linux/pagemap.h> 22 #include <linux/highmem.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/capability.h> 26 #include <linux/ctype.h> 27 #include <linux/backing-dev.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagevec.h> 30 #include <linux/fs_parser.h> 31 #include <linux/mman.h> 32 #include <linux/slab.h> 33 #include <linux/dnotify.h> 34 #include <linux/statfs.h> 35 #include <linux/security.h> 36 #include <linux/magic.h> 37 #include <linux/migrate.h> 38 #include <linux/uio.h> 39 40 #include <linux/uaccess.h> 41 #include <linux/sched/mm.h> 42 43 static const struct super_operations hugetlbfs_ops; 44 static const struct address_space_operations hugetlbfs_aops; 45 const struct file_operations hugetlbfs_file_operations; 46 static const struct inode_operations hugetlbfs_dir_inode_operations; 47 static const struct inode_operations hugetlbfs_inode_operations; 48 49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 50 51 struct hugetlbfs_fs_context { 52 struct hstate *hstate; 53 unsigned long long max_size_opt; 54 unsigned long long min_size_opt; 55 long max_hpages; 56 long nr_inodes; 57 long min_hpages; 58 enum hugetlbfs_size_type max_val_type; 59 enum hugetlbfs_size_type min_val_type; 60 kuid_t uid; 61 kgid_t gid; 62 umode_t mode; 63 }; 64 65 int sysctl_hugetlb_shm_group; 66 67 enum hugetlb_param { 68 Opt_gid, 69 Opt_min_size, 70 Opt_mode, 71 Opt_nr_inodes, 72 Opt_pagesize, 73 Opt_size, 74 Opt_uid, 75 }; 76 77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 78 fsparam_u32 ("gid", Opt_gid), 79 fsparam_string("min_size", Opt_min_size), 80 fsparam_u32oct("mode", Opt_mode), 81 fsparam_string("nr_inodes", Opt_nr_inodes), 82 fsparam_string("pagesize", Opt_pagesize), 83 fsparam_string("size", Opt_size), 84 fsparam_u32 ("uid", Opt_uid), 85 {} 86 }; 87 88 #ifdef CONFIG_NUMA 89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 90 struct inode *inode, pgoff_t index) 91 { 92 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, 93 index); 94 } 95 96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 97 { 98 mpol_cond_put(vma->vm_policy); 99 } 100 #else 101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 102 struct inode *inode, pgoff_t index) 103 { 104 } 105 106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 107 { 108 } 109 #endif 110 111 /* 112 * Mask used when checking the page offset value passed in via system 113 * calls. This value will be converted to a loff_t which is signed. 114 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 115 * value. The extra bit (- 1 in the shift value) is to take the sign 116 * bit into account. 117 */ 118 #define PGOFF_LOFFT_MAX \ 119 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 120 121 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 122 { 123 struct inode *inode = file_inode(file); 124 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 125 loff_t len, vma_len; 126 int ret; 127 struct hstate *h = hstate_file(file); 128 129 /* 130 * vma address alignment (but not the pgoff alignment) has 131 * already been checked by prepare_hugepage_range. If you add 132 * any error returns here, do so after setting VM_HUGETLB, so 133 * is_vm_hugetlb_page tests below unmap_region go the right 134 * way when do_mmap unwinds (may be important on powerpc 135 * and ia64). 136 */ 137 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; 138 vma->vm_ops = &hugetlb_vm_ops; 139 140 ret = seal_check_future_write(info->seals, vma); 141 if (ret) 142 return ret; 143 144 /* 145 * page based offset in vm_pgoff could be sufficiently large to 146 * overflow a loff_t when converted to byte offset. This can 147 * only happen on architectures where sizeof(loff_t) == 148 * sizeof(unsigned long). So, only check in those instances. 149 */ 150 if (sizeof(unsigned long) == sizeof(loff_t)) { 151 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 152 return -EINVAL; 153 } 154 155 /* must be huge page aligned */ 156 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 157 return -EINVAL; 158 159 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 160 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 161 /* check for overflow */ 162 if (len < vma_len) 163 return -EINVAL; 164 165 inode_lock(inode); 166 file_accessed(file); 167 168 ret = -ENOMEM; 169 if (!hugetlb_reserve_pages(inode, 170 vma->vm_pgoff >> huge_page_order(h), 171 len >> huge_page_shift(h), vma, 172 vma->vm_flags)) 173 goto out; 174 175 ret = 0; 176 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 177 i_size_write(inode, len); 178 out: 179 inode_unlock(inode); 180 181 return ret; 182 } 183 184 /* 185 * Called under mmap_write_lock(mm). 186 */ 187 188 static unsigned long 189 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr, 190 unsigned long len, unsigned long pgoff, unsigned long flags) 191 { 192 struct hstate *h = hstate_file(file); 193 struct vm_unmapped_area_info info; 194 195 info.flags = 0; 196 info.length = len; 197 info.low_limit = current->mm->mmap_base; 198 info.high_limit = arch_get_mmap_end(addr, len, flags); 199 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 200 info.align_offset = 0; 201 return vm_unmapped_area(&info); 202 } 203 204 static unsigned long 205 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr, 206 unsigned long len, unsigned long pgoff, unsigned long flags) 207 { 208 struct hstate *h = hstate_file(file); 209 struct vm_unmapped_area_info info; 210 211 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 212 info.length = len; 213 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 214 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base); 215 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 216 info.align_offset = 0; 217 addr = vm_unmapped_area(&info); 218 219 /* 220 * A failed mmap() very likely causes application failure, 221 * so fall back to the bottom-up function here. This scenario 222 * can happen with large stack limits and large mmap() 223 * allocations. 224 */ 225 if (unlikely(offset_in_page(addr))) { 226 VM_BUG_ON(addr != -ENOMEM); 227 info.flags = 0; 228 info.low_limit = current->mm->mmap_base; 229 info.high_limit = arch_get_mmap_end(addr, len, flags); 230 addr = vm_unmapped_area(&info); 231 } 232 233 return addr; 234 } 235 236 unsigned long 237 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 238 unsigned long len, unsigned long pgoff, 239 unsigned long flags) 240 { 241 struct mm_struct *mm = current->mm; 242 struct vm_area_struct *vma; 243 struct hstate *h = hstate_file(file); 244 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 245 246 if (len & ~huge_page_mask(h)) 247 return -EINVAL; 248 if (len > TASK_SIZE) 249 return -ENOMEM; 250 251 if (flags & MAP_FIXED) { 252 if (prepare_hugepage_range(file, addr, len)) 253 return -EINVAL; 254 return addr; 255 } 256 257 if (addr) { 258 addr = ALIGN(addr, huge_page_size(h)); 259 vma = find_vma(mm, addr); 260 if (mmap_end - len >= addr && 261 (!vma || addr + len <= vm_start_gap(vma))) 262 return addr; 263 } 264 265 /* 266 * Use mm->get_unmapped_area value as a hint to use topdown routine. 267 * If architectures have special needs, they should define their own 268 * version of hugetlb_get_unmapped_area. 269 */ 270 if (mm->get_unmapped_area == arch_get_unmapped_area_topdown) 271 return hugetlb_get_unmapped_area_topdown(file, addr, len, 272 pgoff, flags); 273 return hugetlb_get_unmapped_area_bottomup(file, addr, len, 274 pgoff, flags); 275 } 276 277 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 278 static unsigned long 279 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 280 unsigned long len, unsigned long pgoff, 281 unsigned long flags) 282 { 283 return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags); 284 } 285 #endif 286 287 static size_t 288 hugetlbfs_read_actor(struct page *page, unsigned long offset, 289 struct iov_iter *to, unsigned long size) 290 { 291 size_t copied = 0; 292 int i, chunksize; 293 294 /* Find which 4k chunk and offset with in that chunk */ 295 i = offset >> PAGE_SHIFT; 296 offset = offset & ~PAGE_MASK; 297 298 while (size) { 299 size_t n; 300 chunksize = PAGE_SIZE; 301 if (offset) 302 chunksize -= offset; 303 if (chunksize > size) 304 chunksize = size; 305 n = copy_page_to_iter(&page[i], offset, chunksize, to); 306 copied += n; 307 if (n != chunksize) 308 return copied; 309 offset = 0; 310 size -= chunksize; 311 i++; 312 } 313 return copied; 314 } 315 316 /* 317 * Support for read() - Find the page attached to f_mapping and copy out the 318 * data. Its *very* similar to generic_file_buffered_read(), we can't use that 319 * since it has PAGE_SIZE assumptions. 320 */ 321 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 322 { 323 struct file *file = iocb->ki_filp; 324 struct hstate *h = hstate_file(file); 325 struct address_space *mapping = file->f_mapping; 326 struct inode *inode = mapping->host; 327 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 328 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 329 unsigned long end_index; 330 loff_t isize; 331 ssize_t retval = 0; 332 333 while (iov_iter_count(to)) { 334 struct page *page; 335 size_t nr, copied; 336 337 /* nr is the maximum number of bytes to copy from this page */ 338 nr = huge_page_size(h); 339 isize = i_size_read(inode); 340 if (!isize) 341 break; 342 end_index = (isize - 1) >> huge_page_shift(h); 343 if (index > end_index) 344 break; 345 if (index == end_index) { 346 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 347 if (nr <= offset) 348 break; 349 } 350 nr = nr - offset; 351 352 /* Find the page */ 353 page = find_lock_page(mapping, index); 354 if (unlikely(page == NULL)) { 355 /* 356 * We have a HOLE, zero out the user-buffer for the 357 * length of the hole or request. 358 */ 359 copied = iov_iter_zero(nr, to); 360 } else { 361 unlock_page(page); 362 363 /* 364 * We have the page, copy it to user space buffer. 365 */ 366 copied = hugetlbfs_read_actor(page, offset, to, nr); 367 put_page(page); 368 } 369 offset += copied; 370 retval += copied; 371 if (copied != nr && iov_iter_count(to)) { 372 if (!retval) 373 retval = -EFAULT; 374 break; 375 } 376 index += offset >> huge_page_shift(h); 377 offset &= ~huge_page_mask(h); 378 } 379 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 380 return retval; 381 } 382 383 static int hugetlbfs_write_begin(struct file *file, 384 struct address_space *mapping, 385 loff_t pos, unsigned len, 386 struct page **pagep, void **fsdata) 387 { 388 return -EINVAL; 389 } 390 391 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 392 loff_t pos, unsigned len, unsigned copied, 393 struct page *page, void *fsdata) 394 { 395 BUG(); 396 return -EINVAL; 397 } 398 399 static void remove_huge_page(struct page *page) 400 { 401 ClearPageDirty(page); 402 ClearPageUptodate(page); 403 delete_from_page_cache(page); 404 } 405 406 static void 407 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end, 408 zap_flags_t zap_flags) 409 { 410 struct vm_area_struct *vma; 411 412 /* 413 * end == 0 indicates that the entire range after start should be 414 * unmapped. Note, end is exclusive, whereas the interval tree takes 415 * an inclusive "last". 416 */ 417 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) { 418 unsigned long v_offset; 419 unsigned long v_end; 420 421 /* 422 * Can the expression below overflow on 32-bit arches? 423 * No, because the interval tree returns us only those vmas 424 * which overlap the truncated area starting at pgoff, 425 * and no vma on a 32-bit arch can span beyond the 4GB. 426 */ 427 if (vma->vm_pgoff < start) 428 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 429 else 430 v_offset = 0; 431 432 if (!end) 433 v_end = vma->vm_end; 434 else { 435 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) 436 + vma->vm_start; 437 if (v_end > vma->vm_end) 438 v_end = vma->vm_end; 439 } 440 441 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end, 442 NULL, zap_flags); 443 } 444 } 445 446 /* 447 * remove_inode_hugepages handles two distinct cases: truncation and hole 448 * punch. There are subtle differences in operation for each case. 449 * 450 * truncation is indicated by end of range being LLONG_MAX 451 * In this case, we first scan the range and release found pages. 452 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve 453 * maps and global counts. Page faults can not race with truncation 454 * in this routine. hugetlb_no_page() holds i_mmap_rwsem and prevents 455 * page faults in the truncated range by checking i_size. i_size is 456 * modified while holding i_mmap_rwsem. 457 * hole punch is indicated if end is not LLONG_MAX 458 * In the hole punch case we scan the range and release found pages. 459 * Only when releasing a page is the associated region/reserve map 460 * deleted. The region/reserve map for ranges without associated 461 * pages are not modified. Page faults can race with hole punch. 462 * This is indicated if we find a mapped page. 463 * Note: If the passed end of range value is beyond the end of file, but 464 * not LLONG_MAX this routine still performs a hole punch operation. 465 */ 466 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 467 loff_t lend) 468 { 469 struct hstate *h = hstate_inode(inode); 470 struct address_space *mapping = &inode->i_data; 471 const pgoff_t start = lstart >> huge_page_shift(h); 472 const pgoff_t end = lend >> huge_page_shift(h); 473 struct folio_batch fbatch; 474 pgoff_t next, index; 475 int i, freed = 0; 476 bool truncate_op = (lend == LLONG_MAX); 477 478 folio_batch_init(&fbatch); 479 next = start; 480 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) { 481 for (i = 0; i < folio_batch_count(&fbatch); ++i) { 482 struct folio *folio = fbatch.folios[i]; 483 u32 hash = 0; 484 485 index = folio->index; 486 if (!truncate_op) { 487 /* 488 * Only need to hold the fault mutex in the 489 * hole punch case. This prevents races with 490 * page faults. Races are not possible in the 491 * case of truncation. 492 */ 493 hash = hugetlb_fault_mutex_hash(mapping, index); 494 mutex_lock(&hugetlb_fault_mutex_table[hash]); 495 } 496 497 /* 498 * If folio is mapped, it was faulted in after being 499 * unmapped in caller. Unmap (again) now after taking 500 * the fault mutex. The mutex will prevent faults 501 * until we finish removing the folio. 502 * 503 * This race can only happen in the hole punch case. 504 * Getting here in a truncate operation is a bug. 505 */ 506 if (unlikely(folio_mapped(folio))) { 507 BUG_ON(truncate_op); 508 509 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 510 i_mmap_lock_write(mapping); 511 mutex_lock(&hugetlb_fault_mutex_table[hash]); 512 hugetlb_vmdelete_list(&mapping->i_mmap, 513 index * pages_per_huge_page(h), 514 (index + 1) * pages_per_huge_page(h), 515 ZAP_FLAG_DROP_MARKER); 516 i_mmap_unlock_write(mapping); 517 } 518 519 folio_lock(folio); 520 /* 521 * We must free the huge page and remove from page 522 * cache (remove_huge_page) BEFORE removing the 523 * region/reserve map (hugetlb_unreserve_pages). In 524 * rare out of memory conditions, removal of the 525 * region/reserve map could fail. Correspondingly, 526 * the subpool and global reserve usage count can need 527 * to be adjusted. 528 */ 529 VM_BUG_ON(HPageRestoreReserve(&folio->page)); 530 remove_huge_page(&folio->page); 531 freed++; 532 if (!truncate_op) { 533 if (unlikely(hugetlb_unreserve_pages(inode, 534 index, index + 1, 1))) 535 hugetlb_fix_reserve_counts(inode); 536 } 537 538 folio_unlock(folio); 539 if (!truncate_op) 540 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 541 } 542 folio_batch_release(&fbatch); 543 cond_resched(); 544 } 545 546 if (truncate_op) 547 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); 548 } 549 550 static void hugetlbfs_evict_inode(struct inode *inode) 551 { 552 struct resv_map *resv_map; 553 554 remove_inode_hugepages(inode, 0, LLONG_MAX); 555 556 /* 557 * Get the resv_map from the address space embedded in the inode. 558 * This is the address space which points to any resv_map allocated 559 * at inode creation time. If this is a device special inode, 560 * i_mapping may not point to the original address space. 561 */ 562 resv_map = (struct resv_map *)(&inode->i_data)->private_data; 563 /* Only regular and link inodes have associated reserve maps */ 564 if (resv_map) 565 resv_map_release(&resv_map->refs); 566 clear_inode(inode); 567 } 568 569 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset) 570 { 571 pgoff_t pgoff; 572 struct address_space *mapping = inode->i_mapping; 573 struct hstate *h = hstate_inode(inode); 574 575 BUG_ON(offset & ~huge_page_mask(h)); 576 pgoff = offset >> PAGE_SHIFT; 577 578 i_mmap_lock_write(mapping); 579 i_size_write(inode, offset); 580 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 581 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0, 582 ZAP_FLAG_DROP_MARKER); 583 i_mmap_unlock_write(mapping); 584 remove_inode_hugepages(inode, offset, LLONG_MAX); 585 } 586 587 static void hugetlbfs_zero_partial_page(struct hstate *h, 588 struct address_space *mapping, 589 loff_t start, 590 loff_t end) 591 { 592 pgoff_t idx = start >> huge_page_shift(h); 593 struct folio *folio; 594 595 folio = filemap_lock_folio(mapping, idx); 596 if (!folio) 597 return; 598 599 start = start & ~huge_page_mask(h); 600 end = end & ~huge_page_mask(h); 601 if (!end) 602 end = huge_page_size(h); 603 604 folio_zero_segment(folio, (size_t)start, (size_t)end); 605 606 folio_unlock(folio); 607 folio_put(folio); 608 } 609 610 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 611 { 612 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 613 struct address_space *mapping = inode->i_mapping; 614 struct hstate *h = hstate_inode(inode); 615 loff_t hpage_size = huge_page_size(h); 616 loff_t hole_start, hole_end; 617 618 /* 619 * hole_start and hole_end indicate the full pages within the hole. 620 */ 621 hole_start = round_up(offset, hpage_size); 622 hole_end = round_down(offset + len, hpage_size); 623 624 inode_lock(inode); 625 626 /* protected by i_rwsem */ 627 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 628 inode_unlock(inode); 629 return -EPERM; 630 } 631 632 i_mmap_lock_write(mapping); 633 634 /* If range starts before first full page, zero partial page. */ 635 if (offset < hole_start) 636 hugetlbfs_zero_partial_page(h, mapping, 637 offset, min(offset + len, hole_start)); 638 639 /* Unmap users of full pages in the hole. */ 640 if (hole_end > hole_start) { 641 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 642 hugetlb_vmdelete_list(&mapping->i_mmap, 643 hole_start >> PAGE_SHIFT, 644 hole_end >> PAGE_SHIFT, 0); 645 } 646 647 /* If range extends beyond last full page, zero partial page. */ 648 if ((offset + len) > hole_end && (offset + len) > hole_start) 649 hugetlbfs_zero_partial_page(h, mapping, 650 hole_end, offset + len); 651 652 i_mmap_unlock_write(mapping); 653 654 /* Remove full pages from the file. */ 655 if (hole_end > hole_start) 656 remove_inode_hugepages(inode, hole_start, hole_end); 657 658 inode_unlock(inode); 659 660 return 0; 661 } 662 663 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 664 loff_t len) 665 { 666 struct inode *inode = file_inode(file); 667 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 668 struct address_space *mapping = inode->i_mapping; 669 struct hstate *h = hstate_inode(inode); 670 struct vm_area_struct pseudo_vma; 671 struct mm_struct *mm = current->mm; 672 loff_t hpage_size = huge_page_size(h); 673 unsigned long hpage_shift = huge_page_shift(h); 674 pgoff_t start, index, end; 675 int error; 676 u32 hash; 677 678 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 679 return -EOPNOTSUPP; 680 681 if (mode & FALLOC_FL_PUNCH_HOLE) 682 return hugetlbfs_punch_hole(inode, offset, len); 683 684 /* 685 * Default preallocate case. 686 * For this range, start is rounded down and end is rounded up 687 * as well as being converted to page offsets. 688 */ 689 start = offset >> hpage_shift; 690 end = (offset + len + hpage_size - 1) >> hpage_shift; 691 692 inode_lock(inode); 693 694 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 695 error = inode_newsize_ok(inode, offset + len); 696 if (error) 697 goto out; 698 699 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 700 error = -EPERM; 701 goto out; 702 } 703 704 /* 705 * Initialize a pseudo vma as this is required by the huge page 706 * allocation routines. If NUMA is configured, use page index 707 * as input to create an allocation policy. 708 */ 709 vma_init(&pseudo_vma, mm); 710 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 711 pseudo_vma.vm_file = file; 712 713 for (index = start; index < end; index++) { 714 /* 715 * This is supposed to be the vaddr where the page is being 716 * faulted in, but we have no vaddr here. 717 */ 718 struct page *page; 719 unsigned long addr; 720 721 cond_resched(); 722 723 /* 724 * fallocate(2) manpage permits EINTR; we may have been 725 * interrupted because we are using up too much memory. 726 */ 727 if (signal_pending(current)) { 728 error = -EINTR; 729 break; 730 } 731 732 /* Set numa allocation policy based on index */ 733 hugetlb_set_vma_policy(&pseudo_vma, inode, index); 734 735 /* addr is the offset within the file (zero based) */ 736 addr = index * hpage_size; 737 738 /* 739 * fault mutex taken here, protects against fault path 740 * and hole punch. inode_lock previously taken protects 741 * against truncation. 742 */ 743 hash = hugetlb_fault_mutex_hash(mapping, index); 744 mutex_lock(&hugetlb_fault_mutex_table[hash]); 745 746 /* See if already present in mapping to avoid alloc/free */ 747 page = find_get_page(mapping, index); 748 if (page) { 749 put_page(page); 750 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 751 hugetlb_drop_vma_policy(&pseudo_vma); 752 continue; 753 } 754 755 /* 756 * Allocate page without setting the avoid_reserve argument. 757 * There certainly are no reserves associated with the 758 * pseudo_vma. However, there could be shared mappings with 759 * reserves for the file at the inode level. If we fallocate 760 * pages in these areas, we need to consume the reserves 761 * to keep reservation accounting consistent. 762 */ 763 page = alloc_huge_page(&pseudo_vma, addr, 0); 764 hugetlb_drop_vma_policy(&pseudo_vma); 765 if (IS_ERR(page)) { 766 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 767 error = PTR_ERR(page); 768 goto out; 769 } 770 clear_huge_page(page, addr, pages_per_huge_page(h)); 771 __SetPageUptodate(page); 772 error = huge_add_to_page_cache(page, mapping, index); 773 if (unlikely(error)) { 774 restore_reserve_on_error(h, &pseudo_vma, addr, page); 775 put_page(page); 776 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 777 goto out; 778 } 779 780 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 781 782 SetHPageMigratable(page); 783 /* 784 * unlock_page because locked by huge_add_to_page_cache() 785 * put_page() due to reference from alloc_huge_page() 786 */ 787 unlock_page(page); 788 put_page(page); 789 } 790 791 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 792 i_size_write(inode, offset + len); 793 inode->i_ctime = current_time(inode); 794 out: 795 inode_unlock(inode); 796 return error; 797 } 798 799 static int hugetlbfs_setattr(struct user_namespace *mnt_userns, 800 struct dentry *dentry, struct iattr *attr) 801 { 802 struct inode *inode = d_inode(dentry); 803 struct hstate *h = hstate_inode(inode); 804 int error; 805 unsigned int ia_valid = attr->ia_valid; 806 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 807 808 error = setattr_prepare(&init_user_ns, dentry, attr); 809 if (error) 810 return error; 811 812 if (ia_valid & ATTR_SIZE) { 813 loff_t oldsize = inode->i_size; 814 loff_t newsize = attr->ia_size; 815 816 if (newsize & ~huge_page_mask(h)) 817 return -EINVAL; 818 /* protected by i_rwsem */ 819 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 820 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 821 return -EPERM; 822 hugetlb_vmtruncate(inode, newsize); 823 } 824 825 setattr_copy(&init_user_ns, inode, attr); 826 mark_inode_dirty(inode); 827 return 0; 828 } 829 830 static struct inode *hugetlbfs_get_root(struct super_block *sb, 831 struct hugetlbfs_fs_context *ctx) 832 { 833 struct inode *inode; 834 835 inode = new_inode(sb); 836 if (inode) { 837 inode->i_ino = get_next_ino(); 838 inode->i_mode = S_IFDIR | ctx->mode; 839 inode->i_uid = ctx->uid; 840 inode->i_gid = ctx->gid; 841 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 842 inode->i_op = &hugetlbfs_dir_inode_operations; 843 inode->i_fop = &simple_dir_operations; 844 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 845 inc_nlink(inode); 846 lockdep_annotate_inode_mutex_key(inode); 847 } 848 return inode; 849 } 850 851 /* 852 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 853 * be taken from reclaim -- unlike regular filesystems. This needs an 854 * annotation because huge_pmd_share() does an allocation under hugetlb's 855 * i_mmap_rwsem. 856 */ 857 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 858 859 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 860 struct inode *dir, 861 umode_t mode, dev_t dev) 862 { 863 struct inode *inode; 864 struct resv_map *resv_map = NULL; 865 866 /* 867 * Reserve maps are only needed for inodes that can have associated 868 * page allocations. 869 */ 870 if (S_ISREG(mode) || S_ISLNK(mode)) { 871 resv_map = resv_map_alloc(); 872 if (!resv_map) 873 return NULL; 874 } 875 876 inode = new_inode(sb); 877 if (inode) { 878 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 879 880 inode->i_ino = get_next_ino(); 881 inode_init_owner(&init_user_ns, inode, dir, mode); 882 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 883 &hugetlbfs_i_mmap_rwsem_key); 884 inode->i_mapping->a_ops = &hugetlbfs_aops; 885 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 886 inode->i_mapping->private_data = resv_map; 887 info->seals = F_SEAL_SEAL; 888 switch (mode & S_IFMT) { 889 default: 890 init_special_inode(inode, mode, dev); 891 break; 892 case S_IFREG: 893 inode->i_op = &hugetlbfs_inode_operations; 894 inode->i_fop = &hugetlbfs_file_operations; 895 break; 896 case S_IFDIR: 897 inode->i_op = &hugetlbfs_dir_inode_operations; 898 inode->i_fop = &simple_dir_operations; 899 900 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 901 inc_nlink(inode); 902 break; 903 case S_IFLNK: 904 inode->i_op = &page_symlink_inode_operations; 905 inode_nohighmem(inode); 906 break; 907 } 908 lockdep_annotate_inode_mutex_key(inode); 909 } else { 910 if (resv_map) 911 kref_put(&resv_map->refs, resv_map_release); 912 } 913 914 return inode; 915 } 916 917 /* 918 * File creation. Allocate an inode, and we're done.. 919 */ 920 static int do_hugetlbfs_mknod(struct inode *dir, 921 struct dentry *dentry, 922 umode_t mode, 923 dev_t dev, 924 bool tmpfile) 925 { 926 struct inode *inode; 927 int error = -ENOSPC; 928 929 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 930 if (inode) { 931 dir->i_ctime = dir->i_mtime = current_time(dir); 932 if (tmpfile) { 933 d_tmpfile(dentry, inode); 934 } else { 935 d_instantiate(dentry, inode); 936 dget(dentry);/* Extra count - pin the dentry in core */ 937 } 938 error = 0; 939 } 940 return error; 941 } 942 943 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 944 struct dentry *dentry, umode_t mode, dev_t dev) 945 { 946 return do_hugetlbfs_mknod(dir, dentry, mode, dev, false); 947 } 948 949 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 950 struct dentry *dentry, umode_t mode) 951 { 952 int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry, 953 mode | S_IFDIR, 0); 954 if (!retval) 955 inc_nlink(dir); 956 return retval; 957 } 958 959 static int hugetlbfs_create(struct user_namespace *mnt_userns, 960 struct inode *dir, struct dentry *dentry, 961 umode_t mode, bool excl) 962 { 963 return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); 964 } 965 966 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns, 967 struct inode *dir, struct dentry *dentry, 968 umode_t mode) 969 { 970 return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true); 971 } 972 973 static int hugetlbfs_symlink(struct user_namespace *mnt_userns, 974 struct inode *dir, struct dentry *dentry, 975 const char *symname) 976 { 977 struct inode *inode; 978 int error = -ENOSPC; 979 980 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 981 if (inode) { 982 int l = strlen(symname)+1; 983 error = page_symlink(inode, symname, l); 984 if (!error) { 985 d_instantiate(dentry, inode); 986 dget(dentry); 987 } else 988 iput(inode); 989 } 990 dir->i_ctime = dir->i_mtime = current_time(dir); 991 992 return error; 993 } 994 995 #ifdef CONFIG_MIGRATION 996 static int hugetlbfs_migrate_folio(struct address_space *mapping, 997 struct folio *dst, struct folio *src, 998 enum migrate_mode mode) 999 { 1000 int rc; 1001 1002 rc = migrate_huge_page_move_mapping(mapping, dst, src); 1003 if (rc != MIGRATEPAGE_SUCCESS) 1004 return rc; 1005 1006 if (hugetlb_page_subpool(&src->page)) { 1007 hugetlb_set_page_subpool(&dst->page, 1008 hugetlb_page_subpool(&src->page)); 1009 hugetlb_set_page_subpool(&src->page, NULL); 1010 } 1011 1012 if (mode != MIGRATE_SYNC_NO_COPY) 1013 folio_migrate_copy(dst, src); 1014 else 1015 folio_migrate_flags(dst, src); 1016 1017 return MIGRATEPAGE_SUCCESS; 1018 } 1019 #else 1020 #define hugetlbfs_migrate_folio NULL 1021 #endif 1022 1023 static int hugetlbfs_error_remove_page(struct address_space *mapping, 1024 struct page *page) 1025 { 1026 struct inode *inode = mapping->host; 1027 pgoff_t index = page->index; 1028 1029 remove_huge_page(page); 1030 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1))) 1031 hugetlb_fix_reserve_counts(inode); 1032 1033 return 0; 1034 } 1035 1036 /* 1037 * Display the mount options in /proc/mounts. 1038 */ 1039 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 1040 { 1041 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 1042 struct hugepage_subpool *spool = sbinfo->spool; 1043 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 1044 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 1045 char mod; 1046 1047 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 1048 seq_printf(m, ",uid=%u", 1049 from_kuid_munged(&init_user_ns, sbinfo->uid)); 1050 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 1051 seq_printf(m, ",gid=%u", 1052 from_kgid_munged(&init_user_ns, sbinfo->gid)); 1053 if (sbinfo->mode != 0755) 1054 seq_printf(m, ",mode=%o", sbinfo->mode); 1055 if (sbinfo->max_inodes != -1) 1056 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 1057 1058 hpage_size /= 1024; 1059 mod = 'K'; 1060 if (hpage_size >= 1024) { 1061 hpage_size /= 1024; 1062 mod = 'M'; 1063 } 1064 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 1065 if (spool) { 1066 if (spool->max_hpages != -1) 1067 seq_printf(m, ",size=%llu", 1068 (unsigned long long)spool->max_hpages << hpage_shift); 1069 if (spool->min_hpages != -1) 1070 seq_printf(m, ",min_size=%llu", 1071 (unsigned long long)spool->min_hpages << hpage_shift); 1072 } 1073 return 0; 1074 } 1075 1076 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1077 { 1078 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 1079 struct hstate *h = hstate_inode(d_inode(dentry)); 1080 1081 buf->f_type = HUGETLBFS_MAGIC; 1082 buf->f_bsize = huge_page_size(h); 1083 if (sbinfo) { 1084 spin_lock(&sbinfo->stat_lock); 1085 /* If no limits set, just report 0 for max/free/used 1086 * blocks, like simple_statfs() */ 1087 if (sbinfo->spool) { 1088 long free_pages; 1089 1090 spin_lock_irq(&sbinfo->spool->lock); 1091 buf->f_blocks = sbinfo->spool->max_hpages; 1092 free_pages = sbinfo->spool->max_hpages 1093 - sbinfo->spool->used_hpages; 1094 buf->f_bavail = buf->f_bfree = free_pages; 1095 spin_unlock_irq(&sbinfo->spool->lock); 1096 buf->f_files = sbinfo->max_inodes; 1097 buf->f_ffree = sbinfo->free_inodes; 1098 } 1099 spin_unlock(&sbinfo->stat_lock); 1100 } 1101 buf->f_namelen = NAME_MAX; 1102 return 0; 1103 } 1104 1105 static void hugetlbfs_put_super(struct super_block *sb) 1106 { 1107 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1108 1109 if (sbi) { 1110 sb->s_fs_info = NULL; 1111 1112 if (sbi->spool) 1113 hugepage_put_subpool(sbi->spool); 1114 1115 kfree(sbi); 1116 } 1117 } 1118 1119 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1120 { 1121 if (sbinfo->free_inodes >= 0) { 1122 spin_lock(&sbinfo->stat_lock); 1123 if (unlikely(!sbinfo->free_inodes)) { 1124 spin_unlock(&sbinfo->stat_lock); 1125 return 0; 1126 } 1127 sbinfo->free_inodes--; 1128 spin_unlock(&sbinfo->stat_lock); 1129 } 1130 1131 return 1; 1132 } 1133 1134 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1135 { 1136 if (sbinfo->free_inodes >= 0) { 1137 spin_lock(&sbinfo->stat_lock); 1138 sbinfo->free_inodes++; 1139 spin_unlock(&sbinfo->stat_lock); 1140 } 1141 } 1142 1143 1144 static struct kmem_cache *hugetlbfs_inode_cachep; 1145 1146 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1147 { 1148 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1149 struct hugetlbfs_inode_info *p; 1150 1151 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1152 return NULL; 1153 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL); 1154 if (unlikely(!p)) { 1155 hugetlbfs_inc_free_inodes(sbinfo); 1156 return NULL; 1157 } 1158 1159 /* 1160 * Any time after allocation, hugetlbfs_destroy_inode can be called 1161 * for the inode. mpol_free_shared_policy is unconditionally called 1162 * as part of hugetlbfs_destroy_inode. So, initialize policy here 1163 * in case of a quick call to destroy. 1164 * 1165 * Note that the policy is initialized even if we are creating a 1166 * private inode. This simplifies hugetlbfs_destroy_inode. 1167 */ 1168 mpol_shared_policy_init(&p->policy, NULL); 1169 1170 return &p->vfs_inode; 1171 } 1172 1173 static void hugetlbfs_free_inode(struct inode *inode) 1174 { 1175 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1176 } 1177 1178 static void hugetlbfs_destroy_inode(struct inode *inode) 1179 { 1180 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1181 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); 1182 } 1183 1184 static const struct address_space_operations hugetlbfs_aops = { 1185 .write_begin = hugetlbfs_write_begin, 1186 .write_end = hugetlbfs_write_end, 1187 .dirty_folio = noop_dirty_folio, 1188 .migrate_folio = hugetlbfs_migrate_folio, 1189 .error_remove_page = hugetlbfs_error_remove_page, 1190 }; 1191 1192 1193 static void init_once(void *foo) 1194 { 1195 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo; 1196 1197 inode_init_once(&ei->vfs_inode); 1198 } 1199 1200 const struct file_operations hugetlbfs_file_operations = { 1201 .read_iter = hugetlbfs_read_iter, 1202 .mmap = hugetlbfs_file_mmap, 1203 .fsync = noop_fsync, 1204 .get_unmapped_area = hugetlb_get_unmapped_area, 1205 .llseek = default_llseek, 1206 .fallocate = hugetlbfs_fallocate, 1207 }; 1208 1209 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1210 .create = hugetlbfs_create, 1211 .lookup = simple_lookup, 1212 .link = simple_link, 1213 .unlink = simple_unlink, 1214 .symlink = hugetlbfs_symlink, 1215 .mkdir = hugetlbfs_mkdir, 1216 .rmdir = simple_rmdir, 1217 .mknod = hugetlbfs_mknod, 1218 .rename = simple_rename, 1219 .setattr = hugetlbfs_setattr, 1220 .tmpfile = hugetlbfs_tmpfile, 1221 }; 1222 1223 static const struct inode_operations hugetlbfs_inode_operations = { 1224 .setattr = hugetlbfs_setattr, 1225 }; 1226 1227 static const struct super_operations hugetlbfs_ops = { 1228 .alloc_inode = hugetlbfs_alloc_inode, 1229 .free_inode = hugetlbfs_free_inode, 1230 .destroy_inode = hugetlbfs_destroy_inode, 1231 .evict_inode = hugetlbfs_evict_inode, 1232 .statfs = hugetlbfs_statfs, 1233 .put_super = hugetlbfs_put_super, 1234 .show_options = hugetlbfs_show_options, 1235 }; 1236 1237 /* 1238 * Convert size option passed from command line to number of huge pages 1239 * in the pool specified by hstate. Size option could be in bytes 1240 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1241 */ 1242 static long 1243 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1244 enum hugetlbfs_size_type val_type) 1245 { 1246 if (val_type == NO_SIZE) 1247 return -1; 1248 1249 if (val_type == SIZE_PERCENT) { 1250 size_opt <<= huge_page_shift(h); 1251 size_opt *= h->max_huge_pages; 1252 do_div(size_opt, 100); 1253 } 1254 1255 size_opt >>= huge_page_shift(h); 1256 return size_opt; 1257 } 1258 1259 /* 1260 * Parse one mount parameter. 1261 */ 1262 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1263 { 1264 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1265 struct fs_parse_result result; 1266 char *rest; 1267 unsigned long ps; 1268 int opt; 1269 1270 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1271 if (opt < 0) 1272 return opt; 1273 1274 switch (opt) { 1275 case Opt_uid: 1276 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 1277 if (!uid_valid(ctx->uid)) 1278 goto bad_val; 1279 return 0; 1280 1281 case Opt_gid: 1282 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 1283 if (!gid_valid(ctx->gid)) 1284 goto bad_val; 1285 return 0; 1286 1287 case Opt_mode: 1288 ctx->mode = result.uint_32 & 01777U; 1289 return 0; 1290 1291 case Opt_size: 1292 /* memparse() will accept a K/M/G without a digit */ 1293 if (!isdigit(param->string[0])) 1294 goto bad_val; 1295 ctx->max_size_opt = memparse(param->string, &rest); 1296 ctx->max_val_type = SIZE_STD; 1297 if (*rest == '%') 1298 ctx->max_val_type = SIZE_PERCENT; 1299 return 0; 1300 1301 case Opt_nr_inodes: 1302 /* memparse() will accept a K/M/G without a digit */ 1303 if (!isdigit(param->string[0])) 1304 goto bad_val; 1305 ctx->nr_inodes = memparse(param->string, &rest); 1306 return 0; 1307 1308 case Opt_pagesize: 1309 ps = memparse(param->string, &rest); 1310 ctx->hstate = size_to_hstate(ps); 1311 if (!ctx->hstate) { 1312 pr_err("Unsupported page size %lu MB\n", ps >> 20); 1313 return -EINVAL; 1314 } 1315 return 0; 1316 1317 case Opt_min_size: 1318 /* memparse() will accept a K/M/G without a digit */ 1319 if (!isdigit(param->string[0])) 1320 goto bad_val; 1321 ctx->min_size_opt = memparse(param->string, &rest); 1322 ctx->min_val_type = SIZE_STD; 1323 if (*rest == '%') 1324 ctx->min_val_type = SIZE_PERCENT; 1325 return 0; 1326 1327 default: 1328 return -EINVAL; 1329 } 1330 1331 bad_val: 1332 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1333 param->string, param->key); 1334 } 1335 1336 /* 1337 * Validate the parsed options. 1338 */ 1339 static int hugetlbfs_validate(struct fs_context *fc) 1340 { 1341 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1342 1343 /* 1344 * Use huge page pool size (in hstate) to convert the size 1345 * options to number of huge pages. If NO_SIZE, -1 is returned. 1346 */ 1347 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1348 ctx->max_size_opt, 1349 ctx->max_val_type); 1350 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1351 ctx->min_size_opt, 1352 ctx->min_val_type); 1353 1354 /* 1355 * If max_size was specified, then min_size must be smaller 1356 */ 1357 if (ctx->max_val_type > NO_SIZE && 1358 ctx->min_hpages > ctx->max_hpages) { 1359 pr_err("Minimum size can not be greater than maximum size\n"); 1360 return -EINVAL; 1361 } 1362 1363 return 0; 1364 } 1365 1366 static int 1367 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1368 { 1369 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1370 struct hugetlbfs_sb_info *sbinfo; 1371 1372 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1373 if (!sbinfo) 1374 return -ENOMEM; 1375 sb->s_fs_info = sbinfo; 1376 spin_lock_init(&sbinfo->stat_lock); 1377 sbinfo->hstate = ctx->hstate; 1378 sbinfo->max_inodes = ctx->nr_inodes; 1379 sbinfo->free_inodes = ctx->nr_inodes; 1380 sbinfo->spool = NULL; 1381 sbinfo->uid = ctx->uid; 1382 sbinfo->gid = ctx->gid; 1383 sbinfo->mode = ctx->mode; 1384 1385 /* 1386 * Allocate and initialize subpool if maximum or minimum size is 1387 * specified. Any needed reservations (for minimum size) are taken 1388 * taken when the subpool is created. 1389 */ 1390 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1391 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1392 ctx->max_hpages, 1393 ctx->min_hpages); 1394 if (!sbinfo->spool) 1395 goto out_free; 1396 } 1397 sb->s_maxbytes = MAX_LFS_FILESIZE; 1398 sb->s_blocksize = huge_page_size(ctx->hstate); 1399 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1400 sb->s_magic = HUGETLBFS_MAGIC; 1401 sb->s_op = &hugetlbfs_ops; 1402 sb->s_time_gran = 1; 1403 1404 /* 1405 * Due to the special and limited functionality of hugetlbfs, it does 1406 * not work well as a stacking filesystem. 1407 */ 1408 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; 1409 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1410 if (!sb->s_root) 1411 goto out_free; 1412 return 0; 1413 out_free: 1414 kfree(sbinfo->spool); 1415 kfree(sbinfo); 1416 return -ENOMEM; 1417 } 1418 1419 static int hugetlbfs_get_tree(struct fs_context *fc) 1420 { 1421 int err = hugetlbfs_validate(fc); 1422 if (err) 1423 return err; 1424 return get_tree_nodev(fc, hugetlbfs_fill_super); 1425 } 1426 1427 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1428 { 1429 kfree(fc->fs_private); 1430 } 1431 1432 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1433 .free = hugetlbfs_fs_context_free, 1434 .parse_param = hugetlbfs_parse_param, 1435 .get_tree = hugetlbfs_get_tree, 1436 }; 1437 1438 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1439 { 1440 struct hugetlbfs_fs_context *ctx; 1441 1442 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1443 if (!ctx) 1444 return -ENOMEM; 1445 1446 ctx->max_hpages = -1; /* No limit on size by default */ 1447 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1448 ctx->uid = current_fsuid(); 1449 ctx->gid = current_fsgid(); 1450 ctx->mode = 0755; 1451 ctx->hstate = &default_hstate; 1452 ctx->min_hpages = -1; /* No default minimum size */ 1453 ctx->max_val_type = NO_SIZE; 1454 ctx->min_val_type = NO_SIZE; 1455 fc->fs_private = ctx; 1456 fc->ops = &hugetlbfs_fs_context_ops; 1457 return 0; 1458 } 1459 1460 static struct file_system_type hugetlbfs_fs_type = { 1461 .name = "hugetlbfs", 1462 .init_fs_context = hugetlbfs_init_fs_context, 1463 .parameters = hugetlb_fs_parameters, 1464 .kill_sb = kill_litter_super, 1465 }; 1466 1467 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1468 1469 static int can_do_hugetlb_shm(void) 1470 { 1471 kgid_t shm_group; 1472 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1473 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1474 } 1475 1476 static int get_hstate_idx(int page_size_log) 1477 { 1478 struct hstate *h = hstate_sizelog(page_size_log); 1479 1480 if (!h) 1481 return -1; 1482 return hstate_index(h); 1483 } 1484 1485 /* 1486 * Note that size should be aligned to proper hugepage size in caller side, 1487 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1488 */ 1489 struct file *hugetlb_file_setup(const char *name, size_t size, 1490 vm_flags_t acctflag, int creat_flags, 1491 int page_size_log) 1492 { 1493 struct inode *inode; 1494 struct vfsmount *mnt; 1495 int hstate_idx; 1496 struct file *file; 1497 1498 hstate_idx = get_hstate_idx(page_size_log); 1499 if (hstate_idx < 0) 1500 return ERR_PTR(-ENODEV); 1501 1502 mnt = hugetlbfs_vfsmount[hstate_idx]; 1503 if (!mnt) 1504 return ERR_PTR(-ENOENT); 1505 1506 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1507 struct ucounts *ucounts = current_ucounts(); 1508 1509 if (user_shm_lock(size, ucounts)) { 1510 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n", 1511 current->comm, current->pid); 1512 user_shm_unlock(size, ucounts); 1513 } 1514 return ERR_PTR(-EPERM); 1515 } 1516 1517 file = ERR_PTR(-ENOSPC); 1518 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0); 1519 if (!inode) 1520 goto out; 1521 if (creat_flags == HUGETLB_SHMFS_INODE) 1522 inode->i_flags |= S_PRIVATE; 1523 1524 inode->i_size = size; 1525 clear_nlink(inode); 1526 1527 if (!hugetlb_reserve_pages(inode, 0, 1528 size >> huge_page_shift(hstate_inode(inode)), NULL, 1529 acctflag)) 1530 file = ERR_PTR(-ENOMEM); 1531 else 1532 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1533 &hugetlbfs_file_operations); 1534 if (!IS_ERR(file)) 1535 return file; 1536 1537 iput(inode); 1538 out: 1539 return file; 1540 } 1541 1542 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1543 { 1544 struct fs_context *fc; 1545 struct vfsmount *mnt; 1546 1547 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1548 if (IS_ERR(fc)) { 1549 mnt = ERR_CAST(fc); 1550 } else { 1551 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1552 ctx->hstate = h; 1553 mnt = fc_mount(fc); 1554 put_fs_context(fc); 1555 } 1556 if (IS_ERR(mnt)) 1557 pr_err("Cannot mount internal hugetlbfs for page size %luK", 1558 huge_page_size(h) >> 10); 1559 return mnt; 1560 } 1561 1562 static int __init init_hugetlbfs_fs(void) 1563 { 1564 struct vfsmount *mnt; 1565 struct hstate *h; 1566 int error; 1567 int i; 1568 1569 if (!hugepages_supported()) { 1570 pr_info("disabling because there are no supported hugepage sizes\n"); 1571 return -ENOTSUPP; 1572 } 1573 1574 error = -ENOMEM; 1575 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1576 sizeof(struct hugetlbfs_inode_info), 1577 0, SLAB_ACCOUNT, init_once); 1578 if (hugetlbfs_inode_cachep == NULL) 1579 goto out; 1580 1581 error = register_filesystem(&hugetlbfs_fs_type); 1582 if (error) 1583 goto out_free; 1584 1585 /* default hstate mount is required */ 1586 mnt = mount_one_hugetlbfs(&default_hstate); 1587 if (IS_ERR(mnt)) { 1588 error = PTR_ERR(mnt); 1589 goto out_unreg; 1590 } 1591 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1592 1593 /* other hstates are optional */ 1594 i = 0; 1595 for_each_hstate(h) { 1596 if (i == default_hstate_idx) { 1597 i++; 1598 continue; 1599 } 1600 1601 mnt = mount_one_hugetlbfs(h); 1602 if (IS_ERR(mnt)) 1603 hugetlbfs_vfsmount[i] = NULL; 1604 else 1605 hugetlbfs_vfsmount[i] = mnt; 1606 i++; 1607 } 1608 1609 return 0; 1610 1611 out_unreg: 1612 (void)unregister_filesystem(&hugetlbfs_fs_type); 1613 out_free: 1614 kmem_cache_destroy(hugetlbfs_inode_cachep); 1615 out: 1616 return error; 1617 } 1618 fs_initcall(init_hugetlbfs_fs) 1619