xref: /openbmc/linux/fs/hugetlbfs/inode.c (revision cfeafd94668910334a77c9437a18212baf9f5610)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>		/* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39 
40 #include <linux/uaccess.h>
41 #include <linux/sched/mm.h>
42 
43 static const struct super_operations hugetlbfs_ops;
44 static const struct address_space_operations hugetlbfs_aops;
45 const struct file_operations hugetlbfs_file_operations;
46 static const struct inode_operations hugetlbfs_dir_inode_operations;
47 static const struct inode_operations hugetlbfs_inode_operations;
48 
49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
50 
51 struct hugetlbfs_fs_context {
52 	struct hstate		*hstate;
53 	unsigned long long	max_size_opt;
54 	unsigned long long	min_size_opt;
55 	long			max_hpages;
56 	long			nr_inodes;
57 	long			min_hpages;
58 	enum hugetlbfs_size_type max_val_type;
59 	enum hugetlbfs_size_type min_val_type;
60 	kuid_t			uid;
61 	kgid_t			gid;
62 	umode_t			mode;
63 };
64 
65 int sysctl_hugetlb_shm_group;
66 
67 enum hugetlb_param {
68 	Opt_gid,
69 	Opt_min_size,
70 	Opt_mode,
71 	Opt_nr_inodes,
72 	Opt_pagesize,
73 	Opt_size,
74 	Opt_uid,
75 };
76 
77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
78 	fsparam_u32   ("gid",		Opt_gid),
79 	fsparam_string("min_size",	Opt_min_size),
80 	fsparam_u32oct("mode",		Opt_mode),
81 	fsparam_string("nr_inodes",	Opt_nr_inodes),
82 	fsparam_string("pagesize",	Opt_pagesize),
83 	fsparam_string("size",		Opt_size),
84 	fsparam_u32   ("uid",		Opt_uid),
85 	{}
86 };
87 
88 #ifdef CONFIG_NUMA
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90 					struct inode *inode, pgoff_t index)
91 {
92 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93 							index);
94 }
95 
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98 	mpol_cond_put(vma->vm_policy);
99 }
100 #else
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102 					struct inode *inode, pgoff_t index)
103 {
104 }
105 
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110 
111 /*
112  * Mask used when checking the page offset value passed in via system
113  * calls.  This value will be converted to a loff_t which is signed.
114  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
115  * value.  The extra bit (- 1 in the shift value) is to take the sign
116  * bit into account.
117  */
118 #define PGOFF_LOFFT_MAX \
119 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
120 
121 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
122 {
123 	struct inode *inode = file_inode(file);
124 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
125 	loff_t len, vma_len;
126 	int ret;
127 	struct hstate *h = hstate_file(file);
128 
129 	/*
130 	 * vma address alignment (but not the pgoff alignment) has
131 	 * already been checked by prepare_hugepage_range.  If you add
132 	 * any error returns here, do so after setting VM_HUGETLB, so
133 	 * is_vm_hugetlb_page tests below unmap_region go the right
134 	 * way when do_mmap unwinds (may be important on powerpc
135 	 * and ia64).
136 	 */
137 	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
138 	vma->vm_ops = &hugetlb_vm_ops;
139 
140 	ret = seal_check_future_write(info->seals, vma);
141 	if (ret)
142 		return ret;
143 
144 	/*
145 	 * page based offset in vm_pgoff could be sufficiently large to
146 	 * overflow a loff_t when converted to byte offset.  This can
147 	 * only happen on architectures where sizeof(loff_t) ==
148 	 * sizeof(unsigned long).  So, only check in those instances.
149 	 */
150 	if (sizeof(unsigned long) == sizeof(loff_t)) {
151 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
152 			return -EINVAL;
153 	}
154 
155 	/* must be huge page aligned */
156 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
157 		return -EINVAL;
158 
159 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
160 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
161 	/* check for overflow */
162 	if (len < vma_len)
163 		return -EINVAL;
164 
165 	inode_lock(inode);
166 	file_accessed(file);
167 
168 	ret = -ENOMEM;
169 	if (!hugetlb_reserve_pages(inode,
170 				vma->vm_pgoff >> huge_page_order(h),
171 				len >> huge_page_shift(h), vma,
172 				vma->vm_flags))
173 		goto out;
174 
175 	ret = 0;
176 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
177 		i_size_write(inode, len);
178 out:
179 	inode_unlock(inode);
180 
181 	return ret;
182 }
183 
184 /*
185  * Called under mmap_write_lock(mm).
186  */
187 
188 static unsigned long
189 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
190 		unsigned long len, unsigned long pgoff, unsigned long flags)
191 {
192 	struct hstate *h = hstate_file(file);
193 	struct vm_unmapped_area_info info;
194 
195 	info.flags = 0;
196 	info.length = len;
197 	info.low_limit = current->mm->mmap_base;
198 	info.high_limit = arch_get_mmap_end(addr, len, flags);
199 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
200 	info.align_offset = 0;
201 	return vm_unmapped_area(&info);
202 }
203 
204 static unsigned long
205 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
206 		unsigned long len, unsigned long pgoff, unsigned long flags)
207 {
208 	struct hstate *h = hstate_file(file);
209 	struct vm_unmapped_area_info info;
210 
211 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
212 	info.length = len;
213 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
214 	info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
215 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
216 	info.align_offset = 0;
217 	addr = vm_unmapped_area(&info);
218 
219 	/*
220 	 * A failed mmap() very likely causes application failure,
221 	 * so fall back to the bottom-up function here. This scenario
222 	 * can happen with large stack limits and large mmap()
223 	 * allocations.
224 	 */
225 	if (unlikely(offset_in_page(addr))) {
226 		VM_BUG_ON(addr != -ENOMEM);
227 		info.flags = 0;
228 		info.low_limit = current->mm->mmap_base;
229 		info.high_limit = arch_get_mmap_end(addr, len, flags);
230 		addr = vm_unmapped_area(&info);
231 	}
232 
233 	return addr;
234 }
235 
236 unsigned long
237 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
238 				  unsigned long len, unsigned long pgoff,
239 				  unsigned long flags)
240 {
241 	struct mm_struct *mm = current->mm;
242 	struct vm_area_struct *vma;
243 	struct hstate *h = hstate_file(file);
244 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
245 
246 	if (len & ~huge_page_mask(h))
247 		return -EINVAL;
248 	if (len > TASK_SIZE)
249 		return -ENOMEM;
250 
251 	if (flags & MAP_FIXED) {
252 		if (prepare_hugepage_range(file, addr, len))
253 			return -EINVAL;
254 		return addr;
255 	}
256 
257 	if (addr) {
258 		addr = ALIGN(addr, huge_page_size(h));
259 		vma = find_vma(mm, addr);
260 		if (mmap_end - len >= addr &&
261 		    (!vma || addr + len <= vm_start_gap(vma)))
262 			return addr;
263 	}
264 
265 	/*
266 	 * Use mm->get_unmapped_area value as a hint to use topdown routine.
267 	 * If architectures have special needs, they should define their own
268 	 * version of hugetlb_get_unmapped_area.
269 	 */
270 	if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
271 		return hugetlb_get_unmapped_area_topdown(file, addr, len,
272 				pgoff, flags);
273 	return hugetlb_get_unmapped_area_bottomup(file, addr, len,
274 			pgoff, flags);
275 }
276 
277 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
278 static unsigned long
279 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
280 			  unsigned long len, unsigned long pgoff,
281 			  unsigned long flags)
282 {
283 	return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
284 }
285 #endif
286 
287 static size_t
288 hugetlbfs_read_actor(struct page *page, unsigned long offset,
289 			struct iov_iter *to, unsigned long size)
290 {
291 	size_t copied = 0;
292 	int i, chunksize;
293 
294 	/* Find which 4k chunk and offset with in that chunk */
295 	i = offset >> PAGE_SHIFT;
296 	offset = offset & ~PAGE_MASK;
297 
298 	while (size) {
299 		size_t n;
300 		chunksize = PAGE_SIZE;
301 		if (offset)
302 			chunksize -= offset;
303 		if (chunksize > size)
304 			chunksize = size;
305 		n = copy_page_to_iter(&page[i], offset, chunksize, to);
306 		copied += n;
307 		if (n != chunksize)
308 			return copied;
309 		offset = 0;
310 		size -= chunksize;
311 		i++;
312 	}
313 	return copied;
314 }
315 
316 /*
317  * Support for read() - Find the page attached to f_mapping and copy out the
318  * data. Its *very* similar to generic_file_buffered_read(), we can't use that
319  * since it has PAGE_SIZE assumptions.
320  */
321 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
322 {
323 	struct file *file = iocb->ki_filp;
324 	struct hstate *h = hstate_file(file);
325 	struct address_space *mapping = file->f_mapping;
326 	struct inode *inode = mapping->host;
327 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
328 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
329 	unsigned long end_index;
330 	loff_t isize;
331 	ssize_t retval = 0;
332 
333 	while (iov_iter_count(to)) {
334 		struct page *page;
335 		size_t nr, copied;
336 
337 		/* nr is the maximum number of bytes to copy from this page */
338 		nr = huge_page_size(h);
339 		isize = i_size_read(inode);
340 		if (!isize)
341 			break;
342 		end_index = (isize - 1) >> huge_page_shift(h);
343 		if (index > end_index)
344 			break;
345 		if (index == end_index) {
346 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
347 			if (nr <= offset)
348 				break;
349 		}
350 		nr = nr - offset;
351 
352 		/* Find the page */
353 		page = find_lock_page(mapping, index);
354 		if (unlikely(page == NULL)) {
355 			/*
356 			 * We have a HOLE, zero out the user-buffer for the
357 			 * length of the hole or request.
358 			 */
359 			copied = iov_iter_zero(nr, to);
360 		} else {
361 			unlock_page(page);
362 
363 			/*
364 			 * We have the page, copy it to user space buffer.
365 			 */
366 			copied = hugetlbfs_read_actor(page, offset, to, nr);
367 			put_page(page);
368 		}
369 		offset += copied;
370 		retval += copied;
371 		if (copied != nr && iov_iter_count(to)) {
372 			if (!retval)
373 				retval = -EFAULT;
374 			break;
375 		}
376 		index += offset >> huge_page_shift(h);
377 		offset &= ~huge_page_mask(h);
378 	}
379 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
380 	return retval;
381 }
382 
383 static int hugetlbfs_write_begin(struct file *file,
384 			struct address_space *mapping,
385 			loff_t pos, unsigned len,
386 			struct page **pagep, void **fsdata)
387 {
388 	return -EINVAL;
389 }
390 
391 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
392 			loff_t pos, unsigned len, unsigned copied,
393 			struct page *page, void *fsdata)
394 {
395 	BUG();
396 	return -EINVAL;
397 }
398 
399 static void remove_huge_page(struct page *page)
400 {
401 	ClearPageDirty(page);
402 	ClearPageUptodate(page);
403 	delete_from_page_cache(page);
404 }
405 
406 static void
407 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
408 		      zap_flags_t zap_flags)
409 {
410 	struct vm_area_struct *vma;
411 
412 	/*
413 	 * end == 0 indicates that the entire range after start should be
414 	 * unmapped.  Note, end is exclusive, whereas the interval tree takes
415 	 * an inclusive "last".
416 	 */
417 	vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
418 		unsigned long v_offset;
419 		unsigned long v_end;
420 
421 		/*
422 		 * Can the expression below overflow on 32-bit arches?
423 		 * No, because the interval tree returns us only those vmas
424 		 * which overlap the truncated area starting at pgoff,
425 		 * and no vma on a 32-bit arch can span beyond the 4GB.
426 		 */
427 		if (vma->vm_pgoff < start)
428 			v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
429 		else
430 			v_offset = 0;
431 
432 		if (!end)
433 			v_end = vma->vm_end;
434 		else {
435 			v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
436 							+ vma->vm_start;
437 			if (v_end > vma->vm_end)
438 				v_end = vma->vm_end;
439 		}
440 
441 		unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
442 				     NULL, zap_flags);
443 	}
444 }
445 
446 /*
447  * remove_inode_hugepages handles two distinct cases: truncation and hole
448  * punch.  There are subtle differences in operation for each case.
449  *
450  * truncation is indicated by end of range being LLONG_MAX
451  *	In this case, we first scan the range and release found pages.
452  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
453  *	maps and global counts.  Page faults can not race with truncation
454  *	in this routine.  hugetlb_no_page() holds i_mmap_rwsem and prevents
455  *	page faults in the truncated range by checking i_size.  i_size is
456  *	modified while holding i_mmap_rwsem.
457  * hole punch is indicated if end is not LLONG_MAX
458  *	In the hole punch case we scan the range and release found pages.
459  *	Only when releasing a page is the associated region/reserve map
460  *	deleted.  The region/reserve map for ranges without associated
461  *	pages are not modified.  Page faults can race with hole punch.
462  *	This is indicated if we find a mapped page.
463  * Note: If the passed end of range value is beyond the end of file, but
464  * not LLONG_MAX this routine still performs a hole punch operation.
465  */
466 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
467 				   loff_t lend)
468 {
469 	struct hstate *h = hstate_inode(inode);
470 	struct address_space *mapping = &inode->i_data;
471 	const pgoff_t start = lstart >> huge_page_shift(h);
472 	const pgoff_t end = lend >> huge_page_shift(h);
473 	struct folio_batch fbatch;
474 	pgoff_t next, index;
475 	int i, freed = 0;
476 	bool truncate_op = (lend == LLONG_MAX);
477 
478 	folio_batch_init(&fbatch);
479 	next = start;
480 	while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
481 		for (i = 0; i < folio_batch_count(&fbatch); ++i) {
482 			struct folio *folio = fbatch.folios[i];
483 			u32 hash = 0;
484 
485 			index = folio->index;
486 			if (!truncate_op) {
487 				/*
488 				 * Only need to hold the fault mutex in the
489 				 * hole punch case.  This prevents races with
490 				 * page faults.  Races are not possible in the
491 				 * case of truncation.
492 				 */
493 				hash = hugetlb_fault_mutex_hash(mapping, index);
494 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
495 			}
496 
497 			/*
498 			 * If folio is mapped, it was faulted in after being
499 			 * unmapped in caller.  Unmap (again) now after taking
500 			 * the fault mutex.  The mutex will prevent faults
501 			 * until we finish removing the folio.
502 			 *
503 			 * This race can only happen in the hole punch case.
504 			 * Getting here in a truncate operation is a bug.
505 			 */
506 			if (unlikely(folio_mapped(folio))) {
507 				BUG_ON(truncate_op);
508 
509 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
510 				i_mmap_lock_write(mapping);
511 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
512 				hugetlb_vmdelete_list(&mapping->i_mmap,
513 					index * pages_per_huge_page(h),
514 					(index + 1) * pages_per_huge_page(h),
515 					ZAP_FLAG_DROP_MARKER);
516 				i_mmap_unlock_write(mapping);
517 			}
518 
519 			folio_lock(folio);
520 			/*
521 			 * We must free the huge page and remove from page
522 			 * cache (remove_huge_page) BEFORE removing the
523 			 * region/reserve map (hugetlb_unreserve_pages).  In
524 			 * rare out of memory conditions, removal of the
525 			 * region/reserve map could fail. Correspondingly,
526 			 * the subpool and global reserve usage count can need
527 			 * to be adjusted.
528 			 */
529 			VM_BUG_ON(HPageRestoreReserve(&folio->page));
530 			remove_huge_page(&folio->page);
531 			freed++;
532 			if (!truncate_op) {
533 				if (unlikely(hugetlb_unreserve_pages(inode,
534 							index, index + 1, 1)))
535 					hugetlb_fix_reserve_counts(inode);
536 			}
537 
538 			folio_unlock(folio);
539 			if (!truncate_op)
540 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
541 		}
542 		folio_batch_release(&fbatch);
543 		cond_resched();
544 	}
545 
546 	if (truncate_op)
547 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
548 }
549 
550 static void hugetlbfs_evict_inode(struct inode *inode)
551 {
552 	struct resv_map *resv_map;
553 
554 	remove_inode_hugepages(inode, 0, LLONG_MAX);
555 
556 	/*
557 	 * Get the resv_map from the address space embedded in the inode.
558 	 * This is the address space which points to any resv_map allocated
559 	 * at inode creation time.  If this is a device special inode,
560 	 * i_mapping may not point to the original address space.
561 	 */
562 	resv_map = (struct resv_map *)(&inode->i_data)->private_data;
563 	/* Only regular and link inodes have associated reserve maps */
564 	if (resv_map)
565 		resv_map_release(&resv_map->refs);
566 	clear_inode(inode);
567 }
568 
569 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
570 {
571 	pgoff_t pgoff;
572 	struct address_space *mapping = inode->i_mapping;
573 	struct hstate *h = hstate_inode(inode);
574 
575 	BUG_ON(offset & ~huge_page_mask(h));
576 	pgoff = offset >> PAGE_SHIFT;
577 
578 	i_mmap_lock_write(mapping);
579 	i_size_write(inode, offset);
580 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
581 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
582 				      ZAP_FLAG_DROP_MARKER);
583 	i_mmap_unlock_write(mapping);
584 	remove_inode_hugepages(inode, offset, LLONG_MAX);
585 }
586 
587 static void hugetlbfs_zero_partial_page(struct hstate *h,
588 					struct address_space *mapping,
589 					loff_t start,
590 					loff_t end)
591 {
592 	pgoff_t idx = start >> huge_page_shift(h);
593 	struct folio *folio;
594 
595 	folio = filemap_lock_folio(mapping, idx);
596 	if (!folio)
597 		return;
598 
599 	start = start & ~huge_page_mask(h);
600 	end = end & ~huge_page_mask(h);
601 	if (!end)
602 		end = huge_page_size(h);
603 
604 	folio_zero_segment(folio, (size_t)start, (size_t)end);
605 
606 	folio_unlock(folio);
607 	folio_put(folio);
608 }
609 
610 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
611 {
612 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
613 	struct address_space *mapping = inode->i_mapping;
614 	struct hstate *h = hstate_inode(inode);
615 	loff_t hpage_size = huge_page_size(h);
616 	loff_t hole_start, hole_end;
617 
618 	/*
619 	 * hole_start and hole_end indicate the full pages within the hole.
620 	 */
621 	hole_start = round_up(offset, hpage_size);
622 	hole_end = round_down(offset + len, hpage_size);
623 
624 	inode_lock(inode);
625 
626 	/* protected by i_rwsem */
627 	if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
628 		inode_unlock(inode);
629 		return -EPERM;
630 	}
631 
632 	i_mmap_lock_write(mapping);
633 
634 	/* If range starts before first full page, zero partial page. */
635 	if (offset < hole_start)
636 		hugetlbfs_zero_partial_page(h, mapping,
637 				offset, min(offset + len, hole_start));
638 
639 	/* Unmap users of full pages in the hole. */
640 	if (hole_end > hole_start) {
641 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
642 			hugetlb_vmdelete_list(&mapping->i_mmap,
643 					      hole_start >> PAGE_SHIFT,
644 					      hole_end >> PAGE_SHIFT, 0);
645 	}
646 
647 	/* If range extends beyond last full page, zero partial page. */
648 	if ((offset + len) > hole_end && (offset + len) > hole_start)
649 		hugetlbfs_zero_partial_page(h, mapping,
650 				hole_end, offset + len);
651 
652 	i_mmap_unlock_write(mapping);
653 
654 	/* Remove full pages from the file. */
655 	if (hole_end > hole_start)
656 		remove_inode_hugepages(inode, hole_start, hole_end);
657 
658 	inode_unlock(inode);
659 
660 	return 0;
661 }
662 
663 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
664 				loff_t len)
665 {
666 	struct inode *inode = file_inode(file);
667 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
668 	struct address_space *mapping = inode->i_mapping;
669 	struct hstate *h = hstate_inode(inode);
670 	struct vm_area_struct pseudo_vma;
671 	struct mm_struct *mm = current->mm;
672 	loff_t hpage_size = huge_page_size(h);
673 	unsigned long hpage_shift = huge_page_shift(h);
674 	pgoff_t start, index, end;
675 	int error;
676 	u32 hash;
677 
678 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
679 		return -EOPNOTSUPP;
680 
681 	if (mode & FALLOC_FL_PUNCH_HOLE)
682 		return hugetlbfs_punch_hole(inode, offset, len);
683 
684 	/*
685 	 * Default preallocate case.
686 	 * For this range, start is rounded down and end is rounded up
687 	 * as well as being converted to page offsets.
688 	 */
689 	start = offset >> hpage_shift;
690 	end = (offset + len + hpage_size - 1) >> hpage_shift;
691 
692 	inode_lock(inode);
693 
694 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
695 	error = inode_newsize_ok(inode, offset + len);
696 	if (error)
697 		goto out;
698 
699 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
700 		error = -EPERM;
701 		goto out;
702 	}
703 
704 	/*
705 	 * Initialize a pseudo vma as this is required by the huge page
706 	 * allocation routines.  If NUMA is configured, use page index
707 	 * as input to create an allocation policy.
708 	 */
709 	vma_init(&pseudo_vma, mm);
710 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
711 	pseudo_vma.vm_file = file;
712 
713 	for (index = start; index < end; index++) {
714 		/*
715 		 * This is supposed to be the vaddr where the page is being
716 		 * faulted in, but we have no vaddr here.
717 		 */
718 		struct page *page;
719 		unsigned long addr;
720 
721 		cond_resched();
722 
723 		/*
724 		 * fallocate(2) manpage permits EINTR; we may have been
725 		 * interrupted because we are using up too much memory.
726 		 */
727 		if (signal_pending(current)) {
728 			error = -EINTR;
729 			break;
730 		}
731 
732 		/* Set numa allocation policy based on index */
733 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
734 
735 		/* addr is the offset within the file (zero based) */
736 		addr = index * hpage_size;
737 
738 		/*
739 		 * fault mutex taken here, protects against fault path
740 		 * and hole punch.  inode_lock previously taken protects
741 		 * against truncation.
742 		 */
743 		hash = hugetlb_fault_mutex_hash(mapping, index);
744 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
745 
746 		/* See if already present in mapping to avoid alloc/free */
747 		page = find_get_page(mapping, index);
748 		if (page) {
749 			put_page(page);
750 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
751 			hugetlb_drop_vma_policy(&pseudo_vma);
752 			continue;
753 		}
754 
755 		/*
756 		 * Allocate page without setting the avoid_reserve argument.
757 		 * There certainly are no reserves associated with the
758 		 * pseudo_vma.  However, there could be shared mappings with
759 		 * reserves for the file at the inode level.  If we fallocate
760 		 * pages in these areas, we need to consume the reserves
761 		 * to keep reservation accounting consistent.
762 		 */
763 		page = alloc_huge_page(&pseudo_vma, addr, 0);
764 		hugetlb_drop_vma_policy(&pseudo_vma);
765 		if (IS_ERR(page)) {
766 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
767 			error = PTR_ERR(page);
768 			goto out;
769 		}
770 		clear_huge_page(page, addr, pages_per_huge_page(h));
771 		__SetPageUptodate(page);
772 		error = huge_add_to_page_cache(page, mapping, index);
773 		if (unlikely(error)) {
774 			restore_reserve_on_error(h, &pseudo_vma, addr, page);
775 			put_page(page);
776 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
777 			goto out;
778 		}
779 
780 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
781 
782 		SetHPageMigratable(page);
783 		/*
784 		 * unlock_page because locked by huge_add_to_page_cache()
785 		 * put_page() due to reference from alloc_huge_page()
786 		 */
787 		unlock_page(page);
788 		put_page(page);
789 	}
790 
791 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
792 		i_size_write(inode, offset + len);
793 	inode->i_ctime = current_time(inode);
794 out:
795 	inode_unlock(inode);
796 	return error;
797 }
798 
799 static int hugetlbfs_setattr(struct user_namespace *mnt_userns,
800 			     struct dentry *dentry, struct iattr *attr)
801 {
802 	struct inode *inode = d_inode(dentry);
803 	struct hstate *h = hstate_inode(inode);
804 	int error;
805 	unsigned int ia_valid = attr->ia_valid;
806 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
807 
808 	error = setattr_prepare(&init_user_ns, dentry, attr);
809 	if (error)
810 		return error;
811 
812 	if (ia_valid & ATTR_SIZE) {
813 		loff_t oldsize = inode->i_size;
814 		loff_t newsize = attr->ia_size;
815 
816 		if (newsize & ~huge_page_mask(h))
817 			return -EINVAL;
818 		/* protected by i_rwsem */
819 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
820 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
821 			return -EPERM;
822 		hugetlb_vmtruncate(inode, newsize);
823 	}
824 
825 	setattr_copy(&init_user_ns, inode, attr);
826 	mark_inode_dirty(inode);
827 	return 0;
828 }
829 
830 static struct inode *hugetlbfs_get_root(struct super_block *sb,
831 					struct hugetlbfs_fs_context *ctx)
832 {
833 	struct inode *inode;
834 
835 	inode = new_inode(sb);
836 	if (inode) {
837 		inode->i_ino = get_next_ino();
838 		inode->i_mode = S_IFDIR | ctx->mode;
839 		inode->i_uid = ctx->uid;
840 		inode->i_gid = ctx->gid;
841 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
842 		inode->i_op = &hugetlbfs_dir_inode_operations;
843 		inode->i_fop = &simple_dir_operations;
844 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
845 		inc_nlink(inode);
846 		lockdep_annotate_inode_mutex_key(inode);
847 	}
848 	return inode;
849 }
850 
851 /*
852  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
853  * be taken from reclaim -- unlike regular filesystems. This needs an
854  * annotation because huge_pmd_share() does an allocation under hugetlb's
855  * i_mmap_rwsem.
856  */
857 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
858 
859 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
860 					struct inode *dir,
861 					umode_t mode, dev_t dev)
862 {
863 	struct inode *inode;
864 	struct resv_map *resv_map = NULL;
865 
866 	/*
867 	 * Reserve maps are only needed for inodes that can have associated
868 	 * page allocations.
869 	 */
870 	if (S_ISREG(mode) || S_ISLNK(mode)) {
871 		resv_map = resv_map_alloc();
872 		if (!resv_map)
873 			return NULL;
874 	}
875 
876 	inode = new_inode(sb);
877 	if (inode) {
878 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
879 
880 		inode->i_ino = get_next_ino();
881 		inode_init_owner(&init_user_ns, inode, dir, mode);
882 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
883 				&hugetlbfs_i_mmap_rwsem_key);
884 		inode->i_mapping->a_ops = &hugetlbfs_aops;
885 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
886 		inode->i_mapping->private_data = resv_map;
887 		info->seals = F_SEAL_SEAL;
888 		switch (mode & S_IFMT) {
889 		default:
890 			init_special_inode(inode, mode, dev);
891 			break;
892 		case S_IFREG:
893 			inode->i_op = &hugetlbfs_inode_operations;
894 			inode->i_fop = &hugetlbfs_file_operations;
895 			break;
896 		case S_IFDIR:
897 			inode->i_op = &hugetlbfs_dir_inode_operations;
898 			inode->i_fop = &simple_dir_operations;
899 
900 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
901 			inc_nlink(inode);
902 			break;
903 		case S_IFLNK:
904 			inode->i_op = &page_symlink_inode_operations;
905 			inode_nohighmem(inode);
906 			break;
907 		}
908 		lockdep_annotate_inode_mutex_key(inode);
909 	} else {
910 		if (resv_map)
911 			kref_put(&resv_map->refs, resv_map_release);
912 	}
913 
914 	return inode;
915 }
916 
917 /*
918  * File creation. Allocate an inode, and we're done..
919  */
920 static int do_hugetlbfs_mknod(struct inode *dir,
921 			struct dentry *dentry,
922 			umode_t mode,
923 			dev_t dev,
924 			bool tmpfile)
925 {
926 	struct inode *inode;
927 	int error = -ENOSPC;
928 
929 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
930 	if (inode) {
931 		dir->i_ctime = dir->i_mtime = current_time(dir);
932 		if (tmpfile) {
933 			d_tmpfile(dentry, inode);
934 		} else {
935 			d_instantiate(dentry, inode);
936 			dget(dentry);/* Extra count - pin the dentry in core */
937 		}
938 		error = 0;
939 	}
940 	return error;
941 }
942 
943 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
944 			   struct dentry *dentry, umode_t mode, dev_t dev)
945 {
946 	return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
947 }
948 
949 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
950 			   struct dentry *dentry, umode_t mode)
951 {
952 	int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry,
953 				     mode | S_IFDIR, 0);
954 	if (!retval)
955 		inc_nlink(dir);
956 	return retval;
957 }
958 
959 static int hugetlbfs_create(struct user_namespace *mnt_userns,
960 			    struct inode *dir, struct dentry *dentry,
961 			    umode_t mode, bool excl)
962 {
963 	return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
964 }
965 
966 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns,
967 			     struct inode *dir, struct dentry *dentry,
968 			     umode_t mode)
969 {
970 	return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
971 }
972 
973 static int hugetlbfs_symlink(struct user_namespace *mnt_userns,
974 			     struct inode *dir, struct dentry *dentry,
975 			     const char *symname)
976 {
977 	struct inode *inode;
978 	int error = -ENOSPC;
979 
980 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
981 	if (inode) {
982 		int l = strlen(symname)+1;
983 		error = page_symlink(inode, symname, l);
984 		if (!error) {
985 			d_instantiate(dentry, inode);
986 			dget(dentry);
987 		} else
988 			iput(inode);
989 	}
990 	dir->i_ctime = dir->i_mtime = current_time(dir);
991 
992 	return error;
993 }
994 
995 #ifdef CONFIG_MIGRATION
996 static int hugetlbfs_migrate_folio(struct address_space *mapping,
997 				struct folio *dst, struct folio *src,
998 				enum migrate_mode mode)
999 {
1000 	int rc;
1001 
1002 	rc = migrate_huge_page_move_mapping(mapping, dst, src);
1003 	if (rc != MIGRATEPAGE_SUCCESS)
1004 		return rc;
1005 
1006 	if (hugetlb_page_subpool(&src->page)) {
1007 		hugetlb_set_page_subpool(&dst->page,
1008 					hugetlb_page_subpool(&src->page));
1009 		hugetlb_set_page_subpool(&src->page, NULL);
1010 	}
1011 
1012 	if (mode != MIGRATE_SYNC_NO_COPY)
1013 		folio_migrate_copy(dst, src);
1014 	else
1015 		folio_migrate_flags(dst, src);
1016 
1017 	return MIGRATEPAGE_SUCCESS;
1018 }
1019 #else
1020 #define hugetlbfs_migrate_folio NULL
1021 #endif
1022 
1023 static int hugetlbfs_error_remove_page(struct address_space *mapping,
1024 				struct page *page)
1025 {
1026 	struct inode *inode = mapping->host;
1027 	pgoff_t index = page->index;
1028 
1029 	remove_huge_page(page);
1030 	if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
1031 		hugetlb_fix_reserve_counts(inode);
1032 
1033 	return 0;
1034 }
1035 
1036 /*
1037  * Display the mount options in /proc/mounts.
1038  */
1039 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1040 {
1041 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1042 	struct hugepage_subpool *spool = sbinfo->spool;
1043 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1044 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1045 	char mod;
1046 
1047 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1048 		seq_printf(m, ",uid=%u",
1049 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1050 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1051 		seq_printf(m, ",gid=%u",
1052 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1053 	if (sbinfo->mode != 0755)
1054 		seq_printf(m, ",mode=%o", sbinfo->mode);
1055 	if (sbinfo->max_inodes != -1)
1056 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1057 
1058 	hpage_size /= 1024;
1059 	mod = 'K';
1060 	if (hpage_size >= 1024) {
1061 		hpage_size /= 1024;
1062 		mod = 'M';
1063 	}
1064 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1065 	if (spool) {
1066 		if (spool->max_hpages != -1)
1067 			seq_printf(m, ",size=%llu",
1068 				   (unsigned long long)spool->max_hpages << hpage_shift);
1069 		if (spool->min_hpages != -1)
1070 			seq_printf(m, ",min_size=%llu",
1071 				   (unsigned long long)spool->min_hpages << hpage_shift);
1072 	}
1073 	return 0;
1074 }
1075 
1076 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1077 {
1078 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1079 	struct hstate *h = hstate_inode(d_inode(dentry));
1080 
1081 	buf->f_type = HUGETLBFS_MAGIC;
1082 	buf->f_bsize = huge_page_size(h);
1083 	if (sbinfo) {
1084 		spin_lock(&sbinfo->stat_lock);
1085 		/* If no limits set, just report 0 for max/free/used
1086 		 * blocks, like simple_statfs() */
1087 		if (sbinfo->spool) {
1088 			long free_pages;
1089 
1090 			spin_lock_irq(&sbinfo->spool->lock);
1091 			buf->f_blocks = sbinfo->spool->max_hpages;
1092 			free_pages = sbinfo->spool->max_hpages
1093 				- sbinfo->spool->used_hpages;
1094 			buf->f_bavail = buf->f_bfree = free_pages;
1095 			spin_unlock_irq(&sbinfo->spool->lock);
1096 			buf->f_files = sbinfo->max_inodes;
1097 			buf->f_ffree = sbinfo->free_inodes;
1098 		}
1099 		spin_unlock(&sbinfo->stat_lock);
1100 	}
1101 	buf->f_namelen = NAME_MAX;
1102 	return 0;
1103 }
1104 
1105 static void hugetlbfs_put_super(struct super_block *sb)
1106 {
1107 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1108 
1109 	if (sbi) {
1110 		sb->s_fs_info = NULL;
1111 
1112 		if (sbi->spool)
1113 			hugepage_put_subpool(sbi->spool);
1114 
1115 		kfree(sbi);
1116 	}
1117 }
1118 
1119 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1120 {
1121 	if (sbinfo->free_inodes >= 0) {
1122 		spin_lock(&sbinfo->stat_lock);
1123 		if (unlikely(!sbinfo->free_inodes)) {
1124 			spin_unlock(&sbinfo->stat_lock);
1125 			return 0;
1126 		}
1127 		sbinfo->free_inodes--;
1128 		spin_unlock(&sbinfo->stat_lock);
1129 	}
1130 
1131 	return 1;
1132 }
1133 
1134 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1135 {
1136 	if (sbinfo->free_inodes >= 0) {
1137 		spin_lock(&sbinfo->stat_lock);
1138 		sbinfo->free_inodes++;
1139 		spin_unlock(&sbinfo->stat_lock);
1140 	}
1141 }
1142 
1143 
1144 static struct kmem_cache *hugetlbfs_inode_cachep;
1145 
1146 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1147 {
1148 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1149 	struct hugetlbfs_inode_info *p;
1150 
1151 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1152 		return NULL;
1153 	p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1154 	if (unlikely(!p)) {
1155 		hugetlbfs_inc_free_inodes(sbinfo);
1156 		return NULL;
1157 	}
1158 
1159 	/*
1160 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
1161 	 * for the inode.  mpol_free_shared_policy is unconditionally called
1162 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1163 	 * in case of a quick call to destroy.
1164 	 *
1165 	 * Note that the policy is initialized even if we are creating a
1166 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
1167 	 */
1168 	mpol_shared_policy_init(&p->policy, NULL);
1169 
1170 	return &p->vfs_inode;
1171 }
1172 
1173 static void hugetlbfs_free_inode(struct inode *inode)
1174 {
1175 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1176 }
1177 
1178 static void hugetlbfs_destroy_inode(struct inode *inode)
1179 {
1180 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1181 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1182 }
1183 
1184 static const struct address_space_operations hugetlbfs_aops = {
1185 	.write_begin	= hugetlbfs_write_begin,
1186 	.write_end	= hugetlbfs_write_end,
1187 	.dirty_folio	= noop_dirty_folio,
1188 	.migrate_folio  = hugetlbfs_migrate_folio,
1189 	.error_remove_page	= hugetlbfs_error_remove_page,
1190 };
1191 
1192 
1193 static void init_once(void *foo)
1194 {
1195 	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1196 
1197 	inode_init_once(&ei->vfs_inode);
1198 }
1199 
1200 const struct file_operations hugetlbfs_file_operations = {
1201 	.read_iter		= hugetlbfs_read_iter,
1202 	.mmap			= hugetlbfs_file_mmap,
1203 	.fsync			= noop_fsync,
1204 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1205 	.llseek			= default_llseek,
1206 	.fallocate		= hugetlbfs_fallocate,
1207 };
1208 
1209 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1210 	.create		= hugetlbfs_create,
1211 	.lookup		= simple_lookup,
1212 	.link		= simple_link,
1213 	.unlink		= simple_unlink,
1214 	.symlink	= hugetlbfs_symlink,
1215 	.mkdir		= hugetlbfs_mkdir,
1216 	.rmdir		= simple_rmdir,
1217 	.mknod		= hugetlbfs_mknod,
1218 	.rename		= simple_rename,
1219 	.setattr	= hugetlbfs_setattr,
1220 	.tmpfile	= hugetlbfs_tmpfile,
1221 };
1222 
1223 static const struct inode_operations hugetlbfs_inode_operations = {
1224 	.setattr	= hugetlbfs_setattr,
1225 };
1226 
1227 static const struct super_operations hugetlbfs_ops = {
1228 	.alloc_inode    = hugetlbfs_alloc_inode,
1229 	.free_inode     = hugetlbfs_free_inode,
1230 	.destroy_inode  = hugetlbfs_destroy_inode,
1231 	.evict_inode	= hugetlbfs_evict_inode,
1232 	.statfs		= hugetlbfs_statfs,
1233 	.put_super	= hugetlbfs_put_super,
1234 	.show_options	= hugetlbfs_show_options,
1235 };
1236 
1237 /*
1238  * Convert size option passed from command line to number of huge pages
1239  * in the pool specified by hstate.  Size option could be in bytes
1240  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1241  */
1242 static long
1243 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1244 			 enum hugetlbfs_size_type val_type)
1245 {
1246 	if (val_type == NO_SIZE)
1247 		return -1;
1248 
1249 	if (val_type == SIZE_PERCENT) {
1250 		size_opt <<= huge_page_shift(h);
1251 		size_opt *= h->max_huge_pages;
1252 		do_div(size_opt, 100);
1253 	}
1254 
1255 	size_opt >>= huge_page_shift(h);
1256 	return size_opt;
1257 }
1258 
1259 /*
1260  * Parse one mount parameter.
1261  */
1262 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1263 {
1264 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1265 	struct fs_parse_result result;
1266 	char *rest;
1267 	unsigned long ps;
1268 	int opt;
1269 
1270 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1271 	if (opt < 0)
1272 		return opt;
1273 
1274 	switch (opt) {
1275 	case Opt_uid:
1276 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1277 		if (!uid_valid(ctx->uid))
1278 			goto bad_val;
1279 		return 0;
1280 
1281 	case Opt_gid:
1282 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1283 		if (!gid_valid(ctx->gid))
1284 			goto bad_val;
1285 		return 0;
1286 
1287 	case Opt_mode:
1288 		ctx->mode = result.uint_32 & 01777U;
1289 		return 0;
1290 
1291 	case Opt_size:
1292 		/* memparse() will accept a K/M/G without a digit */
1293 		if (!isdigit(param->string[0]))
1294 			goto bad_val;
1295 		ctx->max_size_opt = memparse(param->string, &rest);
1296 		ctx->max_val_type = SIZE_STD;
1297 		if (*rest == '%')
1298 			ctx->max_val_type = SIZE_PERCENT;
1299 		return 0;
1300 
1301 	case Opt_nr_inodes:
1302 		/* memparse() will accept a K/M/G without a digit */
1303 		if (!isdigit(param->string[0]))
1304 			goto bad_val;
1305 		ctx->nr_inodes = memparse(param->string, &rest);
1306 		return 0;
1307 
1308 	case Opt_pagesize:
1309 		ps = memparse(param->string, &rest);
1310 		ctx->hstate = size_to_hstate(ps);
1311 		if (!ctx->hstate) {
1312 			pr_err("Unsupported page size %lu MB\n", ps >> 20);
1313 			return -EINVAL;
1314 		}
1315 		return 0;
1316 
1317 	case Opt_min_size:
1318 		/* memparse() will accept a K/M/G without a digit */
1319 		if (!isdigit(param->string[0]))
1320 			goto bad_val;
1321 		ctx->min_size_opt = memparse(param->string, &rest);
1322 		ctx->min_val_type = SIZE_STD;
1323 		if (*rest == '%')
1324 			ctx->min_val_type = SIZE_PERCENT;
1325 		return 0;
1326 
1327 	default:
1328 		return -EINVAL;
1329 	}
1330 
1331 bad_val:
1332 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1333 		      param->string, param->key);
1334 }
1335 
1336 /*
1337  * Validate the parsed options.
1338  */
1339 static int hugetlbfs_validate(struct fs_context *fc)
1340 {
1341 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1342 
1343 	/*
1344 	 * Use huge page pool size (in hstate) to convert the size
1345 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1346 	 */
1347 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1348 						   ctx->max_size_opt,
1349 						   ctx->max_val_type);
1350 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1351 						   ctx->min_size_opt,
1352 						   ctx->min_val_type);
1353 
1354 	/*
1355 	 * If max_size was specified, then min_size must be smaller
1356 	 */
1357 	if (ctx->max_val_type > NO_SIZE &&
1358 	    ctx->min_hpages > ctx->max_hpages) {
1359 		pr_err("Minimum size can not be greater than maximum size\n");
1360 		return -EINVAL;
1361 	}
1362 
1363 	return 0;
1364 }
1365 
1366 static int
1367 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1368 {
1369 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1370 	struct hugetlbfs_sb_info *sbinfo;
1371 
1372 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1373 	if (!sbinfo)
1374 		return -ENOMEM;
1375 	sb->s_fs_info = sbinfo;
1376 	spin_lock_init(&sbinfo->stat_lock);
1377 	sbinfo->hstate		= ctx->hstate;
1378 	sbinfo->max_inodes	= ctx->nr_inodes;
1379 	sbinfo->free_inodes	= ctx->nr_inodes;
1380 	sbinfo->spool		= NULL;
1381 	sbinfo->uid		= ctx->uid;
1382 	sbinfo->gid		= ctx->gid;
1383 	sbinfo->mode		= ctx->mode;
1384 
1385 	/*
1386 	 * Allocate and initialize subpool if maximum or minimum size is
1387 	 * specified.  Any needed reservations (for minimum size) are taken
1388 	 * taken when the subpool is created.
1389 	 */
1390 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1391 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1392 						     ctx->max_hpages,
1393 						     ctx->min_hpages);
1394 		if (!sbinfo->spool)
1395 			goto out_free;
1396 	}
1397 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1398 	sb->s_blocksize = huge_page_size(ctx->hstate);
1399 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1400 	sb->s_magic = HUGETLBFS_MAGIC;
1401 	sb->s_op = &hugetlbfs_ops;
1402 	sb->s_time_gran = 1;
1403 
1404 	/*
1405 	 * Due to the special and limited functionality of hugetlbfs, it does
1406 	 * not work well as a stacking filesystem.
1407 	 */
1408 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1409 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1410 	if (!sb->s_root)
1411 		goto out_free;
1412 	return 0;
1413 out_free:
1414 	kfree(sbinfo->spool);
1415 	kfree(sbinfo);
1416 	return -ENOMEM;
1417 }
1418 
1419 static int hugetlbfs_get_tree(struct fs_context *fc)
1420 {
1421 	int err = hugetlbfs_validate(fc);
1422 	if (err)
1423 		return err;
1424 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1425 }
1426 
1427 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1428 {
1429 	kfree(fc->fs_private);
1430 }
1431 
1432 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1433 	.free		= hugetlbfs_fs_context_free,
1434 	.parse_param	= hugetlbfs_parse_param,
1435 	.get_tree	= hugetlbfs_get_tree,
1436 };
1437 
1438 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1439 {
1440 	struct hugetlbfs_fs_context *ctx;
1441 
1442 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1443 	if (!ctx)
1444 		return -ENOMEM;
1445 
1446 	ctx->max_hpages	= -1; /* No limit on size by default */
1447 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1448 	ctx->uid	= current_fsuid();
1449 	ctx->gid	= current_fsgid();
1450 	ctx->mode	= 0755;
1451 	ctx->hstate	= &default_hstate;
1452 	ctx->min_hpages	= -1; /* No default minimum size */
1453 	ctx->max_val_type = NO_SIZE;
1454 	ctx->min_val_type = NO_SIZE;
1455 	fc->fs_private = ctx;
1456 	fc->ops	= &hugetlbfs_fs_context_ops;
1457 	return 0;
1458 }
1459 
1460 static struct file_system_type hugetlbfs_fs_type = {
1461 	.name			= "hugetlbfs",
1462 	.init_fs_context	= hugetlbfs_init_fs_context,
1463 	.parameters		= hugetlb_fs_parameters,
1464 	.kill_sb		= kill_litter_super,
1465 };
1466 
1467 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1468 
1469 static int can_do_hugetlb_shm(void)
1470 {
1471 	kgid_t shm_group;
1472 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1473 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1474 }
1475 
1476 static int get_hstate_idx(int page_size_log)
1477 {
1478 	struct hstate *h = hstate_sizelog(page_size_log);
1479 
1480 	if (!h)
1481 		return -1;
1482 	return hstate_index(h);
1483 }
1484 
1485 /*
1486  * Note that size should be aligned to proper hugepage size in caller side,
1487  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1488  */
1489 struct file *hugetlb_file_setup(const char *name, size_t size,
1490 				vm_flags_t acctflag, int creat_flags,
1491 				int page_size_log)
1492 {
1493 	struct inode *inode;
1494 	struct vfsmount *mnt;
1495 	int hstate_idx;
1496 	struct file *file;
1497 
1498 	hstate_idx = get_hstate_idx(page_size_log);
1499 	if (hstate_idx < 0)
1500 		return ERR_PTR(-ENODEV);
1501 
1502 	mnt = hugetlbfs_vfsmount[hstate_idx];
1503 	if (!mnt)
1504 		return ERR_PTR(-ENOENT);
1505 
1506 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1507 		struct ucounts *ucounts = current_ucounts();
1508 
1509 		if (user_shm_lock(size, ucounts)) {
1510 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1511 				current->comm, current->pid);
1512 			user_shm_unlock(size, ucounts);
1513 		}
1514 		return ERR_PTR(-EPERM);
1515 	}
1516 
1517 	file = ERR_PTR(-ENOSPC);
1518 	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1519 	if (!inode)
1520 		goto out;
1521 	if (creat_flags == HUGETLB_SHMFS_INODE)
1522 		inode->i_flags |= S_PRIVATE;
1523 
1524 	inode->i_size = size;
1525 	clear_nlink(inode);
1526 
1527 	if (!hugetlb_reserve_pages(inode, 0,
1528 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1529 			acctflag))
1530 		file = ERR_PTR(-ENOMEM);
1531 	else
1532 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1533 					&hugetlbfs_file_operations);
1534 	if (!IS_ERR(file))
1535 		return file;
1536 
1537 	iput(inode);
1538 out:
1539 	return file;
1540 }
1541 
1542 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1543 {
1544 	struct fs_context *fc;
1545 	struct vfsmount *mnt;
1546 
1547 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1548 	if (IS_ERR(fc)) {
1549 		mnt = ERR_CAST(fc);
1550 	} else {
1551 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1552 		ctx->hstate = h;
1553 		mnt = fc_mount(fc);
1554 		put_fs_context(fc);
1555 	}
1556 	if (IS_ERR(mnt))
1557 		pr_err("Cannot mount internal hugetlbfs for page size %luK",
1558 		       huge_page_size(h) >> 10);
1559 	return mnt;
1560 }
1561 
1562 static int __init init_hugetlbfs_fs(void)
1563 {
1564 	struct vfsmount *mnt;
1565 	struct hstate *h;
1566 	int error;
1567 	int i;
1568 
1569 	if (!hugepages_supported()) {
1570 		pr_info("disabling because there are no supported hugepage sizes\n");
1571 		return -ENOTSUPP;
1572 	}
1573 
1574 	error = -ENOMEM;
1575 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1576 					sizeof(struct hugetlbfs_inode_info),
1577 					0, SLAB_ACCOUNT, init_once);
1578 	if (hugetlbfs_inode_cachep == NULL)
1579 		goto out;
1580 
1581 	error = register_filesystem(&hugetlbfs_fs_type);
1582 	if (error)
1583 		goto out_free;
1584 
1585 	/* default hstate mount is required */
1586 	mnt = mount_one_hugetlbfs(&default_hstate);
1587 	if (IS_ERR(mnt)) {
1588 		error = PTR_ERR(mnt);
1589 		goto out_unreg;
1590 	}
1591 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1592 
1593 	/* other hstates are optional */
1594 	i = 0;
1595 	for_each_hstate(h) {
1596 		if (i == default_hstate_idx) {
1597 			i++;
1598 			continue;
1599 		}
1600 
1601 		mnt = mount_one_hugetlbfs(h);
1602 		if (IS_ERR(mnt))
1603 			hugetlbfs_vfsmount[i] = NULL;
1604 		else
1605 			hugetlbfs_vfsmount[i] = mnt;
1606 		i++;
1607 	}
1608 
1609 	return 0;
1610 
1611  out_unreg:
1612 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1613  out_free:
1614 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1615  out:
1616 	return error;
1617 }
1618 fs_initcall(init_hugetlbfs_fs)
1619