xref: /openbmc/linux/fs/hugetlbfs/inode.c (revision c1f51218)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>		/* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39 
40 #include <linux/uaccess.h>
41 #include <linux/sched/mm.h>
42 
43 static const struct super_operations hugetlbfs_ops;
44 static const struct address_space_operations hugetlbfs_aops;
45 const struct file_operations hugetlbfs_file_operations;
46 static const struct inode_operations hugetlbfs_dir_inode_operations;
47 static const struct inode_operations hugetlbfs_inode_operations;
48 
49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
50 
51 struct hugetlbfs_fs_context {
52 	struct hstate		*hstate;
53 	unsigned long long	max_size_opt;
54 	unsigned long long	min_size_opt;
55 	long			max_hpages;
56 	long			nr_inodes;
57 	long			min_hpages;
58 	enum hugetlbfs_size_type max_val_type;
59 	enum hugetlbfs_size_type min_val_type;
60 	kuid_t			uid;
61 	kgid_t			gid;
62 	umode_t			mode;
63 };
64 
65 int sysctl_hugetlb_shm_group;
66 
67 enum hugetlb_param {
68 	Opt_gid,
69 	Opt_min_size,
70 	Opt_mode,
71 	Opt_nr_inodes,
72 	Opt_pagesize,
73 	Opt_size,
74 	Opt_uid,
75 };
76 
77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
78 	fsparam_u32   ("gid",		Opt_gid),
79 	fsparam_string("min_size",	Opt_min_size),
80 	fsparam_u32   ("mode",		Opt_mode),
81 	fsparam_string("nr_inodes",	Opt_nr_inodes),
82 	fsparam_string("pagesize",	Opt_pagesize),
83 	fsparam_string("size",		Opt_size),
84 	fsparam_u32   ("uid",		Opt_uid),
85 	{}
86 };
87 
88 #ifdef CONFIG_NUMA
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90 					struct inode *inode, pgoff_t index)
91 {
92 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93 							index);
94 }
95 
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98 	mpol_cond_put(vma->vm_policy);
99 }
100 #else
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102 					struct inode *inode, pgoff_t index)
103 {
104 }
105 
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110 
111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113 	int i;
114 
115 	for (i = 0; i < pagevec_count(pvec); ++i)
116 		put_page(pvec->pages[i]);
117 
118 	pagevec_reinit(pvec);
119 }
120 
121 /*
122  * Mask used when checking the page offset value passed in via system
123  * calls.  This value will be converted to a loff_t which is signed.
124  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
125  * value.  The extra bit (- 1 in the shift value) is to take the sign
126  * bit into account.
127  */
128 #define PGOFF_LOFFT_MAX \
129 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
130 
131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
132 {
133 	struct inode *inode = file_inode(file);
134 	loff_t len, vma_len;
135 	int ret;
136 	struct hstate *h = hstate_file(file);
137 
138 	/*
139 	 * vma address alignment (but not the pgoff alignment) has
140 	 * already been checked by prepare_hugepage_range.  If you add
141 	 * any error returns here, do so after setting VM_HUGETLB, so
142 	 * is_vm_hugetlb_page tests below unmap_region go the right
143 	 * way when do_mmap unwinds (may be important on powerpc
144 	 * and ia64).
145 	 */
146 	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
147 	vma->vm_ops = &hugetlb_vm_ops;
148 
149 	/*
150 	 * page based offset in vm_pgoff could be sufficiently large to
151 	 * overflow a loff_t when converted to byte offset.  This can
152 	 * only happen on architectures where sizeof(loff_t) ==
153 	 * sizeof(unsigned long).  So, only check in those instances.
154 	 */
155 	if (sizeof(unsigned long) == sizeof(loff_t)) {
156 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
157 			return -EINVAL;
158 	}
159 
160 	/* must be huge page aligned */
161 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
162 		return -EINVAL;
163 
164 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
165 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
166 	/* check for overflow */
167 	if (len < vma_len)
168 		return -EINVAL;
169 
170 	inode_lock(inode);
171 	file_accessed(file);
172 
173 	ret = -ENOMEM;
174 	if (!hugetlb_reserve_pages(inode,
175 				vma->vm_pgoff >> huge_page_order(h),
176 				len >> huge_page_shift(h), vma,
177 				vma->vm_flags))
178 		goto out;
179 
180 	ret = 0;
181 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
182 		i_size_write(inode, len);
183 out:
184 	inode_unlock(inode);
185 
186 	return ret;
187 }
188 
189 /*
190  * Called under mmap_write_lock(mm).
191  */
192 
193 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
194 static unsigned long
195 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
196 		unsigned long len, unsigned long pgoff, unsigned long flags)
197 {
198 	struct hstate *h = hstate_file(file);
199 	struct vm_unmapped_area_info info;
200 
201 	info.flags = 0;
202 	info.length = len;
203 	info.low_limit = current->mm->mmap_base;
204 	info.high_limit = TASK_SIZE;
205 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
206 	info.align_offset = 0;
207 	return vm_unmapped_area(&info);
208 }
209 
210 static unsigned long
211 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
212 		unsigned long len, unsigned long pgoff, unsigned long flags)
213 {
214 	struct hstate *h = hstate_file(file);
215 	struct vm_unmapped_area_info info;
216 
217 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
218 	info.length = len;
219 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
220 	info.high_limit = current->mm->mmap_base;
221 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
222 	info.align_offset = 0;
223 	addr = vm_unmapped_area(&info);
224 
225 	/*
226 	 * A failed mmap() very likely causes application failure,
227 	 * so fall back to the bottom-up function here. This scenario
228 	 * can happen with large stack limits and large mmap()
229 	 * allocations.
230 	 */
231 	if (unlikely(offset_in_page(addr))) {
232 		VM_BUG_ON(addr != -ENOMEM);
233 		info.flags = 0;
234 		info.low_limit = current->mm->mmap_base;
235 		info.high_limit = TASK_SIZE;
236 		addr = vm_unmapped_area(&info);
237 	}
238 
239 	return addr;
240 }
241 
242 static unsigned long
243 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
244 		unsigned long len, unsigned long pgoff, unsigned long flags)
245 {
246 	struct mm_struct *mm = current->mm;
247 	struct vm_area_struct *vma;
248 	struct hstate *h = hstate_file(file);
249 
250 	if (len & ~huge_page_mask(h))
251 		return -EINVAL;
252 	if (len > TASK_SIZE)
253 		return -ENOMEM;
254 
255 	if (flags & MAP_FIXED) {
256 		if (prepare_hugepage_range(file, addr, len))
257 			return -EINVAL;
258 		return addr;
259 	}
260 
261 	if (addr) {
262 		addr = ALIGN(addr, huge_page_size(h));
263 		vma = find_vma(mm, addr);
264 		if (TASK_SIZE - len >= addr &&
265 		    (!vma || addr + len <= vm_start_gap(vma)))
266 			return addr;
267 	}
268 
269 	/*
270 	 * Use mm->get_unmapped_area value as a hint to use topdown routine.
271 	 * If architectures have special needs, they should define their own
272 	 * version of hugetlb_get_unmapped_area.
273 	 */
274 	if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
275 		return hugetlb_get_unmapped_area_topdown(file, addr, len,
276 				pgoff, flags);
277 	return hugetlb_get_unmapped_area_bottomup(file, addr, len,
278 			pgoff, flags);
279 }
280 #endif
281 
282 static size_t
283 hugetlbfs_read_actor(struct page *page, unsigned long offset,
284 			struct iov_iter *to, unsigned long size)
285 {
286 	size_t copied = 0;
287 	int i, chunksize;
288 
289 	/* Find which 4k chunk and offset with in that chunk */
290 	i = offset >> PAGE_SHIFT;
291 	offset = offset & ~PAGE_MASK;
292 
293 	while (size) {
294 		size_t n;
295 		chunksize = PAGE_SIZE;
296 		if (offset)
297 			chunksize -= offset;
298 		if (chunksize > size)
299 			chunksize = size;
300 		n = copy_page_to_iter(&page[i], offset, chunksize, to);
301 		copied += n;
302 		if (n != chunksize)
303 			return copied;
304 		offset = 0;
305 		size -= chunksize;
306 		i++;
307 	}
308 	return copied;
309 }
310 
311 /*
312  * Support for read() - Find the page attached to f_mapping and copy out the
313  * data. Its *very* similar to generic_file_buffered_read(), we can't use that
314  * since it has PAGE_SIZE assumptions.
315  */
316 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
317 {
318 	struct file *file = iocb->ki_filp;
319 	struct hstate *h = hstate_file(file);
320 	struct address_space *mapping = file->f_mapping;
321 	struct inode *inode = mapping->host;
322 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
323 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
324 	unsigned long end_index;
325 	loff_t isize;
326 	ssize_t retval = 0;
327 
328 	while (iov_iter_count(to)) {
329 		struct page *page;
330 		size_t nr, copied;
331 
332 		/* nr is the maximum number of bytes to copy from this page */
333 		nr = huge_page_size(h);
334 		isize = i_size_read(inode);
335 		if (!isize)
336 			break;
337 		end_index = (isize - 1) >> huge_page_shift(h);
338 		if (index > end_index)
339 			break;
340 		if (index == end_index) {
341 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
342 			if (nr <= offset)
343 				break;
344 		}
345 		nr = nr - offset;
346 
347 		/* Find the page */
348 		page = find_lock_page(mapping, index);
349 		if (unlikely(page == NULL)) {
350 			/*
351 			 * We have a HOLE, zero out the user-buffer for the
352 			 * length of the hole or request.
353 			 */
354 			copied = iov_iter_zero(nr, to);
355 		} else {
356 			unlock_page(page);
357 
358 			/*
359 			 * We have the page, copy it to user space buffer.
360 			 */
361 			copied = hugetlbfs_read_actor(page, offset, to, nr);
362 			put_page(page);
363 		}
364 		offset += copied;
365 		retval += copied;
366 		if (copied != nr && iov_iter_count(to)) {
367 			if (!retval)
368 				retval = -EFAULT;
369 			break;
370 		}
371 		index += offset >> huge_page_shift(h);
372 		offset &= ~huge_page_mask(h);
373 	}
374 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
375 	return retval;
376 }
377 
378 static int hugetlbfs_write_begin(struct file *file,
379 			struct address_space *mapping,
380 			loff_t pos, unsigned len, unsigned flags,
381 			struct page **pagep, void **fsdata)
382 {
383 	return -EINVAL;
384 }
385 
386 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
387 			loff_t pos, unsigned len, unsigned copied,
388 			struct page *page, void *fsdata)
389 {
390 	BUG();
391 	return -EINVAL;
392 }
393 
394 static void remove_huge_page(struct page *page)
395 {
396 	ClearPageDirty(page);
397 	ClearPageUptodate(page);
398 	delete_from_page_cache(page);
399 }
400 
401 static void
402 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
403 {
404 	struct vm_area_struct *vma;
405 
406 	/*
407 	 * end == 0 indicates that the entire range after
408 	 * start should be unmapped.
409 	 */
410 	vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
411 		unsigned long v_offset;
412 		unsigned long v_end;
413 
414 		/*
415 		 * Can the expression below overflow on 32-bit arches?
416 		 * No, because the interval tree returns us only those vmas
417 		 * which overlap the truncated area starting at pgoff,
418 		 * and no vma on a 32-bit arch can span beyond the 4GB.
419 		 */
420 		if (vma->vm_pgoff < start)
421 			v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
422 		else
423 			v_offset = 0;
424 
425 		if (!end)
426 			v_end = vma->vm_end;
427 		else {
428 			v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
429 							+ vma->vm_start;
430 			if (v_end > vma->vm_end)
431 				v_end = vma->vm_end;
432 		}
433 
434 		unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
435 									NULL);
436 	}
437 }
438 
439 /*
440  * remove_inode_hugepages handles two distinct cases: truncation and hole
441  * punch.  There are subtle differences in operation for each case.
442  *
443  * truncation is indicated by end of range being LLONG_MAX
444  *	In this case, we first scan the range and release found pages.
445  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
446  *	maps and global counts.  Page faults can not race with truncation
447  *	in this routine.  hugetlb_no_page() holds i_mmap_rwsem and prevents
448  *	page faults in the truncated range by checking i_size.  i_size is
449  *	modified while holding i_mmap_rwsem.
450  * hole punch is indicated if end is not LLONG_MAX
451  *	In the hole punch case we scan the range and release found pages.
452  *	Only when releasing a page is the associated region/reserve map
453  *	deleted.  The region/reserve map for ranges without associated
454  *	pages are not modified.  Page faults can race with hole punch.
455  *	This is indicated if we find a mapped page.
456  * Note: If the passed end of range value is beyond the end of file, but
457  * not LLONG_MAX this routine still performs a hole punch operation.
458  */
459 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
460 				   loff_t lend)
461 {
462 	struct hstate *h = hstate_inode(inode);
463 	struct address_space *mapping = &inode->i_data;
464 	const pgoff_t start = lstart >> huge_page_shift(h);
465 	const pgoff_t end = lend >> huge_page_shift(h);
466 	struct pagevec pvec;
467 	pgoff_t next, index;
468 	int i, freed = 0;
469 	bool truncate_op = (lend == LLONG_MAX);
470 
471 	pagevec_init(&pvec);
472 	next = start;
473 	while (next < end) {
474 		/*
475 		 * When no more pages are found, we are done.
476 		 */
477 		if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
478 			break;
479 
480 		for (i = 0; i < pagevec_count(&pvec); ++i) {
481 			struct page *page = pvec.pages[i];
482 			u32 hash = 0;
483 
484 			index = page->index;
485 			if (!truncate_op) {
486 				/*
487 				 * Only need to hold the fault mutex in the
488 				 * hole punch case.  This prevents races with
489 				 * page faults.  Races are not possible in the
490 				 * case of truncation.
491 				 */
492 				hash = hugetlb_fault_mutex_hash(mapping, index);
493 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
494 			}
495 
496 			/*
497 			 * If page is mapped, it was faulted in after being
498 			 * unmapped in caller.  Unmap (again) now after taking
499 			 * the fault mutex.  The mutex will prevent faults
500 			 * until we finish removing the page.
501 			 *
502 			 * This race can only happen in the hole punch case.
503 			 * Getting here in a truncate operation is a bug.
504 			 */
505 			if (unlikely(page_mapped(page))) {
506 				BUG_ON(truncate_op);
507 
508 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
509 				i_mmap_lock_write(mapping);
510 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
511 				hugetlb_vmdelete_list(&mapping->i_mmap,
512 					index * pages_per_huge_page(h),
513 					(index + 1) * pages_per_huge_page(h));
514 				i_mmap_unlock_write(mapping);
515 			}
516 
517 			lock_page(page);
518 			/*
519 			 * We must free the huge page and remove from page
520 			 * cache (remove_huge_page) BEFORE removing the
521 			 * region/reserve map (hugetlb_unreserve_pages).  In
522 			 * rare out of memory conditions, removal of the
523 			 * region/reserve map could fail. Correspondingly,
524 			 * the subpool and global reserve usage count can need
525 			 * to be adjusted.
526 			 */
527 			VM_BUG_ON(PagePrivate(page));
528 			remove_huge_page(page);
529 			freed++;
530 			if (!truncate_op) {
531 				if (unlikely(hugetlb_unreserve_pages(inode,
532 							index, index + 1, 1)))
533 					hugetlb_fix_reserve_counts(inode);
534 			}
535 
536 			unlock_page(page);
537 			if (!truncate_op)
538 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
539 		}
540 		huge_pagevec_release(&pvec);
541 		cond_resched();
542 	}
543 
544 	if (truncate_op)
545 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
546 }
547 
548 static void hugetlbfs_evict_inode(struct inode *inode)
549 {
550 	struct resv_map *resv_map;
551 
552 	remove_inode_hugepages(inode, 0, LLONG_MAX);
553 
554 	/*
555 	 * Get the resv_map from the address space embedded in the inode.
556 	 * This is the address space which points to any resv_map allocated
557 	 * at inode creation time.  If this is a device special inode,
558 	 * i_mapping may not point to the original address space.
559 	 */
560 	resv_map = (struct resv_map *)(&inode->i_data)->private_data;
561 	/* Only regular and link inodes have associated reserve maps */
562 	if (resv_map)
563 		resv_map_release(&resv_map->refs);
564 	clear_inode(inode);
565 }
566 
567 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
568 {
569 	pgoff_t pgoff;
570 	struct address_space *mapping = inode->i_mapping;
571 	struct hstate *h = hstate_inode(inode);
572 
573 	BUG_ON(offset & ~huge_page_mask(h));
574 	pgoff = offset >> PAGE_SHIFT;
575 
576 	i_mmap_lock_write(mapping);
577 	i_size_write(inode, offset);
578 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
579 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
580 	i_mmap_unlock_write(mapping);
581 	remove_inode_hugepages(inode, offset, LLONG_MAX);
582 }
583 
584 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
585 {
586 	struct hstate *h = hstate_inode(inode);
587 	loff_t hpage_size = huge_page_size(h);
588 	loff_t hole_start, hole_end;
589 
590 	/*
591 	 * For hole punch round up the beginning offset of the hole and
592 	 * round down the end.
593 	 */
594 	hole_start = round_up(offset, hpage_size);
595 	hole_end = round_down(offset + len, hpage_size);
596 
597 	if (hole_end > hole_start) {
598 		struct address_space *mapping = inode->i_mapping;
599 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
600 
601 		inode_lock(inode);
602 
603 		/* protected by i_rwsem */
604 		if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
605 			inode_unlock(inode);
606 			return -EPERM;
607 		}
608 
609 		i_mmap_lock_write(mapping);
610 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
611 			hugetlb_vmdelete_list(&mapping->i_mmap,
612 						hole_start >> PAGE_SHIFT,
613 						hole_end  >> PAGE_SHIFT);
614 		i_mmap_unlock_write(mapping);
615 		remove_inode_hugepages(inode, hole_start, hole_end);
616 		inode_unlock(inode);
617 	}
618 
619 	return 0;
620 }
621 
622 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
623 				loff_t len)
624 {
625 	struct inode *inode = file_inode(file);
626 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
627 	struct address_space *mapping = inode->i_mapping;
628 	struct hstate *h = hstate_inode(inode);
629 	struct vm_area_struct pseudo_vma;
630 	struct mm_struct *mm = current->mm;
631 	loff_t hpage_size = huge_page_size(h);
632 	unsigned long hpage_shift = huge_page_shift(h);
633 	pgoff_t start, index, end;
634 	int error;
635 	u32 hash;
636 
637 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
638 		return -EOPNOTSUPP;
639 
640 	if (mode & FALLOC_FL_PUNCH_HOLE)
641 		return hugetlbfs_punch_hole(inode, offset, len);
642 
643 	/*
644 	 * Default preallocate case.
645 	 * For this range, start is rounded down and end is rounded up
646 	 * as well as being converted to page offsets.
647 	 */
648 	start = offset >> hpage_shift;
649 	end = (offset + len + hpage_size - 1) >> hpage_shift;
650 
651 	inode_lock(inode);
652 
653 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
654 	error = inode_newsize_ok(inode, offset + len);
655 	if (error)
656 		goto out;
657 
658 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
659 		error = -EPERM;
660 		goto out;
661 	}
662 
663 	/*
664 	 * Initialize a pseudo vma as this is required by the huge page
665 	 * allocation routines.  If NUMA is configured, use page index
666 	 * as input to create an allocation policy.
667 	 */
668 	vma_init(&pseudo_vma, mm);
669 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
670 	pseudo_vma.vm_file = file;
671 
672 	for (index = start; index < end; index++) {
673 		/*
674 		 * This is supposed to be the vaddr where the page is being
675 		 * faulted in, but we have no vaddr here.
676 		 */
677 		struct page *page;
678 		unsigned long addr;
679 
680 		cond_resched();
681 
682 		/*
683 		 * fallocate(2) manpage permits EINTR; we may have been
684 		 * interrupted because we are using up too much memory.
685 		 */
686 		if (signal_pending(current)) {
687 			error = -EINTR;
688 			break;
689 		}
690 
691 		/* Set numa allocation policy based on index */
692 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
693 
694 		/* addr is the offset within the file (zero based) */
695 		addr = index * hpage_size;
696 
697 		/*
698 		 * fault mutex taken here, protects against fault path
699 		 * and hole punch.  inode_lock previously taken protects
700 		 * against truncation.
701 		 */
702 		hash = hugetlb_fault_mutex_hash(mapping, index);
703 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
704 
705 		/* See if already present in mapping to avoid alloc/free */
706 		page = find_get_page(mapping, index);
707 		if (page) {
708 			put_page(page);
709 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
710 			hugetlb_drop_vma_policy(&pseudo_vma);
711 			continue;
712 		}
713 
714 		/*
715 		 * Allocate page without setting the avoid_reserve argument.
716 		 * There certainly are no reserves associated with the
717 		 * pseudo_vma.  However, there could be shared mappings with
718 		 * reserves for the file at the inode level.  If we fallocate
719 		 * pages in these areas, we need to consume the reserves
720 		 * to keep reservation accounting consistent.
721 		 */
722 		page = alloc_huge_page(&pseudo_vma, addr, 0);
723 		hugetlb_drop_vma_policy(&pseudo_vma);
724 		if (IS_ERR(page)) {
725 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
726 			error = PTR_ERR(page);
727 			goto out;
728 		}
729 		clear_huge_page(page, addr, pages_per_huge_page(h));
730 		__SetPageUptodate(page);
731 		error = huge_add_to_page_cache(page, mapping, index);
732 		if (unlikely(error)) {
733 			put_page(page);
734 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
735 			goto out;
736 		}
737 
738 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
739 
740 		SetHPageMigratable(page);
741 		/*
742 		 * unlock_page because locked by add_to_page_cache()
743 		 * put_page() due to reference from alloc_huge_page()
744 		 */
745 		unlock_page(page);
746 		put_page(page);
747 	}
748 
749 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
750 		i_size_write(inode, offset + len);
751 	inode->i_ctime = current_time(inode);
752 out:
753 	inode_unlock(inode);
754 	return error;
755 }
756 
757 static int hugetlbfs_setattr(struct user_namespace *mnt_userns,
758 			     struct dentry *dentry, struct iattr *attr)
759 {
760 	struct inode *inode = d_inode(dentry);
761 	struct hstate *h = hstate_inode(inode);
762 	int error;
763 	unsigned int ia_valid = attr->ia_valid;
764 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
765 
766 	error = setattr_prepare(&init_user_ns, dentry, attr);
767 	if (error)
768 		return error;
769 
770 	if (ia_valid & ATTR_SIZE) {
771 		loff_t oldsize = inode->i_size;
772 		loff_t newsize = attr->ia_size;
773 
774 		if (newsize & ~huge_page_mask(h))
775 			return -EINVAL;
776 		/* protected by i_rwsem */
777 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
778 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
779 			return -EPERM;
780 		hugetlb_vmtruncate(inode, newsize);
781 	}
782 
783 	setattr_copy(&init_user_ns, inode, attr);
784 	mark_inode_dirty(inode);
785 	return 0;
786 }
787 
788 static struct inode *hugetlbfs_get_root(struct super_block *sb,
789 					struct hugetlbfs_fs_context *ctx)
790 {
791 	struct inode *inode;
792 
793 	inode = new_inode(sb);
794 	if (inode) {
795 		inode->i_ino = get_next_ino();
796 		inode->i_mode = S_IFDIR | ctx->mode;
797 		inode->i_uid = ctx->uid;
798 		inode->i_gid = ctx->gid;
799 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
800 		inode->i_op = &hugetlbfs_dir_inode_operations;
801 		inode->i_fop = &simple_dir_operations;
802 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
803 		inc_nlink(inode);
804 		lockdep_annotate_inode_mutex_key(inode);
805 	}
806 	return inode;
807 }
808 
809 /*
810  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
811  * be taken from reclaim -- unlike regular filesystems. This needs an
812  * annotation because huge_pmd_share() does an allocation under hugetlb's
813  * i_mmap_rwsem.
814  */
815 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
816 
817 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
818 					struct inode *dir,
819 					umode_t mode, dev_t dev)
820 {
821 	struct inode *inode;
822 	struct resv_map *resv_map = NULL;
823 
824 	/*
825 	 * Reserve maps are only needed for inodes that can have associated
826 	 * page allocations.
827 	 */
828 	if (S_ISREG(mode) || S_ISLNK(mode)) {
829 		resv_map = resv_map_alloc();
830 		if (!resv_map)
831 			return NULL;
832 	}
833 
834 	inode = new_inode(sb);
835 	if (inode) {
836 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
837 
838 		inode->i_ino = get_next_ino();
839 		inode_init_owner(&init_user_ns, inode, dir, mode);
840 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
841 				&hugetlbfs_i_mmap_rwsem_key);
842 		inode->i_mapping->a_ops = &hugetlbfs_aops;
843 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
844 		inode->i_mapping->private_data = resv_map;
845 		info->seals = F_SEAL_SEAL;
846 		switch (mode & S_IFMT) {
847 		default:
848 			init_special_inode(inode, mode, dev);
849 			break;
850 		case S_IFREG:
851 			inode->i_op = &hugetlbfs_inode_operations;
852 			inode->i_fop = &hugetlbfs_file_operations;
853 			break;
854 		case S_IFDIR:
855 			inode->i_op = &hugetlbfs_dir_inode_operations;
856 			inode->i_fop = &simple_dir_operations;
857 
858 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
859 			inc_nlink(inode);
860 			break;
861 		case S_IFLNK:
862 			inode->i_op = &page_symlink_inode_operations;
863 			inode_nohighmem(inode);
864 			break;
865 		}
866 		lockdep_annotate_inode_mutex_key(inode);
867 	} else {
868 		if (resv_map)
869 			kref_put(&resv_map->refs, resv_map_release);
870 	}
871 
872 	return inode;
873 }
874 
875 /*
876  * File creation. Allocate an inode, and we're done..
877  */
878 static int do_hugetlbfs_mknod(struct inode *dir,
879 			struct dentry *dentry,
880 			umode_t mode,
881 			dev_t dev,
882 			bool tmpfile)
883 {
884 	struct inode *inode;
885 	int error = -ENOSPC;
886 
887 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
888 	if (inode) {
889 		dir->i_ctime = dir->i_mtime = current_time(dir);
890 		if (tmpfile) {
891 			d_tmpfile(dentry, inode);
892 		} else {
893 			d_instantiate(dentry, inode);
894 			dget(dentry);/* Extra count - pin the dentry in core */
895 		}
896 		error = 0;
897 	}
898 	return error;
899 }
900 
901 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
902 			   struct dentry *dentry, umode_t mode, dev_t dev)
903 {
904 	return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
905 }
906 
907 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
908 			   struct dentry *dentry, umode_t mode)
909 {
910 	int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry,
911 				     mode | S_IFDIR, 0);
912 	if (!retval)
913 		inc_nlink(dir);
914 	return retval;
915 }
916 
917 static int hugetlbfs_create(struct user_namespace *mnt_userns,
918 			    struct inode *dir, struct dentry *dentry,
919 			    umode_t mode, bool excl)
920 {
921 	return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
922 }
923 
924 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns,
925 			     struct inode *dir, struct dentry *dentry,
926 			     umode_t mode)
927 {
928 	return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
929 }
930 
931 static int hugetlbfs_symlink(struct user_namespace *mnt_userns,
932 			     struct inode *dir, struct dentry *dentry,
933 			     const char *symname)
934 {
935 	struct inode *inode;
936 	int error = -ENOSPC;
937 
938 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
939 	if (inode) {
940 		int l = strlen(symname)+1;
941 		error = page_symlink(inode, symname, l);
942 		if (!error) {
943 			d_instantiate(dentry, inode);
944 			dget(dentry);
945 		} else
946 			iput(inode);
947 	}
948 	dir->i_ctime = dir->i_mtime = current_time(dir);
949 
950 	return error;
951 }
952 
953 static int hugetlbfs_migrate_page(struct address_space *mapping,
954 				struct page *newpage, struct page *page,
955 				enum migrate_mode mode)
956 {
957 	int rc;
958 
959 	rc = migrate_huge_page_move_mapping(mapping, newpage, page);
960 	if (rc != MIGRATEPAGE_SUCCESS)
961 		return rc;
962 
963 	if (hugetlb_page_subpool(page)) {
964 		hugetlb_set_page_subpool(newpage, hugetlb_page_subpool(page));
965 		hugetlb_set_page_subpool(page, NULL);
966 	}
967 
968 	if (mode != MIGRATE_SYNC_NO_COPY)
969 		migrate_page_copy(newpage, page);
970 	else
971 		migrate_page_states(newpage, page);
972 
973 	return MIGRATEPAGE_SUCCESS;
974 }
975 
976 static int hugetlbfs_error_remove_page(struct address_space *mapping,
977 				struct page *page)
978 {
979 	struct inode *inode = mapping->host;
980 	pgoff_t index = page->index;
981 
982 	remove_huge_page(page);
983 	if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
984 		hugetlb_fix_reserve_counts(inode);
985 
986 	return 0;
987 }
988 
989 /*
990  * Display the mount options in /proc/mounts.
991  */
992 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
993 {
994 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
995 	struct hugepage_subpool *spool = sbinfo->spool;
996 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
997 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
998 	char mod;
999 
1000 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1001 		seq_printf(m, ",uid=%u",
1002 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1003 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1004 		seq_printf(m, ",gid=%u",
1005 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1006 	if (sbinfo->mode != 0755)
1007 		seq_printf(m, ",mode=%o", sbinfo->mode);
1008 	if (sbinfo->max_inodes != -1)
1009 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1010 
1011 	hpage_size /= 1024;
1012 	mod = 'K';
1013 	if (hpage_size >= 1024) {
1014 		hpage_size /= 1024;
1015 		mod = 'M';
1016 	}
1017 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1018 	if (spool) {
1019 		if (spool->max_hpages != -1)
1020 			seq_printf(m, ",size=%llu",
1021 				   (unsigned long long)spool->max_hpages << hpage_shift);
1022 		if (spool->min_hpages != -1)
1023 			seq_printf(m, ",min_size=%llu",
1024 				   (unsigned long long)spool->min_hpages << hpage_shift);
1025 	}
1026 	return 0;
1027 }
1028 
1029 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1030 {
1031 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1032 	struct hstate *h = hstate_inode(d_inode(dentry));
1033 
1034 	buf->f_type = HUGETLBFS_MAGIC;
1035 	buf->f_bsize = huge_page_size(h);
1036 	if (sbinfo) {
1037 		spin_lock(&sbinfo->stat_lock);
1038 		/* If no limits set, just report 0 for max/free/used
1039 		 * blocks, like simple_statfs() */
1040 		if (sbinfo->spool) {
1041 			long free_pages;
1042 
1043 			spin_lock(&sbinfo->spool->lock);
1044 			buf->f_blocks = sbinfo->spool->max_hpages;
1045 			free_pages = sbinfo->spool->max_hpages
1046 				- sbinfo->spool->used_hpages;
1047 			buf->f_bavail = buf->f_bfree = free_pages;
1048 			spin_unlock(&sbinfo->spool->lock);
1049 			buf->f_files = sbinfo->max_inodes;
1050 			buf->f_ffree = sbinfo->free_inodes;
1051 		}
1052 		spin_unlock(&sbinfo->stat_lock);
1053 	}
1054 	buf->f_namelen = NAME_MAX;
1055 	return 0;
1056 }
1057 
1058 static void hugetlbfs_put_super(struct super_block *sb)
1059 {
1060 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1061 
1062 	if (sbi) {
1063 		sb->s_fs_info = NULL;
1064 
1065 		if (sbi->spool)
1066 			hugepage_put_subpool(sbi->spool);
1067 
1068 		kfree(sbi);
1069 	}
1070 }
1071 
1072 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1073 {
1074 	if (sbinfo->free_inodes >= 0) {
1075 		spin_lock(&sbinfo->stat_lock);
1076 		if (unlikely(!sbinfo->free_inodes)) {
1077 			spin_unlock(&sbinfo->stat_lock);
1078 			return 0;
1079 		}
1080 		sbinfo->free_inodes--;
1081 		spin_unlock(&sbinfo->stat_lock);
1082 	}
1083 
1084 	return 1;
1085 }
1086 
1087 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1088 {
1089 	if (sbinfo->free_inodes >= 0) {
1090 		spin_lock(&sbinfo->stat_lock);
1091 		sbinfo->free_inodes++;
1092 		spin_unlock(&sbinfo->stat_lock);
1093 	}
1094 }
1095 
1096 
1097 static struct kmem_cache *hugetlbfs_inode_cachep;
1098 
1099 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1100 {
1101 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1102 	struct hugetlbfs_inode_info *p;
1103 
1104 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1105 		return NULL;
1106 	p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1107 	if (unlikely(!p)) {
1108 		hugetlbfs_inc_free_inodes(sbinfo);
1109 		return NULL;
1110 	}
1111 
1112 	/*
1113 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
1114 	 * for the inode.  mpol_free_shared_policy is unconditionally called
1115 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1116 	 * in case of a quick call to destroy.
1117 	 *
1118 	 * Note that the policy is initialized even if we are creating a
1119 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
1120 	 */
1121 	mpol_shared_policy_init(&p->policy, NULL);
1122 
1123 	return &p->vfs_inode;
1124 }
1125 
1126 static void hugetlbfs_free_inode(struct inode *inode)
1127 {
1128 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1129 }
1130 
1131 static void hugetlbfs_destroy_inode(struct inode *inode)
1132 {
1133 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1134 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1135 }
1136 
1137 static const struct address_space_operations hugetlbfs_aops = {
1138 	.write_begin	= hugetlbfs_write_begin,
1139 	.write_end	= hugetlbfs_write_end,
1140 	.set_page_dirty	=  __set_page_dirty_no_writeback,
1141 	.migratepage    = hugetlbfs_migrate_page,
1142 	.error_remove_page	= hugetlbfs_error_remove_page,
1143 };
1144 
1145 
1146 static void init_once(void *foo)
1147 {
1148 	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1149 
1150 	inode_init_once(&ei->vfs_inode);
1151 }
1152 
1153 const struct file_operations hugetlbfs_file_operations = {
1154 	.read_iter		= hugetlbfs_read_iter,
1155 	.mmap			= hugetlbfs_file_mmap,
1156 	.fsync			= noop_fsync,
1157 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1158 	.llseek			= default_llseek,
1159 	.fallocate		= hugetlbfs_fallocate,
1160 };
1161 
1162 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1163 	.create		= hugetlbfs_create,
1164 	.lookup		= simple_lookup,
1165 	.link		= simple_link,
1166 	.unlink		= simple_unlink,
1167 	.symlink	= hugetlbfs_symlink,
1168 	.mkdir		= hugetlbfs_mkdir,
1169 	.rmdir		= simple_rmdir,
1170 	.mknod		= hugetlbfs_mknod,
1171 	.rename		= simple_rename,
1172 	.setattr	= hugetlbfs_setattr,
1173 	.tmpfile	= hugetlbfs_tmpfile,
1174 };
1175 
1176 static const struct inode_operations hugetlbfs_inode_operations = {
1177 	.setattr	= hugetlbfs_setattr,
1178 };
1179 
1180 static const struct super_operations hugetlbfs_ops = {
1181 	.alloc_inode    = hugetlbfs_alloc_inode,
1182 	.free_inode     = hugetlbfs_free_inode,
1183 	.destroy_inode  = hugetlbfs_destroy_inode,
1184 	.evict_inode	= hugetlbfs_evict_inode,
1185 	.statfs		= hugetlbfs_statfs,
1186 	.put_super	= hugetlbfs_put_super,
1187 	.show_options	= hugetlbfs_show_options,
1188 };
1189 
1190 /*
1191  * Convert size option passed from command line to number of huge pages
1192  * in the pool specified by hstate.  Size option could be in bytes
1193  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1194  */
1195 static long
1196 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1197 			 enum hugetlbfs_size_type val_type)
1198 {
1199 	if (val_type == NO_SIZE)
1200 		return -1;
1201 
1202 	if (val_type == SIZE_PERCENT) {
1203 		size_opt <<= huge_page_shift(h);
1204 		size_opt *= h->max_huge_pages;
1205 		do_div(size_opt, 100);
1206 	}
1207 
1208 	size_opt >>= huge_page_shift(h);
1209 	return size_opt;
1210 }
1211 
1212 /*
1213  * Parse one mount parameter.
1214  */
1215 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1216 {
1217 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1218 	struct fs_parse_result result;
1219 	char *rest;
1220 	unsigned long ps;
1221 	int opt;
1222 
1223 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1224 	if (opt < 0)
1225 		return opt;
1226 
1227 	switch (opt) {
1228 	case Opt_uid:
1229 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1230 		if (!uid_valid(ctx->uid))
1231 			goto bad_val;
1232 		return 0;
1233 
1234 	case Opt_gid:
1235 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1236 		if (!gid_valid(ctx->gid))
1237 			goto bad_val;
1238 		return 0;
1239 
1240 	case Opt_mode:
1241 		ctx->mode = result.uint_32 & 01777U;
1242 		return 0;
1243 
1244 	case Opt_size:
1245 		/* memparse() will accept a K/M/G without a digit */
1246 		if (!isdigit(param->string[0]))
1247 			goto bad_val;
1248 		ctx->max_size_opt = memparse(param->string, &rest);
1249 		ctx->max_val_type = SIZE_STD;
1250 		if (*rest == '%')
1251 			ctx->max_val_type = SIZE_PERCENT;
1252 		return 0;
1253 
1254 	case Opt_nr_inodes:
1255 		/* memparse() will accept a K/M/G without a digit */
1256 		if (!isdigit(param->string[0]))
1257 			goto bad_val;
1258 		ctx->nr_inodes = memparse(param->string, &rest);
1259 		return 0;
1260 
1261 	case Opt_pagesize:
1262 		ps = memparse(param->string, &rest);
1263 		ctx->hstate = size_to_hstate(ps);
1264 		if (!ctx->hstate) {
1265 			pr_err("Unsupported page size %lu MB\n", ps >> 20);
1266 			return -EINVAL;
1267 		}
1268 		return 0;
1269 
1270 	case Opt_min_size:
1271 		/* memparse() will accept a K/M/G without a digit */
1272 		if (!isdigit(param->string[0]))
1273 			goto bad_val;
1274 		ctx->min_size_opt = memparse(param->string, &rest);
1275 		ctx->min_val_type = SIZE_STD;
1276 		if (*rest == '%')
1277 			ctx->min_val_type = SIZE_PERCENT;
1278 		return 0;
1279 
1280 	default:
1281 		return -EINVAL;
1282 	}
1283 
1284 bad_val:
1285 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1286 		      param->string, param->key);
1287 }
1288 
1289 /*
1290  * Validate the parsed options.
1291  */
1292 static int hugetlbfs_validate(struct fs_context *fc)
1293 {
1294 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1295 
1296 	/*
1297 	 * Use huge page pool size (in hstate) to convert the size
1298 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1299 	 */
1300 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1301 						   ctx->max_size_opt,
1302 						   ctx->max_val_type);
1303 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1304 						   ctx->min_size_opt,
1305 						   ctx->min_val_type);
1306 
1307 	/*
1308 	 * If max_size was specified, then min_size must be smaller
1309 	 */
1310 	if (ctx->max_val_type > NO_SIZE &&
1311 	    ctx->min_hpages > ctx->max_hpages) {
1312 		pr_err("Minimum size can not be greater than maximum size\n");
1313 		return -EINVAL;
1314 	}
1315 
1316 	return 0;
1317 }
1318 
1319 static int
1320 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1321 {
1322 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1323 	struct hugetlbfs_sb_info *sbinfo;
1324 
1325 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1326 	if (!sbinfo)
1327 		return -ENOMEM;
1328 	sb->s_fs_info = sbinfo;
1329 	spin_lock_init(&sbinfo->stat_lock);
1330 	sbinfo->hstate		= ctx->hstate;
1331 	sbinfo->max_inodes	= ctx->nr_inodes;
1332 	sbinfo->free_inodes	= ctx->nr_inodes;
1333 	sbinfo->spool		= NULL;
1334 	sbinfo->uid		= ctx->uid;
1335 	sbinfo->gid		= ctx->gid;
1336 	sbinfo->mode		= ctx->mode;
1337 
1338 	/*
1339 	 * Allocate and initialize subpool if maximum or minimum size is
1340 	 * specified.  Any needed reservations (for minimum size) are taken
1341 	 * taken when the subpool is created.
1342 	 */
1343 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1344 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1345 						     ctx->max_hpages,
1346 						     ctx->min_hpages);
1347 		if (!sbinfo->spool)
1348 			goto out_free;
1349 	}
1350 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1351 	sb->s_blocksize = huge_page_size(ctx->hstate);
1352 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1353 	sb->s_magic = HUGETLBFS_MAGIC;
1354 	sb->s_op = &hugetlbfs_ops;
1355 	sb->s_time_gran = 1;
1356 
1357 	/*
1358 	 * Due to the special and limited functionality of hugetlbfs, it does
1359 	 * not work well as a stacking filesystem.
1360 	 */
1361 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1362 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1363 	if (!sb->s_root)
1364 		goto out_free;
1365 	return 0;
1366 out_free:
1367 	kfree(sbinfo->spool);
1368 	kfree(sbinfo);
1369 	return -ENOMEM;
1370 }
1371 
1372 static int hugetlbfs_get_tree(struct fs_context *fc)
1373 {
1374 	int err = hugetlbfs_validate(fc);
1375 	if (err)
1376 		return err;
1377 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1378 }
1379 
1380 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1381 {
1382 	kfree(fc->fs_private);
1383 }
1384 
1385 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1386 	.free		= hugetlbfs_fs_context_free,
1387 	.parse_param	= hugetlbfs_parse_param,
1388 	.get_tree	= hugetlbfs_get_tree,
1389 };
1390 
1391 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1392 {
1393 	struct hugetlbfs_fs_context *ctx;
1394 
1395 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1396 	if (!ctx)
1397 		return -ENOMEM;
1398 
1399 	ctx->max_hpages	= -1; /* No limit on size by default */
1400 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1401 	ctx->uid	= current_fsuid();
1402 	ctx->gid	= current_fsgid();
1403 	ctx->mode	= 0755;
1404 	ctx->hstate	= &default_hstate;
1405 	ctx->min_hpages	= -1; /* No default minimum size */
1406 	ctx->max_val_type = NO_SIZE;
1407 	ctx->min_val_type = NO_SIZE;
1408 	fc->fs_private = ctx;
1409 	fc->ops	= &hugetlbfs_fs_context_ops;
1410 	return 0;
1411 }
1412 
1413 static struct file_system_type hugetlbfs_fs_type = {
1414 	.name			= "hugetlbfs",
1415 	.init_fs_context	= hugetlbfs_init_fs_context,
1416 	.parameters		= hugetlb_fs_parameters,
1417 	.kill_sb		= kill_litter_super,
1418 };
1419 
1420 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1421 
1422 static int can_do_hugetlb_shm(void)
1423 {
1424 	kgid_t shm_group;
1425 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1426 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1427 }
1428 
1429 static int get_hstate_idx(int page_size_log)
1430 {
1431 	struct hstate *h = hstate_sizelog(page_size_log);
1432 
1433 	if (!h)
1434 		return -1;
1435 	return hstate_index(h);
1436 }
1437 
1438 /*
1439  * Note that size should be aligned to proper hugepage size in caller side,
1440  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1441  */
1442 struct file *hugetlb_file_setup(const char *name, size_t size,
1443 				vm_flags_t acctflag, struct user_struct **user,
1444 				int creat_flags, int page_size_log)
1445 {
1446 	struct inode *inode;
1447 	struct vfsmount *mnt;
1448 	int hstate_idx;
1449 	struct file *file;
1450 
1451 	hstate_idx = get_hstate_idx(page_size_log);
1452 	if (hstate_idx < 0)
1453 		return ERR_PTR(-ENODEV);
1454 
1455 	*user = NULL;
1456 	mnt = hugetlbfs_vfsmount[hstate_idx];
1457 	if (!mnt)
1458 		return ERR_PTR(-ENOENT);
1459 
1460 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1461 		*user = current_user();
1462 		if (user_shm_lock(size, *user)) {
1463 			task_lock(current);
1464 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1465 				current->comm, current->pid);
1466 			task_unlock(current);
1467 		} else {
1468 			*user = NULL;
1469 			return ERR_PTR(-EPERM);
1470 		}
1471 	}
1472 
1473 	file = ERR_PTR(-ENOSPC);
1474 	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1475 	if (!inode)
1476 		goto out;
1477 	if (creat_flags == HUGETLB_SHMFS_INODE)
1478 		inode->i_flags |= S_PRIVATE;
1479 
1480 	inode->i_size = size;
1481 	clear_nlink(inode);
1482 
1483 	if (!hugetlb_reserve_pages(inode, 0,
1484 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1485 			acctflag))
1486 		file = ERR_PTR(-ENOMEM);
1487 	else
1488 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1489 					&hugetlbfs_file_operations);
1490 	if (!IS_ERR(file))
1491 		return file;
1492 
1493 	iput(inode);
1494 out:
1495 	if (*user) {
1496 		user_shm_unlock(size, *user);
1497 		*user = NULL;
1498 	}
1499 	return file;
1500 }
1501 
1502 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1503 {
1504 	struct fs_context *fc;
1505 	struct vfsmount *mnt;
1506 
1507 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1508 	if (IS_ERR(fc)) {
1509 		mnt = ERR_CAST(fc);
1510 	} else {
1511 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1512 		ctx->hstate = h;
1513 		mnt = fc_mount(fc);
1514 		put_fs_context(fc);
1515 	}
1516 	if (IS_ERR(mnt))
1517 		pr_err("Cannot mount internal hugetlbfs for page size %luK",
1518 		       huge_page_size(h) >> 10);
1519 	return mnt;
1520 }
1521 
1522 static int __init init_hugetlbfs_fs(void)
1523 {
1524 	struct vfsmount *mnt;
1525 	struct hstate *h;
1526 	int error;
1527 	int i;
1528 
1529 	if (!hugepages_supported()) {
1530 		pr_info("disabling because there are no supported hugepage sizes\n");
1531 		return -ENOTSUPP;
1532 	}
1533 
1534 	error = -ENOMEM;
1535 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1536 					sizeof(struct hugetlbfs_inode_info),
1537 					0, SLAB_ACCOUNT, init_once);
1538 	if (hugetlbfs_inode_cachep == NULL)
1539 		goto out;
1540 
1541 	error = register_filesystem(&hugetlbfs_fs_type);
1542 	if (error)
1543 		goto out_free;
1544 
1545 	/* default hstate mount is required */
1546 	mnt = mount_one_hugetlbfs(&default_hstate);
1547 	if (IS_ERR(mnt)) {
1548 		error = PTR_ERR(mnt);
1549 		goto out_unreg;
1550 	}
1551 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1552 
1553 	/* other hstates are optional */
1554 	i = 0;
1555 	for_each_hstate(h) {
1556 		if (i == default_hstate_idx) {
1557 			i++;
1558 			continue;
1559 		}
1560 
1561 		mnt = mount_one_hugetlbfs(h);
1562 		if (IS_ERR(mnt))
1563 			hugetlbfs_vfsmount[i] = NULL;
1564 		else
1565 			hugetlbfs_vfsmount[i] = mnt;
1566 		i++;
1567 	}
1568 
1569 	return 0;
1570 
1571  out_unreg:
1572 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1573  out_free:
1574 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1575  out:
1576 	return error;
1577 }
1578 fs_initcall(init_hugetlbfs_fs)
1579