1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/sched/signal.h> /* remove ASAP */ 15 #include <linux/falloc.h> 16 #include <linux/fs.h> 17 #include <linux/mount.h> 18 #include <linux/file.h> 19 #include <linux/kernel.h> 20 #include <linux/writeback.h> 21 #include <linux/pagemap.h> 22 #include <linux/highmem.h> 23 #include <linux/init.h> 24 #include <linux/string.h> 25 #include <linux/capability.h> 26 #include <linux/ctype.h> 27 #include <linux/backing-dev.h> 28 #include <linux/hugetlb.h> 29 #include <linux/pagevec.h> 30 #include <linux/fs_parser.h> 31 #include <linux/mman.h> 32 #include <linux/slab.h> 33 #include <linux/dnotify.h> 34 #include <linux/statfs.h> 35 #include <linux/security.h> 36 #include <linux/magic.h> 37 #include <linux/migrate.h> 38 #include <linux/uio.h> 39 40 #include <linux/uaccess.h> 41 #include <linux/sched/mm.h> 42 43 static const struct super_operations hugetlbfs_ops; 44 static const struct address_space_operations hugetlbfs_aops; 45 const struct file_operations hugetlbfs_file_operations; 46 static const struct inode_operations hugetlbfs_dir_inode_operations; 47 static const struct inode_operations hugetlbfs_inode_operations; 48 49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 50 51 struct hugetlbfs_fs_context { 52 struct hstate *hstate; 53 unsigned long long max_size_opt; 54 unsigned long long min_size_opt; 55 long max_hpages; 56 long nr_inodes; 57 long min_hpages; 58 enum hugetlbfs_size_type max_val_type; 59 enum hugetlbfs_size_type min_val_type; 60 kuid_t uid; 61 kgid_t gid; 62 umode_t mode; 63 }; 64 65 int sysctl_hugetlb_shm_group; 66 67 enum hugetlb_param { 68 Opt_gid, 69 Opt_min_size, 70 Opt_mode, 71 Opt_nr_inodes, 72 Opt_pagesize, 73 Opt_size, 74 Opt_uid, 75 }; 76 77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 78 fsparam_u32 ("gid", Opt_gid), 79 fsparam_string("min_size", Opt_min_size), 80 fsparam_u32oct("mode", Opt_mode), 81 fsparam_string("nr_inodes", Opt_nr_inodes), 82 fsparam_string("pagesize", Opt_pagesize), 83 fsparam_string("size", Opt_size), 84 fsparam_u32 ("uid", Opt_uid), 85 {} 86 }; 87 88 #ifdef CONFIG_NUMA 89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 90 struct inode *inode, pgoff_t index) 91 { 92 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, 93 index); 94 } 95 96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 97 { 98 mpol_cond_put(vma->vm_policy); 99 } 100 #else 101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 102 struct inode *inode, pgoff_t index) 103 { 104 } 105 106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 107 { 108 } 109 #endif 110 111 static void huge_pagevec_release(struct pagevec *pvec) 112 { 113 int i; 114 115 for (i = 0; i < pagevec_count(pvec); ++i) 116 put_page(pvec->pages[i]); 117 118 pagevec_reinit(pvec); 119 } 120 121 /* 122 * Mask used when checking the page offset value passed in via system 123 * calls. This value will be converted to a loff_t which is signed. 124 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 125 * value. The extra bit (- 1 in the shift value) is to take the sign 126 * bit into account. 127 */ 128 #define PGOFF_LOFFT_MAX \ 129 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 130 131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 132 { 133 struct inode *inode = file_inode(file); 134 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 135 loff_t len, vma_len; 136 int ret; 137 struct hstate *h = hstate_file(file); 138 139 /* 140 * vma address alignment (but not the pgoff alignment) has 141 * already been checked by prepare_hugepage_range. If you add 142 * any error returns here, do so after setting VM_HUGETLB, so 143 * is_vm_hugetlb_page tests below unmap_region go the right 144 * way when do_mmap unwinds (may be important on powerpc 145 * and ia64). 146 */ 147 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; 148 vma->vm_ops = &hugetlb_vm_ops; 149 150 ret = seal_check_future_write(info->seals, vma); 151 if (ret) 152 return ret; 153 154 /* 155 * page based offset in vm_pgoff could be sufficiently large to 156 * overflow a loff_t when converted to byte offset. This can 157 * only happen on architectures where sizeof(loff_t) == 158 * sizeof(unsigned long). So, only check in those instances. 159 */ 160 if (sizeof(unsigned long) == sizeof(loff_t)) { 161 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 162 return -EINVAL; 163 } 164 165 /* must be huge page aligned */ 166 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 167 return -EINVAL; 168 169 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 170 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 171 /* check for overflow */ 172 if (len < vma_len) 173 return -EINVAL; 174 175 inode_lock(inode); 176 file_accessed(file); 177 178 ret = -ENOMEM; 179 if (!hugetlb_reserve_pages(inode, 180 vma->vm_pgoff >> huge_page_order(h), 181 len >> huge_page_shift(h), vma, 182 vma->vm_flags)) 183 goto out; 184 185 ret = 0; 186 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 187 i_size_write(inode, len); 188 out: 189 inode_unlock(inode); 190 191 return ret; 192 } 193 194 /* 195 * Called under mmap_write_lock(mm). 196 */ 197 198 static unsigned long 199 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr, 200 unsigned long len, unsigned long pgoff, unsigned long flags) 201 { 202 struct hstate *h = hstate_file(file); 203 struct vm_unmapped_area_info info; 204 205 info.flags = 0; 206 info.length = len; 207 info.low_limit = current->mm->mmap_base; 208 info.high_limit = arch_get_mmap_end(addr, len, flags); 209 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 210 info.align_offset = 0; 211 return vm_unmapped_area(&info); 212 } 213 214 static unsigned long 215 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr, 216 unsigned long len, unsigned long pgoff, unsigned long flags) 217 { 218 struct hstate *h = hstate_file(file); 219 struct vm_unmapped_area_info info; 220 221 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 222 info.length = len; 223 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 224 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base); 225 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 226 info.align_offset = 0; 227 addr = vm_unmapped_area(&info); 228 229 /* 230 * A failed mmap() very likely causes application failure, 231 * so fall back to the bottom-up function here. This scenario 232 * can happen with large stack limits and large mmap() 233 * allocations. 234 */ 235 if (unlikely(offset_in_page(addr))) { 236 VM_BUG_ON(addr != -ENOMEM); 237 info.flags = 0; 238 info.low_limit = current->mm->mmap_base; 239 info.high_limit = arch_get_mmap_end(addr, len, flags); 240 addr = vm_unmapped_area(&info); 241 } 242 243 return addr; 244 } 245 246 unsigned long 247 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 248 unsigned long len, unsigned long pgoff, 249 unsigned long flags) 250 { 251 struct mm_struct *mm = current->mm; 252 struct vm_area_struct *vma; 253 struct hstate *h = hstate_file(file); 254 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 255 256 if (len & ~huge_page_mask(h)) 257 return -EINVAL; 258 if (len > TASK_SIZE) 259 return -ENOMEM; 260 261 if (flags & MAP_FIXED) { 262 if (prepare_hugepage_range(file, addr, len)) 263 return -EINVAL; 264 return addr; 265 } 266 267 if (addr) { 268 addr = ALIGN(addr, huge_page_size(h)); 269 vma = find_vma(mm, addr); 270 if (mmap_end - len >= addr && 271 (!vma || addr + len <= vm_start_gap(vma))) 272 return addr; 273 } 274 275 /* 276 * Use mm->get_unmapped_area value as a hint to use topdown routine. 277 * If architectures have special needs, they should define their own 278 * version of hugetlb_get_unmapped_area. 279 */ 280 if (mm->get_unmapped_area == arch_get_unmapped_area_topdown) 281 return hugetlb_get_unmapped_area_topdown(file, addr, len, 282 pgoff, flags); 283 return hugetlb_get_unmapped_area_bottomup(file, addr, len, 284 pgoff, flags); 285 } 286 287 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 288 static unsigned long 289 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 290 unsigned long len, unsigned long pgoff, 291 unsigned long flags) 292 { 293 return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags); 294 } 295 #endif 296 297 static size_t 298 hugetlbfs_read_actor(struct page *page, unsigned long offset, 299 struct iov_iter *to, unsigned long size) 300 { 301 size_t copied = 0; 302 int i, chunksize; 303 304 /* Find which 4k chunk and offset with in that chunk */ 305 i = offset >> PAGE_SHIFT; 306 offset = offset & ~PAGE_MASK; 307 308 while (size) { 309 size_t n; 310 chunksize = PAGE_SIZE; 311 if (offset) 312 chunksize -= offset; 313 if (chunksize > size) 314 chunksize = size; 315 n = copy_page_to_iter(&page[i], offset, chunksize, to); 316 copied += n; 317 if (n != chunksize) 318 return copied; 319 offset = 0; 320 size -= chunksize; 321 i++; 322 } 323 return copied; 324 } 325 326 /* 327 * Support for read() - Find the page attached to f_mapping and copy out the 328 * data. Its *very* similar to generic_file_buffered_read(), we can't use that 329 * since it has PAGE_SIZE assumptions. 330 */ 331 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 332 { 333 struct file *file = iocb->ki_filp; 334 struct hstate *h = hstate_file(file); 335 struct address_space *mapping = file->f_mapping; 336 struct inode *inode = mapping->host; 337 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 338 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 339 unsigned long end_index; 340 loff_t isize; 341 ssize_t retval = 0; 342 343 while (iov_iter_count(to)) { 344 struct page *page; 345 size_t nr, copied; 346 347 /* nr is the maximum number of bytes to copy from this page */ 348 nr = huge_page_size(h); 349 isize = i_size_read(inode); 350 if (!isize) 351 break; 352 end_index = (isize - 1) >> huge_page_shift(h); 353 if (index > end_index) 354 break; 355 if (index == end_index) { 356 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 357 if (nr <= offset) 358 break; 359 } 360 nr = nr - offset; 361 362 /* Find the page */ 363 page = find_lock_page(mapping, index); 364 if (unlikely(page == NULL)) { 365 /* 366 * We have a HOLE, zero out the user-buffer for the 367 * length of the hole or request. 368 */ 369 copied = iov_iter_zero(nr, to); 370 } else { 371 unlock_page(page); 372 373 /* 374 * We have the page, copy it to user space buffer. 375 */ 376 copied = hugetlbfs_read_actor(page, offset, to, nr); 377 put_page(page); 378 } 379 offset += copied; 380 retval += copied; 381 if (copied != nr && iov_iter_count(to)) { 382 if (!retval) 383 retval = -EFAULT; 384 break; 385 } 386 index += offset >> huge_page_shift(h); 387 offset &= ~huge_page_mask(h); 388 } 389 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 390 return retval; 391 } 392 393 static int hugetlbfs_write_begin(struct file *file, 394 struct address_space *mapping, 395 loff_t pos, unsigned len, 396 struct page **pagep, void **fsdata) 397 { 398 return -EINVAL; 399 } 400 401 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 402 loff_t pos, unsigned len, unsigned copied, 403 struct page *page, void *fsdata) 404 { 405 BUG(); 406 return -EINVAL; 407 } 408 409 static void remove_huge_page(struct page *page) 410 { 411 ClearPageDirty(page); 412 ClearPageUptodate(page); 413 delete_from_page_cache(page); 414 } 415 416 static void 417 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end, 418 zap_flags_t zap_flags) 419 { 420 struct vm_area_struct *vma; 421 422 /* 423 * end == 0 indicates that the entire range after start should be 424 * unmapped. Note, end is exclusive, whereas the interval tree takes 425 * an inclusive "last". 426 */ 427 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) { 428 unsigned long v_offset; 429 unsigned long v_end; 430 431 /* 432 * Can the expression below overflow on 32-bit arches? 433 * No, because the interval tree returns us only those vmas 434 * which overlap the truncated area starting at pgoff, 435 * and no vma on a 32-bit arch can span beyond the 4GB. 436 */ 437 if (vma->vm_pgoff < start) 438 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 439 else 440 v_offset = 0; 441 442 if (!end) 443 v_end = vma->vm_end; 444 else { 445 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) 446 + vma->vm_start; 447 if (v_end > vma->vm_end) 448 v_end = vma->vm_end; 449 } 450 451 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end, 452 NULL, zap_flags); 453 } 454 } 455 456 /* 457 * remove_inode_hugepages handles two distinct cases: truncation and hole 458 * punch. There are subtle differences in operation for each case. 459 * 460 * truncation is indicated by end of range being LLONG_MAX 461 * In this case, we first scan the range and release found pages. 462 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve 463 * maps and global counts. Page faults can not race with truncation 464 * in this routine. hugetlb_no_page() holds i_mmap_rwsem and prevents 465 * page faults in the truncated range by checking i_size. i_size is 466 * modified while holding i_mmap_rwsem. 467 * hole punch is indicated if end is not LLONG_MAX 468 * In the hole punch case we scan the range and release found pages. 469 * Only when releasing a page is the associated region/reserve map 470 * deleted. The region/reserve map for ranges without associated 471 * pages are not modified. Page faults can race with hole punch. 472 * This is indicated if we find a mapped page. 473 * Note: If the passed end of range value is beyond the end of file, but 474 * not LLONG_MAX this routine still performs a hole punch operation. 475 */ 476 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 477 loff_t lend) 478 { 479 struct hstate *h = hstate_inode(inode); 480 struct address_space *mapping = &inode->i_data; 481 const pgoff_t start = lstart >> huge_page_shift(h); 482 const pgoff_t end = lend >> huge_page_shift(h); 483 struct pagevec pvec; 484 pgoff_t next, index; 485 int i, freed = 0; 486 bool truncate_op = (lend == LLONG_MAX); 487 488 pagevec_init(&pvec); 489 next = start; 490 while (next < end) { 491 /* 492 * When no more pages are found, we are done. 493 */ 494 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1)) 495 break; 496 497 for (i = 0; i < pagevec_count(&pvec); ++i) { 498 struct page *page = pvec.pages[i]; 499 u32 hash = 0; 500 501 index = page->index; 502 if (!truncate_op) { 503 /* 504 * Only need to hold the fault mutex in the 505 * hole punch case. This prevents races with 506 * page faults. Races are not possible in the 507 * case of truncation. 508 */ 509 hash = hugetlb_fault_mutex_hash(mapping, index); 510 mutex_lock(&hugetlb_fault_mutex_table[hash]); 511 } 512 513 /* 514 * If page is mapped, it was faulted in after being 515 * unmapped in caller. Unmap (again) now after taking 516 * the fault mutex. The mutex will prevent faults 517 * until we finish removing the page. 518 * 519 * This race can only happen in the hole punch case. 520 * Getting here in a truncate operation is a bug. 521 */ 522 if (unlikely(page_mapped(page))) { 523 BUG_ON(truncate_op); 524 525 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 526 i_mmap_lock_write(mapping); 527 mutex_lock(&hugetlb_fault_mutex_table[hash]); 528 hugetlb_vmdelete_list(&mapping->i_mmap, 529 index * pages_per_huge_page(h), 530 (index + 1) * pages_per_huge_page(h), 531 ZAP_FLAG_DROP_MARKER); 532 i_mmap_unlock_write(mapping); 533 } 534 535 lock_page(page); 536 /* 537 * We must free the huge page and remove from page 538 * cache (remove_huge_page) BEFORE removing the 539 * region/reserve map (hugetlb_unreserve_pages). In 540 * rare out of memory conditions, removal of the 541 * region/reserve map could fail. Correspondingly, 542 * the subpool and global reserve usage count can need 543 * to be adjusted. 544 */ 545 VM_BUG_ON(HPageRestoreReserve(page)); 546 remove_huge_page(page); 547 freed++; 548 if (!truncate_op) { 549 if (unlikely(hugetlb_unreserve_pages(inode, 550 index, index + 1, 1))) 551 hugetlb_fix_reserve_counts(inode); 552 } 553 554 unlock_page(page); 555 if (!truncate_op) 556 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 557 } 558 huge_pagevec_release(&pvec); 559 cond_resched(); 560 } 561 562 if (truncate_op) 563 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); 564 } 565 566 static void hugetlbfs_evict_inode(struct inode *inode) 567 { 568 struct resv_map *resv_map; 569 570 remove_inode_hugepages(inode, 0, LLONG_MAX); 571 572 /* 573 * Get the resv_map from the address space embedded in the inode. 574 * This is the address space which points to any resv_map allocated 575 * at inode creation time. If this is a device special inode, 576 * i_mapping may not point to the original address space. 577 */ 578 resv_map = (struct resv_map *)(&inode->i_data)->private_data; 579 /* Only regular and link inodes have associated reserve maps */ 580 if (resv_map) 581 resv_map_release(&resv_map->refs); 582 clear_inode(inode); 583 } 584 585 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset) 586 { 587 pgoff_t pgoff; 588 struct address_space *mapping = inode->i_mapping; 589 struct hstate *h = hstate_inode(inode); 590 591 BUG_ON(offset & ~huge_page_mask(h)); 592 pgoff = offset >> PAGE_SHIFT; 593 594 i_mmap_lock_write(mapping); 595 i_size_write(inode, offset); 596 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 597 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0, 598 ZAP_FLAG_DROP_MARKER); 599 i_mmap_unlock_write(mapping); 600 remove_inode_hugepages(inode, offset, LLONG_MAX); 601 } 602 603 static void hugetlbfs_zero_partial_page(struct hstate *h, 604 struct address_space *mapping, 605 loff_t start, 606 loff_t end) 607 { 608 pgoff_t idx = start >> huge_page_shift(h); 609 struct folio *folio; 610 611 folio = filemap_lock_folio(mapping, idx); 612 if (!folio) 613 return; 614 615 start = start & ~huge_page_mask(h); 616 end = end & ~huge_page_mask(h); 617 if (!end) 618 end = huge_page_size(h); 619 620 folio_zero_segment(folio, (size_t)start, (size_t)end); 621 622 folio_unlock(folio); 623 folio_put(folio); 624 } 625 626 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 627 { 628 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 629 struct address_space *mapping = inode->i_mapping; 630 struct hstate *h = hstate_inode(inode); 631 loff_t hpage_size = huge_page_size(h); 632 loff_t hole_start, hole_end; 633 634 /* 635 * hole_start and hole_end indicate the full pages within the hole. 636 */ 637 hole_start = round_up(offset, hpage_size); 638 hole_end = round_down(offset + len, hpage_size); 639 640 inode_lock(inode); 641 642 /* protected by i_rwsem */ 643 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 644 inode_unlock(inode); 645 return -EPERM; 646 } 647 648 i_mmap_lock_write(mapping); 649 650 /* If range starts before first full page, zero partial page. */ 651 if (offset < hole_start) 652 hugetlbfs_zero_partial_page(h, mapping, 653 offset, min(offset + len, hole_start)); 654 655 /* Unmap users of full pages in the hole. */ 656 if (hole_end > hole_start) { 657 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 658 hugetlb_vmdelete_list(&mapping->i_mmap, 659 hole_start >> PAGE_SHIFT, 660 hole_end >> PAGE_SHIFT, 0); 661 } 662 663 /* If range extends beyond last full page, zero partial page. */ 664 if ((offset + len) > hole_end && (offset + len) > hole_start) 665 hugetlbfs_zero_partial_page(h, mapping, 666 hole_end, offset + len); 667 668 i_mmap_unlock_write(mapping); 669 670 /* Remove full pages from the file. */ 671 if (hole_end > hole_start) 672 remove_inode_hugepages(inode, hole_start, hole_end); 673 674 inode_unlock(inode); 675 676 return 0; 677 } 678 679 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 680 loff_t len) 681 { 682 struct inode *inode = file_inode(file); 683 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 684 struct address_space *mapping = inode->i_mapping; 685 struct hstate *h = hstate_inode(inode); 686 struct vm_area_struct pseudo_vma; 687 struct mm_struct *mm = current->mm; 688 loff_t hpage_size = huge_page_size(h); 689 unsigned long hpage_shift = huge_page_shift(h); 690 pgoff_t start, index, end; 691 int error; 692 u32 hash; 693 694 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 695 return -EOPNOTSUPP; 696 697 if (mode & FALLOC_FL_PUNCH_HOLE) 698 return hugetlbfs_punch_hole(inode, offset, len); 699 700 /* 701 * Default preallocate case. 702 * For this range, start is rounded down and end is rounded up 703 * as well as being converted to page offsets. 704 */ 705 start = offset >> hpage_shift; 706 end = (offset + len + hpage_size - 1) >> hpage_shift; 707 708 inode_lock(inode); 709 710 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 711 error = inode_newsize_ok(inode, offset + len); 712 if (error) 713 goto out; 714 715 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 716 error = -EPERM; 717 goto out; 718 } 719 720 /* 721 * Initialize a pseudo vma as this is required by the huge page 722 * allocation routines. If NUMA is configured, use page index 723 * as input to create an allocation policy. 724 */ 725 vma_init(&pseudo_vma, mm); 726 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 727 pseudo_vma.vm_file = file; 728 729 for (index = start; index < end; index++) { 730 /* 731 * This is supposed to be the vaddr where the page is being 732 * faulted in, but we have no vaddr here. 733 */ 734 struct page *page; 735 unsigned long addr; 736 737 cond_resched(); 738 739 /* 740 * fallocate(2) manpage permits EINTR; we may have been 741 * interrupted because we are using up too much memory. 742 */ 743 if (signal_pending(current)) { 744 error = -EINTR; 745 break; 746 } 747 748 /* Set numa allocation policy based on index */ 749 hugetlb_set_vma_policy(&pseudo_vma, inode, index); 750 751 /* addr is the offset within the file (zero based) */ 752 addr = index * hpage_size; 753 754 /* 755 * fault mutex taken here, protects against fault path 756 * and hole punch. inode_lock previously taken protects 757 * against truncation. 758 */ 759 hash = hugetlb_fault_mutex_hash(mapping, index); 760 mutex_lock(&hugetlb_fault_mutex_table[hash]); 761 762 /* See if already present in mapping to avoid alloc/free */ 763 page = find_get_page(mapping, index); 764 if (page) { 765 put_page(page); 766 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 767 hugetlb_drop_vma_policy(&pseudo_vma); 768 continue; 769 } 770 771 /* 772 * Allocate page without setting the avoid_reserve argument. 773 * There certainly are no reserves associated with the 774 * pseudo_vma. However, there could be shared mappings with 775 * reserves for the file at the inode level. If we fallocate 776 * pages in these areas, we need to consume the reserves 777 * to keep reservation accounting consistent. 778 */ 779 page = alloc_huge_page(&pseudo_vma, addr, 0); 780 hugetlb_drop_vma_policy(&pseudo_vma); 781 if (IS_ERR(page)) { 782 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 783 error = PTR_ERR(page); 784 goto out; 785 } 786 clear_huge_page(page, addr, pages_per_huge_page(h)); 787 __SetPageUptodate(page); 788 error = huge_add_to_page_cache(page, mapping, index); 789 if (unlikely(error)) { 790 restore_reserve_on_error(h, &pseudo_vma, addr, page); 791 put_page(page); 792 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 793 goto out; 794 } 795 796 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 797 798 SetHPageMigratable(page); 799 /* 800 * unlock_page because locked by add_to_page_cache() 801 * put_page() due to reference from alloc_huge_page() 802 */ 803 unlock_page(page); 804 put_page(page); 805 } 806 807 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 808 i_size_write(inode, offset + len); 809 inode->i_ctime = current_time(inode); 810 out: 811 inode_unlock(inode); 812 return error; 813 } 814 815 static int hugetlbfs_setattr(struct user_namespace *mnt_userns, 816 struct dentry *dentry, struct iattr *attr) 817 { 818 struct inode *inode = d_inode(dentry); 819 struct hstate *h = hstate_inode(inode); 820 int error; 821 unsigned int ia_valid = attr->ia_valid; 822 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 823 824 error = setattr_prepare(&init_user_ns, dentry, attr); 825 if (error) 826 return error; 827 828 if (ia_valid & ATTR_SIZE) { 829 loff_t oldsize = inode->i_size; 830 loff_t newsize = attr->ia_size; 831 832 if (newsize & ~huge_page_mask(h)) 833 return -EINVAL; 834 /* protected by i_rwsem */ 835 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 836 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 837 return -EPERM; 838 hugetlb_vmtruncate(inode, newsize); 839 } 840 841 setattr_copy(&init_user_ns, inode, attr); 842 mark_inode_dirty(inode); 843 return 0; 844 } 845 846 static struct inode *hugetlbfs_get_root(struct super_block *sb, 847 struct hugetlbfs_fs_context *ctx) 848 { 849 struct inode *inode; 850 851 inode = new_inode(sb); 852 if (inode) { 853 inode->i_ino = get_next_ino(); 854 inode->i_mode = S_IFDIR | ctx->mode; 855 inode->i_uid = ctx->uid; 856 inode->i_gid = ctx->gid; 857 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 858 inode->i_op = &hugetlbfs_dir_inode_operations; 859 inode->i_fop = &simple_dir_operations; 860 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 861 inc_nlink(inode); 862 lockdep_annotate_inode_mutex_key(inode); 863 } 864 return inode; 865 } 866 867 /* 868 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 869 * be taken from reclaim -- unlike regular filesystems. This needs an 870 * annotation because huge_pmd_share() does an allocation under hugetlb's 871 * i_mmap_rwsem. 872 */ 873 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 874 875 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 876 struct inode *dir, 877 umode_t mode, dev_t dev) 878 { 879 struct inode *inode; 880 struct resv_map *resv_map = NULL; 881 882 /* 883 * Reserve maps are only needed for inodes that can have associated 884 * page allocations. 885 */ 886 if (S_ISREG(mode) || S_ISLNK(mode)) { 887 resv_map = resv_map_alloc(); 888 if (!resv_map) 889 return NULL; 890 } 891 892 inode = new_inode(sb); 893 if (inode) { 894 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 895 896 inode->i_ino = get_next_ino(); 897 inode_init_owner(&init_user_ns, inode, dir, mode); 898 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 899 &hugetlbfs_i_mmap_rwsem_key); 900 inode->i_mapping->a_ops = &hugetlbfs_aops; 901 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 902 inode->i_mapping->private_data = resv_map; 903 info->seals = F_SEAL_SEAL; 904 switch (mode & S_IFMT) { 905 default: 906 init_special_inode(inode, mode, dev); 907 break; 908 case S_IFREG: 909 inode->i_op = &hugetlbfs_inode_operations; 910 inode->i_fop = &hugetlbfs_file_operations; 911 break; 912 case S_IFDIR: 913 inode->i_op = &hugetlbfs_dir_inode_operations; 914 inode->i_fop = &simple_dir_operations; 915 916 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 917 inc_nlink(inode); 918 break; 919 case S_IFLNK: 920 inode->i_op = &page_symlink_inode_operations; 921 inode_nohighmem(inode); 922 break; 923 } 924 lockdep_annotate_inode_mutex_key(inode); 925 } else { 926 if (resv_map) 927 kref_put(&resv_map->refs, resv_map_release); 928 } 929 930 return inode; 931 } 932 933 /* 934 * File creation. Allocate an inode, and we're done.. 935 */ 936 static int do_hugetlbfs_mknod(struct inode *dir, 937 struct dentry *dentry, 938 umode_t mode, 939 dev_t dev, 940 bool tmpfile) 941 { 942 struct inode *inode; 943 int error = -ENOSPC; 944 945 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 946 if (inode) { 947 dir->i_ctime = dir->i_mtime = current_time(dir); 948 if (tmpfile) { 949 d_tmpfile(dentry, inode); 950 } else { 951 d_instantiate(dentry, inode); 952 dget(dentry);/* Extra count - pin the dentry in core */ 953 } 954 error = 0; 955 } 956 return error; 957 } 958 959 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 960 struct dentry *dentry, umode_t mode, dev_t dev) 961 { 962 return do_hugetlbfs_mknod(dir, dentry, mode, dev, false); 963 } 964 965 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 966 struct dentry *dentry, umode_t mode) 967 { 968 int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry, 969 mode | S_IFDIR, 0); 970 if (!retval) 971 inc_nlink(dir); 972 return retval; 973 } 974 975 static int hugetlbfs_create(struct user_namespace *mnt_userns, 976 struct inode *dir, struct dentry *dentry, 977 umode_t mode, bool excl) 978 { 979 return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); 980 } 981 982 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns, 983 struct inode *dir, struct dentry *dentry, 984 umode_t mode) 985 { 986 return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true); 987 } 988 989 static int hugetlbfs_symlink(struct user_namespace *mnt_userns, 990 struct inode *dir, struct dentry *dentry, 991 const char *symname) 992 { 993 struct inode *inode; 994 int error = -ENOSPC; 995 996 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 997 if (inode) { 998 int l = strlen(symname)+1; 999 error = page_symlink(inode, symname, l); 1000 if (!error) { 1001 d_instantiate(dentry, inode); 1002 dget(dentry); 1003 } else 1004 iput(inode); 1005 } 1006 dir->i_ctime = dir->i_mtime = current_time(dir); 1007 1008 return error; 1009 } 1010 1011 static int hugetlbfs_migrate_page(struct address_space *mapping, 1012 struct page *newpage, struct page *page, 1013 enum migrate_mode mode) 1014 { 1015 int rc; 1016 1017 rc = migrate_huge_page_move_mapping(mapping, newpage, page); 1018 if (rc != MIGRATEPAGE_SUCCESS) 1019 return rc; 1020 1021 if (hugetlb_page_subpool(page)) { 1022 hugetlb_set_page_subpool(newpage, hugetlb_page_subpool(page)); 1023 hugetlb_set_page_subpool(page, NULL); 1024 } 1025 1026 if (mode != MIGRATE_SYNC_NO_COPY) 1027 migrate_page_copy(newpage, page); 1028 else 1029 migrate_page_states(newpage, page); 1030 1031 return MIGRATEPAGE_SUCCESS; 1032 } 1033 1034 static int hugetlbfs_error_remove_page(struct address_space *mapping, 1035 struct page *page) 1036 { 1037 struct inode *inode = mapping->host; 1038 pgoff_t index = page->index; 1039 1040 remove_huge_page(page); 1041 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1))) 1042 hugetlb_fix_reserve_counts(inode); 1043 1044 return 0; 1045 } 1046 1047 /* 1048 * Display the mount options in /proc/mounts. 1049 */ 1050 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 1051 { 1052 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 1053 struct hugepage_subpool *spool = sbinfo->spool; 1054 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 1055 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 1056 char mod; 1057 1058 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 1059 seq_printf(m, ",uid=%u", 1060 from_kuid_munged(&init_user_ns, sbinfo->uid)); 1061 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 1062 seq_printf(m, ",gid=%u", 1063 from_kgid_munged(&init_user_ns, sbinfo->gid)); 1064 if (sbinfo->mode != 0755) 1065 seq_printf(m, ",mode=%o", sbinfo->mode); 1066 if (sbinfo->max_inodes != -1) 1067 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 1068 1069 hpage_size /= 1024; 1070 mod = 'K'; 1071 if (hpage_size >= 1024) { 1072 hpage_size /= 1024; 1073 mod = 'M'; 1074 } 1075 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 1076 if (spool) { 1077 if (spool->max_hpages != -1) 1078 seq_printf(m, ",size=%llu", 1079 (unsigned long long)spool->max_hpages << hpage_shift); 1080 if (spool->min_hpages != -1) 1081 seq_printf(m, ",min_size=%llu", 1082 (unsigned long long)spool->min_hpages << hpage_shift); 1083 } 1084 return 0; 1085 } 1086 1087 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1088 { 1089 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 1090 struct hstate *h = hstate_inode(d_inode(dentry)); 1091 1092 buf->f_type = HUGETLBFS_MAGIC; 1093 buf->f_bsize = huge_page_size(h); 1094 if (sbinfo) { 1095 spin_lock(&sbinfo->stat_lock); 1096 /* If no limits set, just report 0 for max/free/used 1097 * blocks, like simple_statfs() */ 1098 if (sbinfo->spool) { 1099 long free_pages; 1100 1101 spin_lock_irq(&sbinfo->spool->lock); 1102 buf->f_blocks = sbinfo->spool->max_hpages; 1103 free_pages = sbinfo->spool->max_hpages 1104 - sbinfo->spool->used_hpages; 1105 buf->f_bavail = buf->f_bfree = free_pages; 1106 spin_unlock_irq(&sbinfo->spool->lock); 1107 buf->f_files = sbinfo->max_inodes; 1108 buf->f_ffree = sbinfo->free_inodes; 1109 } 1110 spin_unlock(&sbinfo->stat_lock); 1111 } 1112 buf->f_namelen = NAME_MAX; 1113 return 0; 1114 } 1115 1116 static void hugetlbfs_put_super(struct super_block *sb) 1117 { 1118 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1119 1120 if (sbi) { 1121 sb->s_fs_info = NULL; 1122 1123 if (sbi->spool) 1124 hugepage_put_subpool(sbi->spool); 1125 1126 kfree(sbi); 1127 } 1128 } 1129 1130 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1131 { 1132 if (sbinfo->free_inodes >= 0) { 1133 spin_lock(&sbinfo->stat_lock); 1134 if (unlikely(!sbinfo->free_inodes)) { 1135 spin_unlock(&sbinfo->stat_lock); 1136 return 0; 1137 } 1138 sbinfo->free_inodes--; 1139 spin_unlock(&sbinfo->stat_lock); 1140 } 1141 1142 return 1; 1143 } 1144 1145 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1146 { 1147 if (sbinfo->free_inodes >= 0) { 1148 spin_lock(&sbinfo->stat_lock); 1149 sbinfo->free_inodes++; 1150 spin_unlock(&sbinfo->stat_lock); 1151 } 1152 } 1153 1154 1155 static struct kmem_cache *hugetlbfs_inode_cachep; 1156 1157 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1158 { 1159 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1160 struct hugetlbfs_inode_info *p; 1161 1162 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1163 return NULL; 1164 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL); 1165 if (unlikely(!p)) { 1166 hugetlbfs_inc_free_inodes(sbinfo); 1167 return NULL; 1168 } 1169 1170 /* 1171 * Any time after allocation, hugetlbfs_destroy_inode can be called 1172 * for the inode. mpol_free_shared_policy is unconditionally called 1173 * as part of hugetlbfs_destroy_inode. So, initialize policy here 1174 * in case of a quick call to destroy. 1175 * 1176 * Note that the policy is initialized even if we are creating a 1177 * private inode. This simplifies hugetlbfs_destroy_inode. 1178 */ 1179 mpol_shared_policy_init(&p->policy, NULL); 1180 1181 return &p->vfs_inode; 1182 } 1183 1184 static void hugetlbfs_free_inode(struct inode *inode) 1185 { 1186 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1187 } 1188 1189 static void hugetlbfs_destroy_inode(struct inode *inode) 1190 { 1191 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1192 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); 1193 } 1194 1195 static const struct address_space_operations hugetlbfs_aops = { 1196 .write_begin = hugetlbfs_write_begin, 1197 .write_end = hugetlbfs_write_end, 1198 .dirty_folio = noop_dirty_folio, 1199 .migratepage = hugetlbfs_migrate_page, 1200 .error_remove_page = hugetlbfs_error_remove_page, 1201 }; 1202 1203 1204 static void init_once(void *foo) 1205 { 1206 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo; 1207 1208 inode_init_once(&ei->vfs_inode); 1209 } 1210 1211 const struct file_operations hugetlbfs_file_operations = { 1212 .read_iter = hugetlbfs_read_iter, 1213 .mmap = hugetlbfs_file_mmap, 1214 .fsync = noop_fsync, 1215 .get_unmapped_area = hugetlb_get_unmapped_area, 1216 .llseek = default_llseek, 1217 .fallocate = hugetlbfs_fallocate, 1218 }; 1219 1220 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1221 .create = hugetlbfs_create, 1222 .lookup = simple_lookup, 1223 .link = simple_link, 1224 .unlink = simple_unlink, 1225 .symlink = hugetlbfs_symlink, 1226 .mkdir = hugetlbfs_mkdir, 1227 .rmdir = simple_rmdir, 1228 .mknod = hugetlbfs_mknod, 1229 .rename = simple_rename, 1230 .setattr = hugetlbfs_setattr, 1231 .tmpfile = hugetlbfs_tmpfile, 1232 }; 1233 1234 static const struct inode_operations hugetlbfs_inode_operations = { 1235 .setattr = hugetlbfs_setattr, 1236 }; 1237 1238 static const struct super_operations hugetlbfs_ops = { 1239 .alloc_inode = hugetlbfs_alloc_inode, 1240 .free_inode = hugetlbfs_free_inode, 1241 .destroy_inode = hugetlbfs_destroy_inode, 1242 .evict_inode = hugetlbfs_evict_inode, 1243 .statfs = hugetlbfs_statfs, 1244 .put_super = hugetlbfs_put_super, 1245 .show_options = hugetlbfs_show_options, 1246 }; 1247 1248 /* 1249 * Convert size option passed from command line to number of huge pages 1250 * in the pool specified by hstate. Size option could be in bytes 1251 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1252 */ 1253 static long 1254 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1255 enum hugetlbfs_size_type val_type) 1256 { 1257 if (val_type == NO_SIZE) 1258 return -1; 1259 1260 if (val_type == SIZE_PERCENT) { 1261 size_opt <<= huge_page_shift(h); 1262 size_opt *= h->max_huge_pages; 1263 do_div(size_opt, 100); 1264 } 1265 1266 size_opt >>= huge_page_shift(h); 1267 return size_opt; 1268 } 1269 1270 /* 1271 * Parse one mount parameter. 1272 */ 1273 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1274 { 1275 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1276 struct fs_parse_result result; 1277 char *rest; 1278 unsigned long ps; 1279 int opt; 1280 1281 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1282 if (opt < 0) 1283 return opt; 1284 1285 switch (opt) { 1286 case Opt_uid: 1287 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 1288 if (!uid_valid(ctx->uid)) 1289 goto bad_val; 1290 return 0; 1291 1292 case Opt_gid: 1293 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 1294 if (!gid_valid(ctx->gid)) 1295 goto bad_val; 1296 return 0; 1297 1298 case Opt_mode: 1299 ctx->mode = result.uint_32 & 01777U; 1300 return 0; 1301 1302 case Opt_size: 1303 /* memparse() will accept a K/M/G without a digit */ 1304 if (!isdigit(param->string[0])) 1305 goto bad_val; 1306 ctx->max_size_opt = memparse(param->string, &rest); 1307 ctx->max_val_type = SIZE_STD; 1308 if (*rest == '%') 1309 ctx->max_val_type = SIZE_PERCENT; 1310 return 0; 1311 1312 case Opt_nr_inodes: 1313 /* memparse() will accept a K/M/G without a digit */ 1314 if (!isdigit(param->string[0])) 1315 goto bad_val; 1316 ctx->nr_inodes = memparse(param->string, &rest); 1317 return 0; 1318 1319 case Opt_pagesize: 1320 ps = memparse(param->string, &rest); 1321 ctx->hstate = size_to_hstate(ps); 1322 if (!ctx->hstate) { 1323 pr_err("Unsupported page size %lu MB\n", ps >> 20); 1324 return -EINVAL; 1325 } 1326 return 0; 1327 1328 case Opt_min_size: 1329 /* memparse() will accept a K/M/G without a digit */ 1330 if (!isdigit(param->string[0])) 1331 goto bad_val; 1332 ctx->min_size_opt = memparse(param->string, &rest); 1333 ctx->min_val_type = SIZE_STD; 1334 if (*rest == '%') 1335 ctx->min_val_type = SIZE_PERCENT; 1336 return 0; 1337 1338 default: 1339 return -EINVAL; 1340 } 1341 1342 bad_val: 1343 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1344 param->string, param->key); 1345 } 1346 1347 /* 1348 * Validate the parsed options. 1349 */ 1350 static int hugetlbfs_validate(struct fs_context *fc) 1351 { 1352 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1353 1354 /* 1355 * Use huge page pool size (in hstate) to convert the size 1356 * options to number of huge pages. If NO_SIZE, -1 is returned. 1357 */ 1358 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1359 ctx->max_size_opt, 1360 ctx->max_val_type); 1361 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1362 ctx->min_size_opt, 1363 ctx->min_val_type); 1364 1365 /* 1366 * If max_size was specified, then min_size must be smaller 1367 */ 1368 if (ctx->max_val_type > NO_SIZE && 1369 ctx->min_hpages > ctx->max_hpages) { 1370 pr_err("Minimum size can not be greater than maximum size\n"); 1371 return -EINVAL; 1372 } 1373 1374 return 0; 1375 } 1376 1377 static int 1378 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1379 { 1380 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1381 struct hugetlbfs_sb_info *sbinfo; 1382 1383 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1384 if (!sbinfo) 1385 return -ENOMEM; 1386 sb->s_fs_info = sbinfo; 1387 spin_lock_init(&sbinfo->stat_lock); 1388 sbinfo->hstate = ctx->hstate; 1389 sbinfo->max_inodes = ctx->nr_inodes; 1390 sbinfo->free_inodes = ctx->nr_inodes; 1391 sbinfo->spool = NULL; 1392 sbinfo->uid = ctx->uid; 1393 sbinfo->gid = ctx->gid; 1394 sbinfo->mode = ctx->mode; 1395 1396 /* 1397 * Allocate and initialize subpool if maximum or minimum size is 1398 * specified. Any needed reservations (for minimum size) are taken 1399 * taken when the subpool is created. 1400 */ 1401 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1402 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1403 ctx->max_hpages, 1404 ctx->min_hpages); 1405 if (!sbinfo->spool) 1406 goto out_free; 1407 } 1408 sb->s_maxbytes = MAX_LFS_FILESIZE; 1409 sb->s_blocksize = huge_page_size(ctx->hstate); 1410 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1411 sb->s_magic = HUGETLBFS_MAGIC; 1412 sb->s_op = &hugetlbfs_ops; 1413 sb->s_time_gran = 1; 1414 1415 /* 1416 * Due to the special and limited functionality of hugetlbfs, it does 1417 * not work well as a stacking filesystem. 1418 */ 1419 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; 1420 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1421 if (!sb->s_root) 1422 goto out_free; 1423 return 0; 1424 out_free: 1425 kfree(sbinfo->spool); 1426 kfree(sbinfo); 1427 return -ENOMEM; 1428 } 1429 1430 static int hugetlbfs_get_tree(struct fs_context *fc) 1431 { 1432 int err = hugetlbfs_validate(fc); 1433 if (err) 1434 return err; 1435 return get_tree_nodev(fc, hugetlbfs_fill_super); 1436 } 1437 1438 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1439 { 1440 kfree(fc->fs_private); 1441 } 1442 1443 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1444 .free = hugetlbfs_fs_context_free, 1445 .parse_param = hugetlbfs_parse_param, 1446 .get_tree = hugetlbfs_get_tree, 1447 }; 1448 1449 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1450 { 1451 struct hugetlbfs_fs_context *ctx; 1452 1453 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1454 if (!ctx) 1455 return -ENOMEM; 1456 1457 ctx->max_hpages = -1; /* No limit on size by default */ 1458 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1459 ctx->uid = current_fsuid(); 1460 ctx->gid = current_fsgid(); 1461 ctx->mode = 0755; 1462 ctx->hstate = &default_hstate; 1463 ctx->min_hpages = -1; /* No default minimum size */ 1464 ctx->max_val_type = NO_SIZE; 1465 ctx->min_val_type = NO_SIZE; 1466 fc->fs_private = ctx; 1467 fc->ops = &hugetlbfs_fs_context_ops; 1468 return 0; 1469 } 1470 1471 static struct file_system_type hugetlbfs_fs_type = { 1472 .name = "hugetlbfs", 1473 .init_fs_context = hugetlbfs_init_fs_context, 1474 .parameters = hugetlb_fs_parameters, 1475 .kill_sb = kill_litter_super, 1476 }; 1477 1478 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1479 1480 static int can_do_hugetlb_shm(void) 1481 { 1482 kgid_t shm_group; 1483 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1484 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1485 } 1486 1487 static int get_hstate_idx(int page_size_log) 1488 { 1489 struct hstate *h = hstate_sizelog(page_size_log); 1490 1491 if (!h) 1492 return -1; 1493 return hstate_index(h); 1494 } 1495 1496 /* 1497 * Note that size should be aligned to proper hugepage size in caller side, 1498 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1499 */ 1500 struct file *hugetlb_file_setup(const char *name, size_t size, 1501 vm_flags_t acctflag, int creat_flags, 1502 int page_size_log) 1503 { 1504 struct inode *inode; 1505 struct vfsmount *mnt; 1506 int hstate_idx; 1507 struct file *file; 1508 1509 hstate_idx = get_hstate_idx(page_size_log); 1510 if (hstate_idx < 0) 1511 return ERR_PTR(-ENODEV); 1512 1513 mnt = hugetlbfs_vfsmount[hstate_idx]; 1514 if (!mnt) 1515 return ERR_PTR(-ENOENT); 1516 1517 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1518 struct ucounts *ucounts = current_ucounts(); 1519 1520 if (user_shm_lock(size, ucounts)) { 1521 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n", 1522 current->comm, current->pid); 1523 user_shm_unlock(size, ucounts); 1524 } 1525 return ERR_PTR(-EPERM); 1526 } 1527 1528 file = ERR_PTR(-ENOSPC); 1529 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0); 1530 if (!inode) 1531 goto out; 1532 if (creat_flags == HUGETLB_SHMFS_INODE) 1533 inode->i_flags |= S_PRIVATE; 1534 1535 inode->i_size = size; 1536 clear_nlink(inode); 1537 1538 if (!hugetlb_reserve_pages(inode, 0, 1539 size >> huge_page_shift(hstate_inode(inode)), NULL, 1540 acctflag)) 1541 file = ERR_PTR(-ENOMEM); 1542 else 1543 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1544 &hugetlbfs_file_operations); 1545 if (!IS_ERR(file)) 1546 return file; 1547 1548 iput(inode); 1549 out: 1550 return file; 1551 } 1552 1553 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1554 { 1555 struct fs_context *fc; 1556 struct vfsmount *mnt; 1557 1558 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1559 if (IS_ERR(fc)) { 1560 mnt = ERR_CAST(fc); 1561 } else { 1562 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1563 ctx->hstate = h; 1564 mnt = fc_mount(fc); 1565 put_fs_context(fc); 1566 } 1567 if (IS_ERR(mnt)) 1568 pr_err("Cannot mount internal hugetlbfs for page size %luK", 1569 huge_page_size(h) >> 10); 1570 return mnt; 1571 } 1572 1573 static int __init init_hugetlbfs_fs(void) 1574 { 1575 struct vfsmount *mnt; 1576 struct hstate *h; 1577 int error; 1578 int i; 1579 1580 if (!hugepages_supported()) { 1581 pr_info("disabling because there are no supported hugepage sizes\n"); 1582 return -ENOTSUPP; 1583 } 1584 1585 error = -ENOMEM; 1586 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1587 sizeof(struct hugetlbfs_inode_info), 1588 0, SLAB_ACCOUNT, init_once); 1589 if (hugetlbfs_inode_cachep == NULL) 1590 goto out; 1591 1592 error = register_filesystem(&hugetlbfs_fs_type); 1593 if (error) 1594 goto out_free; 1595 1596 /* default hstate mount is required */ 1597 mnt = mount_one_hugetlbfs(&default_hstate); 1598 if (IS_ERR(mnt)) { 1599 error = PTR_ERR(mnt); 1600 goto out_unreg; 1601 } 1602 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1603 1604 /* other hstates are optional */ 1605 i = 0; 1606 for_each_hstate(h) { 1607 if (i == default_hstate_idx) { 1608 i++; 1609 continue; 1610 } 1611 1612 mnt = mount_one_hugetlbfs(h); 1613 if (IS_ERR(mnt)) 1614 hugetlbfs_vfsmount[i] = NULL; 1615 else 1616 hugetlbfs_vfsmount[i] = mnt; 1617 i++; 1618 } 1619 1620 return 0; 1621 1622 out_unreg: 1623 (void)unregister_filesystem(&hugetlbfs_fs_type); 1624 out_free: 1625 kmem_cache_destroy(hugetlbfs_inode_cachep); 1626 out: 1627 return error; 1628 } 1629 fs_initcall(init_hugetlbfs_fs) 1630