1 /* 2 * hugetlbpage-backed filesystem. Based on ramfs. 3 * 4 * Nadia Yvette Chambers, 2002 5 * 6 * Copyright (C) 2002 Linus Torvalds. 7 * License: GPL 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/thread_info.h> 13 #include <asm/current.h> 14 #include <linux/falloc.h> 15 #include <linux/fs.h> 16 #include <linux/mount.h> 17 #include <linux/file.h> 18 #include <linux/kernel.h> 19 #include <linux/writeback.h> 20 #include <linux/pagemap.h> 21 #include <linux/highmem.h> 22 #include <linux/init.h> 23 #include <linux/string.h> 24 #include <linux/capability.h> 25 #include <linux/ctype.h> 26 #include <linux/backing-dev.h> 27 #include <linux/hugetlb.h> 28 #include <linux/pagevec.h> 29 #include <linux/fs_parser.h> 30 #include <linux/mman.h> 31 #include <linux/slab.h> 32 #include <linux/dnotify.h> 33 #include <linux/statfs.h> 34 #include <linux/security.h> 35 #include <linux/magic.h> 36 #include <linux/migrate.h> 37 #include <linux/uio.h> 38 39 #include <linux/uaccess.h> 40 #include <linux/sched/mm.h> 41 42 static const struct address_space_operations hugetlbfs_aops; 43 const struct file_operations hugetlbfs_file_operations; 44 static const struct inode_operations hugetlbfs_dir_inode_operations; 45 static const struct inode_operations hugetlbfs_inode_operations; 46 47 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT }; 48 49 struct hugetlbfs_fs_context { 50 struct hstate *hstate; 51 unsigned long long max_size_opt; 52 unsigned long long min_size_opt; 53 long max_hpages; 54 long nr_inodes; 55 long min_hpages; 56 enum hugetlbfs_size_type max_val_type; 57 enum hugetlbfs_size_type min_val_type; 58 kuid_t uid; 59 kgid_t gid; 60 umode_t mode; 61 }; 62 63 int sysctl_hugetlb_shm_group; 64 65 enum hugetlb_param { 66 Opt_gid, 67 Opt_min_size, 68 Opt_mode, 69 Opt_nr_inodes, 70 Opt_pagesize, 71 Opt_size, 72 Opt_uid, 73 }; 74 75 static const struct fs_parameter_spec hugetlb_fs_parameters[] = { 76 fsparam_u32 ("gid", Opt_gid), 77 fsparam_string("min_size", Opt_min_size), 78 fsparam_u32oct("mode", Opt_mode), 79 fsparam_string("nr_inodes", Opt_nr_inodes), 80 fsparam_string("pagesize", Opt_pagesize), 81 fsparam_string("size", Opt_size), 82 fsparam_u32 ("uid", Opt_uid), 83 {} 84 }; 85 86 #ifdef CONFIG_NUMA 87 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 88 struct inode *inode, pgoff_t index) 89 { 90 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy, 91 index); 92 } 93 94 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 95 { 96 mpol_cond_put(vma->vm_policy); 97 } 98 #else 99 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma, 100 struct inode *inode, pgoff_t index) 101 { 102 } 103 104 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma) 105 { 106 } 107 #endif 108 109 /* 110 * Mask used when checking the page offset value passed in via system 111 * calls. This value will be converted to a loff_t which is signed. 112 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the 113 * value. The extra bit (- 1 in the shift value) is to take the sign 114 * bit into account. 115 */ 116 #define PGOFF_LOFFT_MAX \ 117 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1))) 118 119 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma) 120 { 121 struct inode *inode = file_inode(file); 122 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 123 loff_t len, vma_len; 124 int ret; 125 struct hstate *h = hstate_file(file); 126 127 /* 128 * vma address alignment (but not the pgoff alignment) has 129 * already been checked by prepare_hugepage_range. If you add 130 * any error returns here, do so after setting VM_HUGETLB, so 131 * is_vm_hugetlb_page tests below unmap_region go the right 132 * way when do_mmap unwinds (may be important on powerpc 133 * and ia64). 134 */ 135 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND; 136 vma->vm_ops = &hugetlb_vm_ops; 137 138 ret = seal_check_future_write(info->seals, vma); 139 if (ret) 140 return ret; 141 142 /* 143 * page based offset in vm_pgoff could be sufficiently large to 144 * overflow a loff_t when converted to byte offset. This can 145 * only happen on architectures where sizeof(loff_t) == 146 * sizeof(unsigned long). So, only check in those instances. 147 */ 148 if (sizeof(unsigned long) == sizeof(loff_t)) { 149 if (vma->vm_pgoff & PGOFF_LOFFT_MAX) 150 return -EINVAL; 151 } 152 153 /* must be huge page aligned */ 154 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT)) 155 return -EINVAL; 156 157 vma_len = (loff_t)(vma->vm_end - vma->vm_start); 158 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT); 159 /* check for overflow */ 160 if (len < vma_len) 161 return -EINVAL; 162 163 inode_lock(inode); 164 file_accessed(file); 165 166 ret = -ENOMEM; 167 if (!hugetlb_reserve_pages(inode, 168 vma->vm_pgoff >> huge_page_order(h), 169 len >> huge_page_shift(h), vma, 170 vma->vm_flags)) 171 goto out; 172 173 ret = 0; 174 if (vma->vm_flags & VM_WRITE && inode->i_size < len) 175 i_size_write(inode, len); 176 out: 177 inode_unlock(inode); 178 179 return ret; 180 } 181 182 /* 183 * Called under mmap_write_lock(mm). 184 */ 185 186 static unsigned long 187 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr, 188 unsigned long len, unsigned long pgoff, unsigned long flags) 189 { 190 struct hstate *h = hstate_file(file); 191 struct vm_unmapped_area_info info; 192 193 info.flags = 0; 194 info.length = len; 195 info.low_limit = current->mm->mmap_base; 196 info.high_limit = arch_get_mmap_end(addr, len, flags); 197 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 198 info.align_offset = 0; 199 return vm_unmapped_area(&info); 200 } 201 202 static unsigned long 203 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr, 204 unsigned long len, unsigned long pgoff, unsigned long flags) 205 { 206 struct hstate *h = hstate_file(file); 207 struct vm_unmapped_area_info info; 208 209 info.flags = VM_UNMAPPED_AREA_TOPDOWN; 210 info.length = len; 211 info.low_limit = max(PAGE_SIZE, mmap_min_addr); 212 info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base); 213 info.align_mask = PAGE_MASK & ~huge_page_mask(h); 214 info.align_offset = 0; 215 addr = vm_unmapped_area(&info); 216 217 /* 218 * A failed mmap() very likely causes application failure, 219 * so fall back to the bottom-up function here. This scenario 220 * can happen with large stack limits and large mmap() 221 * allocations. 222 */ 223 if (unlikely(offset_in_page(addr))) { 224 VM_BUG_ON(addr != -ENOMEM); 225 info.flags = 0; 226 info.low_limit = current->mm->mmap_base; 227 info.high_limit = arch_get_mmap_end(addr, len, flags); 228 addr = vm_unmapped_area(&info); 229 } 230 231 return addr; 232 } 233 234 unsigned long 235 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 236 unsigned long len, unsigned long pgoff, 237 unsigned long flags) 238 { 239 struct mm_struct *mm = current->mm; 240 struct vm_area_struct *vma; 241 struct hstate *h = hstate_file(file); 242 const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags); 243 244 if (len & ~huge_page_mask(h)) 245 return -EINVAL; 246 if (len > TASK_SIZE) 247 return -ENOMEM; 248 249 if (flags & MAP_FIXED) { 250 if (prepare_hugepage_range(file, addr, len)) 251 return -EINVAL; 252 return addr; 253 } 254 255 if (addr) { 256 addr = ALIGN(addr, huge_page_size(h)); 257 vma = find_vma(mm, addr); 258 if (mmap_end - len >= addr && 259 (!vma || addr + len <= vm_start_gap(vma))) 260 return addr; 261 } 262 263 /* 264 * Use mm->get_unmapped_area value as a hint to use topdown routine. 265 * If architectures have special needs, they should define their own 266 * version of hugetlb_get_unmapped_area. 267 */ 268 if (mm->get_unmapped_area == arch_get_unmapped_area_topdown) 269 return hugetlb_get_unmapped_area_topdown(file, addr, len, 270 pgoff, flags); 271 return hugetlb_get_unmapped_area_bottomup(file, addr, len, 272 pgoff, flags); 273 } 274 275 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA 276 static unsigned long 277 hugetlb_get_unmapped_area(struct file *file, unsigned long addr, 278 unsigned long len, unsigned long pgoff, 279 unsigned long flags) 280 { 281 return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags); 282 } 283 #endif 284 285 static size_t 286 hugetlbfs_read_actor(struct page *page, unsigned long offset, 287 struct iov_iter *to, unsigned long size) 288 { 289 size_t copied = 0; 290 int i, chunksize; 291 292 /* Find which 4k chunk and offset with in that chunk */ 293 i = offset >> PAGE_SHIFT; 294 offset = offset & ~PAGE_MASK; 295 296 while (size) { 297 size_t n; 298 chunksize = PAGE_SIZE; 299 if (offset) 300 chunksize -= offset; 301 if (chunksize > size) 302 chunksize = size; 303 n = copy_page_to_iter(&page[i], offset, chunksize, to); 304 copied += n; 305 if (n != chunksize) 306 return copied; 307 offset = 0; 308 size -= chunksize; 309 i++; 310 } 311 return copied; 312 } 313 314 /* 315 * Support for read() - Find the page attached to f_mapping and copy out the 316 * data. This provides functionality similar to filemap_read(). 317 */ 318 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to) 319 { 320 struct file *file = iocb->ki_filp; 321 struct hstate *h = hstate_file(file); 322 struct address_space *mapping = file->f_mapping; 323 struct inode *inode = mapping->host; 324 unsigned long index = iocb->ki_pos >> huge_page_shift(h); 325 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h); 326 unsigned long end_index; 327 loff_t isize; 328 ssize_t retval = 0; 329 330 while (iov_iter_count(to)) { 331 struct page *page; 332 size_t nr, copied; 333 334 /* nr is the maximum number of bytes to copy from this page */ 335 nr = huge_page_size(h); 336 isize = i_size_read(inode); 337 if (!isize) 338 break; 339 end_index = (isize - 1) >> huge_page_shift(h); 340 if (index > end_index) 341 break; 342 if (index == end_index) { 343 nr = ((isize - 1) & ~huge_page_mask(h)) + 1; 344 if (nr <= offset) 345 break; 346 } 347 nr = nr - offset; 348 349 /* Find the page */ 350 page = find_lock_page(mapping, index); 351 if (unlikely(page == NULL)) { 352 /* 353 * We have a HOLE, zero out the user-buffer for the 354 * length of the hole or request. 355 */ 356 copied = iov_iter_zero(nr, to); 357 } else { 358 unlock_page(page); 359 360 /* 361 * We have the page, copy it to user space buffer. 362 */ 363 copied = hugetlbfs_read_actor(page, offset, to, nr); 364 put_page(page); 365 } 366 offset += copied; 367 retval += copied; 368 if (copied != nr && iov_iter_count(to)) { 369 if (!retval) 370 retval = -EFAULT; 371 break; 372 } 373 index += offset >> huge_page_shift(h); 374 offset &= ~huge_page_mask(h); 375 } 376 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset; 377 return retval; 378 } 379 380 static int hugetlbfs_write_begin(struct file *file, 381 struct address_space *mapping, 382 loff_t pos, unsigned len, 383 struct page **pagep, void **fsdata) 384 { 385 return -EINVAL; 386 } 387 388 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping, 389 loff_t pos, unsigned len, unsigned copied, 390 struct page *page, void *fsdata) 391 { 392 BUG(); 393 return -EINVAL; 394 } 395 396 static void remove_huge_page(struct page *page) 397 { 398 ClearPageDirty(page); 399 ClearPageUptodate(page); 400 delete_from_page_cache(page); 401 } 402 403 static void 404 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end, 405 zap_flags_t zap_flags) 406 { 407 struct vm_area_struct *vma; 408 409 /* 410 * end == 0 indicates that the entire range after start should be 411 * unmapped. Note, end is exclusive, whereas the interval tree takes 412 * an inclusive "last". 413 */ 414 vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) { 415 unsigned long v_offset; 416 unsigned long v_end; 417 418 /* 419 * Can the expression below overflow on 32-bit arches? 420 * No, because the interval tree returns us only those vmas 421 * which overlap the truncated area starting at pgoff, 422 * and no vma on a 32-bit arch can span beyond the 4GB. 423 */ 424 if (vma->vm_pgoff < start) 425 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT; 426 else 427 v_offset = 0; 428 429 if (!end) 430 v_end = vma->vm_end; 431 else { 432 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT) 433 + vma->vm_start; 434 if (v_end > vma->vm_end) 435 v_end = vma->vm_end; 436 } 437 438 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end, 439 NULL, zap_flags); 440 } 441 } 442 443 /* 444 * remove_inode_hugepages handles two distinct cases: truncation and hole 445 * punch. There are subtle differences in operation for each case. 446 * 447 * truncation is indicated by end of range being LLONG_MAX 448 * In this case, we first scan the range and release found pages. 449 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve 450 * maps and global counts. Page faults can not race with truncation 451 * in this routine. hugetlb_no_page() holds i_mmap_rwsem and prevents 452 * page faults in the truncated range by checking i_size. i_size is 453 * modified while holding i_mmap_rwsem. 454 * hole punch is indicated if end is not LLONG_MAX 455 * In the hole punch case we scan the range and release found pages. 456 * Only when releasing a page is the associated region/reserve map 457 * deleted. The region/reserve map for ranges without associated 458 * pages are not modified. Page faults can race with hole punch. 459 * This is indicated if we find a mapped page. 460 * Note: If the passed end of range value is beyond the end of file, but 461 * not LLONG_MAX this routine still performs a hole punch operation. 462 */ 463 static void remove_inode_hugepages(struct inode *inode, loff_t lstart, 464 loff_t lend) 465 { 466 struct hstate *h = hstate_inode(inode); 467 struct address_space *mapping = &inode->i_data; 468 const pgoff_t start = lstart >> huge_page_shift(h); 469 const pgoff_t end = lend >> huge_page_shift(h); 470 struct folio_batch fbatch; 471 pgoff_t next, index; 472 int i, freed = 0; 473 bool truncate_op = (lend == LLONG_MAX); 474 475 folio_batch_init(&fbatch); 476 next = start; 477 while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) { 478 for (i = 0; i < folio_batch_count(&fbatch); ++i) { 479 struct folio *folio = fbatch.folios[i]; 480 u32 hash = 0; 481 482 index = folio->index; 483 if (!truncate_op) { 484 /* 485 * Only need to hold the fault mutex in the 486 * hole punch case. This prevents races with 487 * page faults. Races are not possible in the 488 * case of truncation. 489 */ 490 hash = hugetlb_fault_mutex_hash(mapping, index); 491 mutex_lock(&hugetlb_fault_mutex_table[hash]); 492 } 493 494 /* 495 * If folio is mapped, it was faulted in after being 496 * unmapped in caller. Unmap (again) now after taking 497 * the fault mutex. The mutex will prevent faults 498 * until we finish removing the folio. 499 * 500 * This race can only happen in the hole punch case. 501 * Getting here in a truncate operation is a bug. 502 */ 503 if (unlikely(folio_mapped(folio))) { 504 BUG_ON(truncate_op); 505 506 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 507 i_mmap_lock_write(mapping); 508 mutex_lock(&hugetlb_fault_mutex_table[hash]); 509 hugetlb_vmdelete_list(&mapping->i_mmap, 510 index * pages_per_huge_page(h), 511 (index + 1) * pages_per_huge_page(h), 512 ZAP_FLAG_DROP_MARKER); 513 i_mmap_unlock_write(mapping); 514 } 515 516 folio_lock(folio); 517 /* 518 * We must free the huge page and remove from page 519 * cache (remove_huge_page) BEFORE removing the 520 * region/reserve map (hugetlb_unreserve_pages). In 521 * rare out of memory conditions, removal of the 522 * region/reserve map could fail. Correspondingly, 523 * the subpool and global reserve usage count can need 524 * to be adjusted. 525 */ 526 VM_BUG_ON(HPageRestoreReserve(&folio->page)); 527 remove_huge_page(&folio->page); 528 freed++; 529 if (!truncate_op) { 530 if (unlikely(hugetlb_unreserve_pages(inode, 531 index, index + 1, 1))) 532 hugetlb_fix_reserve_counts(inode); 533 } 534 535 folio_unlock(folio); 536 if (!truncate_op) 537 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 538 } 539 folio_batch_release(&fbatch); 540 cond_resched(); 541 } 542 543 if (truncate_op) 544 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed); 545 } 546 547 static void hugetlbfs_evict_inode(struct inode *inode) 548 { 549 struct resv_map *resv_map; 550 551 remove_inode_hugepages(inode, 0, LLONG_MAX); 552 553 /* 554 * Get the resv_map from the address space embedded in the inode. 555 * This is the address space which points to any resv_map allocated 556 * at inode creation time. If this is a device special inode, 557 * i_mapping may not point to the original address space. 558 */ 559 resv_map = (struct resv_map *)(&inode->i_data)->private_data; 560 /* Only regular and link inodes have associated reserve maps */ 561 if (resv_map) 562 resv_map_release(&resv_map->refs); 563 clear_inode(inode); 564 } 565 566 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset) 567 { 568 pgoff_t pgoff; 569 struct address_space *mapping = inode->i_mapping; 570 struct hstate *h = hstate_inode(inode); 571 572 BUG_ON(offset & ~huge_page_mask(h)); 573 pgoff = offset >> PAGE_SHIFT; 574 575 i_mmap_lock_write(mapping); 576 i_size_write(inode, offset); 577 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 578 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0, 579 ZAP_FLAG_DROP_MARKER); 580 i_mmap_unlock_write(mapping); 581 remove_inode_hugepages(inode, offset, LLONG_MAX); 582 } 583 584 static void hugetlbfs_zero_partial_page(struct hstate *h, 585 struct address_space *mapping, 586 loff_t start, 587 loff_t end) 588 { 589 pgoff_t idx = start >> huge_page_shift(h); 590 struct folio *folio; 591 592 folio = filemap_lock_folio(mapping, idx); 593 if (!folio) 594 return; 595 596 start = start & ~huge_page_mask(h); 597 end = end & ~huge_page_mask(h); 598 if (!end) 599 end = huge_page_size(h); 600 601 folio_zero_segment(folio, (size_t)start, (size_t)end); 602 603 folio_unlock(folio); 604 folio_put(folio); 605 } 606 607 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len) 608 { 609 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 610 struct address_space *mapping = inode->i_mapping; 611 struct hstate *h = hstate_inode(inode); 612 loff_t hpage_size = huge_page_size(h); 613 loff_t hole_start, hole_end; 614 615 /* 616 * hole_start and hole_end indicate the full pages within the hole. 617 */ 618 hole_start = round_up(offset, hpage_size); 619 hole_end = round_down(offset + len, hpage_size); 620 621 inode_lock(inode); 622 623 /* protected by i_rwsem */ 624 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 625 inode_unlock(inode); 626 return -EPERM; 627 } 628 629 i_mmap_lock_write(mapping); 630 631 /* If range starts before first full page, zero partial page. */ 632 if (offset < hole_start) 633 hugetlbfs_zero_partial_page(h, mapping, 634 offset, min(offset + len, hole_start)); 635 636 /* Unmap users of full pages in the hole. */ 637 if (hole_end > hole_start) { 638 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)) 639 hugetlb_vmdelete_list(&mapping->i_mmap, 640 hole_start >> PAGE_SHIFT, 641 hole_end >> PAGE_SHIFT, 0); 642 } 643 644 /* If range extends beyond last full page, zero partial page. */ 645 if ((offset + len) > hole_end && (offset + len) > hole_start) 646 hugetlbfs_zero_partial_page(h, mapping, 647 hole_end, offset + len); 648 649 i_mmap_unlock_write(mapping); 650 651 /* Remove full pages from the file. */ 652 if (hole_end > hole_start) 653 remove_inode_hugepages(inode, hole_start, hole_end); 654 655 inode_unlock(inode); 656 657 return 0; 658 } 659 660 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset, 661 loff_t len) 662 { 663 struct inode *inode = file_inode(file); 664 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 665 struct address_space *mapping = inode->i_mapping; 666 struct hstate *h = hstate_inode(inode); 667 struct vm_area_struct pseudo_vma; 668 struct mm_struct *mm = current->mm; 669 loff_t hpage_size = huge_page_size(h); 670 unsigned long hpage_shift = huge_page_shift(h); 671 pgoff_t start, index, end; 672 int error; 673 u32 hash; 674 675 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 676 return -EOPNOTSUPP; 677 678 if (mode & FALLOC_FL_PUNCH_HOLE) 679 return hugetlbfs_punch_hole(inode, offset, len); 680 681 /* 682 * Default preallocate case. 683 * For this range, start is rounded down and end is rounded up 684 * as well as being converted to page offsets. 685 */ 686 start = offset >> hpage_shift; 687 end = (offset + len + hpage_size - 1) >> hpage_shift; 688 689 inode_lock(inode); 690 691 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */ 692 error = inode_newsize_ok(inode, offset + len); 693 if (error) 694 goto out; 695 696 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) { 697 error = -EPERM; 698 goto out; 699 } 700 701 /* 702 * Initialize a pseudo vma as this is required by the huge page 703 * allocation routines. If NUMA is configured, use page index 704 * as input to create an allocation policy. 705 */ 706 vma_init(&pseudo_vma, mm); 707 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED); 708 pseudo_vma.vm_file = file; 709 710 for (index = start; index < end; index++) { 711 /* 712 * This is supposed to be the vaddr where the page is being 713 * faulted in, but we have no vaddr here. 714 */ 715 struct page *page; 716 unsigned long addr; 717 718 cond_resched(); 719 720 /* 721 * fallocate(2) manpage permits EINTR; we may have been 722 * interrupted because we are using up too much memory. 723 */ 724 if (signal_pending(current)) { 725 error = -EINTR; 726 break; 727 } 728 729 /* Set numa allocation policy based on index */ 730 hugetlb_set_vma_policy(&pseudo_vma, inode, index); 731 732 /* addr is the offset within the file (zero based) */ 733 addr = index * hpage_size; 734 735 /* 736 * fault mutex taken here, protects against fault path 737 * and hole punch. inode_lock previously taken protects 738 * against truncation. 739 */ 740 hash = hugetlb_fault_mutex_hash(mapping, index); 741 mutex_lock(&hugetlb_fault_mutex_table[hash]); 742 743 /* See if already present in mapping to avoid alloc/free */ 744 page = find_get_page(mapping, index); 745 if (page) { 746 put_page(page); 747 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 748 hugetlb_drop_vma_policy(&pseudo_vma); 749 continue; 750 } 751 752 /* 753 * Allocate page without setting the avoid_reserve argument. 754 * There certainly are no reserves associated with the 755 * pseudo_vma. However, there could be shared mappings with 756 * reserves for the file at the inode level. If we fallocate 757 * pages in these areas, we need to consume the reserves 758 * to keep reservation accounting consistent. 759 */ 760 page = alloc_huge_page(&pseudo_vma, addr, 0); 761 hugetlb_drop_vma_policy(&pseudo_vma); 762 if (IS_ERR(page)) { 763 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 764 error = PTR_ERR(page); 765 goto out; 766 } 767 clear_huge_page(page, addr, pages_per_huge_page(h)); 768 __SetPageUptodate(page); 769 error = huge_add_to_page_cache(page, mapping, index); 770 if (unlikely(error)) { 771 restore_reserve_on_error(h, &pseudo_vma, addr, page); 772 put_page(page); 773 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 774 goto out; 775 } 776 777 mutex_unlock(&hugetlb_fault_mutex_table[hash]); 778 779 SetHPageMigratable(page); 780 /* 781 * unlock_page because locked by huge_add_to_page_cache() 782 * put_page() due to reference from alloc_huge_page() 783 */ 784 unlock_page(page); 785 put_page(page); 786 } 787 788 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size) 789 i_size_write(inode, offset + len); 790 inode->i_ctime = current_time(inode); 791 out: 792 inode_unlock(inode); 793 return error; 794 } 795 796 static int hugetlbfs_setattr(struct user_namespace *mnt_userns, 797 struct dentry *dentry, struct iattr *attr) 798 { 799 struct inode *inode = d_inode(dentry); 800 struct hstate *h = hstate_inode(inode); 801 int error; 802 unsigned int ia_valid = attr->ia_valid; 803 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 804 805 error = setattr_prepare(&init_user_ns, dentry, attr); 806 if (error) 807 return error; 808 809 if (ia_valid & ATTR_SIZE) { 810 loff_t oldsize = inode->i_size; 811 loff_t newsize = attr->ia_size; 812 813 if (newsize & ~huge_page_mask(h)) 814 return -EINVAL; 815 /* protected by i_rwsem */ 816 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) || 817 (newsize > oldsize && (info->seals & F_SEAL_GROW))) 818 return -EPERM; 819 hugetlb_vmtruncate(inode, newsize); 820 } 821 822 setattr_copy(&init_user_ns, inode, attr); 823 mark_inode_dirty(inode); 824 return 0; 825 } 826 827 static struct inode *hugetlbfs_get_root(struct super_block *sb, 828 struct hugetlbfs_fs_context *ctx) 829 { 830 struct inode *inode; 831 832 inode = new_inode(sb); 833 if (inode) { 834 inode->i_ino = get_next_ino(); 835 inode->i_mode = S_IFDIR | ctx->mode; 836 inode->i_uid = ctx->uid; 837 inode->i_gid = ctx->gid; 838 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 839 inode->i_op = &hugetlbfs_dir_inode_operations; 840 inode->i_fop = &simple_dir_operations; 841 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 842 inc_nlink(inode); 843 lockdep_annotate_inode_mutex_key(inode); 844 } 845 return inode; 846 } 847 848 /* 849 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never 850 * be taken from reclaim -- unlike regular filesystems. This needs an 851 * annotation because huge_pmd_share() does an allocation under hugetlb's 852 * i_mmap_rwsem. 853 */ 854 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key; 855 856 static struct inode *hugetlbfs_get_inode(struct super_block *sb, 857 struct inode *dir, 858 umode_t mode, dev_t dev) 859 { 860 struct inode *inode; 861 struct resv_map *resv_map = NULL; 862 863 /* 864 * Reserve maps are only needed for inodes that can have associated 865 * page allocations. 866 */ 867 if (S_ISREG(mode) || S_ISLNK(mode)) { 868 resv_map = resv_map_alloc(); 869 if (!resv_map) 870 return NULL; 871 } 872 873 inode = new_inode(sb); 874 if (inode) { 875 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode); 876 877 inode->i_ino = get_next_ino(); 878 inode_init_owner(&init_user_ns, inode, dir, mode); 879 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem, 880 &hugetlbfs_i_mmap_rwsem_key); 881 inode->i_mapping->a_ops = &hugetlbfs_aops; 882 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode); 883 inode->i_mapping->private_data = resv_map; 884 info->seals = F_SEAL_SEAL; 885 switch (mode & S_IFMT) { 886 default: 887 init_special_inode(inode, mode, dev); 888 break; 889 case S_IFREG: 890 inode->i_op = &hugetlbfs_inode_operations; 891 inode->i_fop = &hugetlbfs_file_operations; 892 break; 893 case S_IFDIR: 894 inode->i_op = &hugetlbfs_dir_inode_operations; 895 inode->i_fop = &simple_dir_operations; 896 897 /* directory inodes start off with i_nlink == 2 (for "." entry) */ 898 inc_nlink(inode); 899 break; 900 case S_IFLNK: 901 inode->i_op = &page_symlink_inode_operations; 902 inode_nohighmem(inode); 903 break; 904 } 905 lockdep_annotate_inode_mutex_key(inode); 906 } else { 907 if (resv_map) 908 kref_put(&resv_map->refs, resv_map_release); 909 } 910 911 return inode; 912 } 913 914 /* 915 * File creation. Allocate an inode, and we're done.. 916 */ 917 static int do_hugetlbfs_mknod(struct inode *dir, 918 struct dentry *dentry, 919 umode_t mode, 920 dev_t dev, 921 bool tmpfile) 922 { 923 struct inode *inode; 924 int error = -ENOSPC; 925 926 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev); 927 if (inode) { 928 dir->i_ctime = dir->i_mtime = current_time(dir); 929 if (tmpfile) { 930 d_tmpfile(dentry, inode); 931 } else { 932 d_instantiate(dentry, inode); 933 dget(dentry);/* Extra count - pin the dentry in core */ 934 } 935 error = 0; 936 } 937 return error; 938 } 939 940 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir, 941 struct dentry *dentry, umode_t mode, dev_t dev) 942 { 943 return do_hugetlbfs_mknod(dir, dentry, mode, dev, false); 944 } 945 946 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir, 947 struct dentry *dentry, umode_t mode) 948 { 949 int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry, 950 mode | S_IFDIR, 0); 951 if (!retval) 952 inc_nlink(dir); 953 return retval; 954 } 955 956 static int hugetlbfs_create(struct user_namespace *mnt_userns, 957 struct inode *dir, struct dentry *dentry, 958 umode_t mode, bool excl) 959 { 960 return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0); 961 } 962 963 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns, 964 struct inode *dir, struct dentry *dentry, 965 umode_t mode) 966 { 967 return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true); 968 } 969 970 static int hugetlbfs_symlink(struct user_namespace *mnt_userns, 971 struct inode *dir, struct dentry *dentry, 972 const char *symname) 973 { 974 struct inode *inode; 975 int error = -ENOSPC; 976 977 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0); 978 if (inode) { 979 int l = strlen(symname)+1; 980 error = page_symlink(inode, symname, l); 981 if (!error) { 982 d_instantiate(dentry, inode); 983 dget(dentry); 984 } else 985 iput(inode); 986 } 987 dir->i_ctime = dir->i_mtime = current_time(dir); 988 989 return error; 990 } 991 992 #ifdef CONFIG_MIGRATION 993 static int hugetlbfs_migrate_folio(struct address_space *mapping, 994 struct folio *dst, struct folio *src, 995 enum migrate_mode mode) 996 { 997 int rc; 998 999 rc = migrate_huge_page_move_mapping(mapping, dst, src); 1000 if (rc != MIGRATEPAGE_SUCCESS) 1001 return rc; 1002 1003 if (hugetlb_page_subpool(&src->page)) { 1004 hugetlb_set_page_subpool(&dst->page, 1005 hugetlb_page_subpool(&src->page)); 1006 hugetlb_set_page_subpool(&src->page, NULL); 1007 } 1008 1009 if (mode != MIGRATE_SYNC_NO_COPY) 1010 folio_migrate_copy(dst, src); 1011 else 1012 folio_migrate_flags(dst, src); 1013 1014 return MIGRATEPAGE_SUCCESS; 1015 } 1016 #else 1017 #define hugetlbfs_migrate_folio NULL 1018 #endif 1019 1020 static int hugetlbfs_error_remove_page(struct address_space *mapping, 1021 struct page *page) 1022 { 1023 struct inode *inode = mapping->host; 1024 pgoff_t index = page->index; 1025 1026 remove_huge_page(page); 1027 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1))) 1028 hugetlb_fix_reserve_counts(inode); 1029 1030 return 0; 1031 } 1032 1033 /* 1034 * Display the mount options in /proc/mounts. 1035 */ 1036 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root) 1037 { 1038 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb); 1039 struct hugepage_subpool *spool = sbinfo->spool; 1040 unsigned long hpage_size = huge_page_size(sbinfo->hstate); 1041 unsigned hpage_shift = huge_page_shift(sbinfo->hstate); 1042 char mod; 1043 1044 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID)) 1045 seq_printf(m, ",uid=%u", 1046 from_kuid_munged(&init_user_ns, sbinfo->uid)); 1047 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID)) 1048 seq_printf(m, ",gid=%u", 1049 from_kgid_munged(&init_user_ns, sbinfo->gid)); 1050 if (sbinfo->mode != 0755) 1051 seq_printf(m, ",mode=%o", sbinfo->mode); 1052 if (sbinfo->max_inodes != -1) 1053 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes); 1054 1055 hpage_size /= 1024; 1056 mod = 'K'; 1057 if (hpage_size >= 1024) { 1058 hpage_size /= 1024; 1059 mod = 'M'; 1060 } 1061 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod); 1062 if (spool) { 1063 if (spool->max_hpages != -1) 1064 seq_printf(m, ",size=%llu", 1065 (unsigned long long)spool->max_hpages << hpage_shift); 1066 if (spool->min_hpages != -1) 1067 seq_printf(m, ",min_size=%llu", 1068 (unsigned long long)spool->min_hpages << hpage_shift); 1069 } 1070 return 0; 1071 } 1072 1073 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf) 1074 { 1075 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb); 1076 struct hstate *h = hstate_inode(d_inode(dentry)); 1077 1078 buf->f_type = HUGETLBFS_MAGIC; 1079 buf->f_bsize = huge_page_size(h); 1080 if (sbinfo) { 1081 spin_lock(&sbinfo->stat_lock); 1082 /* If no limits set, just report 0 or -1 for max/free/used 1083 * blocks, like simple_statfs() */ 1084 if (sbinfo->spool) { 1085 long free_pages; 1086 1087 spin_lock_irq(&sbinfo->spool->lock); 1088 buf->f_blocks = sbinfo->spool->max_hpages; 1089 free_pages = sbinfo->spool->max_hpages 1090 - sbinfo->spool->used_hpages; 1091 buf->f_bavail = buf->f_bfree = free_pages; 1092 spin_unlock_irq(&sbinfo->spool->lock); 1093 buf->f_files = sbinfo->max_inodes; 1094 buf->f_ffree = sbinfo->free_inodes; 1095 } 1096 spin_unlock(&sbinfo->stat_lock); 1097 } 1098 buf->f_namelen = NAME_MAX; 1099 return 0; 1100 } 1101 1102 static void hugetlbfs_put_super(struct super_block *sb) 1103 { 1104 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb); 1105 1106 if (sbi) { 1107 sb->s_fs_info = NULL; 1108 1109 if (sbi->spool) 1110 hugepage_put_subpool(sbi->spool); 1111 1112 kfree(sbi); 1113 } 1114 } 1115 1116 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1117 { 1118 if (sbinfo->free_inodes >= 0) { 1119 spin_lock(&sbinfo->stat_lock); 1120 if (unlikely(!sbinfo->free_inodes)) { 1121 spin_unlock(&sbinfo->stat_lock); 1122 return 0; 1123 } 1124 sbinfo->free_inodes--; 1125 spin_unlock(&sbinfo->stat_lock); 1126 } 1127 1128 return 1; 1129 } 1130 1131 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo) 1132 { 1133 if (sbinfo->free_inodes >= 0) { 1134 spin_lock(&sbinfo->stat_lock); 1135 sbinfo->free_inodes++; 1136 spin_unlock(&sbinfo->stat_lock); 1137 } 1138 } 1139 1140 1141 static struct kmem_cache *hugetlbfs_inode_cachep; 1142 1143 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb) 1144 { 1145 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb); 1146 struct hugetlbfs_inode_info *p; 1147 1148 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo))) 1149 return NULL; 1150 p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL); 1151 if (unlikely(!p)) { 1152 hugetlbfs_inc_free_inodes(sbinfo); 1153 return NULL; 1154 } 1155 1156 /* 1157 * Any time after allocation, hugetlbfs_destroy_inode can be called 1158 * for the inode. mpol_free_shared_policy is unconditionally called 1159 * as part of hugetlbfs_destroy_inode. So, initialize policy here 1160 * in case of a quick call to destroy. 1161 * 1162 * Note that the policy is initialized even if we are creating a 1163 * private inode. This simplifies hugetlbfs_destroy_inode. 1164 */ 1165 mpol_shared_policy_init(&p->policy, NULL); 1166 1167 return &p->vfs_inode; 1168 } 1169 1170 static void hugetlbfs_free_inode(struct inode *inode) 1171 { 1172 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode)); 1173 } 1174 1175 static void hugetlbfs_destroy_inode(struct inode *inode) 1176 { 1177 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb)); 1178 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy); 1179 } 1180 1181 static const struct address_space_operations hugetlbfs_aops = { 1182 .write_begin = hugetlbfs_write_begin, 1183 .write_end = hugetlbfs_write_end, 1184 .dirty_folio = noop_dirty_folio, 1185 .migrate_folio = hugetlbfs_migrate_folio, 1186 .error_remove_page = hugetlbfs_error_remove_page, 1187 }; 1188 1189 1190 static void init_once(void *foo) 1191 { 1192 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo; 1193 1194 inode_init_once(&ei->vfs_inode); 1195 } 1196 1197 const struct file_operations hugetlbfs_file_operations = { 1198 .read_iter = hugetlbfs_read_iter, 1199 .mmap = hugetlbfs_file_mmap, 1200 .fsync = noop_fsync, 1201 .get_unmapped_area = hugetlb_get_unmapped_area, 1202 .llseek = default_llseek, 1203 .fallocate = hugetlbfs_fallocate, 1204 }; 1205 1206 static const struct inode_operations hugetlbfs_dir_inode_operations = { 1207 .create = hugetlbfs_create, 1208 .lookup = simple_lookup, 1209 .link = simple_link, 1210 .unlink = simple_unlink, 1211 .symlink = hugetlbfs_symlink, 1212 .mkdir = hugetlbfs_mkdir, 1213 .rmdir = simple_rmdir, 1214 .mknod = hugetlbfs_mknod, 1215 .rename = simple_rename, 1216 .setattr = hugetlbfs_setattr, 1217 .tmpfile = hugetlbfs_tmpfile, 1218 }; 1219 1220 static const struct inode_operations hugetlbfs_inode_operations = { 1221 .setattr = hugetlbfs_setattr, 1222 }; 1223 1224 static const struct super_operations hugetlbfs_ops = { 1225 .alloc_inode = hugetlbfs_alloc_inode, 1226 .free_inode = hugetlbfs_free_inode, 1227 .destroy_inode = hugetlbfs_destroy_inode, 1228 .evict_inode = hugetlbfs_evict_inode, 1229 .statfs = hugetlbfs_statfs, 1230 .put_super = hugetlbfs_put_super, 1231 .show_options = hugetlbfs_show_options, 1232 }; 1233 1234 /* 1235 * Convert size option passed from command line to number of huge pages 1236 * in the pool specified by hstate. Size option could be in bytes 1237 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT). 1238 */ 1239 static long 1240 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt, 1241 enum hugetlbfs_size_type val_type) 1242 { 1243 if (val_type == NO_SIZE) 1244 return -1; 1245 1246 if (val_type == SIZE_PERCENT) { 1247 size_opt <<= huge_page_shift(h); 1248 size_opt *= h->max_huge_pages; 1249 do_div(size_opt, 100); 1250 } 1251 1252 size_opt >>= huge_page_shift(h); 1253 return size_opt; 1254 } 1255 1256 /* 1257 * Parse one mount parameter. 1258 */ 1259 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param) 1260 { 1261 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1262 struct fs_parse_result result; 1263 char *rest; 1264 unsigned long ps; 1265 int opt; 1266 1267 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result); 1268 if (opt < 0) 1269 return opt; 1270 1271 switch (opt) { 1272 case Opt_uid: 1273 ctx->uid = make_kuid(current_user_ns(), result.uint_32); 1274 if (!uid_valid(ctx->uid)) 1275 goto bad_val; 1276 return 0; 1277 1278 case Opt_gid: 1279 ctx->gid = make_kgid(current_user_ns(), result.uint_32); 1280 if (!gid_valid(ctx->gid)) 1281 goto bad_val; 1282 return 0; 1283 1284 case Opt_mode: 1285 ctx->mode = result.uint_32 & 01777U; 1286 return 0; 1287 1288 case Opt_size: 1289 /* memparse() will accept a K/M/G without a digit */ 1290 if (!isdigit(param->string[0])) 1291 goto bad_val; 1292 ctx->max_size_opt = memparse(param->string, &rest); 1293 ctx->max_val_type = SIZE_STD; 1294 if (*rest == '%') 1295 ctx->max_val_type = SIZE_PERCENT; 1296 return 0; 1297 1298 case Opt_nr_inodes: 1299 /* memparse() will accept a K/M/G without a digit */ 1300 if (!isdigit(param->string[0])) 1301 goto bad_val; 1302 ctx->nr_inodes = memparse(param->string, &rest); 1303 return 0; 1304 1305 case Opt_pagesize: 1306 ps = memparse(param->string, &rest); 1307 ctx->hstate = size_to_hstate(ps); 1308 if (!ctx->hstate) { 1309 pr_err("Unsupported page size %lu MB\n", ps / SZ_1M); 1310 return -EINVAL; 1311 } 1312 return 0; 1313 1314 case Opt_min_size: 1315 /* memparse() will accept a K/M/G without a digit */ 1316 if (!isdigit(param->string[0])) 1317 goto bad_val; 1318 ctx->min_size_opt = memparse(param->string, &rest); 1319 ctx->min_val_type = SIZE_STD; 1320 if (*rest == '%') 1321 ctx->min_val_type = SIZE_PERCENT; 1322 return 0; 1323 1324 default: 1325 return -EINVAL; 1326 } 1327 1328 bad_val: 1329 return invalfc(fc, "Bad value '%s' for mount option '%s'\n", 1330 param->string, param->key); 1331 } 1332 1333 /* 1334 * Validate the parsed options. 1335 */ 1336 static int hugetlbfs_validate(struct fs_context *fc) 1337 { 1338 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1339 1340 /* 1341 * Use huge page pool size (in hstate) to convert the size 1342 * options to number of huge pages. If NO_SIZE, -1 is returned. 1343 */ 1344 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1345 ctx->max_size_opt, 1346 ctx->max_val_type); 1347 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate, 1348 ctx->min_size_opt, 1349 ctx->min_val_type); 1350 1351 /* 1352 * If max_size was specified, then min_size must be smaller 1353 */ 1354 if (ctx->max_val_type > NO_SIZE && 1355 ctx->min_hpages > ctx->max_hpages) { 1356 pr_err("Minimum size can not be greater than maximum size\n"); 1357 return -EINVAL; 1358 } 1359 1360 return 0; 1361 } 1362 1363 static int 1364 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc) 1365 { 1366 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1367 struct hugetlbfs_sb_info *sbinfo; 1368 1369 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL); 1370 if (!sbinfo) 1371 return -ENOMEM; 1372 sb->s_fs_info = sbinfo; 1373 spin_lock_init(&sbinfo->stat_lock); 1374 sbinfo->hstate = ctx->hstate; 1375 sbinfo->max_inodes = ctx->nr_inodes; 1376 sbinfo->free_inodes = ctx->nr_inodes; 1377 sbinfo->spool = NULL; 1378 sbinfo->uid = ctx->uid; 1379 sbinfo->gid = ctx->gid; 1380 sbinfo->mode = ctx->mode; 1381 1382 /* 1383 * Allocate and initialize subpool if maximum or minimum size is 1384 * specified. Any needed reservations (for minimum size) are taken 1385 * when the subpool is created. 1386 */ 1387 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) { 1388 sbinfo->spool = hugepage_new_subpool(ctx->hstate, 1389 ctx->max_hpages, 1390 ctx->min_hpages); 1391 if (!sbinfo->spool) 1392 goto out_free; 1393 } 1394 sb->s_maxbytes = MAX_LFS_FILESIZE; 1395 sb->s_blocksize = huge_page_size(ctx->hstate); 1396 sb->s_blocksize_bits = huge_page_shift(ctx->hstate); 1397 sb->s_magic = HUGETLBFS_MAGIC; 1398 sb->s_op = &hugetlbfs_ops; 1399 sb->s_time_gran = 1; 1400 1401 /* 1402 * Due to the special and limited functionality of hugetlbfs, it does 1403 * not work well as a stacking filesystem. 1404 */ 1405 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH; 1406 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx)); 1407 if (!sb->s_root) 1408 goto out_free; 1409 return 0; 1410 out_free: 1411 kfree(sbinfo->spool); 1412 kfree(sbinfo); 1413 return -ENOMEM; 1414 } 1415 1416 static int hugetlbfs_get_tree(struct fs_context *fc) 1417 { 1418 int err = hugetlbfs_validate(fc); 1419 if (err) 1420 return err; 1421 return get_tree_nodev(fc, hugetlbfs_fill_super); 1422 } 1423 1424 static void hugetlbfs_fs_context_free(struct fs_context *fc) 1425 { 1426 kfree(fc->fs_private); 1427 } 1428 1429 static const struct fs_context_operations hugetlbfs_fs_context_ops = { 1430 .free = hugetlbfs_fs_context_free, 1431 .parse_param = hugetlbfs_parse_param, 1432 .get_tree = hugetlbfs_get_tree, 1433 }; 1434 1435 static int hugetlbfs_init_fs_context(struct fs_context *fc) 1436 { 1437 struct hugetlbfs_fs_context *ctx; 1438 1439 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL); 1440 if (!ctx) 1441 return -ENOMEM; 1442 1443 ctx->max_hpages = -1; /* No limit on size by default */ 1444 ctx->nr_inodes = -1; /* No limit on number of inodes by default */ 1445 ctx->uid = current_fsuid(); 1446 ctx->gid = current_fsgid(); 1447 ctx->mode = 0755; 1448 ctx->hstate = &default_hstate; 1449 ctx->min_hpages = -1; /* No default minimum size */ 1450 ctx->max_val_type = NO_SIZE; 1451 ctx->min_val_type = NO_SIZE; 1452 fc->fs_private = ctx; 1453 fc->ops = &hugetlbfs_fs_context_ops; 1454 return 0; 1455 } 1456 1457 static struct file_system_type hugetlbfs_fs_type = { 1458 .name = "hugetlbfs", 1459 .init_fs_context = hugetlbfs_init_fs_context, 1460 .parameters = hugetlb_fs_parameters, 1461 .kill_sb = kill_litter_super, 1462 }; 1463 1464 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE]; 1465 1466 static int can_do_hugetlb_shm(void) 1467 { 1468 kgid_t shm_group; 1469 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group); 1470 return capable(CAP_IPC_LOCK) || in_group_p(shm_group); 1471 } 1472 1473 static int get_hstate_idx(int page_size_log) 1474 { 1475 struct hstate *h = hstate_sizelog(page_size_log); 1476 1477 if (!h) 1478 return -1; 1479 return hstate_index(h); 1480 } 1481 1482 /* 1483 * Note that size should be aligned to proper hugepage size in caller side, 1484 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended. 1485 */ 1486 struct file *hugetlb_file_setup(const char *name, size_t size, 1487 vm_flags_t acctflag, int creat_flags, 1488 int page_size_log) 1489 { 1490 struct inode *inode; 1491 struct vfsmount *mnt; 1492 int hstate_idx; 1493 struct file *file; 1494 1495 hstate_idx = get_hstate_idx(page_size_log); 1496 if (hstate_idx < 0) 1497 return ERR_PTR(-ENODEV); 1498 1499 mnt = hugetlbfs_vfsmount[hstate_idx]; 1500 if (!mnt) 1501 return ERR_PTR(-ENOENT); 1502 1503 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) { 1504 struct ucounts *ucounts = current_ucounts(); 1505 1506 if (user_shm_lock(size, ucounts)) { 1507 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n", 1508 current->comm, current->pid); 1509 user_shm_unlock(size, ucounts); 1510 } 1511 return ERR_PTR(-EPERM); 1512 } 1513 1514 file = ERR_PTR(-ENOSPC); 1515 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0); 1516 if (!inode) 1517 goto out; 1518 if (creat_flags == HUGETLB_SHMFS_INODE) 1519 inode->i_flags |= S_PRIVATE; 1520 1521 inode->i_size = size; 1522 clear_nlink(inode); 1523 1524 if (!hugetlb_reserve_pages(inode, 0, 1525 size >> huge_page_shift(hstate_inode(inode)), NULL, 1526 acctflag)) 1527 file = ERR_PTR(-ENOMEM); 1528 else 1529 file = alloc_file_pseudo(inode, mnt, name, O_RDWR, 1530 &hugetlbfs_file_operations); 1531 if (!IS_ERR(file)) 1532 return file; 1533 1534 iput(inode); 1535 out: 1536 return file; 1537 } 1538 1539 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h) 1540 { 1541 struct fs_context *fc; 1542 struct vfsmount *mnt; 1543 1544 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT); 1545 if (IS_ERR(fc)) { 1546 mnt = ERR_CAST(fc); 1547 } else { 1548 struct hugetlbfs_fs_context *ctx = fc->fs_private; 1549 ctx->hstate = h; 1550 mnt = fc_mount(fc); 1551 put_fs_context(fc); 1552 } 1553 if (IS_ERR(mnt)) 1554 pr_err("Cannot mount internal hugetlbfs for page size %luK", 1555 huge_page_size(h) / SZ_1K); 1556 return mnt; 1557 } 1558 1559 static int __init init_hugetlbfs_fs(void) 1560 { 1561 struct vfsmount *mnt; 1562 struct hstate *h; 1563 int error; 1564 int i; 1565 1566 if (!hugepages_supported()) { 1567 pr_info("disabling because there are no supported hugepage sizes\n"); 1568 return -ENOTSUPP; 1569 } 1570 1571 error = -ENOMEM; 1572 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache", 1573 sizeof(struct hugetlbfs_inode_info), 1574 0, SLAB_ACCOUNT, init_once); 1575 if (hugetlbfs_inode_cachep == NULL) 1576 goto out; 1577 1578 error = register_filesystem(&hugetlbfs_fs_type); 1579 if (error) 1580 goto out_free; 1581 1582 /* default hstate mount is required */ 1583 mnt = mount_one_hugetlbfs(&default_hstate); 1584 if (IS_ERR(mnt)) { 1585 error = PTR_ERR(mnt); 1586 goto out_unreg; 1587 } 1588 hugetlbfs_vfsmount[default_hstate_idx] = mnt; 1589 1590 /* other hstates are optional */ 1591 i = 0; 1592 for_each_hstate(h) { 1593 if (i == default_hstate_idx) { 1594 i++; 1595 continue; 1596 } 1597 1598 mnt = mount_one_hugetlbfs(h); 1599 if (IS_ERR(mnt)) 1600 hugetlbfs_vfsmount[i] = NULL; 1601 else 1602 hugetlbfs_vfsmount[i] = mnt; 1603 i++; 1604 } 1605 1606 return 0; 1607 1608 out_unreg: 1609 (void)unregister_filesystem(&hugetlbfs_fs_type); 1610 out_free: 1611 kmem_cache_destroy(hugetlbfs_inode_cachep); 1612 out: 1613 return error; 1614 } 1615 fs_initcall(init_hugetlbfs_fs) 1616