xref: /openbmc/linux/fs/hugetlbfs/inode.c (revision bb26cfd9)
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/falloc.h>
15 #include <linux/fs.h>
16 #include <linux/mount.h>
17 #include <linux/file.h>
18 #include <linux/kernel.h>
19 #include <linux/writeback.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/init.h>
23 #include <linux/string.h>
24 #include <linux/capability.h>
25 #include <linux/ctype.h>
26 #include <linux/backing-dev.h>
27 #include <linux/hugetlb.h>
28 #include <linux/pagevec.h>
29 #include <linux/fs_parser.h>
30 #include <linux/mman.h>
31 #include <linux/slab.h>
32 #include <linux/dnotify.h>
33 #include <linux/statfs.h>
34 #include <linux/security.h>
35 #include <linux/magic.h>
36 #include <linux/migrate.h>
37 #include <linux/uio.h>
38 
39 #include <linux/uaccess.h>
40 #include <linux/sched/mm.h>
41 
42 static const struct address_space_operations hugetlbfs_aops;
43 const struct file_operations hugetlbfs_file_operations;
44 static const struct inode_operations hugetlbfs_dir_inode_operations;
45 static const struct inode_operations hugetlbfs_inode_operations;
46 
47 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
48 
49 struct hugetlbfs_fs_context {
50 	struct hstate		*hstate;
51 	unsigned long long	max_size_opt;
52 	unsigned long long	min_size_opt;
53 	long			max_hpages;
54 	long			nr_inodes;
55 	long			min_hpages;
56 	enum hugetlbfs_size_type max_val_type;
57 	enum hugetlbfs_size_type min_val_type;
58 	kuid_t			uid;
59 	kgid_t			gid;
60 	umode_t			mode;
61 };
62 
63 int sysctl_hugetlb_shm_group;
64 
65 enum hugetlb_param {
66 	Opt_gid,
67 	Opt_min_size,
68 	Opt_mode,
69 	Opt_nr_inodes,
70 	Opt_pagesize,
71 	Opt_size,
72 	Opt_uid,
73 };
74 
75 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
76 	fsparam_u32   ("gid",		Opt_gid),
77 	fsparam_string("min_size",	Opt_min_size),
78 	fsparam_u32oct("mode",		Opt_mode),
79 	fsparam_string("nr_inodes",	Opt_nr_inodes),
80 	fsparam_string("pagesize",	Opt_pagesize),
81 	fsparam_string("size",		Opt_size),
82 	fsparam_u32   ("uid",		Opt_uid),
83 	{}
84 };
85 
86 #ifdef CONFIG_NUMA
87 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
88 					struct inode *inode, pgoff_t index)
89 {
90 	vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
91 							index);
92 }
93 
94 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
95 {
96 	mpol_cond_put(vma->vm_policy);
97 }
98 #else
99 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
100 					struct inode *inode, pgoff_t index)
101 {
102 }
103 
104 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
105 {
106 }
107 #endif
108 
109 /*
110  * Mask used when checking the page offset value passed in via system
111  * calls.  This value will be converted to a loff_t which is signed.
112  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
113  * value.  The extra bit (- 1 in the shift value) is to take the sign
114  * bit into account.
115  */
116 #define PGOFF_LOFFT_MAX \
117 	(((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
118 
119 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
120 {
121 	struct inode *inode = file_inode(file);
122 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
123 	loff_t len, vma_len;
124 	int ret;
125 	struct hstate *h = hstate_file(file);
126 
127 	/*
128 	 * vma address alignment (but not the pgoff alignment) has
129 	 * already been checked by prepare_hugepage_range.  If you add
130 	 * any error returns here, do so after setting VM_HUGETLB, so
131 	 * is_vm_hugetlb_page tests below unmap_region go the right
132 	 * way when do_mmap unwinds (may be important on powerpc
133 	 * and ia64).
134 	 */
135 	vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
136 	vma->vm_ops = &hugetlb_vm_ops;
137 
138 	ret = seal_check_future_write(info->seals, vma);
139 	if (ret)
140 		return ret;
141 
142 	/*
143 	 * page based offset in vm_pgoff could be sufficiently large to
144 	 * overflow a loff_t when converted to byte offset.  This can
145 	 * only happen on architectures where sizeof(loff_t) ==
146 	 * sizeof(unsigned long).  So, only check in those instances.
147 	 */
148 	if (sizeof(unsigned long) == sizeof(loff_t)) {
149 		if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
150 			return -EINVAL;
151 	}
152 
153 	/* must be huge page aligned */
154 	if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
155 		return -EINVAL;
156 
157 	vma_len = (loff_t)(vma->vm_end - vma->vm_start);
158 	len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
159 	/* check for overflow */
160 	if (len < vma_len)
161 		return -EINVAL;
162 
163 	inode_lock(inode);
164 	file_accessed(file);
165 
166 	ret = -ENOMEM;
167 	if (!hugetlb_reserve_pages(inode,
168 				vma->vm_pgoff >> huge_page_order(h),
169 				len >> huge_page_shift(h), vma,
170 				vma->vm_flags))
171 		goto out;
172 
173 	ret = 0;
174 	if (vma->vm_flags & VM_WRITE && inode->i_size < len)
175 		i_size_write(inode, len);
176 out:
177 	inode_unlock(inode);
178 
179 	return ret;
180 }
181 
182 /*
183  * Called under mmap_write_lock(mm).
184  */
185 
186 static unsigned long
187 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
188 		unsigned long len, unsigned long pgoff, unsigned long flags)
189 {
190 	struct hstate *h = hstate_file(file);
191 	struct vm_unmapped_area_info info;
192 
193 	info.flags = 0;
194 	info.length = len;
195 	info.low_limit = current->mm->mmap_base;
196 	info.high_limit = arch_get_mmap_end(addr, len, flags);
197 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
198 	info.align_offset = 0;
199 	return vm_unmapped_area(&info);
200 }
201 
202 static unsigned long
203 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
204 		unsigned long len, unsigned long pgoff, unsigned long flags)
205 {
206 	struct hstate *h = hstate_file(file);
207 	struct vm_unmapped_area_info info;
208 
209 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
210 	info.length = len;
211 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
212 	info.high_limit = arch_get_mmap_base(addr, current->mm->mmap_base);
213 	info.align_mask = PAGE_MASK & ~huge_page_mask(h);
214 	info.align_offset = 0;
215 	addr = vm_unmapped_area(&info);
216 
217 	/*
218 	 * A failed mmap() very likely causes application failure,
219 	 * so fall back to the bottom-up function here. This scenario
220 	 * can happen with large stack limits and large mmap()
221 	 * allocations.
222 	 */
223 	if (unlikely(offset_in_page(addr))) {
224 		VM_BUG_ON(addr != -ENOMEM);
225 		info.flags = 0;
226 		info.low_limit = current->mm->mmap_base;
227 		info.high_limit = arch_get_mmap_end(addr, len, flags);
228 		addr = vm_unmapped_area(&info);
229 	}
230 
231 	return addr;
232 }
233 
234 unsigned long
235 generic_hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
236 				  unsigned long len, unsigned long pgoff,
237 				  unsigned long flags)
238 {
239 	struct mm_struct *mm = current->mm;
240 	struct vm_area_struct *vma;
241 	struct hstate *h = hstate_file(file);
242 	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
243 
244 	if (len & ~huge_page_mask(h))
245 		return -EINVAL;
246 	if (len > TASK_SIZE)
247 		return -ENOMEM;
248 
249 	if (flags & MAP_FIXED) {
250 		if (prepare_hugepage_range(file, addr, len))
251 			return -EINVAL;
252 		return addr;
253 	}
254 
255 	if (addr) {
256 		addr = ALIGN(addr, huge_page_size(h));
257 		vma = find_vma(mm, addr);
258 		if (mmap_end - len >= addr &&
259 		    (!vma || addr + len <= vm_start_gap(vma)))
260 			return addr;
261 	}
262 
263 	/*
264 	 * Use mm->get_unmapped_area value as a hint to use topdown routine.
265 	 * If architectures have special needs, they should define their own
266 	 * version of hugetlb_get_unmapped_area.
267 	 */
268 	if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
269 		return hugetlb_get_unmapped_area_topdown(file, addr, len,
270 				pgoff, flags);
271 	return hugetlb_get_unmapped_area_bottomup(file, addr, len,
272 			pgoff, flags);
273 }
274 
275 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
276 static unsigned long
277 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
278 			  unsigned long len, unsigned long pgoff,
279 			  unsigned long flags)
280 {
281 	return generic_hugetlb_get_unmapped_area(file, addr, len, pgoff, flags);
282 }
283 #endif
284 
285 static size_t
286 hugetlbfs_read_actor(struct page *page, unsigned long offset,
287 			struct iov_iter *to, unsigned long size)
288 {
289 	size_t copied = 0;
290 	int i, chunksize;
291 
292 	/* Find which 4k chunk and offset with in that chunk */
293 	i = offset >> PAGE_SHIFT;
294 	offset = offset & ~PAGE_MASK;
295 
296 	while (size) {
297 		size_t n;
298 		chunksize = PAGE_SIZE;
299 		if (offset)
300 			chunksize -= offset;
301 		if (chunksize > size)
302 			chunksize = size;
303 		n = copy_page_to_iter(&page[i], offset, chunksize, to);
304 		copied += n;
305 		if (n != chunksize)
306 			return copied;
307 		offset = 0;
308 		size -= chunksize;
309 		i++;
310 	}
311 	return copied;
312 }
313 
314 /*
315  * Support for read() - Find the page attached to f_mapping and copy out the
316  * data. This provides functionality similar to filemap_read().
317  */
318 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
319 {
320 	struct file *file = iocb->ki_filp;
321 	struct hstate *h = hstate_file(file);
322 	struct address_space *mapping = file->f_mapping;
323 	struct inode *inode = mapping->host;
324 	unsigned long index = iocb->ki_pos >> huge_page_shift(h);
325 	unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
326 	unsigned long end_index;
327 	loff_t isize;
328 	ssize_t retval = 0;
329 
330 	while (iov_iter_count(to)) {
331 		struct page *page;
332 		size_t nr, copied;
333 
334 		/* nr is the maximum number of bytes to copy from this page */
335 		nr = huge_page_size(h);
336 		isize = i_size_read(inode);
337 		if (!isize)
338 			break;
339 		end_index = (isize - 1) >> huge_page_shift(h);
340 		if (index > end_index)
341 			break;
342 		if (index == end_index) {
343 			nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
344 			if (nr <= offset)
345 				break;
346 		}
347 		nr = nr - offset;
348 
349 		/* Find the page */
350 		page = find_lock_page(mapping, index);
351 		if (unlikely(page == NULL)) {
352 			/*
353 			 * We have a HOLE, zero out the user-buffer for the
354 			 * length of the hole or request.
355 			 */
356 			copied = iov_iter_zero(nr, to);
357 		} else {
358 			unlock_page(page);
359 
360 			/*
361 			 * We have the page, copy it to user space buffer.
362 			 */
363 			copied = hugetlbfs_read_actor(page, offset, to, nr);
364 			put_page(page);
365 		}
366 		offset += copied;
367 		retval += copied;
368 		if (copied != nr && iov_iter_count(to)) {
369 			if (!retval)
370 				retval = -EFAULT;
371 			break;
372 		}
373 		index += offset >> huge_page_shift(h);
374 		offset &= ~huge_page_mask(h);
375 	}
376 	iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
377 	return retval;
378 }
379 
380 static int hugetlbfs_write_begin(struct file *file,
381 			struct address_space *mapping,
382 			loff_t pos, unsigned len,
383 			struct page **pagep, void **fsdata)
384 {
385 	return -EINVAL;
386 }
387 
388 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
389 			loff_t pos, unsigned len, unsigned copied,
390 			struct page *page, void *fsdata)
391 {
392 	BUG();
393 	return -EINVAL;
394 }
395 
396 static void remove_huge_page(struct page *page)
397 {
398 	ClearPageDirty(page);
399 	ClearPageUptodate(page);
400 	delete_from_page_cache(page);
401 }
402 
403 static void
404 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end,
405 		      zap_flags_t zap_flags)
406 {
407 	struct vm_area_struct *vma;
408 
409 	/*
410 	 * end == 0 indicates that the entire range after start should be
411 	 * unmapped.  Note, end is exclusive, whereas the interval tree takes
412 	 * an inclusive "last".
413 	 */
414 	vma_interval_tree_foreach(vma, root, start, end ? end - 1 : ULONG_MAX) {
415 		unsigned long v_offset;
416 		unsigned long v_end;
417 
418 		/*
419 		 * Can the expression below overflow on 32-bit arches?
420 		 * No, because the interval tree returns us only those vmas
421 		 * which overlap the truncated area starting at pgoff,
422 		 * and no vma on a 32-bit arch can span beyond the 4GB.
423 		 */
424 		if (vma->vm_pgoff < start)
425 			v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
426 		else
427 			v_offset = 0;
428 
429 		if (!end)
430 			v_end = vma->vm_end;
431 		else {
432 			v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
433 							+ vma->vm_start;
434 			if (v_end > vma->vm_end)
435 				v_end = vma->vm_end;
436 		}
437 
438 		unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
439 				     NULL, zap_flags);
440 	}
441 }
442 
443 /*
444  * remove_inode_hugepages handles two distinct cases: truncation and hole
445  * punch.  There are subtle differences in operation for each case.
446  *
447  * truncation is indicated by end of range being LLONG_MAX
448  *	In this case, we first scan the range and release found pages.
449  *	After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
450  *	maps and global counts.  Page faults can not race with truncation
451  *	in this routine.  hugetlb_no_page() holds i_mmap_rwsem and prevents
452  *	page faults in the truncated range by checking i_size.  i_size is
453  *	modified while holding i_mmap_rwsem.
454  * hole punch is indicated if end is not LLONG_MAX
455  *	In the hole punch case we scan the range and release found pages.
456  *	Only when releasing a page is the associated region/reserve map
457  *	deleted.  The region/reserve map for ranges without associated
458  *	pages are not modified.  Page faults can race with hole punch.
459  *	This is indicated if we find a mapped page.
460  * Note: If the passed end of range value is beyond the end of file, but
461  * not LLONG_MAX this routine still performs a hole punch operation.
462  */
463 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
464 				   loff_t lend)
465 {
466 	struct hstate *h = hstate_inode(inode);
467 	struct address_space *mapping = &inode->i_data;
468 	const pgoff_t start = lstart >> huge_page_shift(h);
469 	const pgoff_t end = lend >> huge_page_shift(h);
470 	struct folio_batch fbatch;
471 	pgoff_t next, index;
472 	int i, freed = 0;
473 	bool truncate_op = (lend == LLONG_MAX);
474 
475 	folio_batch_init(&fbatch);
476 	next = start;
477 	while (filemap_get_folios(mapping, &next, end - 1, &fbatch)) {
478 		for (i = 0; i < folio_batch_count(&fbatch); ++i) {
479 			struct folio *folio = fbatch.folios[i];
480 			u32 hash = 0;
481 
482 			index = folio->index;
483 			if (!truncate_op) {
484 				/*
485 				 * Only need to hold the fault mutex in the
486 				 * hole punch case.  This prevents races with
487 				 * page faults.  Races are not possible in the
488 				 * case of truncation.
489 				 */
490 				hash = hugetlb_fault_mutex_hash(mapping, index);
491 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
492 			}
493 
494 			/*
495 			 * If folio is mapped, it was faulted in after being
496 			 * unmapped in caller.  Unmap (again) now after taking
497 			 * the fault mutex.  The mutex will prevent faults
498 			 * until we finish removing the folio.
499 			 *
500 			 * This race can only happen in the hole punch case.
501 			 * Getting here in a truncate operation is a bug.
502 			 */
503 			if (unlikely(folio_mapped(folio))) {
504 				BUG_ON(truncate_op);
505 
506 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
507 				i_mmap_lock_write(mapping);
508 				mutex_lock(&hugetlb_fault_mutex_table[hash]);
509 				hugetlb_vmdelete_list(&mapping->i_mmap,
510 					index * pages_per_huge_page(h),
511 					(index + 1) * pages_per_huge_page(h),
512 					ZAP_FLAG_DROP_MARKER);
513 				i_mmap_unlock_write(mapping);
514 			}
515 
516 			folio_lock(folio);
517 			/*
518 			 * We must free the huge page and remove from page
519 			 * cache (remove_huge_page) BEFORE removing the
520 			 * region/reserve map (hugetlb_unreserve_pages).  In
521 			 * rare out of memory conditions, removal of the
522 			 * region/reserve map could fail. Correspondingly,
523 			 * the subpool and global reserve usage count can need
524 			 * to be adjusted.
525 			 */
526 			VM_BUG_ON(HPageRestoreReserve(&folio->page));
527 			remove_huge_page(&folio->page);
528 			freed++;
529 			if (!truncate_op) {
530 				if (unlikely(hugetlb_unreserve_pages(inode,
531 							index, index + 1, 1)))
532 					hugetlb_fix_reserve_counts(inode);
533 			}
534 
535 			folio_unlock(folio);
536 			if (!truncate_op)
537 				mutex_unlock(&hugetlb_fault_mutex_table[hash]);
538 		}
539 		folio_batch_release(&fbatch);
540 		cond_resched();
541 	}
542 
543 	if (truncate_op)
544 		(void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
545 }
546 
547 static void hugetlbfs_evict_inode(struct inode *inode)
548 {
549 	struct resv_map *resv_map;
550 
551 	remove_inode_hugepages(inode, 0, LLONG_MAX);
552 
553 	/*
554 	 * Get the resv_map from the address space embedded in the inode.
555 	 * This is the address space which points to any resv_map allocated
556 	 * at inode creation time.  If this is a device special inode,
557 	 * i_mapping may not point to the original address space.
558 	 */
559 	resv_map = (struct resv_map *)(&inode->i_data)->private_data;
560 	/* Only regular and link inodes have associated reserve maps */
561 	if (resv_map)
562 		resv_map_release(&resv_map->refs);
563 	clear_inode(inode);
564 }
565 
566 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
567 {
568 	pgoff_t pgoff;
569 	struct address_space *mapping = inode->i_mapping;
570 	struct hstate *h = hstate_inode(inode);
571 
572 	BUG_ON(offset & ~huge_page_mask(h));
573 	pgoff = offset >> PAGE_SHIFT;
574 
575 	i_mmap_lock_write(mapping);
576 	i_size_write(inode, offset);
577 	if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
578 		hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0,
579 				      ZAP_FLAG_DROP_MARKER);
580 	i_mmap_unlock_write(mapping);
581 	remove_inode_hugepages(inode, offset, LLONG_MAX);
582 }
583 
584 static void hugetlbfs_zero_partial_page(struct hstate *h,
585 					struct address_space *mapping,
586 					loff_t start,
587 					loff_t end)
588 {
589 	pgoff_t idx = start >> huge_page_shift(h);
590 	struct folio *folio;
591 
592 	folio = filemap_lock_folio(mapping, idx);
593 	if (!folio)
594 		return;
595 
596 	start = start & ~huge_page_mask(h);
597 	end = end & ~huge_page_mask(h);
598 	if (!end)
599 		end = huge_page_size(h);
600 
601 	folio_zero_segment(folio, (size_t)start, (size_t)end);
602 
603 	folio_unlock(folio);
604 	folio_put(folio);
605 }
606 
607 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
608 {
609 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
610 	struct address_space *mapping = inode->i_mapping;
611 	struct hstate *h = hstate_inode(inode);
612 	loff_t hpage_size = huge_page_size(h);
613 	loff_t hole_start, hole_end;
614 
615 	/*
616 	 * hole_start and hole_end indicate the full pages within the hole.
617 	 */
618 	hole_start = round_up(offset, hpage_size);
619 	hole_end = round_down(offset + len, hpage_size);
620 
621 	inode_lock(inode);
622 
623 	/* protected by i_rwsem */
624 	if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
625 		inode_unlock(inode);
626 		return -EPERM;
627 	}
628 
629 	i_mmap_lock_write(mapping);
630 
631 	/* If range starts before first full page, zero partial page. */
632 	if (offset < hole_start)
633 		hugetlbfs_zero_partial_page(h, mapping,
634 				offset, min(offset + len, hole_start));
635 
636 	/* Unmap users of full pages in the hole. */
637 	if (hole_end > hole_start) {
638 		if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
639 			hugetlb_vmdelete_list(&mapping->i_mmap,
640 					      hole_start >> PAGE_SHIFT,
641 					      hole_end >> PAGE_SHIFT, 0);
642 	}
643 
644 	/* If range extends beyond last full page, zero partial page. */
645 	if ((offset + len) > hole_end && (offset + len) > hole_start)
646 		hugetlbfs_zero_partial_page(h, mapping,
647 				hole_end, offset + len);
648 
649 	i_mmap_unlock_write(mapping);
650 
651 	/* Remove full pages from the file. */
652 	if (hole_end > hole_start)
653 		remove_inode_hugepages(inode, hole_start, hole_end);
654 
655 	inode_unlock(inode);
656 
657 	return 0;
658 }
659 
660 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
661 				loff_t len)
662 {
663 	struct inode *inode = file_inode(file);
664 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
665 	struct address_space *mapping = inode->i_mapping;
666 	struct hstate *h = hstate_inode(inode);
667 	struct vm_area_struct pseudo_vma;
668 	struct mm_struct *mm = current->mm;
669 	loff_t hpage_size = huge_page_size(h);
670 	unsigned long hpage_shift = huge_page_shift(h);
671 	pgoff_t start, index, end;
672 	int error;
673 	u32 hash;
674 
675 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
676 		return -EOPNOTSUPP;
677 
678 	if (mode & FALLOC_FL_PUNCH_HOLE)
679 		return hugetlbfs_punch_hole(inode, offset, len);
680 
681 	/*
682 	 * Default preallocate case.
683 	 * For this range, start is rounded down and end is rounded up
684 	 * as well as being converted to page offsets.
685 	 */
686 	start = offset >> hpage_shift;
687 	end = (offset + len + hpage_size - 1) >> hpage_shift;
688 
689 	inode_lock(inode);
690 
691 	/* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
692 	error = inode_newsize_ok(inode, offset + len);
693 	if (error)
694 		goto out;
695 
696 	if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
697 		error = -EPERM;
698 		goto out;
699 	}
700 
701 	/*
702 	 * Initialize a pseudo vma as this is required by the huge page
703 	 * allocation routines.  If NUMA is configured, use page index
704 	 * as input to create an allocation policy.
705 	 */
706 	vma_init(&pseudo_vma, mm);
707 	pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
708 	pseudo_vma.vm_file = file;
709 
710 	for (index = start; index < end; index++) {
711 		/*
712 		 * This is supposed to be the vaddr where the page is being
713 		 * faulted in, but we have no vaddr here.
714 		 */
715 		struct page *page;
716 		unsigned long addr;
717 
718 		cond_resched();
719 
720 		/*
721 		 * fallocate(2) manpage permits EINTR; we may have been
722 		 * interrupted because we are using up too much memory.
723 		 */
724 		if (signal_pending(current)) {
725 			error = -EINTR;
726 			break;
727 		}
728 
729 		/* Set numa allocation policy based on index */
730 		hugetlb_set_vma_policy(&pseudo_vma, inode, index);
731 
732 		/* addr is the offset within the file (zero based) */
733 		addr = index * hpage_size;
734 
735 		/*
736 		 * fault mutex taken here, protects against fault path
737 		 * and hole punch.  inode_lock previously taken protects
738 		 * against truncation.
739 		 */
740 		hash = hugetlb_fault_mutex_hash(mapping, index);
741 		mutex_lock(&hugetlb_fault_mutex_table[hash]);
742 
743 		/* See if already present in mapping to avoid alloc/free */
744 		page = find_get_page(mapping, index);
745 		if (page) {
746 			put_page(page);
747 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
748 			hugetlb_drop_vma_policy(&pseudo_vma);
749 			continue;
750 		}
751 
752 		/*
753 		 * Allocate page without setting the avoid_reserve argument.
754 		 * There certainly are no reserves associated with the
755 		 * pseudo_vma.  However, there could be shared mappings with
756 		 * reserves for the file at the inode level.  If we fallocate
757 		 * pages in these areas, we need to consume the reserves
758 		 * to keep reservation accounting consistent.
759 		 */
760 		page = alloc_huge_page(&pseudo_vma, addr, 0);
761 		hugetlb_drop_vma_policy(&pseudo_vma);
762 		if (IS_ERR(page)) {
763 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
764 			error = PTR_ERR(page);
765 			goto out;
766 		}
767 		clear_huge_page(page, addr, pages_per_huge_page(h));
768 		__SetPageUptodate(page);
769 		error = huge_add_to_page_cache(page, mapping, index);
770 		if (unlikely(error)) {
771 			restore_reserve_on_error(h, &pseudo_vma, addr, page);
772 			put_page(page);
773 			mutex_unlock(&hugetlb_fault_mutex_table[hash]);
774 			goto out;
775 		}
776 
777 		mutex_unlock(&hugetlb_fault_mutex_table[hash]);
778 
779 		SetHPageMigratable(page);
780 		/*
781 		 * unlock_page because locked by huge_add_to_page_cache()
782 		 * put_page() due to reference from alloc_huge_page()
783 		 */
784 		unlock_page(page);
785 		put_page(page);
786 	}
787 
788 	if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
789 		i_size_write(inode, offset + len);
790 	inode->i_ctime = current_time(inode);
791 out:
792 	inode_unlock(inode);
793 	return error;
794 }
795 
796 static int hugetlbfs_setattr(struct user_namespace *mnt_userns,
797 			     struct dentry *dentry, struct iattr *attr)
798 {
799 	struct inode *inode = d_inode(dentry);
800 	struct hstate *h = hstate_inode(inode);
801 	int error;
802 	unsigned int ia_valid = attr->ia_valid;
803 	struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
804 
805 	error = setattr_prepare(&init_user_ns, dentry, attr);
806 	if (error)
807 		return error;
808 
809 	if (ia_valid & ATTR_SIZE) {
810 		loff_t oldsize = inode->i_size;
811 		loff_t newsize = attr->ia_size;
812 
813 		if (newsize & ~huge_page_mask(h))
814 			return -EINVAL;
815 		/* protected by i_rwsem */
816 		if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
817 		    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
818 			return -EPERM;
819 		hugetlb_vmtruncate(inode, newsize);
820 	}
821 
822 	setattr_copy(&init_user_ns, inode, attr);
823 	mark_inode_dirty(inode);
824 	return 0;
825 }
826 
827 static struct inode *hugetlbfs_get_root(struct super_block *sb,
828 					struct hugetlbfs_fs_context *ctx)
829 {
830 	struct inode *inode;
831 
832 	inode = new_inode(sb);
833 	if (inode) {
834 		inode->i_ino = get_next_ino();
835 		inode->i_mode = S_IFDIR | ctx->mode;
836 		inode->i_uid = ctx->uid;
837 		inode->i_gid = ctx->gid;
838 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
839 		inode->i_op = &hugetlbfs_dir_inode_operations;
840 		inode->i_fop = &simple_dir_operations;
841 		/* directory inodes start off with i_nlink == 2 (for "." entry) */
842 		inc_nlink(inode);
843 		lockdep_annotate_inode_mutex_key(inode);
844 	}
845 	return inode;
846 }
847 
848 /*
849  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
850  * be taken from reclaim -- unlike regular filesystems. This needs an
851  * annotation because huge_pmd_share() does an allocation under hugetlb's
852  * i_mmap_rwsem.
853  */
854 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
855 
856 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
857 					struct inode *dir,
858 					umode_t mode, dev_t dev)
859 {
860 	struct inode *inode;
861 	struct resv_map *resv_map = NULL;
862 
863 	/*
864 	 * Reserve maps are only needed for inodes that can have associated
865 	 * page allocations.
866 	 */
867 	if (S_ISREG(mode) || S_ISLNK(mode)) {
868 		resv_map = resv_map_alloc();
869 		if (!resv_map)
870 			return NULL;
871 	}
872 
873 	inode = new_inode(sb);
874 	if (inode) {
875 		struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
876 
877 		inode->i_ino = get_next_ino();
878 		inode_init_owner(&init_user_ns, inode, dir, mode);
879 		lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
880 				&hugetlbfs_i_mmap_rwsem_key);
881 		inode->i_mapping->a_ops = &hugetlbfs_aops;
882 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
883 		inode->i_mapping->private_data = resv_map;
884 		info->seals = F_SEAL_SEAL;
885 		switch (mode & S_IFMT) {
886 		default:
887 			init_special_inode(inode, mode, dev);
888 			break;
889 		case S_IFREG:
890 			inode->i_op = &hugetlbfs_inode_operations;
891 			inode->i_fop = &hugetlbfs_file_operations;
892 			break;
893 		case S_IFDIR:
894 			inode->i_op = &hugetlbfs_dir_inode_operations;
895 			inode->i_fop = &simple_dir_operations;
896 
897 			/* directory inodes start off with i_nlink == 2 (for "." entry) */
898 			inc_nlink(inode);
899 			break;
900 		case S_IFLNK:
901 			inode->i_op = &page_symlink_inode_operations;
902 			inode_nohighmem(inode);
903 			break;
904 		}
905 		lockdep_annotate_inode_mutex_key(inode);
906 	} else {
907 		if (resv_map)
908 			kref_put(&resv_map->refs, resv_map_release);
909 	}
910 
911 	return inode;
912 }
913 
914 /*
915  * File creation. Allocate an inode, and we're done..
916  */
917 static int do_hugetlbfs_mknod(struct inode *dir,
918 			struct dentry *dentry,
919 			umode_t mode,
920 			dev_t dev,
921 			bool tmpfile)
922 {
923 	struct inode *inode;
924 	int error = -ENOSPC;
925 
926 	inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
927 	if (inode) {
928 		dir->i_ctime = dir->i_mtime = current_time(dir);
929 		if (tmpfile) {
930 			d_tmpfile(dentry, inode);
931 		} else {
932 			d_instantiate(dentry, inode);
933 			dget(dentry);/* Extra count - pin the dentry in core */
934 		}
935 		error = 0;
936 	}
937 	return error;
938 }
939 
940 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
941 			   struct dentry *dentry, umode_t mode, dev_t dev)
942 {
943 	return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
944 }
945 
946 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
947 			   struct dentry *dentry, umode_t mode)
948 {
949 	int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry,
950 				     mode | S_IFDIR, 0);
951 	if (!retval)
952 		inc_nlink(dir);
953 	return retval;
954 }
955 
956 static int hugetlbfs_create(struct user_namespace *mnt_userns,
957 			    struct inode *dir, struct dentry *dentry,
958 			    umode_t mode, bool excl)
959 {
960 	return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
961 }
962 
963 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns,
964 			     struct inode *dir, struct dentry *dentry,
965 			     umode_t mode)
966 {
967 	return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
968 }
969 
970 static int hugetlbfs_symlink(struct user_namespace *mnt_userns,
971 			     struct inode *dir, struct dentry *dentry,
972 			     const char *symname)
973 {
974 	struct inode *inode;
975 	int error = -ENOSPC;
976 
977 	inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
978 	if (inode) {
979 		int l = strlen(symname)+1;
980 		error = page_symlink(inode, symname, l);
981 		if (!error) {
982 			d_instantiate(dentry, inode);
983 			dget(dentry);
984 		} else
985 			iput(inode);
986 	}
987 	dir->i_ctime = dir->i_mtime = current_time(dir);
988 
989 	return error;
990 }
991 
992 #ifdef CONFIG_MIGRATION
993 static int hugetlbfs_migrate_folio(struct address_space *mapping,
994 				struct folio *dst, struct folio *src,
995 				enum migrate_mode mode)
996 {
997 	int rc;
998 
999 	rc = migrate_huge_page_move_mapping(mapping, dst, src);
1000 	if (rc != MIGRATEPAGE_SUCCESS)
1001 		return rc;
1002 
1003 	if (hugetlb_page_subpool(&src->page)) {
1004 		hugetlb_set_page_subpool(&dst->page,
1005 					hugetlb_page_subpool(&src->page));
1006 		hugetlb_set_page_subpool(&src->page, NULL);
1007 	}
1008 
1009 	if (mode != MIGRATE_SYNC_NO_COPY)
1010 		folio_migrate_copy(dst, src);
1011 	else
1012 		folio_migrate_flags(dst, src);
1013 
1014 	return MIGRATEPAGE_SUCCESS;
1015 }
1016 #else
1017 #define hugetlbfs_migrate_folio NULL
1018 #endif
1019 
1020 static int hugetlbfs_error_remove_page(struct address_space *mapping,
1021 				struct page *page)
1022 {
1023 	struct inode *inode = mapping->host;
1024 	pgoff_t index = page->index;
1025 
1026 	remove_huge_page(page);
1027 	if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
1028 		hugetlb_fix_reserve_counts(inode);
1029 
1030 	return 0;
1031 }
1032 
1033 /*
1034  * Display the mount options in /proc/mounts.
1035  */
1036 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
1037 {
1038 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1039 	struct hugepage_subpool *spool = sbinfo->spool;
1040 	unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1041 	unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1042 	char mod;
1043 
1044 	if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1045 		seq_printf(m, ",uid=%u",
1046 			   from_kuid_munged(&init_user_ns, sbinfo->uid));
1047 	if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1048 		seq_printf(m, ",gid=%u",
1049 			   from_kgid_munged(&init_user_ns, sbinfo->gid));
1050 	if (sbinfo->mode != 0755)
1051 		seq_printf(m, ",mode=%o", sbinfo->mode);
1052 	if (sbinfo->max_inodes != -1)
1053 		seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1054 
1055 	hpage_size /= 1024;
1056 	mod = 'K';
1057 	if (hpage_size >= 1024) {
1058 		hpage_size /= 1024;
1059 		mod = 'M';
1060 	}
1061 	seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1062 	if (spool) {
1063 		if (spool->max_hpages != -1)
1064 			seq_printf(m, ",size=%llu",
1065 				   (unsigned long long)spool->max_hpages << hpage_shift);
1066 		if (spool->min_hpages != -1)
1067 			seq_printf(m, ",min_size=%llu",
1068 				   (unsigned long long)spool->min_hpages << hpage_shift);
1069 	}
1070 	return 0;
1071 }
1072 
1073 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1074 {
1075 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1076 	struct hstate *h = hstate_inode(d_inode(dentry));
1077 
1078 	buf->f_type = HUGETLBFS_MAGIC;
1079 	buf->f_bsize = huge_page_size(h);
1080 	if (sbinfo) {
1081 		spin_lock(&sbinfo->stat_lock);
1082 		/* If no limits set, just report 0 or -1 for max/free/used
1083 		 * blocks, like simple_statfs() */
1084 		if (sbinfo->spool) {
1085 			long free_pages;
1086 
1087 			spin_lock_irq(&sbinfo->spool->lock);
1088 			buf->f_blocks = sbinfo->spool->max_hpages;
1089 			free_pages = sbinfo->spool->max_hpages
1090 				- sbinfo->spool->used_hpages;
1091 			buf->f_bavail = buf->f_bfree = free_pages;
1092 			spin_unlock_irq(&sbinfo->spool->lock);
1093 			buf->f_files = sbinfo->max_inodes;
1094 			buf->f_ffree = sbinfo->free_inodes;
1095 		}
1096 		spin_unlock(&sbinfo->stat_lock);
1097 	}
1098 	buf->f_namelen = NAME_MAX;
1099 	return 0;
1100 }
1101 
1102 static void hugetlbfs_put_super(struct super_block *sb)
1103 {
1104 	struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1105 
1106 	if (sbi) {
1107 		sb->s_fs_info = NULL;
1108 
1109 		if (sbi->spool)
1110 			hugepage_put_subpool(sbi->spool);
1111 
1112 		kfree(sbi);
1113 	}
1114 }
1115 
1116 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1117 {
1118 	if (sbinfo->free_inodes >= 0) {
1119 		spin_lock(&sbinfo->stat_lock);
1120 		if (unlikely(!sbinfo->free_inodes)) {
1121 			spin_unlock(&sbinfo->stat_lock);
1122 			return 0;
1123 		}
1124 		sbinfo->free_inodes--;
1125 		spin_unlock(&sbinfo->stat_lock);
1126 	}
1127 
1128 	return 1;
1129 }
1130 
1131 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1132 {
1133 	if (sbinfo->free_inodes >= 0) {
1134 		spin_lock(&sbinfo->stat_lock);
1135 		sbinfo->free_inodes++;
1136 		spin_unlock(&sbinfo->stat_lock);
1137 	}
1138 }
1139 
1140 
1141 static struct kmem_cache *hugetlbfs_inode_cachep;
1142 
1143 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1144 {
1145 	struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1146 	struct hugetlbfs_inode_info *p;
1147 
1148 	if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1149 		return NULL;
1150 	p = alloc_inode_sb(sb, hugetlbfs_inode_cachep, GFP_KERNEL);
1151 	if (unlikely(!p)) {
1152 		hugetlbfs_inc_free_inodes(sbinfo);
1153 		return NULL;
1154 	}
1155 
1156 	/*
1157 	 * Any time after allocation, hugetlbfs_destroy_inode can be called
1158 	 * for the inode.  mpol_free_shared_policy is unconditionally called
1159 	 * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1160 	 * in case of a quick call to destroy.
1161 	 *
1162 	 * Note that the policy is initialized even if we are creating a
1163 	 * private inode.  This simplifies hugetlbfs_destroy_inode.
1164 	 */
1165 	mpol_shared_policy_init(&p->policy, NULL);
1166 
1167 	return &p->vfs_inode;
1168 }
1169 
1170 static void hugetlbfs_free_inode(struct inode *inode)
1171 {
1172 	kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1173 }
1174 
1175 static void hugetlbfs_destroy_inode(struct inode *inode)
1176 {
1177 	hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1178 	mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1179 }
1180 
1181 static const struct address_space_operations hugetlbfs_aops = {
1182 	.write_begin	= hugetlbfs_write_begin,
1183 	.write_end	= hugetlbfs_write_end,
1184 	.dirty_folio	= noop_dirty_folio,
1185 	.migrate_folio  = hugetlbfs_migrate_folio,
1186 	.error_remove_page	= hugetlbfs_error_remove_page,
1187 };
1188 
1189 
1190 static void init_once(void *foo)
1191 {
1192 	struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1193 
1194 	inode_init_once(&ei->vfs_inode);
1195 }
1196 
1197 const struct file_operations hugetlbfs_file_operations = {
1198 	.read_iter		= hugetlbfs_read_iter,
1199 	.mmap			= hugetlbfs_file_mmap,
1200 	.fsync			= noop_fsync,
1201 	.get_unmapped_area	= hugetlb_get_unmapped_area,
1202 	.llseek			= default_llseek,
1203 	.fallocate		= hugetlbfs_fallocate,
1204 };
1205 
1206 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1207 	.create		= hugetlbfs_create,
1208 	.lookup		= simple_lookup,
1209 	.link		= simple_link,
1210 	.unlink		= simple_unlink,
1211 	.symlink	= hugetlbfs_symlink,
1212 	.mkdir		= hugetlbfs_mkdir,
1213 	.rmdir		= simple_rmdir,
1214 	.mknod		= hugetlbfs_mknod,
1215 	.rename		= simple_rename,
1216 	.setattr	= hugetlbfs_setattr,
1217 	.tmpfile	= hugetlbfs_tmpfile,
1218 };
1219 
1220 static const struct inode_operations hugetlbfs_inode_operations = {
1221 	.setattr	= hugetlbfs_setattr,
1222 };
1223 
1224 static const struct super_operations hugetlbfs_ops = {
1225 	.alloc_inode    = hugetlbfs_alloc_inode,
1226 	.free_inode     = hugetlbfs_free_inode,
1227 	.destroy_inode  = hugetlbfs_destroy_inode,
1228 	.evict_inode	= hugetlbfs_evict_inode,
1229 	.statfs		= hugetlbfs_statfs,
1230 	.put_super	= hugetlbfs_put_super,
1231 	.show_options	= hugetlbfs_show_options,
1232 };
1233 
1234 /*
1235  * Convert size option passed from command line to number of huge pages
1236  * in the pool specified by hstate.  Size option could be in bytes
1237  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1238  */
1239 static long
1240 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1241 			 enum hugetlbfs_size_type val_type)
1242 {
1243 	if (val_type == NO_SIZE)
1244 		return -1;
1245 
1246 	if (val_type == SIZE_PERCENT) {
1247 		size_opt <<= huge_page_shift(h);
1248 		size_opt *= h->max_huge_pages;
1249 		do_div(size_opt, 100);
1250 	}
1251 
1252 	size_opt >>= huge_page_shift(h);
1253 	return size_opt;
1254 }
1255 
1256 /*
1257  * Parse one mount parameter.
1258  */
1259 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1260 {
1261 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1262 	struct fs_parse_result result;
1263 	char *rest;
1264 	unsigned long ps;
1265 	int opt;
1266 
1267 	opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1268 	if (opt < 0)
1269 		return opt;
1270 
1271 	switch (opt) {
1272 	case Opt_uid:
1273 		ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1274 		if (!uid_valid(ctx->uid))
1275 			goto bad_val;
1276 		return 0;
1277 
1278 	case Opt_gid:
1279 		ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1280 		if (!gid_valid(ctx->gid))
1281 			goto bad_val;
1282 		return 0;
1283 
1284 	case Opt_mode:
1285 		ctx->mode = result.uint_32 & 01777U;
1286 		return 0;
1287 
1288 	case Opt_size:
1289 		/* memparse() will accept a K/M/G without a digit */
1290 		if (!isdigit(param->string[0]))
1291 			goto bad_val;
1292 		ctx->max_size_opt = memparse(param->string, &rest);
1293 		ctx->max_val_type = SIZE_STD;
1294 		if (*rest == '%')
1295 			ctx->max_val_type = SIZE_PERCENT;
1296 		return 0;
1297 
1298 	case Opt_nr_inodes:
1299 		/* memparse() will accept a K/M/G without a digit */
1300 		if (!isdigit(param->string[0]))
1301 			goto bad_val;
1302 		ctx->nr_inodes = memparse(param->string, &rest);
1303 		return 0;
1304 
1305 	case Opt_pagesize:
1306 		ps = memparse(param->string, &rest);
1307 		ctx->hstate = size_to_hstate(ps);
1308 		if (!ctx->hstate) {
1309 			pr_err("Unsupported page size %lu MB\n", ps / SZ_1M);
1310 			return -EINVAL;
1311 		}
1312 		return 0;
1313 
1314 	case Opt_min_size:
1315 		/* memparse() will accept a K/M/G without a digit */
1316 		if (!isdigit(param->string[0]))
1317 			goto bad_val;
1318 		ctx->min_size_opt = memparse(param->string, &rest);
1319 		ctx->min_val_type = SIZE_STD;
1320 		if (*rest == '%')
1321 			ctx->min_val_type = SIZE_PERCENT;
1322 		return 0;
1323 
1324 	default:
1325 		return -EINVAL;
1326 	}
1327 
1328 bad_val:
1329 	return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1330 		      param->string, param->key);
1331 }
1332 
1333 /*
1334  * Validate the parsed options.
1335  */
1336 static int hugetlbfs_validate(struct fs_context *fc)
1337 {
1338 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1339 
1340 	/*
1341 	 * Use huge page pool size (in hstate) to convert the size
1342 	 * options to number of huge pages.  If NO_SIZE, -1 is returned.
1343 	 */
1344 	ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1345 						   ctx->max_size_opt,
1346 						   ctx->max_val_type);
1347 	ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1348 						   ctx->min_size_opt,
1349 						   ctx->min_val_type);
1350 
1351 	/*
1352 	 * If max_size was specified, then min_size must be smaller
1353 	 */
1354 	if (ctx->max_val_type > NO_SIZE &&
1355 	    ctx->min_hpages > ctx->max_hpages) {
1356 		pr_err("Minimum size can not be greater than maximum size\n");
1357 		return -EINVAL;
1358 	}
1359 
1360 	return 0;
1361 }
1362 
1363 static int
1364 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1365 {
1366 	struct hugetlbfs_fs_context *ctx = fc->fs_private;
1367 	struct hugetlbfs_sb_info *sbinfo;
1368 
1369 	sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1370 	if (!sbinfo)
1371 		return -ENOMEM;
1372 	sb->s_fs_info = sbinfo;
1373 	spin_lock_init(&sbinfo->stat_lock);
1374 	sbinfo->hstate		= ctx->hstate;
1375 	sbinfo->max_inodes	= ctx->nr_inodes;
1376 	sbinfo->free_inodes	= ctx->nr_inodes;
1377 	sbinfo->spool		= NULL;
1378 	sbinfo->uid		= ctx->uid;
1379 	sbinfo->gid		= ctx->gid;
1380 	sbinfo->mode		= ctx->mode;
1381 
1382 	/*
1383 	 * Allocate and initialize subpool if maximum or minimum size is
1384 	 * specified.  Any needed reservations (for minimum size) are taken
1385 	 * when the subpool is created.
1386 	 */
1387 	if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1388 		sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1389 						     ctx->max_hpages,
1390 						     ctx->min_hpages);
1391 		if (!sbinfo->spool)
1392 			goto out_free;
1393 	}
1394 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1395 	sb->s_blocksize = huge_page_size(ctx->hstate);
1396 	sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1397 	sb->s_magic = HUGETLBFS_MAGIC;
1398 	sb->s_op = &hugetlbfs_ops;
1399 	sb->s_time_gran = 1;
1400 
1401 	/*
1402 	 * Due to the special and limited functionality of hugetlbfs, it does
1403 	 * not work well as a stacking filesystem.
1404 	 */
1405 	sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1406 	sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1407 	if (!sb->s_root)
1408 		goto out_free;
1409 	return 0;
1410 out_free:
1411 	kfree(sbinfo->spool);
1412 	kfree(sbinfo);
1413 	return -ENOMEM;
1414 }
1415 
1416 static int hugetlbfs_get_tree(struct fs_context *fc)
1417 {
1418 	int err = hugetlbfs_validate(fc);
1419 	if (err)
1420 		return err;
1421 	return get_tree_nodev(fc, hugetlbfs_fill_super);
1422 }
1423 
1424 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1425 {
1426 	kfree(fc->fs_private);
1427 }
1428 
1429 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1430 	.free		= hugetlbfs_fs_context_free,
1431 	.parse_param	= hugetlbfs_parse_param,
1432 	.get_tree	= hugetlbfs_get_tree,
1433 };
1434 
1435 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1436 {
1437 	struct hugetlbfs_fs_context *ctx;
1438 
1439 	ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1440 	if (!ctx)
1441 		return -ENOMEM;
1442 
1443 	ctx->max_hpages	= -1; /* No limit on size by default */
1444 	ctx->nr_inodes	= -1; /* No limit on number of inodes by default */
1445 	ctx->uid	= current_fsuid();
1446 	ctx->gid	= current_fsgid();
1447 	ctx->mode	= 0755;
1448 	ctx->hstate	= &default_hstate;
1449 	ctx->min_hpages	= -1; /* No default minimum size */
1450 	ctx->max_val_type = NO_SIZE;
1451 	ctx->min_val_type = NO_SIZE;
1452 	fc->fs_private = ctx;
1453 	fc->ops	= &hugetlbfs_fs_context_ops;
1454 	return 0;
1455 }
1456 
1457 static struct file_system_type hugetlbfs_fs_type = {
1458 	.name			= "hugetlbfs",
1459 	.init_fs_context	= hugetlbfs_init_fs_context,
1460 	.parameters		= hugetlb_fs_parameters,
1461 	.kill_sb		= kill_litter_super,
1462 };
1463 
1464 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1465 
1466 static int can_do_hugetlb_shm(void)
1467 {
1468 	kgid_t shm_group;
1469 	shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1470 	return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1471 }
1472 
1473 static int get_hstate_idx(int page_size_log)
1474 {
1475 	struct hstate *h = hstate_sizelog(page_size_log);
1476 
1477 	if (!h)
1478 		return -1;
1479 	return hstate_index(h);
1480 }
1481 
1482 /*
1483  * Note that size should be aligned to proper hugepage size in caller side,
1484  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1485  */
1486 struct file *hugetlb_file_setup(const char *name, size_t size,
1487 				vm_flags_t acctflag, int creat_flags,
1488 				int page_size_log)
1489 {
1490 	struct inode *inode;
1491 	struct vfsmount *mnt;
1492 	int hstate_idx;
1493 	struct file *file;
1494 
1495 	hstate_idx = get_hstate_idx(page_size_log);
1496 	if (hstate_idx < 0)
1497 		return ERR_PTR(-ENODEV);
1498 
1499 	mnt = hugetlbfs_vfsmount[hstate_idx];
1500 	if (!mnt)
1501 		return ERR_PTR(-ENOENT);
1502 
1503 	if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1504 		struct ucounts *ucounts = current_ucounts();
1505 
1506 		if (user_shm_lock(size, ucounts)) {
1507 			pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is obsolete\n",
1508 				current->comm, current->pid);
1509 			user_shm_unlock(size, ucounts);
1510 		}
1511 		return ERR_PTR(-EPERM);
1512 	}
1513 
1514 	file = ERR_PTR(-ENOSPC);
1515 	inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1516 	if (!inode)
1517 		goto out;
1518 	if (creat_flags == HUGETLB_SHMFS_INODE)
1519 		inode->i_flags |= S_PRIVATE;
1520 
1521 	inode->i_size = size;
1522 	clear_nlink(inode);
1523 
1524 	if (!hugetlb_reserve_pages(inode, 0,
1525 			size >> huge_page_shift(hstate_inode(inode)), NULL,
1526 			acctflag))
1527 		file = ERR_PTR(-ENOMEM);
1528 	else
1529 		file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1530 					&hugetlbfs_file_operations);
1531 	if (!IS_ERR(file))
1532 		return file;
1533 
1534 	iput(inode);
1535 out:
1536 	return file;
1537 }
1538 
1539 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1540 {
1541 	struct fs_context *fc;
1542 	struct vfsmount *mnt;
1543 
1544 	fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1545 	if (IS_ERR(fc)) {
1546 		mnt = ERR_CAST(fc);
1547 	} else {
1548 		struct hugetlbfs_fs_context *ctx = fc->fs_private;
1549 		ctx->hstate = h;
1550 		mnt = fc_mount(fc);
1551 		put_fs_context(fc);
1552 	}
1553 	if (IS_ERR(mnt))
1554 		pr_err("Cannot mount internal hugetlbfs for page size %luK",
1555 		       huge_page_size(h) / SZ_1K);
1556 	return mnt;
1557 }
1558 
1559 static int __init init_hugetlbfs_fs(void)
1560 {
1561 	struct vfsmount *mnt;
1562 	struct hstate *h;
1563 	int error;
1564 	int i;
1565 
1566 	if (!hugepages_supported()) {
1567 		pr_info("disabling because there are no supported hugepage sizes\n");
1568 		return -ENOTSUPP;
1569 	}
1570 
1571 	error = -ENOMEM;
1572 	hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1573 					sizeof(struct hugetlbfs_inode_info),
1574 					0, SLAB_ACCOUNT, init_once);
1575 	if (hugetlbfs_inode_cachep == NULL)
1576 		goto out;
1577 
1578 	error = register_filesystem(&hugetlbfs_fs_type);
1579 	if (error)
1580 		goto out_free;
1581 
1582 	/* default hstate mount is required */
1583 	mnt = mount_one_hugetlbfs(&default_hstate);
1584 	if (IS_ERR(mnt)) {
1585 		error = PTR_ERR(mnt);
1586 		goto out_unreg;
1587 	}
1588 	hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1589 
1590 	/* other hstates are optional */
1591 	i = 0;
1592 	for_each_hstate(h) {
1593 		if (i == default_hstate_idx) {
1594 			i++;
1595 			continue;
1596 		}
1597 
1598 		mnt = mount_one_hugetlbfs(h);
1599 		if (IS_ERR(mnt))
1600 			hugetlbfs_vfsmount[i] = NULL;
1601 		else
1602 			hugetlbfs_vfsmount[i] = mnt;
1603 		i++;
1604 	}
1605 
1606 	return 0;
1607 
1608  out_unreg:
1609 	(void)unregister_filesystem(&hugetlbfs_fs_type);
1610  out_free:
1611 	kmem_cache_destroy(hugetlbfs_inode_cachep);
1612  out:
1613 	return error;
1614 }
1615 fs_initcall(init_hugetlbfs_fs)
1616